code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = BertJapaneseTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def A_ ( self ): super().setUp() _lowerCamelCase : Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self , lowercase ): _lowerCamelCase : int = 'こんにちは、世界。 \nこんばんは、世界。' _lowerCamelCase : Union[str, Any] = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def A_ ( self , lowercase ): _lowerCamelCase, _lowerCamelCase : Any = self.get_input_output_texts(lowercase ) _lowerCamelCase : Tuple = tokenizer.encode(lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Dict = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) return text, ids def A_ ( self ): pass # TODO add if relevant def A_ ( self ): pass # TODO add if relevant def A_ ( self ): pass # TODO add if relevant def A_ ( self ): _lowerCamelCase : Optional[int] = self.tokenizer_class(self.vocab_file ) _lowerCamelCase : Union[str, Any] = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(lowercase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def A_ ( self ): _lowerCamelCase : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(lowercase ) _lowerCamelCase : int = 'こんにちは、世界。\nこんばんは、世界。' _lowerCamelCase : Tuple = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowercase , 'wb' ) as handle: pickle.dump(lowercase , lowercase ) with open(lowercase , 'rb' ) as handle: _lowerCamelCase : Dict = pickle.load(lowercase ) _lowerCamelCase : Dict = tokenizer_new.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self ): try: _lowerCamelCase : Dict = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self ): try: _lowerCamelCase : Any = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self ): _lowerCamelCase : List[Any] = MecabTokenizer(do_lower_case=lowercase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self ): try: _lowerCamelCase : Tuple = MecabTokenizer( do_lower_case=lowercase , normalize_text=lowercase , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = MecabTokenizer(normalize_text=lowercase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def A_ ( self ): _lowerCamelCase : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(lowercase ) _lowerCamelCase : int = 'こんにちは、世界。\nこんばんは、世界。' _lowerCamelCase : Tuple = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowercase , 'wb' ) as handle: pickle.dump(lowercase , lowercase ) with open(lowercase , 'rb' ) as handle: _lowerCamelCase : int = pickle.load(lowercase ) _lowerCamelCase : List[Any] = tokenizer_new.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) @require_sudachi def A_ ( self ): _lowerCamelCase : Optional[Any] = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def A_ ( self ): _lowerCamelCase : str = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def A_ ( self ): _lowerCamelCase : Tuple = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def A_ ( self ): _lowerCamelCase : List[Any] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def A_ ( self ): _lowerCamelCase : Tuple = SudachiTokenizer(do_lower_case=lowercase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def A_ ( self ): _lowerCamelCase : Tuple = SudachiTokenizer(normalize_text=lowercase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def A_ ( self ): _lowerCamelCase : str = SudachiTokenizer(trim_whitespace=lowercase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(lowercase ) _lowerCamelCase : Optional[Any] = 'こんにちは、世界。\nこんばんは、世界。' _lowerCamelCase : Optional[Any] = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCamelCase : int = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowercase , 'wb' ) as handle: pickle.dump(lowercase , lowercase ) with open(lowercase , 'rb' ) as handle: _lowerCamelCase : Tuple = pickle.load(lowercase ) _lowerCamelCase : Dict = tokenizer_new.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) @require_jumanpp def A_ ( self ): _lowerCamelCase : List[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : str = JumanppTokenizer(do_lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : List[Any] = JumanppTokenizer(normalize_text=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : Union[str, Any] = JumanppTokenizer(trim_whitespace=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : Optional[int] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def A_ ( self ): _lowerCamelCase : Any = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] _lowerCamelCase : int = {} for i, token in enumerate(lowercase ): _lowerCamelCase : List[str] = i _lowerCamelCase : Tuple = WordpieceTokenizer(vocab=lowercase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def A_ ( self ): _lowerCamelCase : Optional[Any] = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) _lowerCamelCase : Optional[int] = tokenizer.subword_tokenizer _lowerCamelCase : Union[str, Any] = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(lowercase , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) _lowerCamelCase : Optional[int] = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(lowercase , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def A_ ( self ): _lowerCamelCase : str = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) _lowerCamelCase : int = tokenizer.encode('ありがとう。' , add_special_tokens=lowercase ) _lowerCamelCase : Any = tokenizer.encode('どういたしまして。' , add_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = BertJapaneseTokenizer lowerCamelCase__ = False def A_ ( self ): super().setUp() _lowerCamelCase : int = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self , **lowercase ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : Tuple = 'こんにちは、世界。 \nこんばんは、世界。' _lowerCamelCase : Dict = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def A_ ( self ): pass # TODO add if relevant def A_ ( self ): pass # TODO add if relevant def A_ ( self ): pass # TODO add if relevant def A_ ( self ): _lowerCamelCase : Dict = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) _lowerCamelCase : List[Any] = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( lowercase , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] _lowerCamelCase : Optional[int] = {} for i, token in enumerate(lowercase ): _lowerCamelCase : str = i _lowerCamelCase : List[Any] = CharacterTokenizer(vocab=lowercase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) _lowerCamelCase : str = tokenizer.encode('ありがとう。' , add_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.encode('どういたしまして。' , add_special_tokens=lowercase ) _lowerCamelCase : Dict = tokenizer.build_inputs_with_special_tokens(lowercase ) _lowerCamelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Optional[int] = 'cl-tohoku/bert-base-japanese' _lowerCamelCase : str = AutoTokenizer.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Any = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(lowercase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) _lowerCamelCase : Optional[Any] = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(lowercase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
96
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """""" lowercase__ = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self : List[str], lowerCamelCase : Optional[DatasetInfo] = None, lowerCamelCase : Optional[str] = None, **lowerCamelCase : str, ): '''simple docstring''' super().__init__(self, **lowerCamelCase ) lowercase__ = repo_info lowercase__ = token lowercase__ = None def lowercase__ ( self : Optional[Any] ): '''simple docstring''' if self.dir_cache is None: lowercase__ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase__ = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(lowerCamelCase ): {'''name''': str(lowerCamelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : str = "rb", **lowerCamelCase : Any, ): '''simple docstring''' if not isinstance(self.repo_info, lowerCamelCase ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) lowercase__ = hf_hub_url(self.repo_info.id, lowerCamelCase, revision=self.repo_info.sha ) return fsspec.open( lowerCamelCase, mode=lowerCamelCase, headers=get_authentication_headers_for_url(lowerCamelCase, use_auth_token=self.token ), client_kwargs={'''trust_env''': True}, ).open() def lowercase__ ( self : Dict, lowerCamelCase : Any, **lowerCamelCase : int ): '''simple docstring''' self._get_dirs() lowercase__ = self._strip_protocol(lowerCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowerCamelCase ) def lowercase__ ( self : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : Optional[int]=False, **lowerCamelCase : str ): '''simple docstring''' self._get_dirs() lowercase__ = PurePosixPath(path.strip('''/''' ) ) lowercase__ = {} for p, f in self.dir_cache.items(): lowercase__ = PurePosixPath(p.strip('''/''' ) ) lowercase__ = p.parent if root == path: lowercase__ = f lowercase__ = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
207
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Optional[Any] = 2 while i * i <= n: __UpperCAmelCase : str = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Any = 1 __UpperCAmelCase : str = 1 while True: i += 1 t_num += i if count_divisors(lowerCAmelCase__ ) > 500: break return t_num if __name__ == "__main__": print(solution())
366
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : List[Any] = scope def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCAmelCase : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Optional[Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : str = """multi_label_classification""" __UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) ) __UpperCAmelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
16
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase__ = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Tuple: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> int: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase ) lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
340
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ = '''src/transformers''' a_ = '''docs/source/en/tasks''' def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Find the start prompt. lowerCAmelCase__ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase__ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(TRANSFORMERS_PATH) a_ = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) lowerCAmelCase__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
340
1
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class snake_case__ : @staticmethod def __magic_name__ ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: pass def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Any = np.array(_A ) __magic_name__ : Optional[int] = npimg.shape return {"hash": hashimage(_A ), "shape": shape} @is_pipeline_test @require_vision @require_torch class snake_case__ ( unittest.TestCase ): lowercase__ : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowercase__ : Dict = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = MaskGenerationPipeline(model=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def __magic_name__ ( self ) -> str: pass @slow @require_torch def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : List[str] = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) __magic_name__ : str = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=2_56 ) # Shortening by hashing __magic_name__ : str = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(lowerCAmelCase__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0_4_4_4}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.0_2_1}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0_1_6_7}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0_1_3_2}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0_0_5_3}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (4_80, 6_40)}, """scores""": 0.9_9_6_7}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (4_80, 6_40)}, """scores""": 0.9_9_3}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (4_80, 6_40)}, """scores""": 0.9_9_0_9}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (4_80, 6_40)}, """scores""": 0.9_8_7_9}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (4_80, 6_40)}, """scores""": 0.9_8_3_4}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (4_80, 6_40)}, """scores""": 0.9_7_1_6}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (4_80, 6_40)}, """scores""": 0.9_6_1_2}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (4_80, 6_40)}, """scores""": 0.9_5_9_9}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (4_80, 6_40)}, """scores""": 0.9_5_5_2}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (4_80, 6_40)}, """scores""": 0.9_5_3_2}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (4_80, 6_40)}, """scores""": 0.9_5_1_6}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (4_80, 6_40)}, """scores""": 0.9_4_9_9}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (4_80, 6_40)}, """scores""": 0.9_4_8_3}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (4_80, 6_40)}, """scores""": 0.9_4_6_4}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (4_80, 6_40)}, """scores""": 0.9_4_3}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (4_80, 6_40)}, """scores""": 0.9_4_3}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (4_80, 6_40)}, """scores""": 0.9_4_0_8}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (4_80, 6_40)}, """scores""": 0.9_3_3_5}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (4_80, 6_40)}, """scores""": 0.9_3_2_6}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (4_80, 6_40)}, """scores""": 0.9_2_6_2}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (4_80, 6_40)}, """scores""": 0.8_9_9_9}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (4_80, 6_40)}, """scores""": 0.8_9_8_6}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (4_80, 6_40)}, """scores""": 0.8_9_8_4}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (4_80, 6_40)}, """scores""": 0.8_8_7_3}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (4_80, 6_40)}, """scores""": 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def __magic_name__ ( self ) -> int: __magic_name__ : Union[str, Any] = """facebook/sam-vit-huge""" __magic_name__ : Optional[Any] = pipeline("""mask-generation""" , model=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing __magic_name__ : List[Any] = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(lowerCAmelCase__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0_4_4_4}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.0_2_1_0}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0_1_6_7}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0_1_3_2}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0_0_5_3}, ] , )
138
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class snake_case__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) __magic_name__ : Dict = AutoTokenizer.from_pretrained("""google/mt5-small""" ) __magic_name__ : Tuple = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids __magic_name__ : List[Any] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids __magic_name__ : Any = shift_tokens_right(lowerCAmelCase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __magic_name__ : List[Any] = model(lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ).logits __magic_name__ : Tuple = optax.softmax_cross_entropy(lowerCAmelCase__ , onehot(lowerCAmelCase__ , logits.shape[-1] ) ).mean() __magic_name__ : List[Any] = -(labels.shape[-1] * loss.item()) __magic_name__ : List[Any] = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
138
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCAmelCase : Optional[int] = model_type_to_module_name(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = importlib.import_module(f""".{module_name}""" , "transformers.models" ) try: return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE , "__name__" , SCREAMING_SNAKE_CASE ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCAmelCase : Optional[int] = importlib.import_module("transformers" ) if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return None def a__ ( SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[Dict[str, str]] = None , SCREAMING_SNAKE_CASE : Optional[Union[bool, str]] = None , SCREAMING_SNAKE_CASE : Optional[str] = None , SCREAMING_SNAKE_CASE : bool = False , **SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' lowerCAmelCase : Dict = get_file_from_repo( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE , resume_download=SCREAMING_SNAKE_CASE , proxies=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , revision=SCREAMING_SNAKE_CASE , local_files_only=SCREAMING_SNAKE_CASE , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as reader: return json.load(SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(snake_case__ ) def lowercase__ ( cls , snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Any = kwargs.pop("config" , snake_case__ ) lowerCAmelCase : List[str] = kwargs.pop("trust_remote_code" , snake_case__ ) lowerCAmelCase : List[Any] = True lowerCAmelCase , lowerCAmelCase : Tuple = ImageProcessingMixin.get_image_processor_dict(snake_case__ , **snake_case__ ) lowerCAmelCase : int = config_dict.get("image_processor_type" , snake_case__ ) lowerCAmelCase : str = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): lowerCAmelCase : Dict = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: lowerCAmelCase : str = config_dict.pop("feature_extractor_type" , snake_case__ ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) lowerCAmelCase : List[str] = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): lowerCAmelCase : List[Any] = config_dict["auto_map"]["AutoFeatureExtractor"] lowerCAmelCase : List[Any] = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Dict = AutoConfig.from_pretrained(snake_case__ , **snake_case__ ) # It could be in `config.image_processor_type`` lowerCAmelCase : str = getattr(snake_case__ , "image_processor_type" , snake_case__ ) if hasattr(snake_case__ , "auto_map" ) and "AutoImageProcessor" in config.auto_map: lowerCAmelCase : Union[str, Any] = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: lowerCAmelCase : Union[str, Any] = image_processor_class_from_name(snake_case__ ) lowerCAmelCase : List[Any] = image_processor_auto_map is not None lowerCAmelCase : int = image_processor_class is not None or type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING lowerCAmelCase : int = resolve_trust_remote_code( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if has_remote_code and trust_remote_code: lowerCAmelCase : List[Any] = get_class_from_dynamic_module( snake_case__ , snake_case__ , **snake_case__ ) lowerCAmelCase : str = kwargs.pop("code_revision" , snake_case__ ) if os.path.isdir(snake_case__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(snake_case__ , **snake_case__ ) elif image_processor_class is not None: return image_processor_class.from_dict(snake_case__ , **snake_case__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING: lowerCAmelCase : Optional[Any] = IMAGE_PROCESSOR_MAPPING[type(snake_case__ )] return image_processor_class.from_dict(snake_case__ , **snake_case__ ) raise ValueError( f"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ f"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def lowercase__ ( snake_case__ , snake_case__ ): """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(snake_case__ , snake_case__ )
108
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if height >= 1: move_tower(height - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) move_disk(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) move_tower(height - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' print("moving disk from" , SCREAMING_SNAKE_CASE , "to" , SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = int(input("Height of hanoi: " ).strip() ) move_tower(SCREAMING_SNAKE_CASE , "A" , "B" , "C" ) if __name__ == "__main__": main()
108
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = AlbertConfig.from_json_file(A__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __UpperCamelCase :int = AlbertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(A__ , A__ , A__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
351
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch __lowercase = logging.get_logger(__name__) @dataclass class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase=False , __lowercase=False , __lowercase=6.0 , __lowercase=None , __lowercase=False , __lowercase=False , __lowercase=None , __lowercase="fp4" , __lowercase=False , **__lowercase , ) -> Tuple: __UpperCamelCase :List[str] = load_in_abit __UpperCamelCase :Union[str, Any] = load_in_abit __UpperCamelCase :str = llm_inta_threshold __UpperCamelCase :List[str] = llm_inta_skip_modules __UpperCamelCase :Any = llm_inta_enable_fpaa_cpu_offload __UpperCamelCase :List[Any] = llm_inta_has_fpaa_weight __UpperCamelCase :str = bnb_abit_quant_type __UpperCamelCase :Optional[int] = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __UpperCamelCase :Tuple = torch.floataa elif isinstance(__lowercase , __lowercase): __UpperCamelCase :Union[str, Any] = getattr(__lowercase , __lowercase) elif isinstance(__lowercase , torch.dtype): __UpperCamelCase :int = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''') self.post_init() def UpperCamelCase__ ( self) -> Union[str, Any]: if not isinstance(self.llm_inta_threshold , __lowercase): raise ValueError('''llm_int8_threshold must be a float''') if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , __lowercase): raise ValueError('''llm_int8_skip_modules must be a list of strings''') if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , __lowercase): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''') if not isinstance(self.llm_inta_has_fpaa_weight , __lowercase): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''') if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''') if not isinstance(self.bnb_abit_quant_type , __lowercase): raise ValueError('''bnb_4bit_quant_type must be a string''') if not isinstance(self.bnb_abit_use_double_quant , __lowercase): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''') if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''')) >= version.parse( '''0.39.0'''): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''') def UpperCamelCase__ ( self) -> Any: return self.load_in_abit or self.load_in_abit def UpperCamelCase__ ( self) -> List[Any]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCamelCase__ ( cls , __lowercase , __lowercase , **__lowercase) -> List[str]: __UpperCamelCase :Optional[int] = cls(**__lowercase) __UpperCamelCase :Optional[Any] = [] for key, value in kwargs.items(): if hasattr(__lowercase , __lowercase): setattr(__lowercase , __lowercase , __lowercase) to_remove.append(__lowercase) for key in to_remove: kwargs.pop(__lowercase , __lowercase) if return_unused_kwargs: return config, kwargs else: return config def UpperCamelCase__ ( self , __lowercase) -> Union[str, Any]: with open(__lowercase , '''w''' , encoding='''utf-8''') as writer: __UpperCamelCase :Optional[int] = self.to_dict() __UpperCamelCase :Optional[int] = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase) + '''\n''' writer.write(__lowercase) def UpperCamelCase__ ( self) -> Dict[str, Any]: __UpperCamelCase :Optional[Any] = copy.deepcopy(self.__dict__) __UpperCamelCase :Optional[int] = str(output['''bnb_4bit_compute_dtype''']).split('''.''')[1] return output def __repr__( self) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def UpperCamelCase__ ( self , __lowercase = True) -> str: if use_diff is True: __UpperCamelCase :Union[str, Any] = self.to_diff_dict() else: __UpperCamelCase :Dict = self.to_dict() return json.dumps(__lowercase , indent=2 , sort_keys=__lowercase) + "\n" def UpperCamelCase__ ( self) -> Dict[str, Any]: __UpperCamelCase :Union[str, Any] = self.to_dict() # get the default config dict __UpperCamelCase :Optional[Any] = BitsAndBytesConfig().to_dict() __UpperCamelCase :str = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __UpperCamelCase :str = value return serializable_config_dict
105
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCAmelCase : int = logging.get_logger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Any): warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__)
13
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
1
'''simple docstring''' from __future__ import annotations class __UpperCamelCase : def __init__( self :Dict ,_UpperCamelCase :list[list[int]] ): snake_case_ : Optional[int] = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(a_ ) != 0: snake_case_ : Any = len(rows[0] ) if cols == 0: raise error for row in rows: if len(a_ ) != cols: raise error for value in row: if not isinstance(a_ ,(int, float) ): raise error snake_case_ : Optional[Any] = rows else: snake_case_ : Tuple = [] def a__ ( self :List[Any] ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def a__ ( self :Any ): return len(self.rows ) @property def a__ ( self :List[str] ): return len(self.rows[0] ) @property def a__ ( self :List[str] ): return (self.num_rows, self.num_columns) @property def a__ ( self :str ): return self.order[0] == self.order[1] def a__ ( self :Tuple ): snake_case_ : Union[str, Any] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(a_ ) def a__ ( self :List[str] ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def a__ ( self :List[Any] ): return bool(self.determinant() ) def a__ ( self :Any ,_UpperCamelCase :int ,_UpperCamelCase :int ): snake_case_ : List[str] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(a_ ).determinant() def a__ ( self :int ,_UpperCamelCase :int ,_UpperCamelCase :int ): if (row + column) % 2 == 0: return self.get_minor(a_ ,a_ ) return -1 * self.get_minor(a_ ,a_ ) def a__ ( self :Dict ): return Matrix( [ [self.get_minor(a_ ,a_ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def a__ ( self :Tuple ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def a__ ( self :Union[str, Any] ): snake_case_ : str = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(a_ ) def a__ ( self :Union[str, Any] ): snake_case_ : Tuple = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self :List[str] ): return str(self.rows ) def __str__( self :int ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(a_ ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def a__ ( self :int ,_UpperCamelCase :list[int] ,_UpperCamelCase :int | None = None ): snake_case_ : Union[str, Any] = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(a_ ,a_ ): raise type_error for value in row: if not isinstance(a_ ,(int, float) ): raise type_error if len(a_ ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(a_ ) else: snake_case_ : str = self.rows[0:position] + [row] + self.rows[position:] def a__ ( self :str ,_UpperCamelCase :list[int] ,_UpperCamelCase :int | None = None ): snake_case_ : Union[str, Any] = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(a_ ,a_ ): raise type_error for value in column: if not isinstance(a_ ,(int, float) ): raise type_error if len(a_ ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: snake_case_ : int = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: snake_case_ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self :int ,_UpperCamelCase :object ): if not isinstance(a_ ,a_ ): return NotImplemented return self.rows == other.rows def __ne__( self :int ,_UpperCamelCase :object ): return not self == other def __neg__( self :int ): return self * -1 def __add__( self :Optional[Any] ,_UpperCamelCase :Matrix ): if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self :Any ,_UpperCamelCase :Matrix ): if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self :Tuple ,_UpperCamelCase :Matrix | int | float ): if isinstance(a_ ,(int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(a_ ,a_ ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(a_ ,a_ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self :int ,_UpperCamelCase :int ): if not isinstance(a_ ,a_ ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) snake_case_ : Optional[Any] = self for _ in range(other - 1 ): result *= self return result @classmethod def a__ ( cls :str ,_UpperCamelCase :list[int] ,_UpperCamelCase :list[int] ): return sum(row[i] * column[i] for i in range(len(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Any = tmp_path / """file.csv""" snake_case_ : Any = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[int] = tmp_path / """malformed_file.csv""" snake_case_ : int = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : str = tmp_path / """csv_with_image.csv""" snake_case_ : int = textwrap.dedent( F'''\ image {image_file} ''' ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : int = tmp_path / """csv_with_label.csv""" snake_case_ : Tuple = textwrap.dedent( """\ label good bad good """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path / """csv_with_int_list.csv""" snake_case_ : str = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :Tuple ): '''simple docstring''' snake_case_ : int = Csv() snake_case_ : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCamelCase_ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(lowerCamelCase_ ) in record.message for record in caplog.records ) @require_pil def UpperCAmelCase ( lowerCamelCase_ :Tuple ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : Tuple = f.read().splitlines()[1] snake_case_ : str = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) snake_case_ : Tuple = csv._generate_tables([[csv_file_with_image]] ) snake_case_ : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() snake_case_ : List[str] = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : List[Any] = f.read().splitlines()[1:] snake_case_ : Union[str, Any] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) snake_case_ : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() snake_case_ : Union[str, Any] = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowerCamelCase_ ) for label in labels] def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : str = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCamelCase_ : [int(lowerCamelCase_ ) for i in x.split()]} ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) snake_case_ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) snake_case_ : Dict = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
8
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
158
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=3_2 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=[1_0, 2_0, 3_0, 4_0] , __UpperCAmelCase=[2, 2, 3, 2] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=3_7 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1_0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=["stage2", "stage3", "stage4"] , __UpperCAmelCase=3 , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :str = parent lowerCAmelCase__ :List[Any] = batch_size lowerCAmelCase__ :Union[str, Any] = image_size lowerCAmelCase__ :List[Any] = num_channels lowerCAmelCase__ :int = num_stages lowerCAmelCase__ :Optional[int] = hidden_sizes lowerCAmelCase__ :Any = depths lowerCAmelCase__ :Optional[int] = is_training lowerCAmelCase__ :Tuple = use_labels lowerCAmelCase__ :List[str] = intermediate_size lowerCAmelCase__ :str = hidden_act lowerCAmelCase__ :Optional[int] = type_sequence_label_size lowerCAmelCase__ :List[Any] = initializer_range lowerCAmelCase__ :Tuple = out_features lowerCAmelCase__ :int = num_labels lowerCAmelCase__ :Optional[Any] = scope lowerCAmelCase__ :int = num_stages def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ :Dict = None if self.use_labels: lowerCAmelCase__ :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ :List[Any] = self.get_config() return config, pixel_values, labels def snake_case ( self ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def snake_case ( self ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=__UpperCAmelCase , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = UperNetForSemanticSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Tuple = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :List[str] = config_and_inputs lowerCAmelCase__ :Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[Any] = (UperNetForSemanticSegmentation,) if is_torch_available() else () __magic_name__ :List[str] = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} __magic_name__ :Optional[Any] = False __magic_name__ :Optional[int] = False __magic_name__ :List[Any] = False __magic_name__ :List[Any] = False __magic_name__ :Union[str, Any] = False __magic_name__ :Optional[int] = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = UperNetModelTester(self ) lowerCAmelCase__ :Union[str, Any] = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=3_7 ) def snake_case ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): '''simple docstring''' return def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :int = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ :Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase__ :int = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def snake_case ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ :str = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ :Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ :Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :str = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ :List[str] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ :Any = _config_zero_init(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: lowerCAmelCase__ :Union[str, Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def snake_case ( self ): '''simple docstring''' pass @slow def snake_case ( self ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ :Any = UperNetForSemanticSegmentation.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A () ->List[str]: """simple docstring""" lowerCAmelCase__ :List[Any] = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) lowerCAmelCase__ :Optional[Any] = Image.open(_SCREAMING_SNAKE_CASE ).convert('RGB' ) return image @require_torch @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) lowerCAmelCase__ :List[Any] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = prepare_img() lowerCAmelCase__ :Tuple = processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :Optional[Any] = model(**__UpperCAmelCase ) lowerCAmelCase__ :str = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) lowerCAmelCase__ :Any = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = prepare_img() lowerCAmelCase__ :List[str] = processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :Union[str, Any] = model(**__UpperCAmelCase ) lowerCAmelCase__ :str = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
254
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :list[list[int]] = [[0 for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(m + 1 )] for i in range(m + 1 ): lowerCAmelCase__ :str = 1 for n in range(m + 1 ): for k in range(1 , _SCREAMING_SNAKE_CASE ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __A = int(input("""Enter a number: """).strip()) print(partition(n)) except ValueError: print("""Please enter a number.""") else: try: __A = int(sys.argv[1]) print(partition(n)) except ValueError: print("""Please pass a number.""")
254
1
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self : Optional[int] , _A : int , _A : int , _A : int , _A : float , _A : int , _A : int , _A : int , _A : int , _A : str , _A : bool = False , ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase : List[str] = nn.Embedding(_A , _A ) lowercase : str = nn.Embedding(_A , _A ) lowercase : int = False lowercase : int = nn.Dropout(p=_A ) lowercase : List[str] = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) lowercase : Optional[Any] = nn.ModuleList() for lyr_num in range(_A ): lowercase : Union[str, Any] = TaBlock(_A ) self.encoders.append(_A ) lowercase : Union[str, Any] = TaLayerNorm(_A ) lowercase : Optional[Any] = nn.Dropout(p=_A ) def __a ( self : Any , _A : Dict , _A : Dict ) -> str: """simple docstring""" lowercase : List[str] = self.token_embedder(_A ) lowercase : Dict = encoder_input_tokens.shape[1] lowercase : Dict = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) lowercase : int = self.dropout_pre(_A ) # inverted the attention mask lowercase : Optional[Any] = encoder_input_tokens.size() lowercase : Union[str, Any] = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: lowercase : Union[str, Any] = lyr(_A , _A )[0] lowercase : Optional[Any] = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
308
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) A__ = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowercase_ ) DownloadCommand.register_subcommand(lowercase_ ) EnvironmentCommand.register_subcommand(lowercase_ ) RunCommand.register_subcommand(lowercase_ ) ServeCommand.register_subcommand(lowercase_ ) UserCommands.register_subcommand(lowercase_ ) AddNewModelCommand.register_subcommand(lowercase_ ) AddNewModelLikeCommand.register_subcommand(lowercase_ ) LfsCommands.register_subcommand(lowercase_ ) PTtoTFCommand.register_subcommand(lowercase_ ) # Let's go A__ = parser.parse_args() if not hasattr(lowercase_ , '''func''' ): parser.print_help() exit(1 ) # Run A__ = args.func(lowercase_ ) service.run() if __name__ == "__main__": main()
355
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
231
0
from bisect import bisect from itertools import accumulate def lowerCamelCase__ ( snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Dict ) -> str: __snake_case = sorted(zip(snake_case_ , snake_case_ ) , key=lambda snake_case_ : x[0] / x[1] , reverse=snake_case_ ) __snake_case , __snake_case = [i[0] for i in r], [i[1] for i in r] __snake_case = list(accumulate(snake_case_ ) ) __snake_case = bisect(snake_case_ , snake_case_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
24
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_euler' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_euler' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe( [prompt] , generator=A_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=A_ , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
222
0
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __snake_case =logging.get_logger(__name__) __snake_case ={ """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class UpperCAmelCase_ : def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=None , **UpperCAmelCase__ : Tuple ) -> Optional[int]: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) lowerCAmelCase = model lowerCAmelCase = kwargs.get('model_save_dir' , UpperCAmelCase__ ) lowerCAmelCase = kwargs.get('latest_model_name' , UpperCAmelCase__ ) def __call__( self : int , **UpperCAmelCase__ : List[Any] ) -> Any: lowerCAmelCase = {k: np.array(UpperCAmelCase__ ) for k, v in kwargs.items()} return self.model.run(UpperCAmelCase__ , UpperCAmelCase__ ) @staticmethod def __UpperCAmelCase ( UpperCAmelCase__ : Union[str, Path] , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Union[str, Any]=None ) -> Tuple: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) lowerCAmelCase = 'CPUExecutionProvider' return ort.InferenceSession(UpperCAmelCase__ , providers=[provider] , sess_options=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Union[str, Path] , UpperCAmelCase__ : Optional[str] = None , **UpperCAmelCase__ : Dict ) -> List[str]: lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowerCAmelCase = self.model_save_dir.joinpath(self.latest_model_name ) lowerCAmelCase = Path(UpperCAmelCase__ ).joinpath(UpperCAmelCase__ ) try: shutil.copyfile(UpperCAmelCase__ , UpperCAmelCase__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowerCAmelCase = self.model_save_dir.joinpath(UpperCAmelCase__ ) if src_path.exists(): lowerCAmelCase = Path(UpperCAmelCase__ ).joinpath(UpperCAmelCase__ ) try: shutil.copyfile(UpperCAmelCase__ , UpperCAmelCase__ ) except shutil.SameFileError: pass def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : Optional[Any] , ) -> Any: if os.path.isfile(UpperCAmelCase__ ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) # saving model weights/files self._save_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) @classmethod def __UpperCAmelCase ( cls : List[str] , UpperCAmelCase__ : Union[str, Path] , UpperCAmelCase__ : Optional[Union[bool, str, None]] = None , UpperCAmelCase__ : Optional[Union[str, None]] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional["ort.SessionOptions"] = None , **UpperCAmelCase__ : Union[str, Any] , ) -> List[Any]: lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCAmelCase__ ): lowerCAmelCase = OnnxRuntimeModel.load_model( os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , provider=UpperCAmelCase__ , sess_options=UpperCAmelCase__ ) lowerCAmelCase = Path(UpperCAmelCase__ ) # load model from hub else: # download model lowerCAmelCase = hf_hub_download( repo_id=UpperCAmelCase__ , filename=UpperCAmelCase__ , use_auth_token=UpperCAmelCase__ , revision=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , force_download=UpperCAmelCase__ , ) lowerCAmelCase = Path(UpperCAmelCase__ ).parent lowerCAmelCase = Path(UpperCAmelCase__ ).name lowerCAmelCase = OnnxRuntimeModel.load_model(UpperCAmelCase__ , provider=UpperCAmelCase__ , sess_options=UpperCAmelCase__ ) return cls(model=UpperCAmelCase__ , **UpperCAmelCase__ ) @classmethod def __UpperCAmelCase ( cls : List[str] , UpperCAmelCase__ : Union[str, Path] , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , **UpperCAmelCase__ : Any , ) -> Tuple: lowerCAmelCase = None if len(str(UpperCAmelCase__ ).split('@' ) ) == 2: lowerCAmelCase , lowerCAmelCase = model_id.split('@' ) return cls._from_pretrained( model_id=UpperCAmelCase__ , revision=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , force_download=UpperCAmelCase__ , use_auth_token=UpperCAmelCase__ , **UpperCAmelCase__ , )
55
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : def __init__( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Any=9_9 , UpperCAmelCase__ : Any=3_6 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : int=3_7 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : Optional[Any]=1_6 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : str=6 , UpperCAmelCase__ : List[str]=6 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[Any]=1_0_0_0 , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = text_seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = coordinate_size lowerCAmelCase = shape_size lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCAmelCase = text_seq_length lowerCAmelCase = (image_size // patch_size) ** 2 + 1 lowerCAmelCase = self.text_seq_length + self.image_seq_length def __UpperCAmelCase ( self : str ) -> Dict: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str ) -> str: lowerCAmelCase = LayoutLMvaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # text + image lowerCAmelCase = model(UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCAmelCase = model(pixel_values=UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: lowerCAmelCase = self.num_labels lowerCAmelCase = LayoutLMvaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = LayoutLMvaForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> Optional[Any]: lowerCAmelCase = LayoutLMvaForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : List[str] = False lowerCamelCase : Tuple = False lowerCamelCase : int = False lowerCamelCase : Optional[int] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase : int = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: lowerCAmelCase = LayoutLMvaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]=False ) -> Optional[int]: lowerCAmelCase = copy.deepcopy(UpperCAmelCase__ ) if model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCAmelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase__ , ) return inputs_dict def __UpperCAmelCase ( self : Tuple ) -> Any: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Dict ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Any ) -> Any: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = LayoutLMvaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def a_ ( ): lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : int ) -> str: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) if is_vision_available() else None @slow def __UpperCAmelCase ( self : int ) -> Any: lowerCAmelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(UpperCAmelCase__ ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([[1, 2]] ) lowerCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCAmelCase = model( input_ids=input_ids.to(UpperCAmelCase__ ) , bbox=bbox.to(UpperCAmelCase__ ) , pixel_values=pixel_values.to(UpperCAmelCase__ ) , ) # verify the logits lowerCAmelCase = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
55
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _lowerCamelCase( a=None ): if subparsers is not None: __a = subparsers.add_parser("test" ) else: __a = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=a , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=a ) return parser def _lowerCamelCase( a ): __a = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: __a = script_name else: __a = F"--config_file={args.config_file} {script_name}" __a = ["accelerate-launch"] + test_args.split() __a = execute_subprocess_async(a , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def _lowerCamelCase( ): __a = test_command_parser() __a = parser.parse_args() test_command(a ) if __name__ == "__main__": main()
261
"""simple docstring""" import copy import re class snake_case__ : _snake_case : Dict = """hp""" _snake_case : List[str] = {} _snake_case : int = None @classmethod def a__ ( cls , lowerCamelCase , lowerCamelCase ): __a = prefix __a = defaults cls.build_naming_info() @staticmethod def a__ ( lowerCamelCase , lowerCamelCase ): if len(lowerCamelCase ) == 0: return "" __a = None if any(char.isdigit() for char in word ): raise Exception(F"Parameters should not contain numbers: '{word}' contains a number" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowerCamelCase ) + 1 ): __a = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __a = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCamelCase ): __a = "" while integer != 0: __a = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s __a = 0 while True: __a = word + "#" + int_to_alphabetic(lowerCamelCase ) if sword in info["reverse_short_word"]: continue else: __a = sword break __a = short_word __a = word return short_word @staticmethod def a__ ( lowerCamelCase , lowerCamelCase ): __a = param_name.split("_" ) __a = [TrialShortNamer.shortname_for_word(lowerCamelCase , lowerCamelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __a = ["", "_"] for separator in separators: __a = separator.join(lowerCamelCase ) if shortname not in info["reverse_short_param"]: __a = shortname __a = param_name return shortname return param_name @staticmethod def a__ ( lowerCamelCase , lowerCamelCase ): __a = TrialShortNamer.shortname_for_key(lowerCamelCase , lowerCamelCase ) __a = short_name __a = param_name @classmethod def a__ ( cls ): if cls.NAMING_INFO is not None: return __a = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } __a = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowerCamelCase , lowerCamelCase ) __a = info @classmethod def a__ ( cls , lowerCamelCase ): cls.build_naming_info() assert cls.PREFIX is not None __a = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"You should provide a default value for the param name {k} with value {v}" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __a = cls.NAMING_INFO["short_param"][k] if isinstance(lowerCamelCase , lowerCamelCase ): __a = 1 if v else 0 __a = "" if isinstance(lowerCamelCase , (int, float) ) else "-" __a = F"{key}{sep}{v}" name.append(lowerCamelCase ) return "_".join(lowerCamelCase ) @classmethod def a__ ( cls , lowerCamelCase ): __a = repr[len(cls.PREFIX ) + 1 :] if repr == "": __a = [] else: __a = repr.split("_" ) __a = {} for value in values: if "-" in value: __a , __a = value.split("-" ) else: __a = re.sub("[0-9.]" , "" , lowerCamelCase ) __a = float(re.sub("[^0-9.]" , "" , lowerCamelCase ) ) __a = cls.NAMING_INFO["reverse_short_param"][p_k] __a = p_v for k in cls.DEFAULTS: if k not in parameters: __a = cls.DEFAULTS[k] return parameters
261
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class UpperCamelCase__( _lowerCamelCase ): lowerCAmelCase__ : str = 'conditional_detr' lowerCAmelCase__ : int = ['past_key_values'] lowerCAmelCase__ : List[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,__UpperCAmelCase=3 ,__UpperCAmelCase=3_00 ,__UpperCAmelCase=6 ,__UpperCAmelCase=20_48 ,__UpperCAmelCase=8 ,__UpperCAmelCase=6 ,__UpperCAmelCase=20_48 ,__UpperCAmelCase=8 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=True ,__UpperCAmelCase="relu" ,__UpperCAmelCase=2_56 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1.0 ,__UpperCAmelCase=False ,__UpperCAmelCase="sine" ,__UpperCAmelCase="resnet50" ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase=2 ,__UpperCAmelCase=5 ,__UpperCAmelCase=2 ,__UpperCAmelCase=1 ,__UpperCAmelCase=1 ,__UpperCAmelCase=2 ,__UpperCAmelCase=5 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.2_5 ,**__UpperCAmelCase ,) -> Any: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) A__ = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(__UpperCAmelCase ,__UpperCAmelCase ): A__ = backbone_config.get('model_type' ) A__ = CONFIG_MAPPING[backbone_model_type] A__ = config_class.from_dict(__UpperCAmelCase ) A__ = use_timm_backbone A__ = backbone_config A__ = num_channels A__ = num_queries A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = init_xavier_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = encoder_layers A__ = auxiliary_loss A__ = position_embedding_type A__ = backbone A__ = use_pretrained_backbone A__ = dilation # Hungarian matcher A__ = class_cost A__ = bbox_cost A__ = giou_cost # Loss coefficients A__ = mask_loss_coefficient A__ = dice_loss_coefficient A__ = cls_loss_coefficient A__ = bbox_loss_coefficient A__ = giou_loss_coefficient A__ = focal_alpha super().__init__(is_encoder_decoder=__UpperCAmelCase ,**__UpperCAmelCase ) @property def snake_case__ ( self ) -> List[str]: return self.encoder_attention_heads @property def snake_case__ ( self ) -> Optional[Any]: return self.d_model def snake_case__ ( self ) -> List[str]: A__ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ = self.backbone_config.to_dict() A__ = self.__class__.model_type return output class UpperCamelCase__( _lowerCamelCase ): lowerCAmelCase__ : int = version.parse('1.11' ) @property def snake_case__ ( self ) -> Optional[int]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def snake_case__ ( self ) -> Any: return 1e-5 @property def snake_case__ ( self ) -> int: return 12
353
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__( __A , unittest.TestCase ): lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : Dict = BloomTokenizerFast lowerCAmelCase__ : Union[str, Any] = BloomTokenizerFast lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : int = 'tokenizer_file' lowerCAmelCase__ : Dict = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def snake_case__ ( self ) -> Optional[int]: super().setUp() A__ = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self ,**__UpperCAmelCase ) -> int: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ) def snake_case__ ( self ) -> Tuple: A__ = self.get_rust_tokenizer() A__ = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] A__ = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] A__ = tokenizer.batch_encode_plus(__UpperCAmelCase )['input_ids'] self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) A__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase=6 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A__ = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase ,**__UpperCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input A__ = 'This is a simple input' A__ = ['This is a simple input 1', 'This is a simple input 2'] A__ = ('This is a simple input', 'This is a pair') A__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(__UpperCAmelCase ,max_length=__UpperCAmelCase ) tokenizer_r.encode_plus(__UpperCAmelCase ,max_length=__UpperCAmelCase ) tokenizer_r.batch_encode_plus(__UpperCAmelCase ,max_length=__UpperCAmelCase ) tokenizer_r.encode(__UpperCAmelCase ,max_length=__UpperCAmelCase ) tokenizer_r.batch_encode_plus(__UpperCAmelCase ,max_length=__UpperCAmelCase ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) A__ = None # Hotfixing padding = None self.assertRaises(__UpperCAmelCase ,tokenizer_r.encode ,__UpperCAmelCase ,max_length=__UpperCAmelCase ,padding='max_length' ) # Simple input self.assertRaises(__UpperCAmelCase ,tokenizer_r.encode_plus ,__UpperCAmelCase ,max_length=__UpperCAmelCase ,padding='max_length' ) # Simple input self.assertRaises( __UpperCAmelCase ,tokenizer_r.batch_encode_plus ,__UpperCAmelCase ,max_length=__UpperCAmelCase ,padding='max_length' ,) # Pair input self.assertRaises(__UpperCAmelCase ,tokenizer_r.encode ,__UpperCAmelCase ,max_length=__UpperCAmelCase ,padding='max_length' ) # Pair input self.assertRaises(__UpperCAmelCase ,tokenizer_r.encode_plus ,__UpperCAmelCase ,max_length=__UpperCAmelCase ,padding='max_length' ) # Pair input self.assertRaises( __UpperCAmelCase ,tokenizer_r.batch_encode_plus ,__UpperCAmelCase ,max_length=__UpperCAmelCase ,padding='max_length' ,) def snake_case__ ( self ) -> Tuple: A__ = self.get_rust_tokenizer() A__ = load_dataset('xnli' ,'all_languages' ,split='test' ,streaming=__UpperCAmelCase ) A__ = next(iter(__UpperCAmelCase ) )['premise'] # pick up one data A__ = list(sample_data.values() ) A__ = list(map(tokenizer.encode ,__UpperCAmelCase ) ) A__ = [tokenizer.decode(__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ) for x in output_tokens] self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Optional[Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) ,1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) ,1 )
154
0
"""simple docstring""" import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def a_ ( lowerCamelCase ): return input_array.reshape((input_array.size, 1) ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = np.nan for i in range(lowerCamelCase ): UpperCAmelCase__ = features[:, labels == i] UpperCAmelCase__ = data.mean(1 ) # Centralize the data of class i UpperCAmelCase__ = data - column_reshape(lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCAmelCase__ = np.dot(lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = features.mean(1 ) UpperCAmelCase__ = np.nan for i in range(lowerCamelCase ): UpperCAmelCase__ = features[:, labels == i] UpperCAmelCase__ = data.shape[1] UpperCAmelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(lowerCamelCase ) - column_reshape(lowerCamelCase ) , (column_reshape(lowerCamelCase ) - column_reshape(lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCAmelCase__ = device_data * np.dot( column_reshape(lowerCamelCase ) - column_reshape(lowerCamelCase ) , (column_reshape(lowerCamelCase ) - column_reshape(lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def a_ ( lowerCamelCase , lowerCamelCase ): # Check if the features have been loaded if features.any(): UpperCAmelCase__ = features.mean(1 ) # Center the dataset UpperCAmelCase__ = features - np.reshape(lowerCamelCase , (data_mean.size, 1) ) UpperCAmelCase__ = np.dot(lowerCamelCase , centered_data.T ) / features.shape[1] UpperCAmelCase__ , UpperCAmelCase__ = np.linalg.eigh(lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCAmelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCAmelCase__ = np.dot(filtered_eigenvectors.T , lowerCamelCase ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=lowerCamelCase ) logging.error('Dataset empty' ) raise AssertionError def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): assert classes > dimensions # Check if features have been already loaded if features.any: UpperCAmelCase__ , UpperCAmelCase__ = eigh( covariance_between_classes(lowerCamelCase , lowerCamelCase , lowerCamelCase ) , covariance_within_classes(lowerCamelCase , lowerCamelCase , lowerCamelCase ) , ) UpperCAmelCase__ = eigenvectors[:, ::-1][:, :dimensions] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = np.linalg.svd(lowerCamelCase ) UpperCAmelCase__ = svd_matrix[:, 0:dimensions] UpperCAmelCase__ = np.dot(filtered_svd_matrix.T , lowerCamelCase ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=lowerCamelCase ) logging.error('Dataset empty' ) raise AssertionError def a_ ( ): # Create dummy dataset with 2 classes and 3 features UpperCAmelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCAmelCase__ = np.array([0, 0, 0, 1, 1] ) UpperCAmelCase__ = 2 UpperCAmelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(lowerCamelCase ) as error_info: UpperCAmelCase__ = linear_discriminant_analysis( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if isinstance(lowerCamelCase , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def a_ ( ): UpperCAmelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCAmelCase__ = 2 UpperCAmelCase__ = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(lowerCamelCase ) as error_info: UpperCAmelCase__ = principal_component_analysis(lowerCamelCase , lowerCamelCase ) if not np.allclose(lowerCamelCase , lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
98
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str ): """simple docstring""" _snake_case : Optional[Any] = list(snake_case__ ) _snake_case : List[Any] = list(snake_case__ ) _snake_case : List[Any] = 0 for i in range(len(snake_case__ ) ): if lista[i] != lista[i]: count += 1 _snake_case : Any = """_""" if count > 1: return False else: return "".join(snake_case__ ) def UpperCAmelCase__ (snake_case__ : list[str] ): """simple docstring""" _snake_case : int = [] while True: _snake_case : Union[str, Any] = ["""$"""] * len(snake_case__ ) _snake_case : int = [] for i in range(len(snake_case__ ) ): for j in range(i + 1 , len(snake_case__ ) ): _snake_case : List[Any] = compare_string(binary[i] , binary[j] ) if k is False: _snake_case : Dict = """*""" _snake_case : List[Any] = """*""" temp.append("""X""" ) for i in range(len(snake_case__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case__ ) == 0: return pi _snake_case : Optional[int] = list(set(snake_case__ ) ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Sequence[float] ): """simple docstring""" _snake_case : Optional[int] = [] for minterm in minterms: _snake_case : Any = """""" for _ in range(snake_case__ ): _snake_case : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case__ ) return temp def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : int ): """simple docstring""" _snake_case : Dict = list(snake_case__ ) _snake_case : List[str] = list(snake_case__ ) _snake_case : Tuple = 0 for i in range(len(snake_case__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCAmelCase__ (snake_case__ : list[list[int]] , snake_case__ : list[str] ): """simple docstring""" _snake_case : Any = [] _snake_case : Union[str, Any] = [0] * len(snake_case__ ) for i in range(len(chart[0] ) ): _snake_case : Tuple = 0 _snake_case : str = -1 for j in range(len(snake_case__ ) ): if chart[j][i] == 1: count += 1 _snake_case : Union[str, Any] = j if count == 1: _snake_case : Union[str, Any] = 1 for i in range(len(snake_case__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case__ ) ): _snake_case : List[Any] = 0 temp.append(prime_implicants[i] ) while True: _snake_case : Optional[int] = 0 _snake_case : str = -1 _snake_case : Any = 0 for i in range(len(snake_case__ ) ): _snake_case : Union[str, Any] = chart[i].count(1 ) if count_n > max_n: _snake_case : Dict = count_n _snake_case : Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case__ ) ): _snake_case : Optional[Any] = 0 def UpperCAmelCase__ (snake_case__ : list[str] , snake_case__ : list[str] ): """simple docstring""" _snake_case : int = [[0 for x in range(len(snake_case__ ) )] for x in range(len(snake_case__ ) )] for i in range(len(snake_case__ ) ): _snake_case : Any = prime_implicants[i].count("""_""" ) for j in range(len(snake_case__ ) ): if is_for_table(prime_implicants[i] , binary[j] , snake_case__ ): _snake_case : Tuple = 1 return chart def UpperCAmelCase__ (): """simple docstring""" _snake_case : int = int(input("""Enter the no. of variables\n""" ) ) _snake_case : List[str] = [ float(snake_case__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _snake_case : List[str] = decimal_to_binary(snake_case__ , snake_case__ ) _snake_case : str = check(snake_case__ ) print("""Prime Implicants are:""" ) print(snake_case__ ) _snake_case : int = prime_implicant_chart(snake_case__ , snake_case__ ) _snake_case : str = selection(snake_case__ , snake_case__ ) print("""Essential Prime Implicants are:""" ) print(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
64
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _lowerCAmelCase: """simple docstring""" def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): return None class _lowerCAmelCase: """simple docstring""" def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): return None class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : str =[ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _a ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_lowerCamelCase , 'tf' , 1_2 , **_lowerCamelCase ) @require_torch @slow def _a ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_lowerCamelCase , 'pt' , 1_2 , **_lowerCamelCase ) @require_torch @slow def _a ( self ): from transformers import BertModel UpperCamelCase_: Dict = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(_lowerCamelCase ) ) vocab_file.flush() UpperCamelCase_: List[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: UpperCamelCase_: Dict = BertModel(BertConfig(vocab_size=len(_lowerCamelCase ) ) ) model.save_pretrained(_lowerCamelCase ) self._test_export(_lowerCamelCase , 'pt' , 1_2 , _lowerCamelCase ) @require_tf @slow def _a ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCamelCase_: Any = self._test_export(_lowerCamelCase , 'tf' , 1_2 , **_lowerCamelCase ) UpperCamelCase_: List[Any] = quantize(Path(_lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_lowerCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _a ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCamelCase_: Any = self._test_export(_lowerCamelCase , 'pt' , 1_2 , **_lowerCamelCase ) UpperCamelCase_: Optional[int] = quantize(_lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_lowerCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): try: # Compute path with TemporaryDirectory() as tempdir: UpperCamelCase_: Optional[Any] = Path(_lowerCamelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) return path except Exception as e: self.fail(_lowerCamelCase ) @require_torch @require_tokenizers @slow def _a ( self ): from transformers import BertModel UpperCamelCase_: Optional[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) UpperCamelCase_: str = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(_lowerCamelCase , _lowerCamelCase , 'pt' ) @require_tf @require_tokenizers @slow def _a ( self ): from transformers import TFBertModel UpperCamelCase_: Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) UpperCamelCase_: Tuple = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(_lowerCamelCase , _lowerCamelCase , 'tf' ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Any = FeatureExtractionPipeline(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[Any] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = infer_shapes(_lowerCamelCase , _lowerCamelCase ) # Assert all variables are present self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , _lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def _a ( self ): UpperCamelCase_: Dict = ['input_ids', 'attention_mask', 'token_type_ids'] UpperCamelCase_: Tuple = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} UpperCamelCase_ ,UpperCamelCase_: List[str] = ensure_valid_input(FuncContiguousArgs() , _lowerCamelCase , _lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_lowerCamelCase ) , set(_lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_lowerCamelCase , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) UpperCamelCase_ ,UpperCamelCase_: Tuple = ensure_valid_input(FuncNonContiguousArgs() , _lowerCamelCase , _lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_lowerCamelCase ) , 1 ) self.assertEqual(len(_lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def _a ( self ): UpperCamelCase_: Any = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
292
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
292
1
'''simple docstring''' from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ): lowercase_ :dict[int, int] = {} lowercase_ :Dict = 2 while True: lowercase_ :Optional[Any] = factor_map.pop(__lowerCamelCase ,__lowerCamelCase ) if factor: lowercase_ :str = factor + prime while x in factor_map: x += factor lowercase_ :Any = factor else: lowercase_ :Dict = prime yield prime prime += 1 def UpperCAmelCase_ ( __lowerCamelCase : float = 1e10 ): lowercase_ :int = sieve() lowercase_ :List[Any] = 1 while True: lowercase_ :Optional[int] = next(__lowerCamelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCamelCase ) n += 2 if __name__ == "__main__": print(solution())
223
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : int ): return int((input_a, input_a).count(0 ) == 0 ) def UpperCAmelCase_ ( ): assert and_gate(0 ,0 ) == 0 assert and_gate(0 ,1 ) == 0 assert and_gate(1 ,0 ) == 0 assert and_gate(1 ,1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
223
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class SCREAMING_SNAKE_CASE__ : lowerCAmelCase_ = BlenderbotConfig lowerCAmelCase_ = {} lowerCAmelCase_ = """gelu""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_=0.1 , A_=0.1 , A_=20 , A_=2 , A_=1 , A_=0 , )-> List[Any]: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase = prepare_blenderbot_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def UpperCAmelCase_ ( self , A_ , A_ )-> int: '''simple docstring''' UpperCamelCase = TFBlenderbotModel(config=A_ ).get_decoder() UpperCamelCase = inputs_dict['input_ids'] UpperCamelCase = input_ids[:1, :] UpperCamelCase = inputs_dict['attention_mask'][:1, :] UpperCamelCase = inputs_dict['head_mask'] UpperCamelCase = 1 # first forward pass UpperCamelCase = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ ) UpperCamelCase , UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase = model(A_ , attention_mask=A_ )[0] UpperCamelCase = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1e-3 ) def A_( A : List[Any] , A : Tuple , A : Optional[Any] , A : List[str]=None , A : str=None , A : List[Any]=None , A : Dict=None , A : Any=None , ): if attention_mask is None: UpperCamelCase = tf.cast(tf.math.not_equal(A , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowerCAmelCase_ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase_ = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = TFBlenderbotModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): lowerCAmelCase_ = ["""My friends are cool but they eat too many carbs."""] lowerCAmelCase_ = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.tokenizer(self.src_text , return_tensors='tf' ) UpperCamelCase = self.model.generate( model_inputs.input_ids , ) UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
370
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
251
0
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCamelCase__ = _symbol_database.Default() UpperCamelCase__ = _descriptor_pool.Default().AddSerializedFile( b'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03''' ) UpperCamelCase__ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCamelCase__ = None UpperCamelCase__ = b'''H\003''' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCamelCase__ = 4_5 UpperCamelCase__ = 1_5_8_1 UpperCamelCase__ = 1_5_1_7 UpperCamelCase__ = 1_5_7_0 UpperCamelCase__ = 1_5_8_4 UpperCamelCase__ = 1_7_9_3 UpperCamelCase__ = 1_7_9_5 UpperCamelCase__ = 1_9_1_6 UpperCamelCase__ = 1_8_6_4 UpperCamelCase__ = 1_9_0_5 UpperCamelCase__ = 1_9_1_9 UpperCamelCase__ = 2_4_2_9 UpperCamelCase__ = 2_2_0_8 UpperCamelCase__ = 2_4_1_8 UpperCamelCase__ = 2_3_2_3 UpperCamelCase__ = 2_4_0_7 # @@protoc_insertion_point(module_scope)
181
def __UpperCAmelCase ( __a : float ) -> float: """simple docstring""" return 10 - x * x def __UpperCAmelCase ( __a : float ,__a : float ) -> float: """simple docstring""" if equation(__a ) * equation(__a ) >= 0: raise ValueError('''Wrong space!''' ) _a : Dict = a while (b - a) >= 0.01: # Find middle point _a : Any = (a + b) / 2 # Check if middle point is root if equation(__a ) == 0.0: break # Decide the side to repeat the steps if equation(__a ) * equation(__a ) < 0: _a : str = c else: _a : Union[str, Any] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
235
0
def lowerCAmelCase_ ( __lowerCAmelCase )-> list[list[int]]: '''simple docstring''' UpperCAmelCase : List[str] =[] if len(lowerCamelCase_ ) == 1: return [nums.copy()] for _ in range(len(lowerCamelCase_ ) ): UpperCAmelCase : int =nums.pop(0 ) UpperCAmelCase : int =permute(lowerCamelCase_ ) for perm in permutations: perm.append(lowerCamelCase_ ) result.extend(lowerCamelCase_ ) nums.append(lowerCamelCase_ ) return result def lowerCAmelCase_ ( __lowerCAmelCase )-> Dict: '''simple docstring''' def backtrack(__lowerCAmelCase ): if start == len(lowerCamelCase_ ) - 1: output.append(nums[:] ) else: for i in range(lowerCamelCase_ , len(lowerCamelCase_ ) ): UpperCAmelCase : Dict =nums[i], nums[start] backtrack(start + 1 ) UpperCAmelCase : List[Any] =nums[i], nums[start] # backtrack UpperCAmelCase : Optional[Any] =[] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __snake_case = permutea([1, 2, 3]) print(res) doctest.testmod()
367
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __snake_case ( lowerCamelCase__ ): @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' UpperCAmelCase : Tuple =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' UpperCAmelCase : int =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache UpperCAmelCase : Optional[int] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task='''fill-mask''' , model=snake_case__ ) # baseline - just load from_pretrained with normal network UpperCAmelCase : List[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed UpperCAmelCase : List[Any] =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Optional[Any] ='''1''' UpperCAmelCase : List[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' UpperCAmelCase : Any =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' UpperCAmelCase : Union[str, Any] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache UpperCAmelCase : Union[str, Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task='''fill-mask''' , model=snake_case__ ) # baseline - just load from_pretrained with normal network UpperCAmelCase : Any =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed UpperCAmelCase : List[str] =self.get_env() UpperCAmelCase : Any =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' UpperCAmelCase : int =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' UpperCAmelCase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network UpperCAmelCase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed UpperCAmelCase : Any =self.get_env() UpperCAmelCase : List[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network UpperCAmelCase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : int ='''1''' UpperCAmelCase : Optional[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Dict =''' from transformers import pipeline ''' UpperCAmelCase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' UpperCAmelCase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' UpperCAmelCase : Optional[int] =self.get_env() UpperCAmelCase : int ='''1''' UpperCAmelCase : Optional[int] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] UpperCAmelCase : List[str] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Any =''' from transformers import AutoModel ''' UpperCAmelCase : Optional[Any] =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network UpperCAmelCase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed UpperCAmelCase : Optional[int] =self.get_env() UpperCAmelCase : Optional[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Any ='''1''' UpperCAmelCase : Dict =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
78
0
"""simple docstring""" # Imports import numpy as np class A_ : '''simple docstring''' def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ): """simple docstring""" self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def UpperCamelCase__ ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ): """simple docstring""" if red is not None: UpperCAmelCase_ : Union[str, Any] = red if green is not None: UpperCAmelCase_ : Dict = green if blue is not None: UpperCAmelCase_ : Optional[int] = blue if red_edge is not None: UpperCAmelCase_ : Optional[int] = red_edge if nir is not None: UpperCAmelCase_ : str = nir return True def UpperCamelCase__ ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ): """simple docstring""" self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) UpperCAmelCase_ : str = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def UpperCamelCase__ ( self ): """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCamelCase__ ( self ): """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCamelCase__ ( self ): """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCamelCase__ ( self ): """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCamelCase__ ( self ): """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCamelCase__ ( self , lowercase_=0.08 , lowercase_=1.22 , lowercase_=0.03 ): """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCamelCase__ ( self ): """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir / self.green) - 1 def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCamelCase__ ( self ): """simple docstring""" return (self.red - self.blue) / self.red def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def UpperCamelCase__ ( self ): """simple docstring""" return self.nir - self.green def UpperCamelCase__ ( self ): """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCamelCase__ ( self , lowercase_=0.16 ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCamelCase__ ( self , lowercase_=0.5 ): """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCamelCase__ ( self ): """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def UpperCamelCase__ ( self , lowercase_=None , lowercase_=None ): """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCamelCase__ ( self ): """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCamelCase__ ( self ): """simple docstring""" return self.nir / self.red def UpperCamelCase__ ( self ): """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCamelCase__ ( self ): """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCamelCase__ ( self ): """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCamelCase__ ( self ): """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCamelCase__ ( self ): """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCamelCase__ ( self ): """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCamelCase__ ( self ): """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCAmelCase_ : Optional[Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def UpperCamelCase__ ( self ): """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCamelCase__ ( self ): """simple docstring""" return self.nir / self.red def UpperCamelCase__ ( self ): """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCamelCase__ ( self ): """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
61
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "instructblip_vision_model" def __init__( self , A_=1408 , A_=6144 , A_=39 , A_=16 , A_=224 , A_=14 , A_="gelu" , A_=1E-6 , A_=0.0 , A_=1E-10 , A_=True , **A_ , ) -> Tuple: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =qkv_bias @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "instructblip_qformer" def __init__( self , A_=30522 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=0.02 , A_=1E-12 , A_=0 , A_="absolute" , A_=2 , A_=1408 , **A_ , ) -> Optional[Any]: super().__init__(pad_token_id=A_ , **A_ ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =position_embedding_type __UpperCamelCase =cross_attention_frequency __UpperCamelCase =encoder_hidden_size @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __UpperCamelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "instructblip" UpperCAmelCase__ : Optional[Any] = True def __init__( self , A_=None , A_=None , A_=None , A_=32 , **A_ ) -> List[str]: super().__init__(**A_ ) if vision_config is None: __UpperCamelCase ={} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __UpperCamelCase ={} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __UpperCamelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __UpperCamelCase =InstructBlipVisionConfig(**A_ ) __UpperCamelCase =InstructBlipQFormerConfig(**A_ ) __UpperCamelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' __UpperCamelCase =CONFIG_MAPPING[text_model_type](**A_ ) __UpperCamelCase =self.text_config.tie_word_embeddings __UpperCamelCase =self.text_config.is_encoder_decoder __UpperCamelCase =num_query_tokens __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __UpperCamelCase =1.0 __UpperCamelCase =0.02 @classmethod def _a ( cls , A_ , A_ , A_ , **A_ , ) -> Optional[Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A_ , ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.qformer_config.to_dict() __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
62
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __A = logging.get_logger(__name__) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> List[Any]: """simple docstring""" _snake_case = set() _snake_case = [] def parse_line(_UpperCamelCase ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _snake_case = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE_ ) > 0: _snake_case = '''\n'''.join(SCREAMING_SNAKE_CASE_ ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE_ ) buffer.clear() continue else: _snake_case = line.strip() buffer.append(SCREAMING_SNAKE_CASE_ ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE_ ): _snake_case = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE_ ) as fp: parse_line(SCREAMING_SNAKE_CASE_ ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE_ ) as fp: parse_line(SCREAMING_SNAKE_CASE_ ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" _snake_case = set() _snake_case = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) return selected_warnings if __name__ == "__main__": def snake_case_(_UpperCamelCase ) -> Union[str, Any]: """simple docstring""" return values.split(''',''' ) __A = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) __A = parser.parse_args() __A = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __A = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __A = extract_warnings(args.output_dir, args.targets) __A = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
366
from ..utils import DummyObject, requires_backends class lowercase_ ( metaclass=__lowercase ): UpperCamelCase_ : Optional[int] = ["speech"] def __init__( self : str , *A__ : List[str] , **A__ : Tuple ) -> Optional[Any]: requires_backends(self , ['''speech'''] ) class lowercase_ ( metaclass=__lowercase ): UpperCamelCase_ : Optional[Any] = ["speech"] def __init__( self : Dict , *A__ : int , **A__ : int ) -> Tuple: requires_backends(self , ['''speech'''] )
278
0
'''simple docstring''' def lowercase__( __UpperCamelCase: Dict ,__UpperCamelCase: Dict ): """simple docstring""" if not len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients SCREAMING_SNAKE_CASE : Dict = equationa SCREAMING_SNAKE_CASE : Any = equationa # Calculate the determinants of the matrices SCREAMING_SNAKE_CASE : Optional[int] = aa * ba - aa * ba SCREAMING_SNAKE_CASE : Optional[int] = ca * ba - ca * ba SCREAMING_SNAKE_CASE : int = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: SCREAMING_SNAKE_CASE : Any = determinant_x / determinant SCREAMING_SNAKE_CASE : Dict = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
251
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : Optional[Any] = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class lowercase__ ( lowercase ): lowercase__ = """mvp""" lowercase__ = ["""past_key_values"""] lowercase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] ,lowerCamelCase__ : Any=50267 ,lowerCamelCase__ : Optional[int]=1024 ,lowerCamelCase__ : int=12 ,lowerCamelCase__ : Tuple=4096 ,lowerCamelCase__ : Union[str, Any]=16 ,lowerCamelCase__ : List[Any]=12 ,lowerCamelCase__ : Tuple=4096 ,lowerCamelCase__ : Any=16 ,lowerCamelCase__ : Optional[int]=0.0 ,lowerCamelCase__ : Optional[int]=0.0 ,lowerCamelCase__ : str="gelu" ,lowerCamelCase__ : Optional[int]=1024 ,lowerCamelCase__ : Tuple=0.1 ,lowerCamelCase__ : List[str]=0.0 ,lowerCamelCase__ : Union[str, Any]=0.0 ,lowerCamelCase__ : Union[str, Any]=0.0_2 ,lowerCamelCase__ : Union[str, Any]=0.0 ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : str=1 ,lowerCamelCase__ : Any=0 ,lowerCamelCase__ : Optional[int]=2 ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Dict=2 ,lowerCamelCase__ : Optional[int]=2 ,lowerCamelCase__ : Optional[int]=False ,lowerCamelCase__ : Tuple=100 ,lowerCamelCase__ : Optional[int]=800 ,**lowerCamelCase__ : int ,): '''simple docstring''' _UpperCamelCase : Optional[int] = vocab_size _UpperCamelCase : Union[str, Any] = max_position_embeddings _UpperCamelCase : Dict = d_model _UpperCamelCase : Any = encoder_ffn_dim _UpperCamelCase : Dict = encoder_layers _UpperCamelCase : Optional[Any] = encoder_attention_heads _UpperCamelCase : Optional[int] = decoder_ffn_dim _UpperCamelCase : str = decoder_layers _UpperCamelCase : int = decoder_attention_heads _UpperCamelCase : str = dropout _UpperCamelCase : str = attention_dropout _UpperCamelCase : List[Any] = activation_dropout _UpperCamelCase : Dict = activation_function _UpperCamelCase : List[str] = init_std _UpperCamelCase : Dict = encoder_layerdrop _UpperCamelCase : Tuple = decoder_layerdrop _UpperCamelCase : Optional[int] = classifier_dropout _UpperCamelCase : str = use_cache _UpperCamelCase : Union[str, Any] = encoder_layers _UpperCamelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCamelCase : Any = use_prompt _UpperCamelCase : Optional[int] = prompt_length _UpperCamelCase : Any = prompt_mid_dim super().__init__( pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,is_encoder_decoder=lowerCamelCase__ ,decoder_start_token_id=lowerCamelCase__ ,forced_eos_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' ,lowerCamelCase__ ): _UpperCamelCase : Union[str, Any] = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
83
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase = 50 ) -> int: snake_case_ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
355
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
0
'''simple docstring''' from collections import defaultdict from math import gcd def UpperCamelCase__ ( lowerCAmelCase = 1_50_00_00 ): """simple docstring""" _lowerCAmelCase = defaultdict(lowerCAmelCase ) _lowerCAmelCase = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCAmelCase , 2 ): if gcd(lowerCAmelCase , lowerCAmelCase ) > 1: continue _lowerCAmelCase = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCAmelCase , limit + 1 , lowerCAmelCase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
70
"""simple docstring""" import baseaa def UpperCamelCase ( UpperCAmelCase ) ->bytes: """simple docstring""" return baseaa.baaencode(string.encode("utf-8" ) ) def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" return baseaa.baadecode(UpperCAmelCase ).decode("utf-8" ) if __name__ == "__main__": UpperCamelCase_ = 'Hello World!' UpperCamelCase_ = baseaa_encode(test) print(encoded) UpperCamelCase_ = baseaa_decode(encoded) print(decoded)
243
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
241
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar lowerCamelCase = TypeVar("""_T""") class lowercase__ ( Generic[_T] ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Iterable[_T] | None = None ) -> None: '''simple docstring''' UpperCAmelCase_ = list(iterable or [] ) UpperCAmelCase_ = [] def __len__( self : Optional[int] ) -> int: '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self : Optional[Any] ) -> str: '''simple docstring''' return F"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : _T ) -> None: '''simple docstring''' self._stacka.append(_UpperCAmelCase ) def lowercase__ ( self : Dict ) -> _T: '''simple docstring''' UpperCAmelCase_ = self._stacka.pop UpperCAmelCase_ = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
241
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = ['''image_processor''', '''tokenizer'''] UpperCamelCase__ = '''ViltImageProcessor''' UpperCamelCase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[Any] , lowercase_ : Optional[Any]=None , lowercase_ : Dict=None , **lowercase_ : Any ): lowercase_ : Tuple = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase_ , ) lowercase_ : Union[str, Any] = kwargs.pop("""feature_extractor""" ) lowercase_ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase_ , lowercase_ ) lowercase_ : Dict = self.image_processor def __call__( self : int , lowercase_ : Optional[Any] , lowercase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ : bool = True , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Union[bool, str, TruncationStrategy] = None , lowercase_ : Optional[int] = None , lowercase_ : int = 0 , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[Union[str, TensorType]] = None , **lowercase_ : int , ): lowercase_ : str = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel_values + pixel_mask lowercase_ : int = self.image_processor(lowercase_ , return_tensors=lowercase_ ) encoding.update(lowercase_ ) return encoding def SCREAMING_SNAKE_CASE_ ( self : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : int ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , *lowercase_ : Any , **lowercase_ : Any ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Optional[int] = self.tokenizer.model_input_names lowercase_ : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase_ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowercase_ , ) return self.image_processor
239
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowercase : int = sys.version_info >= (3, 10) def lowerCamelCase ( UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Union[str, Any]=None ) -> Tuple: return field(default_factory=lambda: default , metadata=UpperCAmelCase__ ) @dataclass class __magic_name__ : UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 @dataclass class __magic_name__ : UpperCamelCase__ = 42 UpperCamelCase__ = field(default='''toto''', metadata={'''help''': '''help message'''}) @dataclass class __magic_name__ : UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''titi''' UpperCamelCase__ = '''toto''' class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''titi''' UpperCamelCase__ = '''toto''' UpperCamelCase__ = 42 @dataclass class __magic_name__ : UpperCamelCase__ = "toto" def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Optional[int] = BasicEnum(self.foo ) @dataclass class __magic_name__ : UpperCamelCase__ = "toto" def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Optional[int] = MixedTypeEnum(self.foo ) @dataclass class __magic_name__ : UpperCamelCase__ = None UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''help message'''}) UpperCamelCase__ = None UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[]) @dataclass class __magic_name__ : UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[1, 2, 3]) UpperCamelCase__ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello''']) UpperCamelCase__ = list_field(default=[0.1, 0.2, 0.3]) @dataclass class __magic_name__ : UpperCamelCase__ = field() UpperCamelCase__ = field() UpperCamelCase__ = field() def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : List[Any] = BasicEnum(self.required_enum ) @dataclass class __magic_name__ : UpperCamelCase__ = 42 UpperCamelCase__ = field() UpperCamelCase__ = None UpperCamelCase__ = field(default='''toto''', metadata={'''help''': '''help message'''}) UpperCamelCase__ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello''']) if is_python_no_less_than_3_10: @dataclass class __magic_name__ : UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None @dataclass class __magic_name__ : UpperCamelCase__ = None UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''help message'''}) UpperCamelCase__ = None UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[]) class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : argparse.ArgumentParser , lowercase_ : argparse.ArgumentParser ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowercase_ : List[str] = {k: v for k, v in vars(lowercase_ ).items() if k != """container"""} lowercase_ : Any = {k: v for k, v in vars(lowercase_ ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , lowercase_ ) and yy.get("""choices""" , lowercase_ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](lowercase_ ) , yy["""type"""](lowercase_ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : List[str] = HfArgumentParser(lowercase_ ) lowercase_ : str = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase_ , required=lowercase_ ) expected.add_argument("""--bar""" , type=lowercase_ , required=lowercase_ ) expected.add_argument("""--baz""" , type=lowercase_ , required=lowercase_ ) expected.add_argument("""--flag""" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="""?""" ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase_ : List[str] = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((lowercase_) , ) : Optional[Any] = parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_ ) self.assertFalse(example.flag ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Any = HfArgumentParser(lowercase_ ) lowercase_ : str = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=lowercase_ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowercase_ , help="""help message""" ) self.argparsersEqual(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="""?""" ) expected.add_argument("""--baz""" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=lowercase_ , dest="""baz""" ) expected.add_argument("""--opt""" , type=lowercase_ , default=lowercase_ ) lowercase_ : List[Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_ ) for dataclass_type in dataclass_types: lowercase_ : List[str] = HfArgumentParser(lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase_ : str = parser.parse_args([] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase_ : Optional[Any] = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase_ : Optional[Any] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase_ : Dict = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase_ : int = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : str = HfArgumentParser(lowercase_ ) lowercase_ : Tuple = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) lowercase_ : Union[str, Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowercase_ : int = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) lowercase_ : int = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowercase_ : List[str] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) lowercase_ : List[str] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): @dataclass class __magic_name__ : UpperCamelCase__ = "toto" lowercase_ : Optional[int] = HfArgumentParser(lowercase_ ) lowercase_ : List[str] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase_ : List[str] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) lowercase_ : Optional[int] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) lowercase_ : List[Any] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : int = HfArgumentParser(lowercase_ ) lowercase_ : Dict = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=lowercase_ ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=lowercase_ ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowercase_ ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase_ : int = parser.parse_args([] ) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) lowercase_ : Optional[int] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Tuple = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=lowercase_ , type=lowercase_ ) expected.add_argument("""--bar""" , default=lowercase_ , type=lowercase_ , help="""help message""" ) expected.add_argument("""--baz""" , default=lowercase_ , type=lowercase_ ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=lowercase_ ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=lowercase_ ) lowercase_ : Optional[int] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_ ) for dataclass_type in dataclass_types: lowercase_ : Tuple = HfArgumentParser(lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase_ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[] ) ) lowercase_ : List[Any] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Dict = HfArgumentParser(lowercase_ ) lowercase_ : int = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=lowercase_ , required=lowercase_ ) expected.add_argument("""--required_str""" , type=lowercase_ , required=lowercase_ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = HfArgumentParser(lowercase_ ) lowercase_ : List[str] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase_ , required=lowercase_ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowercase_ , ) expected.add_argument("""--opt""" , type=lowercase_ , default=lowercase_ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowercase_ , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : str = HfArgumentParser(lowercase_ ) lowercase_ : Optional[int] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } lowercase_ : Optional[Any] = parser.parse_dict(lowercase_ )[0] lowercase_ : Dict = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = HfArgumentParser(lowercase_ ) lowercase_ : Optional[int] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = HfArgumentParser(lowercase_ ) lowercase_ : int = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Optional[int] = os.path.join(lowercase_ , """temp_json""" ) os.mkdir(lowercase_ ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(lowercase_ , lowercase_ ) lowercase_ : str = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] lowercase_ : Tuple = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : str = HfArgumentParser(lowercase_ ) lowercase_ : List[Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Tuple = os.path.join(lowercase_ , """temp_yaml""" ) os.mkdir(lowercase_ ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(lowercase_ , lowercase_ ) lowercase_ : List[str] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] lowercase_ : Any = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : str = HfArgumentParser(lowercase_ ) self.assertIsNotNone(lowercase_ )
239
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor A_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : Optional[Any] , *snake_case : List[Any] , **snake_case : List[Any] ): '''simple docstring''' warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , snake_case , ) super().__init__(*snake_case , **snake_case )
296
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple=False ) ->str: A__ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=False ) ->str: for i in range(config.num_hidden_layers ): if base_model: A__ : Any = """""" else: A__ : Tuple = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[Any] = in_proj_weight[ : config.hidden_size, : ] A__ : str = in_proj_bias[: config.hidden_size] A__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] A__ : Any = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any] ) ->Any: A__ : int = dct.pop(UpperCAmelCase__ ) A__ : Tuple = val def _lowerCAmelCase ( ) ->List[Any]: A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any ) ->Tuple: A__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads A__ : Tuple = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A__ : str = 1_0_0_0 A__ : List[str] = """huggingface/label-files""" A__ : Dict = """imagenet-1k-id2label.json""" A__ : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A__ : Dict = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Optional[int] = idalabel A__ : Dict = {v: k for k, v in idalabel.items()} A__ : List[str] = int(deit_name[-6:-4] ) A__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): A__ : List[str] = 1_9_2 A__ : int = 7_6_8 A__ : List[Any] = 1_2 A__ : Dict = 3 elif deit_name[9:].startswith("""small""" ): A__ : List[Any] = 3_8_4 A__ : List[str] = 1_5_3_6 A__ : Any = 1_2 A__ : Union[str, Any] = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): A__ : int = 1_0_2_4 A__ : str = 4_0_9_6 A__ : Any = 2_4 A__ : int = 1_6 # load original model from timm A__ : Dict = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ : Tuple = timm_model.state_dict() A__ : str = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : str = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval() model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor A__ : int = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A__ : Any = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size ) A__ : Union[str, Any] = image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Optional[Any] = encoding["""pixel_values"""] A__ : Union[str, Any] = model(UpperCAmelCase__ ) A__ : Union[str, Any] = timm_model(UpperCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
296
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
32
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __magic_name__ ( _UpperCAmelCase): def __init__( self : Optional[Any] , lowercase_ : str ): lowercase_ : int = data def __iter__( self : int ): for element in self.data: yield element def lowerCamelCase ( UpperCAmelCase__ : Any=True ) -> Any: lowercase_ : Optional[int] = Accelerator(even_batches=UpperCAmelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def lowerCamelCase ( UpperCAmelCase__ : Accelerator , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : bool = False ) -> Optional[Any]: if iterable: lowercase_ : Dict = DummyIterableDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) else: lowercase_ : Union[str, Any] = TensorDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) lowercase_ : Any = DataLoader(UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) lowercase_ : Any = accelerator.prepare(UpperCAmelCase__ ) return dl def lowerCamelCase ( UpperCAmelCase__ : Accelerator , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , ) -> int: lowercase_ : List[str] = create_dataloader(accelerator=UpperCAmelCase__ , dataset_size=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) lowercase_ : Tuple = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def lowerCamelCase ( ) -> int: lowercase_ : Tuple = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def lowerCamelCase ( ) -> Optional[int]: lowercase_ : Optional[int] = create_accelerator(even_batches=UpperCAmelCase__ ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def lowerCamelCase ( ) -> List[str]: lowercase_ : str = create_accelerator(even_batches=UpperCAmelCase__ ) lowercase_ : Dict = torch.nn.Linear(1 , 1 ) lowercase_ : Optional[Any] = accelerator.prepare(UpperCAmelCase__ ) lowercase_ : List[Any] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) lowercase_ : Optional[Any] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(UpperCAmelCase__ ): lowercase_ : Any = ddp_model(batch[0].float() ) lowercase_ : List[str] = output.sum() loss.backward() batch_idxs.append(UpperCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def lowerCamelCase ( UpperCAmelCase__ : List[str] ) -> List[str]: with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def lowerCamelCase ( ) -> Any: lowercase_ : str = True lowercase_ : Tuple = False lowercase_ : str = create_accelerator(even_batches=UpperCAmelCase__ ) lowercase_ : Union[str, Any] = torch.nn.Linear(1 , 1 ) lowercase_ : Any = accelerator.prepare(UpperCAmelCase__ ) lowercase_ : Optional[int] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) lowercase_ : List[Any] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): lowercase_ : Union[str, Any] = train_dl.batch_sampler.even_batches lowercase_ : List[str] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase ( ) -> Dict: lowercase_ : str = True lowercase_ : Optional[Any] = False lowercase_ : Union[str, Any] = create_accelerator(even_batches=UpperCAmelCase__ ) lowercase_ : Optional[int] = torch.nn.Linear(1 , 1 ) lowercase_ : Optional[int] = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) lowercase_ : List[str] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): lowercase_ : Optional[Any] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase ( ) -> List[Any]: lowercase_ : Optional[Any] = create_accelerator() lowercase_ : Optional[int] = torch.nn.Linear(1 , 1 ) lowercase_ : List[Any] = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def lowerCamelCase ( ) -> List[str]: lowercase_ : List[Any] = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) lowercase_ : List[Any] = accelerator.state.distributed_type lowercase_ : Union[str, Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(UpperCAmelCase__ ) lowercase_ : str = original_state if __name__ == "__main__": main()
239
0
def A ( __UpperCAmelCase ) -> int: '''simple docstring''' if n == 1 or not isinstance(snake_case__ , snake_case__ ): return 0 elif n == 2: return 1 else: UpperCAmelCase_ = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def A ( __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 2 while digits < n: index += 1 UpperCAmelCase_ = len(str(fibonacci(snake_case__ ) ) ) return index def A ( __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' return fibonacci_digits_index(snake_case__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
365
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=None , __UpperCAmelCase="no" , __UpperCAmelCase="29500" ) -> int: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase_ = True elif "IPython" in sys.modules: UpperCAmelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase_ = 8 UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=2 ) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' )
344
0
from functools import lru_cache @lru_cache def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
1
import math def lowerCAmelCase__ ( a__ = 100 ) ->int: '''simple docstring''' _UpperCamelCase = sum(i * i for i in range(1 , n + 1 ) ) _UpperCamelCase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"{solution() = }")
63
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase__ = {'''facebook/blenderbot_small-90M''': 512} def lowerCAmelCase__ ( a__ ) ->Any: '''simple docstring''' _UpperCamelCase = set() _UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCamelCase = char _UpperCamelCase = set(a__ ) return pairs class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowercase_ : Any , lowercase_ : int , lowercase_ : List[Any]="__start__" , lowercase_ : Optional[int]="__end__" , lowercase_ : List[Any]="__unk__" , lowercase_ : List[str]="__null__" , **lowercase_ : Optional[int] , ) -> List[Any]: """simple docstring""" super().__init__(unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_) with open(lowercase_ , encoding="utf-8") as vocab_handle: _UpperCamelCase = json.load(lowercase_) _UpperCamelCase = {v: k for k, v in self.encoder.items()} with open(lowercase_ , encoding="utf-8") as merges_handle: _UpperCamelCase = merges_handle.read().split("\n")[1:-1] _UpperCamelCase = [tuple(merge.split()) for merge in merges] _UpperCamelCase = dict(zip(lowercase_ , range(len(lowercase_)))) _UpperCamelCase = {} @property def __UpperCAmelCase ( self : List[str]) -> int: """simple docstring""" return len(self.encoder) def __UpperCAmelCase ( self : Tuple) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def __UpperCAmelCase ( self : Tuple , lowercase_ : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] _UpperCamelCase = re.sub("([.,!?()])" , R" \1" , lowercase_) _UpperCamelCase = re.sub("(')" , R" \1 " , lowercase_) _UpperCamelCase = re.sub(R"\s{2,}" , " " , lowercase_) if "\n" in token: _UpperCamelCase = token.replace("\n" , " __newln__") _UpperCamelCase = token.split(" ") _UpperCamelCase = [] for token in tokens: if not len(lowercase_): continue _UpperCamelCase = token.lower() _UpperCamelCase = tuple(lowercase_) _UpperCamelCase = tuple(list(word[:-1]) + [word[-1] + "</w>"]) _UpperCamelCase = get_pairs(lowercase_) if not pairs: words.append(lowercase_) continue while True: _UpperCamelCase = min(lowercase_ , key=lambda lowercase_: self.bpe_ranks.get(lowercase_ , float("inf"))) if bigram not in self.bpe_ranks: break _UpperCamelCase , _UpperCamelCase = bigram _UpperCamelCase = [] _UpperCamelCase = 0 while i < len(lowercase_): try: _UpperCamelCase = word.index(lowercase_ , lowercase_) new_word.extend(word[i:j]) _UpperCamelCase = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowercase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _UpperCamelCase = tuple(lowercase_) _UpperCamelCase = new_word if len(lowercase_) == 1: break else: _UpperCamelCase = get_pairs(lowercase_) _UpperCamelCase = "@@ ".join(lowercase_) _UpperCamelCase = word[:-4] _UpperCamelCase = word words.append(lowercase_) return " ".join(lowercase_) def __UpperCAmelCase ( self : Optional[int] , lowercase_ : str) -> List[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = re.findall(R"\S+\n?" , lowercase_) for token in words: split_tokens.extend(list(self.bpe(lowercase_).split(" "))) return split_tokens def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : str) -> int: """simple docstring""" _UpperCamelCase = token.lower() return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token)) def __UpperCAmelCase ( self : Any , lowercase_ : int) -> str: """simple docstring""" return self.decoder.get(lowercase_ , self.unk_token) def __UpperCAmelCase ( self : Any , lowercase_ : List[str]) -> str: """simple docstring""" _UpperCamelCase = " ".join(lowercase_).replace("@@ " , "").strip() return out_string def __UpperCAmelCase ( self : str , lowercase_ : str , lowercase_ : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowercase_): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return _UpperCamelCase = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _UpperCamelCase = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowercase_ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_) + "\n") _UpperCamelCase = 0 with open(lowercase_ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_: kv[1]): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!") _UpperCamelCase = token_index writer.write(" ".join(lowercase_) + "\n") index += 1 return vocab_file, merge_file
63
1
'''simple docstring''' _lowerCAmelCase = 8.314_462 # Unit - J mol-1 K-1 def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
298
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A = BlenderbotSmallTokenizer A = False def a_ (self ) -> List[str]: super().setUp() __UpperCamelCase : Optional[Any] = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] __UpperCamelCase : int = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __UpperCamelCase : Any = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] __UpperCamelCase : int = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} __UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_UpperCAmelCase ) ) def a_ (self , **_UpperCAmelCase ) -> Dict: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def a_ (self , _UpperCAmelCase ) -> str: __UpperCamelCase : List[Any] = "adapt act apte" __UpperCamelCase : Dict = "adapt act apte" return input_text, output_text def a_ (self ) -> int: __UpperCamelCase : List[str] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase : str = "adapt act apte" __UpperCamelCase : List[str] = ["adapt", "act", "ap@@", "te"] __UpperCamelCase : Union[str, Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : Dict = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __UpperCamelCase : Any = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def a_ (self ) -> int: __UpperCamelCase : Optional[int] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_3_8_4] __UpperCamelCase : Dict = "I am a small frog." __UpperCamelCase : Any = tok([src_text] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["input_ids"] __UpperCamelCase : Optional[Any] = tok.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def a_ (self ) -> List[Any]: __UpperCamelCase : Dict = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) __UpperCamelCase : Tuple = "I am a small frog ." __UpperCamelCase : List[str] = "." __UpperCamelCase : Any = tok(_UpperCAmelCase )["input_ids"] __UpperCamelCase : Optional[Any] = tok(_UpperCAmelCase )["input_ids"] assert encoded[-1] == encoded_dot[0]
298
1
"""simple docstring""" import unittest from knapsack import knapsack as k class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= 0 lowercase__ : str= [0] lowercase__ : Tuple= [0] lowercase__ : int= len(snake_case__ ) self.assertEqual(k.knapsack(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) , 0 ) lowercase__ : List[str]= [60] lowercase__ : Any= [10] lowercase__ : Optional[int]= len(snake_case__ ) self.assertEqual(k.knapsack(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) , 0 ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Dict= 3 lowercase__ : str= [1, 2, 3] lowercase__ : Optional[Any]= [3, 2, 1] lowercase__ : int= len(snake_case__ ) self.assertEqual(k.knapsack(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) , 5 ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= 50 lowercase__ : List[Any]= [60, 100, 120] lowercase__ : List[str]= [10, 20, 30] lowercase__ : str= len(snake_case__ ) self.assertEqual(k.knapsack(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) , 220 ) if __name__ == "__main__": unittest.main()
150
"""simple docstring""" import os from pathlib import Path def lowercase__() ->List[Any]: """simple docstring""" from torch.utils.cpp_extension import load lowercase__ : Any= Path(A ).resolve().parent.parent.parent / "kernels" / "deformable_detr" lowercase__ : Any= [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , A , with_cuda=A , extra_include_paths=[str(A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
150
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowercase ( __UpperCAmelCase): def __init__( self : Tuple , *_lowerCamelCase : List[str] , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
167
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : Any = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
167
1
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __snake_case ( yaml.SafeLoader ): '''simple docstring''' def UpperCAmelCase__ ( self : int , A : Optional[int] ): __snake_case: Tuple = [self.constructed_objects[key_node] for key_node, _ in node.value] __snake_case: str = [tuple(A ) if isinstance(A , A ) else key for key in keys] __snake_case: Optional[Any] = Counter(A ) __snake_case: Optional[Any] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def UpperCAmelCase__ ( self : Any , A : Union[str, Any] , A : List[str]=False ): __snake_case: Tuple = super().construct_mapping(A , deep=A ) self._check_no_duplicates_on_constructed_node(A ) return mapping def A__ ( SCREAMING_SNAKE_CASE__) -> Tuple[Optional[str], str]: __snake_case: List[Any] = list(readme_content.splitlines()) if full_content and full_content[0] == "---" and "---" in full_content[1:]: __snake_case: str = full_content[1:].index("""---""") + 1 __snake_case: Union[str, Any] = """\n""".join(full_content[1:sep_idx]) return yamlblock, "\n".join(full_content[sep_idx + 1 :]) return None, "\n".join(SCREAMING_SNAKE_CASE__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def UpperCAmelCase__ ( cls : Optional[int] , A : Path ): with open(A , encoding="""utf-8""" ) as readme_file: __snake_case: Any = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(A ) else: return cls() def UpperCAmelCase__ ( self : Dict , A : Path ): if path.exists(): with open(A , encoding="""utf-8""" ) as readme_file: __snake_case: Optional[int] = readme_file.read() else: __snake_case: Optional[Any] = None __snake_case: str = self._to_readme(A ) with open(A , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(A ) def UpperCAmelCase__ ( self : Any , A : Optional[str] = None ): if readme_content is not None: __snake_case: Optional[Any] = _split_yaml_from_readme(A ) __snake_case: Optional[int] = """---\n""" + self.to_yaml_string() + """---\n""" + content else: __snake_case: int = """---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , A : str ): __snake_case: List[str] = yaml.load(A , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields __snake_case: int = { (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**A ) def UpperCAmelCase__ ( self : List[str] ): return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=A , allow_unicode=A , encoding="""utf-8""" , ).decode("""utf-8""" ) __UpperCAmelCase : Optional[Any] = { "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser __UpperCAmelCase : Tuple = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") __UpperCAmelCase : Union[str, Any] = ap.parse_args() __UpperCAmelCase : Tuple = Path(args.readme_filepath) __UpperCAmelCase : Any = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
363
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __UpperCAmelCase : Any = random.Random() def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None) -> Any: if rng is None: __snake_case: Dict = global_rng __snake_case: str = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , A : List[str] , A : List[Any]=7 , A : Optional[int]=400 , A : List[Any]=2_000 , A : Dict=2_048 , A : Tuple=128 , A : List[Any]=1 , A : Tuple=512 , A : str=30 , A : Optional[Any]=44_100 , ): __snake_case: Dict = parent __snake_case: Optional[Any] = batch_size __snake_case: Optional[int] = min_seq_length __snake_case: Optional[Any] = max_seq_length __snake_case: List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case: Any = spectrogram_length __snake_case: Any = feature_size __snake_case: Union[str, Any] = num_audio_channels __snake_case: Any = hop_length __snake_case: List[str] = chunk_length __snake_case: Any = sampling_rate def UpperCAmelCase__ ( self : List[Any] ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCAmelCase__ ( self : List[str] , A : str=False , A : int=False ): def _flatten(A : Dict ): return list(itertools.chain(*A ) ) if equal_length: __snake_case: List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __snake_case: int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __snake_case: Tuple = [np.asarray(A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = TvltFeatureExtractor def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: str = TvltFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : int ): __snake_case: Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A , """spectrogram_length""" ) ) self.assertTrue(hasattr(A , """feature_size""" ) ) self.assertTrue(hasattr(A , """num_audio_channels""" ) ) self.assertTrue(hasattr(A , """hop_length""" ) ) self.assertTrue(hasattr(A , """chunk_length""" ) ) self.assertTrue(hasattr(A , """sampling_rate""" ) ) def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case: Tuple = feat_extract_first.save_pretrained(A )[0] check_json_file_has_correct_format(A ) __snake_case: int = self.feature_extraction_class.from_pretrained(A ) __snake_case: List[str] = feat_extract_first.to_dict() __snake_case: str = feat_extract_second.to_dict() __snake_case: List[Any] = dict_first.pop("""mel_filters""" ) __snake_case: str = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(A , A ) ) self.assertEqual(A , A ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case: str = os.path.join(A , """feat_extract.json""" ) feat_extract_first.to_json_file(A ) __snake_case: List[Any] = self.feature_extraction_class.from_json_file(A ) __snake_case: Dict = feat_extract_first.to_dict() __snake_case: Any = feat_extract_second.to_dict() __snake_case: int = dict_first.pop("""mel_filters""" ) __snake_case: int = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(A , A ) ) self.assertEqual(A , A ) def UpperCAmelCase__ ( self : Any ): # Initialize feature_extractor __snake_case: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __snake_case: Dict = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __snake_case: str = [np.asarray(A ) for speech_input in speech_inputs] # Test not batched input __snake_case: int = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __snake_case: Optional[int] = feature_extractor(A , return_tensors="""np""" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __snake_case: Union[str, Any] = feature_extractor( A , return_tensors="""np""" , sampling_rate=44_100 , mask_audio=A ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __snake_case: Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] __snake_case: Union[str, Any] = np.asarray(A ) __snake_case: List[Any] = feature_extractor(A , return_tensors="""np""" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCAmelCase__ ( self : Union[str, Any] , A : List[str] ): __snake_case: Tuple = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __snake_case: List[Any] = ds.sort("""id""" ).select(range(A ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Dict = self._load_datasamples(1 ) __snake_case: Optional[int] = TvltFeatureExtractor() __snake_case: Optional[Any] = feature_extractor(A , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __snake_case: str = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , A , atol=1E-4 ) )
293
0
"""simple docstring""" from math import factorial _lowercase = {str(digit): factorial(digit) for digit in range(10)} def _snake_case ( snake_case__ : int ): if not isinstance(snake_case__ , snake_case__ ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(snake_case__ ) ) def _snake_case ( snake_case__ : int = 60 , snake_case__ : int = 100_0000 ): if not isinstance(snake_case__ , snake_case__ ) or not isinstance(snake_case__ , snake_case__ ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length A = 0 # the cached sizes of the previous chains A = {} for start_chain_element in range(1 , snake_case__ ): # The temporary set will contain the elements of the chain A = set() A = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. A = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(snake_case__ ) chain_set_length += 1 A = digit_factorial_sum(snake_case__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] A = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
74
import argparse import os import re lowercase_ = 'src/transformers' # Pattern that looks at the indentation in a line. lowercase_ = re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. lowercase_ = re.compile(R'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase_ = re.compile(R'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. lowercase_ = re.compile(R'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase_ = re.compile(R'\[([^\]]+)\]') def a ( A__ : Dict ) -> Optional[Any]: """simple docstring""" _lowercase =_re_indent.search(A__ ) return "" if search is None else search.groups()[0] def a ( A__ : Optional[Any] , A__ : Dict="" , A__ : Union[str, Any]=None , A__ : Tuple=None ) -> Dict: """simple docstring""" _lowercase =0 _lowercase =code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 _lowercase =['\n'.join(lines[:index] )] else: _lowercase =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowercase =[lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(A__ ) ) if index < len(A__ ) - 1: _lowercase =[lines[index + 1]] index += 1 else: _lowercase =[] else: blocks.append('\n'.join(A__ ) ) _lowercase =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('\n'.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def a ( A__ : int ) -> Union[str, Any]: """simple docstring""" def _inner(A__ : Any ): return key(A__ ).lower().replace('_' , '' ) return _inner def a ( A__ : Any , A__ : Union[str, Any]=None ) -> int: """simple docstring""" def noop(A__ : Optional[int] ): return x if key is None: _lowercase =noop # Constants are all uppercase, they go first. _lowercase =[obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowercase =[obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. _lowercase =[obj for obj in objects if not key(A__ )[0].isupper()] _lowercase =ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def a ( A__ : Union[str, Any] ) -> Tuple: """simple docstring""" def _replace(A__ : Optional[int] ): _lowercase =match.groups()[0] if "," not in imports: return F'''[{imports}]''' _lowercase =[part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase =keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(A__ )] ) + "]" _lowercase =import_statement.split('\n' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowercase =2 if lines[1].strip() == '[' else 1 _lowercase =[(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowercase =sort_objects(A__ , key=lambda A__ : x[1] ) _lowercase =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowercase =_re_bracket_content.sub(_replace , lines[1] ) else: _lowercase =[part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase =keys[:-1] _lowercase =get_indent(lines[1] ) + ', '.join([F'''"{k}"''' for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line _lowercase =_re_bracket_content.sub(_replace , A__ ) return import_statement def a ( A__ : Dict , A__ : int=True ) -> Optional[Any]: """simple docstring""" with open(A__ , encoding='utf-8' ) as f: _lowercase =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowercase =split_code_in_indented_blocks( A__ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowercase =main_blocks[block_idx] _lowercase =block.split('\n' ) # Get to the start of the imports. _lowercase =0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowercase =len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. _lowercase ='\n'.join(block_lines[line_idx:-1] ) _lowercase =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowercase =split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend _lowercase =_re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowercase =[(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowercase =[(i, key) for i, key in enumerate(A__ ) if key is not None] _lowercase =[x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowercase =0 _lowercase =[] for i in range(len(A__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowercase =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. _lowercase ='\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(A__ ) ) def a ( A__ : List[Any]=True ) -> List[str]: """simple docstring""" _lowercase =[] for root, _, files in os.walk(A__ ): if "__init__.py" in files: _lowercase =sort_imports(os.path.join(A__ , '__init__.py' ) , check_only=A__ ) if result: _lowercase =[os.path.join(A__ , '__init__.py' )] if len(A__ ) > 0: raise ValueError(F'''Would overwrite {len(A__ )} files, run `make style`.''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') lowercase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
205
0
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Optional[int] = "BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Tuple = "AutoTokenizer" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) # add QFormer tokenizer _lowercase : Optional[int] = qformer_tokenizer def __call__( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) _lowercase : List[Any] = BatchFeature() if text is not None: _lowercase : List[str] = self.tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) encoding.update(UpperCAmelCase_ ) _lowercase : Dict = self.qformer_tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : str = qformer_text_encoding.pop("""input_ids""" ) _lowercase : int = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: _lowercase : Optional[Any] = self.image_processor(UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) encoding.update(UpperCAmelCase_ ) return encoding def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.tokenizer.model_input_names _lowercase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,**UpperCAmelCase_ ): if os.path.isfile(UpperCAmelCase_ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCAmelCase_ ,exist_ok=UpperCAmelCase_ ) _lowercase : Any = os.path.join(UpperCAmelCase_ ,"""qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(UpperCAmelCase_ ) return super().save_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ,subfolder="""qformer_tokenizer""" ) _lowercase : Any = cls._get_arguments_from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) args.append(UpperCAmelCase_ ) return cls(*UpperCAmelCase_ )
371
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
336
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowerCAmelCase : Optional[Any] = 256047 lowerCAmelCase : List[Any] = 256145 @require_sentencepiece @require_tokenizers class __lowercase ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = NllbTokenizer _UpperCAmelCase : Any = NllbTokenizerFast _UpperCAmelCase : List[Any] = True _UpperCAmelCase : List[str] = True _UpperCAmelCase : Dict = {} def _SCREAMING_SNAKE_CASE ( self : Dict): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: Optional[Any] = NllbTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: int = NllbTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: Any = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: List[Any] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): SCREAMING_SNAKE_CASE_: List[Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer_r.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer_p.save_pretrained(lowerCAmelCase__) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) SCREAMING_SNAKE_CASE_: List[str] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer_r.from_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer_p.from_pretrained(lowerCAmelCase__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__)) shutil.rmtree(lowerCAmelCase__) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE_: Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_: str = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = tokenizer_p.save_pretrained(lowerCAmelCase__) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE_: List[Any] = tokenizer_r.from_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer_p.from_pretrained(lowerCAmelCase__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__)) shutil.rmtree(lowerCAmelCase__) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE_: Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_: int = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer_p.save_pretrained(lowerCAmelCase__) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE_: List[str] = tokenizer_r.from_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer_p.from_pretrained(lowerCAmelCase__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__)) shutil.rmtree(lowerCAmelCase__) @require_torch def _SCREAMING_SNAKE_CASE ( self : Any): if not self.test_seqaseq: return SCREAMING_SNAKE_CASE_: Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): # Longer text that will definitely require truncation. SCREAMING_SNAKE_CASE_: Union[str, Any] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] SCREAMING_SNAKE_CASE_: Optional[Any] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: SCREAMING_SNAKE_CASE_: Dict = tokenizer.prepare_seqaseq_batch( src_texts=lowerCAmelCase__ , tgt_texts=lowerCAmelCase__ , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.labels.shape[1] , 10) # max_target_length will default to max_length if not specified SCREAMING_SNAKE_CASE_: List[str] = tokenizer.prepare_seqaseq_batch( lowerCAmelCase__ , tgt_texts=lowerCAmelCase__ , max_length=3 , return_tensors="pt") self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.labels.shape[1] , 3) SCREAMING_SNAKE_CASE_: Dict = tokenizer.prepare_seqaseq_batch( src_texts=lowerCAmelCase__ , max_length=3 , max_target_length=10 , return_tensors="pt") self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3) self.assertNotIn("decoder_input_ids" , lowerCAmelCase__) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece.") def _SCREAMING_SNAKE_CASE ( self : Tuple): pass def _SCREAMING_SNAKE_CASE ( self : int): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): SCREAMING_SNAKE_CASE_: List[Any] = [AddedToken("<special>" , lstrip=lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = tokenizer_r.encode("Hey this is a <special> token") SCREAMING_SNAKE_CASE_: Tuple = tokenizer_r.encode("<special>" , add_special_tokens=lowerCAmelCase__)[0] self.assertTrue(special_token_id in r_output) if self.test_slow_tokenizer: SCREAMING_SNAKE_CASE_: str = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: int = self.tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = tokenizer_p.encode("Hey this is a <special> token") SCREAMING_SNAKE_CASE_: Dict = tokenizer_cr.encode("Hey this is a <special> token") self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertTrue(special_token_id in p_output) self.assertTrue(special_token_id in cr_output) @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : str = '''facebook/nllb-200-distilled-600M''' _UpperCAmelCase : Any = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _UpperCAmelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _UpperCAmelCase : Optional[int] = [ 25_6047, 1_6297, 13_4408, 8165, 24_8066, 1_4734, 950, 1135, 10_5721, 3573, 83, 2_7352, 108, 4_9486, 2, ] @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any]): SCREAMING_SNAKE_CASE_: NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn") SCREAMING_SNAKE_CASE_: Dict = 1 return cls def _SCREAMING_SNAKE_CASE ( self : int): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 25_6001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 25_6002) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 25_6057) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[Any] = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids) # fmt: off SCREAMING_SNAKE_CASE_: Tuple = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on SCREAMING_SNAKE_CASE_: List[Any] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Any = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[Any] = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__).input_ids[0] self.assertEqual(ids[-1] , 2) self.assertEqual(ids[0] , lowerCAmelCase__) self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]) , [25_6203, 3]) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: str = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_: str = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = NllbTokenizer.from_pretrained(lowerCAmelCase__) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__) @require_torch def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens) , return_tensors="pt" , ) SCREAMING_SNAKE_CASE_: str = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"]) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) self.assertEqual((2, 15) , batch.input_ids.shape) self.assertEqual((2, 15) , batch.attention_mask.shape) SCREAMING_SNAKE_CASE_: Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , batch.decoder_input_ids[0, 0]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors="pt") SCREAMING_SNAKE_CASE_: Dict = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors="pt") SCREAMING_SNAKE_CASE_: List[str] = targets['''input_ids'''] SCREAMING_SNAKE_CASE_: Optional[Any] = shift_tokens_right( lowerCAmelCase__ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 10) @require_torch def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn") self.assertEqual( nested_simplify(lowerCAmelCase__) , { # A, test, EOS, en_XX "input_ids": [[25_6047, 70, 7356, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_6057, } , ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: List[str] = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn") self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047]) SCREAMING_SNAKE_CASE_: Optional[Any] = False SCREAMING_SNAKE_CASE_: Dict = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn") self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2])
13
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase : List[Any] = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
238
0
"""simple docstring""" def _A ( UpperCamelCase_ : int = 10**12) -> int: '''simple docstring''' __lowercase = 1 __lowercase = 0 __lowercase = 1 __lowercase = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F"{solution() = }")
361
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def _A ( ) -> Tuple: '''simple docstring''' __lowercase = _ask_options( "In which compute environment are you running?", ["This machine", "AWS (Amazon SageMaker)"], _convert_compute_environment, ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase = get_sagemaker_input() else: __lowercase = get_cluster_input() return config def _A ( UpperCamelCase_ : Union[str, Any]=None) -> Union[str, Any]: '''simple docstring''' if subparsers is not None: __lowercase = subparsers.add_parser("config", description=UpperCamelCase_) else: __lowercase = argparse.ArgumentParser("Accelerate config command", description=UpperCamelCase_) parser.add_argument( "--config_file", default=UpperCamelCase_, help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ), ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase_) return parser def _A ( UpperCamelCase_ : Dict) -> str: '''simple docstring''' __lowercase = get_user_input() if args.config_file is not None: __lowercase = args.config_file else: if not os.path.isdir(UpperCamelCase_): os.makedirs(UpperCamelCase_) __lowercase = default_yaml_config_file if config_file.endswith(".json"): config.to_json_file(UpperCamelCase_) else: config.to_yaml_file(UpperCamelCase_) print(F"""accelerate configuration saved at {config_file}""") def _A ( ) -> Optional[Any]: '''simple docstring''' __lowercase = config_command_parser() __lowercase = parser.parse_args() config_command(UpperCamelCase_) if __name__ == "__main__": main()
144
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class __a ( snake_case_ ): __lowercase : Optional[Any] = ["""pixel_values"""] def __init__( self , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 255 , lowerCAmelCase__ = True , lowerCAmelCase__ = 8 , **lowerCAmelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) lowercase__: Optional[int] = do_rescale lowercase__: Tuple = rescale_factor lowercase__: List[str] = do_pad lowercase__: str = pad_size def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> str: '''simple docstring''' return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Optional[int]: '''simple docstring''' lowercase__ , lowercase__: Any = get_image_size(lowerCAmelCase__ ) lowercase__: List[str] = (old_height // size + 1) * size - old_height lowercase__: int = (old_width // size + 1) * size - old_width return pad(lowerCAmelCase__ , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = ChannelDimension.FIRST , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' lowercase__: Dict = do_rescale if do_rescale is not None else self.do_rescale lowercase__: List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__: Optional[int] = do_pad if do_pad is not None else self.do_pad lowercase__: Optional[Any] = pad_size if pad_size is not None else self.pad_size lowercase__: List[Any] = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. lowercase__: Any = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_rescale: lowercase__: Dict = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_pad: lowercase__: Optional[int] = [self.pad(lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] lowercase__: str = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] lowercase__: int = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
196
"""simple docstring""" def _lowerCamelCase( a = 1_0_0_0 ): __a = 3 __a = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
261
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : "DiagonalGaussianDistribution" class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : Dict = True @register_to_config def __init__( self: Union[str, Any] , UpperCamelCase_: int = 3 , UpperCamelCase_: int = 3 , UpperCamelCase_: Tuple[str] = ("DownEncoderBlock2D",) , UpperCamelCase_: Tuple[str] = ("UpDecoderBlock2D",) , UpperCamelCase_: Tuple[int] = (64,) , UpperCamelCase_: int = 1 , UpperCamelCase_: str = "silu" , UpperCamelCase_: int = 4 , UpperCamelCase_: int = 32 , UpperCamelCase_: int = 32 , UpperCamelCase_: float = 0.1_8215 , ): super().__init__() # pass init params to Encoder __lowerCamelCase = Encoder( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , down_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , act_fn=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , double_z=UpperCamelCase_ , ) # pass init params to Decoder __lowerCamelCase = Decoder( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , up_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , act_fn=UpperCamelCase_ , ) __lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCamelCase = nn.Convad(UpperCamelCase_ , UpperCamelCase_ , 1 ) __lowerCamelCase = False __lowerCamelCase = False # only relevant if vae tiling is enabled __lowerCamelCase = self.config.sample_size __lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCamelCase = 0.25 def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Any=False ): if isinstance(UpperCamelCase_ , (Encoder, Decoder) ): __lowerCamelCase = value def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: bool = True ): __lowerCamelCase = use_tiling def lowerCAmelCase__ ( self: Optional[int] ): self.enable_tiling(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = True def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = {} def fn_recursive_add_processors(UpperCamelCase_: str , UpperCamelCase_: torch.nn.Module , UpperCamelCase_: Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase_ , """set_processor""" ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , UpperCamelCase_ , UpperCamelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return processors def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(UpperCamelCase_ )} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(UpperCamelCase_: str , UpperCamelCase_: torch.nn.Module , UpperCamelCase_: int ): if hasattr(UpperCamelCase_ , """set_processor""" ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): module.set_processor(UpperCamelCase_ ) else: module.set_processor(processor.pop(F'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , UpperCamelCase_ , UpperCamelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: bool = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(UpperCamelCase_ , return_dict=UpperCamelCase_ ) if self.use_slicing and x.shape[0] > 1: __lowerCamelCase = [self.encoder(UpperCamelCase_ ) for x_slice in x.split(1 )] __lowerCamelCase = torch.cat(UpperCamelCase_ ) else: __lowerCamelCase = self.encoder(UpperCamelCase_ ) __lowerCamelCase = self.quant_conv(UpperCamelCase_ ) __lowerCamelCase = DiagonalGaussianDistribution(UpperCamelCase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: bool = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(UpperCamelCase_ , return_dict=UpperCamelCase_ ) __lowerCamelCase = self.post_quant_conv(UpperCamelCase_ ) __lowerCamelCase = self.decoder(UpperCamelCase_ ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ ) @apply_forward_hook def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: bool = True ): if self.use_slicing and z.shape[0] > 1: __lowerCamelCase = [self._decode(UpperCamelCase_ ).sample for z_slice in z.split(1 )] __lowerCamelCase = torch.cat(UpperCamelCase_ ) else: __lowerCamelCase = self._decode(UpperCamelCase_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] ): __lowerCamelCase = min(a.shape[2] , b.shape[2] , UpperCamelCase_ ) for y in range(UpperCamelCase_ ): __lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = min(a.shape[3] , b.shape[3] , UpperCamelCase_ ) for x in range(UpperCamelCase_ ): __lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCAmelCase__ ( self: int , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: bool = True ): __lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCamelCase = [] for i in range(0 , x.shape[2] , UpperCamelCase_ ): __lowerCamelCase = [] for j in range(0 , x.shape[3] , UpperCamelCase_ ): __lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCamelCase = self.encoder(UpperCamelCase_ ) __lowerCamelCase = self.quant_conv(UpperCamelCase_ ) row.append(UpperCamelCase_ ) rows.append(UpperCamelCase_ ) __lowerCamelCase = [] for i, row in enumerate(UpperCamelCase_ ): __lowerCamelCase = [] for j, tile in enumerate(UpperCamelCase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , UpperCamelCase_ , UpperCamelCase_ ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , UpperCamelCase_ , UpperCamelCase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase_ , dim=3 ) ) __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=2 ) __lowerCamelCase = DiagonalGaussianDistribution(UpperCamelCase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: bool = True ): __lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCamelCase = [] for i in range(0 , z.shape[2] , UpperCamelCase_ ): __lowerCamelCase = [] for j in range(0 , z.shape[3] , UpperCamelCase_ ): __lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCamelCase = self.post_quant_conv(UpperCamelCase_ ) __lowerCamelCase = self.decoder(UpperCamelCase_ ) row.append(UpperCamelCase_ ) rows.append(UpperCamelCase_ ) __lowerCamelCase = [] for i, row in enumerate(UpperCamelCase_ ): __lowerCamelCase = [] for j, tile in enumerate(UpperCamelCase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , UpperCamelCase_ , UpperCamelCase_ ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , UpperCamelCase_ , UpperCamelCase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase_ , dim=3 ) ) __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[torch.Generator] = None , ): __lowerCamelCase = sample __lowerCamelCase = self.encode(UpperCamelCase_ ).latent_dist if sample_posterior: __lowerCamelCase = posterior.sample(generator=UpperCamelCase_ ) else: __lowerCamelCase = posterior.mode() __lowerCamelCase = self.decode(UpperCamelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ )
358
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = IFImgaImgSuperResolutionPipeline UpperCAmelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'}) UpperCAmelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: Optional[int] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Optional[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: List[str] ): self._test_save_load_local() def lowerCAmelCase__ ( self: List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class SCREAMING_SNAKE_CASE__ ( _lowercase ): '''simple docstring''' __lowerCamelCase : int = CustomTokenizer pass
116
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _lowercase ( unittest.TestCase ): def __init__( self: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any=7 , UpperCamelCase__: Optional[int]=3 , UpperCamelCase__: List[str]=18 , UpperCamelCase__: Union[str, Any]=30 , UpperCamelCase__: List[str]=400 , UpperCamelCase__: Any=True , UpperCamelCase__: Union[str, Any]=None , UpperCamelCase__: List[Any]=True , UpperCamelCase__: List[Any]=False , UpperCamelCase__: Tuple=True , UpperCamelCase__: Tuple=True , UpperCamelCase__: Any=[0.5, 0.5, 0.5] , UpperCamelCase__: Optional[Any]=[0.5, 0.5, 0.5] , ): lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : Union[str, Any] = image_size lowerCamelCase__ : Optional[int] = min_resolution lowerCamelCase__ : Optional[Any] = max_resolution lowerCamelCase__ : Union[str, Any] = do_resize lowerCamelCase__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 20} lowerCamelCase__ : Dict = do_thumbnail lowerCamelCase__ : Optional[int] = do_align_axis lowerCamelCase__ : Any = do_pad lowerCamelCase__ : Optional[Any] = do_normalize lowerCamelCase__ : Union[str, Any] = image_mean lowerCamelCase__ : Union[str, Any] = image_std def lowerCamelCase_ ( self: str ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _lowercase ( _lowercase , unittest.TestCase ): a = DonutImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Any = DonutImageProcessingTester(self ) @property def lowerCamelCase_ ( self: Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_thumbnail""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_align_long_axis""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_pad""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_std""" ) ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) lowerCamelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order lowerCamelCase__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def lowerCamelCase_ ( self: List[str] ): pass @is_flaky() def lowerCamelCase_ ( self: Union[str, Any] ): # Initialize image_processing lowerCamelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input lowerCamelCase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCamelCase__ : List[str] = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def lowerCamelCase_ ( self: Optional[int] ): # Initialize image_processing lowerCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input lowerCamelCase__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCamelCase__ : Optional[Any] = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def lowerCamelCase_ ( self: Dict ): # Initialize image_processing lowerCamelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input lowerCamelCase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCamelCase__ : Tuple = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
41
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_: Optional[Any] ={ "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: int =[ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
360
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int = 1_00_00_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = limit + 1 UpperCAmelCase_ = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): UpperCAmelCase_ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase_ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
106
0
'''simple docstring''' import random class a_ : @staticmethod def lowercase__ ( lowercase : str ): """simple docstring""" lowercase_ :Union[str, Any] = [ord(lowercase ) for i in text] lowercase_ :List[str] = [] lowercase_ :Optional[Any] = [] for i in plain: lowercase_ :Optional[int] = random.randint(1 , 300 ) lowercase_ :List[Any] = (i + k) * k cipher.append(lowercase ) key.append(lowercase ) return cipher, key @staticmethod def lowercase__ ( lowercase : list[int] , lowercase : list[int] ): """simple docstring""" lowercase_ :Optional[int] = [] for i in range(len(lowercase ) ): lowercase_ :Tuple = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowercase ) ) return "".join(lowercase ) if __name__ == "__main__": lowerCAmelCase , lowerCAmelCase : List[Any] =Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
223
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : int ={ '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any =[ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys lowerCAmelCase : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
223
1
"""simple docstring""" _lowerCAmelCase : List[Any] = range(2, 20 + 1) _lowerCAmelCase : Dict = [10**k for k in range(ks[-1] + 1)] _lowerCAmelCase : dict[int, dict[int, list[list[int]]]] = {} def __snake_case ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Any: '''simple docstring''' _UpperCAmelCase : int = sum(a_i[j] for j in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) ) _UpperCAmelCase : Union[str, Any] = sum(a_i[j] * base[j] for j in range(min(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) ) _UpperCAmelCase , _UpperCAmelCase : Tuple = 0, 0 _UpperCAmelCase : Any = n - i _UpperCAmelCase : Optional[Any] = memo.get(SCREAMING_SNAKE_CASE__ ) if sub_memo is not None: _UpperCAmelCase : int = sub_memo.get(SCREAMING_SNAKE_CASE__ ) if jumps is not None and len(SCREAMING_SNAKE_CASE__ ) > 0: # find and make the largest jump without going over _UpperCAmelCase : Optional[Any] = -1 for _k in range(len(SCREAMING_SNAKE_CASE__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCAmelCase : List[str] = _k break if max_jump >= 0: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCAmelCase : List[Any] = diff + c for j in range(min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) ): _UpperCAmelCase , _UpperCAmelCase : Any = divmod(SCREAMING_SNAKE_CASE__ , 10 ) if new_c > 0: add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: _UpperCAmelCase : str = [] else: _UpperCAmelCase : int = {c: []} _UpperCAmelCase : Dict = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = next_term(SCREAMING_SNAKE_CASE__ , k - 1 , i + dn , SCREAMING_SNAKE_CASE__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCAmelCase , _UpperCAmelCase : int = compute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + dn , SCREAMING_SNAKE_CASE__ ) diff += _diff dn += terms_jumped _UpperCAmelCase : Dict = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCAmelCase : List[Any] = 0 while j < len(SCREAMING_SNAKE_CASE__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(SCREAMING_SNAKE_CASE__ , (diff, dn, k) ) return (diff, dn) def __snake_case ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: '''simple docstring''' if i >= n: return 0, i if k > len(SCREAMING_SNAKE_CASE__ ): a_i.extend([0 for _ in range(k - len(SCREAMING_SNAKE_CASE__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCAmelCase : Any = i _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = 0, 0, 0 for j in range(len(SCREAMING_SNAKE_CASE__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCAmelCase : Dict = ds_c + ds_b diff += addend _UpperCAmelCase : Tuple = 0 for j in range(SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : Any = a_i[j] + addend _UpperCAmelCase , _UpperCAmelCase : List[str] = divmod(SCREAMING_SNAKE_CASE__ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return diff, i - start_i def __snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: '''simple docstring''' for j in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): _UpperCAmelCase : Dict = digits[j] + addend if s >= 10: _UpperCAmelCase , _UpperCAmelCase : int = divmod(SCREAMING_SNAKE_CASE__ , 10 ) _UpperCAmelCase : Union[str, Any] = addend // 10 + quotient else: _UpperCAmelCase : Optional[int] = s _UpperCAmelCase : Optional[int] = addend // 10 if addend == 0: break while addend > 0: _UpperCAmelCase , _UpperCAmelCase : Dict = divmod(SCREAMING_SNAKE_CASE__ , 10 ) digits.append(SCREAMING_SNAKE_CASE__ ) def __snake_case ( SCREAMING_SNAKE_CASE__ : int = 10**15 ) -> int: '''simple docstring''' _UpperCAmelCase : Any = [1] _UpperCAmelCase : str = 1 _UpperCAmelCase : int = 0 while True: _UpperCAmelCase , _UpperCAmelCase : Tuple = next_term(SCREAMING_SNAKE_CASE__ , 20 , i + dn , SCREAMING_SNAKE_CASE__ ) dn += terms_jumped if dn == n - i: break _UpperCAmelCase : int = 0 for j in range(len(SCREAMING_SNAKE_CASE__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"{solution() = }")
202
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
202
1
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.6 , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : str = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : Tuple = patch_size UpperCAmelCase : Union[str, Any] = num_channels UpperCAmelCase : int = is_training UpperCAmelCase : str = use_labels UpperCAmelCase : List[Any] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : List[str] = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Dict = mask_ratio UpperCAmelCase : Union[str, Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase : Dict = (image_size // patch_size) ** 2 UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[str] = TFViTMAEModel(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple = TFViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = model(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) # expected sequence length = num_patches UpperCAmelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 UpperCAmelCase : Union[str, Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase : List[Any] = 1 UpperCAmelCase : int = TFViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Any = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Tuple = config_and_inputs UpperCAmelCase : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Dict = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowerCAmelCase : List[Any] = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} __lowerCAmelCase : str = False __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Tuple = False def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = TFViTMAEModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , tf.keras.layers.Layer ) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] UpperCAmelCase : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , noise=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = copy.deepcopy(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : str = model(**_SCREAMING_SNAKE_CASE , noise=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = outputs_dict[0].numpy() UpperCAmelCase : Dict = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = {} for k, v in inputs_dict.items(): if tf.is_tensor(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : int = v.numpy() else: UpperCAmelCase : str = np.array(_SCREAMING_SNAKE_CASE ) return inputs_np_dict for model_class in self.all_model_classes: UpperCAmelCase : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = prepare_numpy_arrays(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , noise=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = model(**_SCREAMING_SNAKE_CASE , noise=_SCREAMING_SNAKE_CASE ) self.assert_outputs_same(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' np.random.seed(2 ) UpperCAmelCase : List[Any] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCAmelCase : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : List[str] = tf.constant(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase : Any = tf_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_SCREAMING_SNAKE_CASE ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ),) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_SCREAMING_SNAKE_CASE , """_keras_serializable""" , _SCREAMING_SNAKE_CASE ) } UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : str = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: UpperCAmelCase : List[Any] = main_layer_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCAmelCase : str = tf.keras.Model(_SCREAMING_SNAKE_CASE , outputs=main_layer(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = os.path.join(_SCREAMING_SNAKE_CASE , """keras_model.h5""" ) model.save(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = tf.keras.models.load_model( _SCREAMING_SNAKE_CASE , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_SCREAMING_SNAKE_CASE , tf.keras.Model ) UpperCAmelCase : int = model(_SCREAMING_SNAKE_CASE ) self.assert_outputs_same(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = model(_SCREAMING_SNAKE_CASE , noise=_SCREAMING_SNAKE_CASE ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : int = outputs.last_hidden_state.numpy() UpperCAmelCase : int = 0 else: UpperCAmelCase : Optional[Any] = outputs.logits.numpy() UpperCAmelCase : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE , saved_model=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , noise=_SCREAMING_SNAKE_CASE ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : Tuple = after_outputs["""last_hidden_state"""].numpy() UpperCAmelCase : Optional[int] = 0 else: UpperCAmelCase : str = after_outputs["""logits"""].numpy() UpperCAmelCase : Dict = 0 UpperCAmelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , noise=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCAmelCase : List[Any] = model_class.from_config(model.config ) UpperCAmelCase : List[Any] = new_model(_SCREAMING_SNAKE_CASE ) # Build model new_model.set_weights(model.get_weights() ) UpperCAmelCase : Union[str, Any] = new_model(_SCREAMING_SNAKE_CASE , noise=_SCREAMING_SNAKE_CASE ) self.assert_outputs_same(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _snake_case ( ): UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' np.random.seed(2 ) UpperCAmelCase : Optional[int] = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) UpperCAmelCase : List[str] = self.default_image_processor UpperCAmelCase : Optional[int] = prepare_img() UpperCAmelCase : int = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase : int = ViTMAEConfig() UpperCAmelCase : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase : Any = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCAmelCase : str = model(**_SCREAMING_SNAKE_CASE , noise=_SCREAMING_SNAKE_CASE ) # verify the logits UpperCAmelCase : List[str] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
109
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets SCREAMING_SNAKE_CASE_: Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' SCREAMING_SNAKE_CASE_: Union[str, Any] ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' SCREAMING_SNAKE_CASE_: List[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def _lowercase (self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def _lowercase (self : Tuple , __a : Optional[int] , __a : List[Any] ): UpperCAmelCase_ = 0.0 for i, j in zip(__a , __a ): n_correct += 1.0 if math_equivalence.is_equiv(__a , __a ) else 0.0 UpperCAmelCase_ = n_correct / len(__a ) return { "accuracy": accuracy, }
1
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") SCREAMING_SNAKE_CASE : int = logging.getLogger(__name__) @dataclass class UpperCamelCase : '''simple docstring''' lowercase : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) lowercase : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) lowercase : int =field( default=1024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowercase : bool =field( default=lowercase__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) lowercase : bool =field( default=lowercase__ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) lowercase : Optional[int] =field( default=lowercase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase : Optional[int] =field( default=lowercase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) lowercase : Optional[int] =field( default=lowercase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """A csv or a json file containing the training data."""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) lowercase : Optional[str] =field(default=lowercase__ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def UpperCamelCase ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowercase_ :Optional[Any] = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowercase_ :List[str] = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class UpperCamelCase : '''simple docstring''' lowercase : str =field( default=lowercase__ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) lowercase : bool =field( default=lowercase__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) lowercase : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase : bool =field( default=lowercase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def UpperCamelCase ( ) -> Any: '''simple docstring''' lowercase_ :Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ :List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ :str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase_ :int = training_args.get_process_log_level() logger.setLevel(_a ) datasets.utils.logging.set_verbosity(_a ) transformers.utils.logging.set_verbosity(_a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowercase_ :int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ :Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase_ :Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowercase_ :int = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowercase_ :Optional[Any] = data_args.train_file.split('''.''' )[-1] lowercase_ :List[Any] = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowercase_ :List[Any] = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowercase_ :Any = load_dataset('''csv''' , data_files=_a , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowercase_ :List[Any] = load_dataset('''json''' , data_files=_a , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowercase_ :Any = raw_datasets['''train'''].features['''label'''].names lowercase_ :int = len(_a ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ :Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowercase_ :Optional[Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_a , ) lowercase_ :int = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowercase_ :str = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase_ :int = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowercase_ :List[Any] = {'''Refused''': 0, '''Entailed''': 1} lowercase_ :Optional[int] = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowercase_ :List[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_a ): # Tokenize the texts def _convert_table_text_to_pandas(_a ): lowercase_ :str = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowercase_ :List[Any] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowercase_ :Tuple = examples['''statement'''] lowercase_ :List[Any] = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) lowercase_ :Any = tokenizer(_a , _a , padding=_a , max_length=_a , truncation=_a ) lowercase_ :Optional[Any] = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowercase_ :Union[str, Any] = raw_datasets.map( _a , batched=_a , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowercase_ :Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowercase_ :Union[str, Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowercase_ :Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowercase_ :Optional[Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowercase_ :Optional[int] = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowercase_ :Dict = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_a ) ) , 3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_a ): lowercase_ :str = p.predictions[0] if isinstance(p.predictions , _a ) else p.predictions lowercase_ :Optional[Any] = np.argmax(_a , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase_ :str = default_data_collator elif training_args.fpaa: lowercase_ :Union[str, Any] = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) else: lowercase_ :Dict = None # Initialize our Trainer lowercase_ :Union[str, Any] = Trainer( model=_a , args=_a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_a , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: lowercase_ :int = None if training_args.resume_from_checkpoint is not None: lowercase_ :Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ :Optional[Any] = last_checkpoint lowercase_ :Tuple = trainer.train(resume_from_checkpoint=_a ) lowercase_ :Dict = train_result.metrics lowercase_ :int = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_a ) ) lowercase_ :Union[str, Any] = min(_a , len(_a ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , _a ) trainer.save_metrics('''train''' , _a ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase_ :Dict = trainer.evaluate(eval_dataset=_a ) lowercase_ :List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_a ) lowercase_ :Optional[Any] = min(_a , len(_a ) ) trainer.log_metrics('''eval''' , _a ) trainer.save_metrics('''eval''' , _a ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowercase_ :Tuple = predict_dataset.remove_columns('''label''' ) lowercase_ :Union[str, Any] = trainer.predict(_a , metric_key_prefix='''predict''' ).predictions lowercase_ :Dict = np.argmax(_a , axis=1 ) lowercase_ :str = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(_a , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(_a ): lowercase_ :str = label_list[item] writer.write(f"{index}\t{item}\n" ) lowercase_ :List[Any] = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**_a ) else: trainer.create_model_card(**_a ) def UpperCamelCase ( _a ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
252
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def UpperCamelCase ( _a ) -> Union[str, Any]: '''simple docstring''' return getitem, k def UpperCamelCase ( _a , _a ) -> int: '''simple docstring''' return setitem, k, v def UpperCamelCase ( _a ) -> int: '''simple docstring''' return delitem, k def UpperCamelCase ( _a , _a , *_a ) -> Any: '''simple docstring''' try: return fun(_a , *_a ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : List[Any] = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) SCREAMING_SNAKE_CASE : Tuple = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] SCREAMING_SNAKE_CASE : Any = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] SCREAMING_SNAKE_CASE : Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def UpperCamelCase ( _a ) -> List[str]: '''simple docstring''' lowercase_ :Optional[Any] = HashMap(initial_block_size=4 ) lowercase_ :Optional[int] = {} for _, (fun, *args) in enumerate(_a ): lowercase_ , lowercase_ :List[str] = _run_operation(_a , _a , *_a ) lowercase_ , lowercase_ :List[str] = _run_operation(_a , _a , *_a ) assert my_res == py_res assert str(_a ) == str(_a ) assert set(_a ) == set(_a ) assert len(_a ) == len(_a ) assert set(my.items() ) == set(py.items() ) def UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' def is_public(_a ) -> bool: return not name.startswith('''_''' ) lowercase_ :Dict = {name for name in dir({} ) if is_public(_a )} lowercase_ :Dict = {name for name in dir(HashMap() ) if is_public(_a )} assert dict_public_names > hash_public_names
252
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _snake_case : lowerCAmelCase_ : int lowerCAmelCase_ : TreeNode | None = None lowerCAmelCase_ : TreeNode | None = None _SCREAMING_SNAKE_CASE : List[str] = namedtuple("CoinsDistribResult", "moves excess") def UpperCamelCase_( snake_case : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(snake_case : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(snake_case : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(snake_case ) != count_coins(snake_case ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(snake_case : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) snake_case_ , snake_case_ = get_distrib(node.left ) snake_case_ , snake_case_ = get_distrib(node.right ) snake_case_ = 1 - left_distrib_excess snake_case_ = 1 - right_distrib_excess snake_case_ = ( left_distrib_moves + right_distrib_moves + abs(snake_case ) + abs(snake_case ) ) snake_case_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(snake_case , snake_case ) return get_distrib(snake_case )[0] if __name__ == "__main__": import doctest doctest.testmod()
85
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase_ = KandinskyVaaControlnetPipeline UpperCAmelCase_ = ["image_embeds", "negative_image_embeds", "hint"] UpperCAmelCase_ = ["image_embeds", "negative_image_embeds", "hint"] UpperCAmelCase_ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase_ = False @property def snake_case_ (self ) -> Tuple: return 32 @property def snake_case_ (self ) -> Optional[int]: return 32 @property def snake_case_ (self ) -> int: return self.time_input_dim @property def snake_case_ (self ) -> Dict: return self.time_input_dim * 4 @property def snake_case_ (self ) -> List[str]: return 1_00 @property def snake_case_ (self ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCamelCase = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase = UNetaDConditionModel(**__a ) return model @property def snake_case_ (self ) -> Dict: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case_ (self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = self.dummy_unet UpperCamelCase = self.dummy_movq UpperCamelCase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__a , set_alpha_to_one=__a , steps_offset=1 , prediction_type="epsilon" , thresholding=__a , ) UpperCamelCase = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def snake_case_ (self , __a , __a=0 ) -> Any: UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__a ) ).to(__a ) UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __a ) # create hint UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith("mps" ): UpperCamelCase = torch.manual_seed(__a ) else: UpperCamelCase = torch.Generator(device=__a ).manual_seed(__a ) UpperCamelCase = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def snake_case_ (self ) -> int: UpperCamelCase = "cpu" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**__a ) UpperCamelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = pipe(**self.get_dummy_inputs(__a ) ) UpperCamelCase = output.images UpperCamelCase = pipe( **self.get_dummy_inputs(__a ) , return_dict=__a , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ (self ) -> Dict: UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" ) UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) UpperCamelCase = torch.from_numpy(np.array(__a ) ).float() / 255.0 UpperCamelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCamelCase = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__a ) UpperCamelCase = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) UpperCamelCase = pipeline.to(__a ) pipeline.set_progress_bar_config(disable=__a ) UpperCamelCase = "A robot, 4k photo" UpperCamelCase = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase , UpperCamelCase = pipe_prior( __a , generator=__a , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase = pipeline( image_embeds=__a , negative_image_embeds=__a , hint=__a , generator=__a , num_inference_steps=1_00 , output_type="np" , ) UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__a , __a )
153
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
361
def _A ( lowerCAmelCase_ : int = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
221
0
from __future__ import annotations from fractions import Fraction def A ( a_ ,a_ ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A ( a_ ) -> list[str]: __UpperCamelCase : Dict =[] __UpperCamelCase : Union[str, Any] =11 __UpperCamelCase : List[str] =int('1' + '0' * digit_len ) for num in range(a_ ,a_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(a_ ,a_ ): solutions.append(F'{num}/{den}' ) den += 1 num += 1 __UpperCamelCase : Any =10 return solutions def A ( a_ = 2 ) -> int: __UpperCamelCase : Optional[Any] =1.0 for fraction in fraction_list(a_ ): __UpperCamelCase : int =Fraction(a_ ) result *= frac.denominator / frac.numerator return int(a_ ) if __name__ == "__main__": print(solution())
71
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys SCREAMING_SNAKE_CASE : Union[str, Any] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") SCREAMING_SNAKE_CASE : Any = subprocess.check_output(F'git diff --name-only {fork_point_sha}'.split()).decode("""utf-8""").split() SCREAMING_SNAKE_CASE : Union[str, Any] = """|""".join(sys.argv[1:]) SCREAMING_SNAKE_CASE : int = re.compile(rF'^({joined_dirs}).*?\.py$') SCREAMING_SNAKE_CASE : str = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
102
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowercase : Any = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowercase : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: if "://" in dataset_path: lowercase : Tuple = dataset_path.split("""://""" )[1] return dataset_path def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: if fs is not None and fs.protocol != "file": return True else: return False def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowercase : Optional[Any] = not is_remote_filesystem(SCREAMING_SNAKE_CASE__ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(SCREAMING_SNAKE_CASE__ ) , fs._strip_protocol(SCREAMING_SNAKE_CASE__ ) ) else: fs.mv(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , recursive=SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> None: if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowercase : Union[str, Any] = None lowercase : List[str] = None lowercase : Tuple = threading.Lock()
285
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : Union[str, Any] = {"""vocab_file""": """spiece.model"""} lowercase : Any = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } lowercase : List[Any] = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) lowercase : Optional[int] = 0 lowercase : Any = 1 lowercase : Any = 2 lowercase : str = 3 lowercase : Optional[Any] = 4 class __snake_case ( lowerCAmelCase ): _a : Optional[Any]= VOCAB_FILES_NAMES _a : Optional[Any]= PRETRAINED_VOCAB_FILES_MAP _a : List[str]= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Union[str, Any]= "left" def __init__( self ,snake_case ,snake_case=False ,snake_case=True ,snake_case=False ,snake_case="<s>" ,snake_case="</s>" ,snake_case="<unk>" ,snake_case="<sep>" ,snake_case="<pad>" ,snake_case="<cls>" ,snake_case="<mask>" ,snake_case=["<eop>", "<eod>"] ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : str = AddedToken(snake_case ,lstrip=snake_case ,rstrip=snake_case ) if isinstance(snake_case ,snake_case ) else mask_token lowercase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case ,remove_space=snake_case ,keep_accents=snake_case ,bos_token=snake_case ,eos_token=snake_case ,unk_token=snake_case ,sep_token=snake_case ,pad_token=snake_case ,cls_token=snake_case ,mask_token=snake_case ,additional_special_tokens=snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**snake_case ,) lowercase : str = 3 lowercase : str = do_lower_case lowercase : List[Any] = remove_space lowercase : Dict = keep_accents lowercase : Union[str, Any] = vocab_file lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return len(self.sp_model ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' lowercase : Any = self.__dict__.copy() lowercase : List[str] = None return state def __setstate__( self ,snake_case ): '''simple docstring''' lowercase : Dict = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowercase : List[str] = {} lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.remove_space: lowercase : Optional[int] = """ """.join(inputs.strip().split() ) else: lowercase : Optional[int] = inputs lowercase : Dict = outputs.replace("""``""" ,"""\"""" ).replace("""''""" ,"""\"""" ) if not self.keep_accents: lowercase : int = unicodedata.normalize("""NFKD""" ,snake_case ) lowercase : Any = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] ) if self.do_lower_case: lowercase : Any = outputs.lower() return outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Dict = self.preprocess_text(snake_case ) lowercase : Any = self.sp_model.encode(snake_case ,out_type=snake_case ) lowercase : Tuple = [] for piece in pieces: if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowercase : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case ,"""""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase : Any = cur_pieces[1:] else: lowercase : List[str] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case ) else: new_pieces.append(snake_case ) return new_pieces def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return self.sp_model.PieceToId(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return self.sp_model.IdToPiece(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = """""".join(snake_case ).replace(snake_case ,""" """ ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = False ,snake_case = None ,snake_case = True ,**snake_case ,): '''simple docstring''' lowercase : List[str] = kwargs.pop("""use_source_tokenizer""" ,snake_case ) lowercase : List[str] = self.convert_ids_to_tokens(snake_case ,skip_special_tokens=snake_case ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowercase : Optional[int] = [] lowercase : Optional[int] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) lowercase : Union[str, Any] = [] sub_texts.append(snake_case ) else: current_sub_text.append(snake_case ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowercase : Any = """""".join(snake_case ) lowercase : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowercase : int = self.clean_up_tokenization(snake_case ) return clean_text else: return text def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : int = [self.sep_token_id] lowercase : str = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case ,token_ids_a=snake_case ,already_has_special_tokens=snake_case ) if token_ids_a is not None: return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1] return ([0] * len(snake_case )) + [1, 1] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : List[str] = [self.sep_token_id] lowercase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase : Any = os.path.join( snake_case ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case ,"""wb""" ) as fi: lowercase : str = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
285
1
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''', [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''', num_bytes=13_37, num_examples=42, dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''', num_bytes=13_37, num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ], ) def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" _UpperCamelCase = split_dict._to_yaml_list() assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = SplitDict._from_yaml_list(__snake_case ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _UpperCamelCase = None # the split name of split_dict takes over the name of the split info object _UpperCamelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''', [SplitInfo(), SplitInfo(dataset_name=__snake_case ), SplitInfo(dataset_name='''my_dataset''' )] ) def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" _UpperCamelCase = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
194
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
194
1
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : list ) -> list: A_ = len(_UpperCamelCase ) for i in range(1, _UpperCamelCase ): A_ = collection[i] A_ = 0 A_ = i - 1 while low <= high: A_ = (low + high) // 2 if val < collection[mid]: A_ = mid - 1 else: A_ = mid + 1 for j in range(_UpperCamelCase, _UpperCamelCase, -1 ): A_ = collection[j - 1] A_ = val return collection if __name__ == "__main__": __snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() __snake_case : List[Any] = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
357
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } __snake_case : Tuple = {'allegro/herbert-base-cased': 514} __snake_case : List[str] = {} class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_INIT_CONFIGURATION __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = HerbertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="</s>" , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.cls_token_id] A_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: A_ = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
18
0
from typing import Any class snake_case_ : def __init__( self : Any , lowercase_ : Any ) -> List[str]: lowercase__ : str = data lowercase__ : List[str] = None class snake_case_ : def __init__( self : Tuple ) -> List[str]: lowercase__ : List[str] = None def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: lowercase__ : Any = self.head while temp is not None: print(temp.data , end=" " ) lowercase__ : Tuple = temp.next print() def __UpperCamelCase ( self : List[Any] , lowercase_ : Any ) -> Tuple: lowercase__ : Dict = Node(lowercase_ ) lowercase__ : Optional[int] = self.head lowercase__ : Union[str, Any] = new_node def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : str ) -> Optional[int]: if node_data_a == node_data_a: return else: lowercase__ : Optional[Any] = self.head while node_a is not None and node_a.data != node_data_a: lowercase__ : str = node_a.next lowercase__ : Dict = self.head while node_a is not None and node_a.data != node_data_a: lowercase__ : Any = node_a.next if node_a is None or node_a is None: return lowercase__ , lowercase__ : Optional[int] = node_a.data, node_a.data if __name__ == "__main__": UpperCamelCase = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
87
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class snake_case_ ( unittest.TestCase ): def __init__( self : Tuple , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=2 , lowercase_ : Union[str, Any]=56 , lowercase_ : Tuple=True , lowercase_ : Optional[Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : int=True , lowercase_ : Any=99 , lowercase_ : int=32 , lowercase_ : str=2 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=7 , lowercase_ : Dict="gelu_new" , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=5_12 , lowercase_ : Optional[Any]=16 , lowercase_ : List[Any]=2 , lowercase_ : Dict=0.02 , lowercase_ : int=4 , lowercase_ : Tuple="block_sparse" , lowercase_ : Dict=True , lowercase_ : Optional[int]=False , lowercase_ : Dict=2 , lowercase_ : int=3 , ) -> Union[str, Any]: lowercase__ : Dict = parent lowercase__ : Dict = batch_size lowercase__ : Tuple = seq_length lowercase__ : Dict = is_training lowercase__ : Dict = use_attention_mask lowercase__ : Tuple = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = vocab_size lowercase__ : Any = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : str = intermediate_size lowercase__ : int = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : Union[str, Any] = type_vocab_size lowercase__ : Dict = type_sequence_label_size lowercase__ : Any = initializer_range lowercase__ : List[str] = num_choices lowercase__ : str = rescale_embeddings lowercase__ : Optional[Any] = attention_type lowercase__ : Optional[int] = use_bias lowercase__ : Optional[int] = block_size lowercase__ : str = num_random_blocks def __UpperCamelCase ( self : str ) -> Optional[Any]: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[int] = None if self.use_token_type_ids: lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : int = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __UpperCamelCase ( self : Union[str, Any] ) -> int: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = config_and_inputs lowercase__ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class snake_case_ ( __A ,unittest.TestCase ): __A : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __A : List[str] = False __A : Any = False def __UpperCamelCase ( self : List[str] ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Optional[int] ) -> Dict: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : List[str] ) -> Any: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Tuple ) -> str: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: super().test_hidden_states_output() @slow def __UpperCamelCase ( self : Optional[int] ) -> Tuple: for model_class_name in self.all_model_classes: lowercase__ : Optional[Any] = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(lowercase_ ) def __UpperCamelCase ( self : int ) -> Optional[int]: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : str ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ : Tuple , lowercase_ : int=None , **lowercase_ : Dict ): return model(input_ids=lowercase_ , attention_mask=lowercase_ , **lowercase_ ) with self.subTest("JIT Enabled" ): lowercase__ : int = model_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowercase__ : Any = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCamelCase ( self : List[Any] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : List[Any]=1E-5 , lowercase_ : Any="outputs" , lowercase_ : List[str]=None ) -> List[Any]: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
87
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE__ = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = [1, 1_0_8_8, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = """tabby, tabby cat""" SCREAMING_SNAKE_CASE__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase = 3 , UpperCAmelCase = 1 , UpperCAmelCase = 1 , UpperCAmelCase = "relu" , **UpperCAmelCase , ) -> List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowercase_ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowercase_ = tf.keras.layers.ConvaD( filters=UpperCAmelCase , kernel_size=UpperCAmelCase , strides=UpperCAmelCase , padding="VALID" , groups=UpperCAmelCase , use_bias=UpperCAmelCase , name="convolution" , ) lowercase_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) lowercase_ = ACTaFN[activation] if activation is not None else tf.identity def A__ ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.convolution(self.padding(UpperCAmelCase ) ) lowercase_ = self.normalization(UpperCAmelCase ) lowercase_ = self.activation(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = config.num_channels lowercase_ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def A__ ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = shape_list(UpperCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowercase_ = tf.transpose(UpperCAmelCase , perm=(0, 2, 3, 1) ) lowercase_ = self.embedder(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase = 2 , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = tf.keras.layers.ConvaD( filters=UpperCAmelCase , kernel_size=1 , strides=UpperCAmelCase , use_bias=UpperCAmelCase , name="convolution" ) lowercase_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(UpperCAmelCase ) , training=UpperCAmelCase ) class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=UpperCAmelCase , name="pooler" ) lowercase_ = [ tf.keras.layers.ConvaD(filters=UpperCAmelCase , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=UpperCAmelCase , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = self.pooler(UpperCAmelCase ) for layer_module in self.attention: lowercase_ = layer_module(UpperCAmelCase ) lowercase_ = hidden_state * pooled return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = in_channels != out_channels or stride != 1 lowercase_ = max(1 , out_channels // config.groups_width ) lowercase_ = ( TFRegNetShortCut(UpperCAmelCase , stride=UpperCAmelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowercase_ = [ TFRegNetConvLayer(UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( UpperCAmelCase , stride=UpperCAmelCase , groups=UpperCAmelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(UpperCAmelCase , kernel_size=1 , activation=UpperCAmelCase , name="layer.2" ), ] lowercase_ = ACTaFN[config.hidden_act] def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = hidden_state for layer_module in self.layers: lowercase_ = layer_module(UpperCAmelCase ) lowercase_ = self.shortcut(UpperCAmelCase ) hidden_state += residual lowercase_ = self.activation(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , **UpperCAmelCase ) -> List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = in_channels != out_channels or stride != 1 lowercase_ = max(1 , out_channels // config.groups_width ) lowercase_ = ( TFRegNetShortCut(UpperCAmelCase , stride=UpperCAmelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) lowercase_ = [ TFRegNetConvLayer(UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( UpperCAmelCase , stride=UpperCAmelCase , groups=UpperCAmelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(UpperCAmelCase , kernel_size=1 , activation=UpperCAmelCase , name="layer.3" ), ] lowercase_ = ACTaFN[config.hidden_act] def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = hidden_state for layer_module in self.layers: lowercase_ = layer_module(UpperCAmelCase ) lowercase_ = self.shortcut(UpperCAmelCase ) hidden_state += residual lowercase_ = self.activation(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 2 , UpperCAmelCase = 2 , **UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowercase_ = [ # downsampling is done in the first layer with stride of 2 layer(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase , name="layers.0" ), *[layer(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , name=F'layers.{i+1}' ) for i in range(depth - 1 )], ] def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' for layer_module in self.layers: lowercase_ = layer_module(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) lowercase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(UpperCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , depth=UpperCAmelCase , name=F'stages.{i+1}' ) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = True ) -> TFBaseModelOutputWithNoAttention: '''simple docstring''' lowercase_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase_ = hidden_states + (hidden_state,) lowercase_ = stage_module(UpperCAmelCase ) if output_hidden_states: lowercase_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=UpperCAmelCase , hidden_states=UpperCAmelCase ) @keras_serializable class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" lowerCAmelCase__ = RegNetConfig def __init__( self , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = config lowercase_ = TFRegNetEmbeddings(UpperCAmelCase , name="embedder" ) lowercase_ = TFRegNetEncoder(UpperCAmelCase , name="encoder" ) lowercase_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=UpperCAmelCase , name="pooler" ) @unpack_inputs def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.embedder(UpperCAmelCase , training=UpperCAmelCase ) lowercase_ = self.encoder( UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase , training=UpperCAmelCase ) lowercase_ = encoder_outputs[0] lowercase_ = self.pooler(UpperCAmelCase ) # Change to NCHW output format have uniformity in the modules lowercase_ = tf.transpose(UpperCAmelCase , perm=(0, 3, 1, 2) ) lowercase_ = tf.transpose(UpperCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowercase_ = tuple([tf.transpose(UpperCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase , pooler_output=UpperCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = RegNetConfig lowerCAmelCase__ = "regnet" lowerCAmelCase__ = "pixel_values" @property def A__ ( self ) -> Dict: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} SCREAMING_SNAKE_CASE__ = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE__ = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , snake_case_ , ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowercase_ = TFRegNetMainLayer(UpperCAmelCase , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.regnet( pixel_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase , training=UpperCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , snake_case_ , ) class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowercase_ = config.num_labels lowercase_ = TFRegNetMainLayer(UpperCAmelCase , name="regnet" ) # classification head lowercase_ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A__ ( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.regnet( UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase , training=UpperCAmelCase ) lowercase_ = outputs.pooler_output if return_dict else outputs[1] lowercase_ = self.classifier[0](UpperCAmelCase ) lowercase_ = self.classifier[1](UpperCAmelCase ) lowercase_ = None if labels is None else self.hf_compute_loss(labels=UpperCAmelCase , logits=UpperCAmelCase ) if not return_dict: lowercase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states )
297
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = num_attention_heads lowercase_ = attention_head_dim lowercase_ = num_attention_heads * attention_head_dim lowercase_ = in_channels lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowercase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = batch_frames // num_frames lowercase_ = hidden_states lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ = self.norm(UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowercase_ = self.proj_out(UpperCAmelCase ) lowercase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
297
1
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __A : '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : Any=3 ,_snake_case : List[Any]=32 ,_snake_case : str=3 ,_snake_case : List[Any]=10 ,_snake_case : Any=[8, 16, 32, 64] ,_snake_case : Optional[int]=[1, 1, 2, 1] ,_snake_case : Dict=True ,_snake_case : Dict=True ,_snake_case : List[Any]="relu" ,_snake_case : int=3 ,_snake_case : Dict=None ,_snake_case : List[Any]=["stage2", "stage3", "stage4"] ,_snake_case : List[Any]=[2, 3, 4] ,_snake_case : int=1 ,) -> Optional[int]: """simple docstring""" lowercase__ : Any = parent lowercase__ : Dict = batch_size lowercase__ : Any = image_size lowercase__ : Dict = num_channels lowercase__ : int = embeddings_size lowercase__ : str = hidden_sizes lowercase__ : Tuple = depths lowercase__ : Tuple = is_training lowercase__ : str = use_labels lowercase__ : int = hidden_act lowercase__ : List[Any] = num_labels lowercase__ : Dict = scope lowercase__ : Dict = len(_snake_case ) lowercase__ : Optional[int] = out_features lowercase__ : List[str] = out_indices lowercase__ : Any = num_groups def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[int] = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return BitConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,) def UpperCAmelCase ( self : Tuple ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : str ) -> int: """simple docstring""" lowercase__ : Tuple = BitModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = model(_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : str ,_snake_case : List[str] ,_snake_case : int ,_snake_case : Optional[int] ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.num_labels lowercase__ : List[str] = BitForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : int = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ,_snake_case : Tuple ,_snake_case : str ) -> Dict: """simple docstring""" lowercase__ : int = BitBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ : Tuple = None lowercase__ : Optional[int] = BitBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : int = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[str] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase : List[str] = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : Any = False lowerCAmelCase : str = False lowerCAmelCase : str = False lowerCAmelCase : Optional[int] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" lowercase__ : Optional[Any] = BitModelTester(self ) lowercase__ : Tuple = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : int ) -> Tuple: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : List[str] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(config=_snake_case ) for name, module in model.named_modules(): if isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(_snake_case : Union[str, Any] ,_snake_case : int ,_snake_case : Optional[Any] ): lowercase__ : Optional[int] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Tuple = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : int = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : Dict = layer_type lowercase__ : Tuple = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict = BitModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> List[str]: lowercase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_snake_case ) lowercase__ : List[Any] = self.default_image_processor lowercase__ : str = prepare_img() lowercase__ : str = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[int] = model(**_snake_case ) # verify the logits lowercase__ : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : List[str] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) ) @require_torch class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (BitBackbone,) if is_torch_available() else () lowerCAmelCase : Any = BitConfig lowerCAmelCase : Optional[int] = False def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" lowercase__ : Tuple = BitModelTester(self )
16
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int = None , lowerCAmelCase_ : int = None ) -> str: '''simple docstring''' super().__init__() A__ : Optional[Any] =pad_token_id A__ : int =max_length A__ : Optional[int] =vocab A__ : Any =merges A__ : Optional[Any] =BytePairTokenizer(lowerCAmelCase_ , lowerCAmelCase_ , sequence_length=lowerCAmelCase_ ) @classmethod def lowercase__ ( cls : Optional[int] , lowerCAmelCase_ : GPTaTokenizer , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' A__ : Any =[""" """.join(lowerCAmelCase_ ) for m in tokenizer.bpe_ranks.keys()] A__ : List[str] =tokenizer.get_vocab() return cls(lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) @classmethod def lowercase__ ( cls : Tuple , lowerCAmelCase_ : Union[str, os.PathLike] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : List[Any] ) -> List[str]: '''simple docstring''' A__ : Any =GPTaTokenizer.from_pretrained(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) return cls.from_tokenizer(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) @classmethod def lowercase__ ( cls : str , lowerCAmelCase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' return cls(**lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int = None ) -> Tuple: '''simple docstring''' A__ : Optional[int] =self.tf_tokenizer(lowerCAmelCase_ ) A__ : List[Any] =tf.ones_like(lowerCAmelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length A__ : Union[str, Any] =max_length if max_length is not None else self.max_length if max_length is not None: A__ , A__ : Any =pad_model_inputs( lowerCAmelCase_ , max_seq_length=lowerCAmelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
134
0
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node A__ : Union[str, Any] =4 A__ : Optional[Any] =3 class UpperCAmelCase ( snake_case_ ): pass def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" for shard in shards: for i in range(lowerCAmelCase ): yield {"i": i, "shard": shard} def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = int(os.environ["""RANK"""] ) _lowerCAmelCase = int(os.environ["""WORLD_SIZE"""] ) _lowerCAmelCase = ArgumentParser() parser.add_argument("""--streaming""" , type=lowerCAmelCase ) parser.add_argument("""--local_rank""" , type=lowerCAmelCase ) parser.add_argument("""--num_workers""" , type=lowerCAmelCase , default=0 ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = args.streaming _lowerCAmelCase = args.num_workers _lowerCAmelCase = {"""shards""": [f"shard_{shard_idx}" for shard_idx in range(lowerCAmelCase )]} _lowerCAmelCase = IterableDataset.from_generator(lowerCAmelCase , gen_kwargs=lowerCAmelCase ) if not streaming: _lowerCAmelCase = Dataset.from_list(list(lowerCAmelCase ) ) _lowerCAmelCase = split_dataset_by_node(lowerCAmelCase , rank=lowerCAmelCase , world_size=lowerCAmelCase ) _lowerCAmelCase = torch.utils.data.DataLoader(lowerCAmelCase , num_workers=lowerCAmelCase ) _lowerCAmelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD _lowerCAmelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) _lowerCAmelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
354
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) A__ : Any =logging.getLogger() A__ : int =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase ( snake_case_ ): def lowercase__ ( self : Optional[Any] , __snake_case : Any ) -> int: os.makedirs(__snake_case , exist_ok=__snake_case ) _lowerCAmelCase = {"""source""": """What is love ?""", """target""": """life"""} _lowerCAmelCase = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _lowerCAmelCase = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(__snake_case , f"{split}.{field}" ) , """w""" ) as f: f.write(__snake_case ) def lowercase__ ( self : Tuple , __snake_case : int , __snake_case : str = "pytorch" ) -> int: _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = os.path.join(__snake_case , """output""" ) _lowerCAmelCase = os.path.join(__snake_case , """data""" ) self._create_dummy_data(data_dir=__snake_case ) _lowerCAmelCase = f"\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n ".split() if gpus > 0: testargs.append(f"--gpus={gpus}" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) _lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__snake_case , env=self.get_env() ) _lowerCAmelCase = os.path.join(__snake_case , """metrics.json""" ) with open(__snake_case ) as f: _lowerCAmelCase = json.load(__snake_case ) return result @require_torch_gpu def lowercase__ ( self : Dict ) -> Union[str, Any]: _lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowercase__ ( self : int ) -> Dict: _lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: _lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase__ ( self : int ) -> List[str]: _lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
220
0
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __lowercase : Dict = 50000 __lowercase : Dict = 5000 __lowercase , __lowercase : Optional[int] = os.path.split(__file__) __lowercase : Dict = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def lowercase_ ( _lowercase , _lowercase ) -> Tuple: '''simple docstring''' for i in range(_lowercase ): lowerCamelCase_ : Dict = dataset[i] @get_duration def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: '''simple docstring''' for i in range(0 , len(_lowercase ) , _lowercase ): lowerCamelCase_ : Union[str, Any] = dataset[i : i + batch_size] @get_duration def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' with dataset.formatted_as(type=_lowercase ): for i in range(_lowercase ): lowerCamelCase_ : List[str] = dataset[i] @get_duration def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: '''simple docstring''' with dataset.formatted_as(type=_lowercase ): for i in range(0 , _lowercase , _lowercase ): lowerCamelCase_ : Dict = dataset[i : i + batch_size] def lowercase_ ( ) -> List[Any]: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = {'''num examples''': SPEED_TEST_N_EXAMPLES} lowerCamelCase_ : Any = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''pandas''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''torch''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''tensorflow''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_000}), ] lowerCamelCase_ : Any = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('''generating dataset''' ) lowerCamelCase_ : Tuple = datasets.Features( {'''list''': datasets.Sequence(datasets.Value('''float32''' ) ), '''numbers''': datasets.Value('''float32''' )} ) lowerCamelCase_ : Tuple = generate_example_dataset( os.path.join(_lowercase , '''dataset.arrow''' ) , _lowercase , num_examples=_lowercase , seq_shapes={'''list''': (100,)} , ) print('''first set of iterations''' ) for func, kwargs in functions: print(func.__name__ , str(_lowercase ) ) lowerCamelCase_ : Dict = func(_lowercase , **_lowercase ) print('''shuffling dataset''' ) lowerCamelCase_ : Tuple = dataset.shuffle() print('''Second set of iterations (after shuffling''' ) for func, kwargs in functions_shuffled: print('''shuffled ''' , func.__name__ , str(_lowercase ) ) lowerCamelCase_ : Optional[Any] = func( _lowercase , **_lowercase ) with open(_lowercase , '''wb''' ) as f: f.write(json.dumps(_lowercase ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
318
'''simple docstring''' from __future__ import annotations import time __lowercase : List[Any] = list[tuple[int, int]] __lowercase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : def __init__(self , A , A , A , A , A ): lowerCamelCase_ : Optional[int] = pos_x lowerCamelCase_ : List[str] = pos_y lowerCamelCase_ : List[Any] = (pos_y, pos_x) lowerCamelCase_ : List[str] = goal_x lowerCamelCase_ : Union[str, Any] = goal_y lowerCamelCase_ : int = parent class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Union[str, Any] = [self.start] lowerCamelCase_ : List[str] = False def UpperCAmelCase__ (self ): while self.node_queue: lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase_ : List[str] = True return self.retrace_path(A ) lowerCamelCase_ : str = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Dict = [] for action in delta: lowerCamelCase_ : Any = parent.pos_x + action[1] lowerCamelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def UpperCAmelCase__ (self , A ): lowerCamelCase_ : int = node lowerCamelCase_ : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase_ : List[Any] = current_node.parent path.reverse() return path class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A ) lowerCamelCase_ : Any = BreadthFirstSearch(A , A ) lowerCamelCase_ : Union[str, Any] = False def UpperCAmelCase__ (self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase_ : Optional[Any] = True return self.retrace_bidirectional_path( A , A ) lowerCamelCase_ : Optional[int] = current_bwd_node lowerCamelCase_ : List[str] = current_fwd_node lowerCamelCase_ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A ) lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() lowerCamelCase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase : List[str] = (0, 0) __lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase : Tuple = time.time() __lowercase : int = BreadthFirstSearch(init, goal) __lowercase : Dict = bfs.search() __lowercase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase : int = time.time() __lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) __lowercase : Any = bd_bfs.search() __lowercase : Dict = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
318
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCamelCase = [3, 3, 3, 3] __lowerCamelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCamelCase = [4, 4, 4, 4] __lowerCamelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCamelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCamelCase = [3, 3, 3, 3] else: __lowerCamelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCamelCase = 96 elif "small" in model_name: __lowerCamelCase = 96 elif "base" in model_name: __lowerCamelCase = 128 elif "large" in model_name: __lowerCamelCase = 192 elif "xlarge" in model_name: __lowerCamelCase = 256 elif "huge" in model_name: __lowerCamelCase = 352 # set label information __lowerCamelCase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowerCamelCase = 'imagenet-22k-id2label.json' else: __lowerCamelCase = 'imagenet-1k-id2label.json' __lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = FocalNetConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , ) return config def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str: """simple docstring""" if "patch_embed.proj" in name: __lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowerCamelCase = 'encoder.' + name if "encoder.layers" in name: __lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowerCamelCase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowerCamelCase = 'layernorm.weight' if name == "norm.bias": __lowerCamelCase = 'layernorm.bias' if "head" in name: __lowerCamelCase = name.replace('head' , 'classifier' ) else: __lowerCamelCase = 'focalnet.' + name return name def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict: """simple docstring""" __lowerCamelCase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowerCamelCase = model_name_to_url[model_name] print('Checkpoint URL: ' , UpperCamelCase__ ) __lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val __lowerCamelCase = get_focalnet_config(UpperCamelCase__ ) __lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ ) model.eval() # load state dict model.load_state_dict(UpperCamelCase__ ) # verify conversion __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = BitImageProcessor( do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , ) __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' ) __lowerCamelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) __lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 ) __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": __lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": __lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": __lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": __lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": __lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) __A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
348
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = hidden_dim __lowerCamelCase = hidden_dim def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase = self.num_queries __lowerCamelCase = self.num_labels __lowerCamelCase = [1, 1, 1, 1] __lowerCamelCase = self.num_channels __lowerCamelCase = 64 __lowerCamelCase = 128 __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim return config def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) __lowerCamelCase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = MaskaFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), 'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } __lowerCamelCase = self.model_tester.get_config() __lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1e-4 def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] __lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ ) __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']] __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
348
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Dict = FunnelTokenizer _UpperCAmelCase : List[str] = FunnelTokenizerFast _UpperCAmelCase : str = True _UpperCAmelCase : Optional[int] = True def lowerCAmelCase ( self : Any): super().setUp() __lowerCamelCase : Union[str, Any] = [ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file ,'w' ,encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) def lowerCAmelCase ( self : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : List[Any]): return FunnelTokenizer.from_pretrained(self.tmpdirname ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any] ,**SCREAMING_SNAKE_CASE__ : List[str]): return FunnelTokenizerFast.from_pretrained(self.tmpdirname ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Dict = 'UNwant\u00E9d,running' __lowerCamelCase : Tuple = 'unwanted, running' return input_text, output_text def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Tuple = self.tokenizer_class(self.vocab_file) __lowerCamelCase : Any = tokenizer.tokenize('UNwant\u00E9d,running') self.assertListEqual(SCREAMING_SNAKE_CASE__ ,['un', '##want', '##ed', ',', 'runn', '##ing']) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__) ,[7, 4, 5, 1_0, 8, 9]) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : int = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__) for tokenizer in tokenizers: __lowerCamelCase : Dict = tokenizer('UNwant\u00E9d,running') __lowerCamelCase : int = len(inputs['input_ids']) - 1 self.assertListEqual(inputs['token_type_ids'] ,[2] + [0] * sentence_len) __lowerCamelCase : Dict = tokenizer('UNwant\u00E9d,running' ,'UNwant\u00E9d,running') self.assertListEqual(inputs['token_type_ids'] ,[2] + [0] * sentence_len + [1] * sentence_len)
73
import os import sys import unittest lowerCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCamelCase = os.path.join(git_repo_path, 'src', 'transformers') lowerCamelCase = '\n{0} = None\n' lowerCamelCase = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' lowerCamelCase = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class A ( unittest.TestCase ): def lowerCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : int =find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(lowercase_ ) _lowerCamelCase : List[str] =find_backend(' if not is_tokenizers_available():' ) self.assertEqual(lowercase_ , 'tokenizers' ) _lowerCamelCase : List[Any] =find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(lowercase_ , 'tensorflow_text' ) _lowerCamelCase : int =find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(lowercase_ , 'sentencepiece_and_tokenizers' ) _lowerCamelCase : Dict =find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(lowercase_ , 'sentencepiece_and_tensorflow_text' ) _lowerCamelCase : List[Any] =find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(lowercase_ , 'sentencepiece_and_tokenizers_and_vision' ) def lowerCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _lowerCamelCase : Union[str, Any] =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , lowercase_ ) self.assertIn('tensorflow_text' , lowercase_ ) self.assertIn('sentencepiece_and_tokenizers' , lowercase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def lowerCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[Any] =create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(lowercase_ , '\nCONSTANT = None\n' ) _lowerCamelCase : Dict =create_dummy_object('function' , '\'torch\'' ) self.assertEqual( lowercase_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) _lowerCamelCase : Union[str, Any] ='\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' _lowerCamelCase : Tuple =create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(lowercase_ , lowercase_ ) def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : Dict ='# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' _lowerCamelCase : Optional[int] =create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , lowercase_ )
199
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : Dict = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
350
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : List[Any] = ['pixel_values'] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 2_5_5 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ): super().__init__(**lowerCamelCase__ ) _lowerCamelCase = size if size is not None else {'''shortest_edge''': 3_8_4} _lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _lowerCamelCase = do_resize _lowerCamelCase = size # Default value set here for backwards compatibility where the value in config is None _lowerCamelCase = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 _lowerCamelCase = resample _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_normalize _lowerCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ): _lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) _lowerCamelCase = size['''shortest_edge'''] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _lowerCamelCase = int(shortest_edge / crop_pct ) _lowerCamelCase = get_resize_output_image_size(lowerCamelCase__ , size=lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _lowerCamelCase = resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase__ , size=(shortest_edge, shortest_edge) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase__ , size=(shortest_edge, shortest_edge) , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ): _lowerCamelCase = do_resize if do_resize is not None else self.do_resize _lowerCamelCase = crop_pct if crop_pct is not None else self.crop_pct _lowerCamelCase = resample if resample is not None else self.resample _lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase = image_mean if image_mean is not None else self.image_mean _lowerCamelCase = image_std if image_std is not None else self.image_std _lowerCamelCase = size if size is not None else self.size _lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _lowerCamelCase = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _lowerCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: _lowerCamelCase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , crop_pct=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_rescale: _lowerCamelCase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: _lowerCamelCase = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] _lowerCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] _lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
73
0
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCAmelCase ( snake_case_ ): _lowercase: str = ['''image_processor'''] _lowercase: Dict = '''SamImageProcessor''' def __init__( self : Dict , __snake_case : List[Any] ) -> Optional[Any]: super().__init__(__snake_case ) _lowerCAmelCase = self.image_processor _lowerCAmelCase = -10 _lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self : str , __snake_case : Dict=None , __snake_case : Dict=None , __snake_case : List[str]=None , __snake_case : Dict=None , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Any , ) -> BatchEncoding: _lowerCAmelCase = self.image_processor( __snake_case , return_tensors=__snake_case , **__snake_case , ) # pop arguments that are not used in the foward but used nevertheless _lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__snake_case , """numpy""" ): # Checks if Torch or TF tensor _lowerCAmelCase = original_sizes.numpy() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self._check_and_preprocess_points( input_points=__snake_case , input_labels=__snake_case , input_boxes=__snake_case , ) _lowerCAmelCase = self._normalize_and_convert( __snake_case , __snake_case , input_points=__snake_case , input_labels=__snake_case , input_boxes=__snake_case , return_tensors=__snake_case , ) return encoding_image_processor def lowercase__ ( self : List[Any] , __snake_case : List[str] , __snake_case : Dict , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : List[Any]=None , __snake_case : Optional[Any]="pt" , ) -> Dict: if input_points is not None: if len(__snake_case ) != len(__snake_case ): _lowerCAmelCase = [ self._normalize_coordinates(self.target_size , __snake_case , original_sizes[0] ) for point in input_points ] else: _lowerCAmelCase = [ self._normalize_coordinates(self.target_size , __snake_case , __snake_case ) for point, original_size in zip(__snake_case , __snake_case ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _lowerCAmelCase , _lowerCAmelCase = self._pad_points_and_labels(__snake_case , __snake_case ) _lowerCAmelCase = np.array(__snake_case ) if input_labels is not None: _lowerCAmelCase = np.array(__snake_case ) if input_boxes is not None: if len(__snake_case ) != len(__snake_case ): _lowerCAmelCase = [ self._normalize_coordinates(self.target_size , __snake_case , original_sizes[0] , is_bounding_box=__snake_case ) for box in input_boxes ] else: _lowerCAmelCase = [ self._normalize_coordinates(self.target_size , __snake_case , __snake_case , is_bounding_box=__snake_case ) for box, original_size in zip(__snake_case , __snake_case ) ] _lowerCAmelCase = np.array(__snake_case ) if input_boxes is not None: if return_tensors == "pt": _lowerCAmelCase = torch.from_numpy(__snake_case ) # boxes batch size of 1 by default _lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _lowerCAmelCase = tf.convert_to_tensor(__snake_case ) # boxes batch size of 1 by default _lowerCAmelCase = tf.expand_dims(__snake_case , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": _lowerCAmelCase = torch.from_numpy(__snake_case ) # point batch size of 1 by default _lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _lowerCAmelCase = tf.convert_to_tensor(__snake_case ) # point batch size of 1 by default _lowerCAmelCase = tf.expand_dims(__snake_case , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": _lowerCAmelCase = torch.from_numpy(__snake_case ) # point batch size of 1 by default _lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _lowerCAmelCase = tf.convert_to_tensor(__snake_case ) # point batch size of 1 by default _lowerCAmelCase = tf.expand_dims(__snake_case , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowercase__ ( self : str , __snake_case : List[Any] , __snake_case : Optional[Any] ) -> List[Any]: _lowerCAmelCase = max([point.shape[0] for point in input_points] ) _lowerCAmelCase = [] for i, point in enumerate(__snake_case ): if point.shape[0] != expected_nb_points: _lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _lowerCAmelCase = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(__snake_case ) _lowerCAmelCase = processed_input_points return input_points, input_labels def lowercase__ ( self : Optional[int] , __snake_case : int , __snake_case : np.ndarray , __snake_case : Tuple , __snake_case : List[str]=False ) -> np.ndarray: _lowerCAmelCase , _lowerCAmelCase = original_size _lowerCAmelCase , _lowerCAmelCase = self.image_processor._get_preprocess_shape(__snake_case , longest_edge=__snake_case ) _lowerCAmelCase = deepcopy(__snake_case ).astype(__snake_case ) if is_bounding_box: _lowerCAmelCase = coords.reshape(-1 , 2 , 2 ) _lowerCAmelCase = coords[..., 0] * (new_w / old_w) _lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: _lowerCAmelCase = coords.reshape(-1 , 4 ) return coords def lowercase__ ( self : List[str] , __snake_case : Dict=None , __snake_case : str=None , __snake_case : str=None , ) -> Tuple: if input_points is not None: if hasattr(__snake_case , """numpy""" ): # Checks for TF or Torch tensor _lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__snake_case , __snake_case ) or not isinstance(input_points[0] , __snake_case ): raise ValueError("""Input points must be a list of list of floating points.""" ) _lowerCAmelCase = [np.array(__snake_case ) for input_point in input_points] else: _lowerCAmelCase = None if input_labels is not None: if hasattr(__snake_case , """numpy""" ): _lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__snake_case , __snake_case ) or not isinstance(input_labels[0] , __snake_case ): raise ValueError("""Input labels must be a list of list integers.""" ) _lowerCAmelCase = [np.array(__snake_case ) for label in input_labels] else: _lowerCAmelCase = None if input_boxes is not None: if hasattr(__snake_case , """numpy""" ): _lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__snake_case , __snake_case ) or not isinstance(input_boxes[0] , __snake_case ) or not isinstance(input_boxes[0][0] , __snake_case ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) _lowerCAmelCase = [np.array(__snake_case ).astype(np.floataa ) for box in input_boxes] else: _lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowercase__ ( self : Optional[int] ) -> Tuple: _lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__snake_case ) ) def lowercase__ ( self : Optional[int] , *__snake_case : int , **__snake_case : str ) -> List[str]: return self.image_processor.post_process_masks(*__snake_case , **__snake_case )
70
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A__ : Dict ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A__ : Tuple =concatenate_datasets A__ : Dict =DownloadConfig A__ : int =DownloadManager A__ : Union[str, Any] =DownloadMode A__ : Tuple =DownloadConfig A__ : Optional[Any] =DownloadMode A__ : str =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
70
1
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig _lowercase : Optional[int] =[ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring _lowercase : List[Any] ="UperNetConfig" class snake_case__ (nn.Module ): """simple docstring""" def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase = 0 , __lowercase = False , __lowercase = 1 , ) -> None: """simple docstring""" super().__init__() a__ : List[Any] = nn.Convad( in_channels=__lowercase , out_channels=__lowercase , kernel_size=__lowercase , padding=__lowercase , bias=__lowercase , dilation=__lowercase , ) a__ : Optional[int] = nn.BatchNormad(__lowercase ) a__ : Any = nn.ReLU() def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> torch.Tensor: """simple docstring""" a__ : Dict = self.conv(__lowercase ) a__ : str = self.batch_norm(__lowercase ) a__ : Optional[int] = self.activation(__lowercase ) return output class snake_case__ (nn.Module ): """simple docstring""" def __init__( self , __lowercase , __lowercase , __lowercase ) -> None: """simple docstring""" super().__init__() a__ : Optional[Any] = [ nn.AdaptiveAvgPoolad(__lowercase ), UperNetConvModule(__lowercase , __lowercase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__lowercase ) , __lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> torch.Tensor: """simple docstring""" a__ : Union[str, Any] = input for layer in self.layers: a__ : str = layer(__lowercase ) return hidden_state class snake_case__ (nn.Module ): """simple docstring""" def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> None: """simple docstring""" super().__init__() a__ : Optional[Any] = pool_scales a__ : int = align_corners a__ : List[Any] = in_channels a__ : Dict = channels a__ : Optional[int] = [] for i, pool_scale in enumerate(__lowercase ): a__ : int = UperNetPyramidPoolingBlock(pool_scale=__lowercase , in_channels=__lowercase , channels=__lowercase ) self.blocks.append(__lowercase ) self.add_module(str(__lowercase ) , __lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[torch.Tensor]: """simple docstring""" a__ : Optional[Any] = [] for ppm in self.blocks: a__ : List[str] = ppm(__lowercase ) a__ : Any = nn.functional.interpolate( __lowercase , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(__lowercase ) return ppm_outs class snake_case__ (nn.Module ): """simple docstring""" def __init__( self , __lowercase , __lowercase ) -> Optional[int]: """simple docstring""" super().__init__() a__ : Dict = config a__ : List[Any] = config.pool_scales # e.g. (1, 2, 3, 6) a__ : Any = in_channels a__ : Tuple = config.hidden_size a__ : Union[str, Any] = False a__ : int = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module a__ : Tuple = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) a__ : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module a__ : Any = nn.ModuleList() a__ : Dict = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer a__ : Any = UperNetConvModule(__lowercase , self.channels , kernel_size=1 ) a__ : Optional[int] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__lowercase ) self.fpn_convs.append(__lowercase ) a__ : Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]: """simple docstring""" if isinstance(__lowercase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Any: """simple docstring""" a__ : Optional[Any] = inputs[-1] a__ : Any = [x] psp_outs.extend(self.psp_modules(__lowercase ) ) a__ : str = torch.cat(__lowercase , dim=1 ) a__ : Optional[Any] = self.bottleneck(__lowercase ) return output def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> torch.Tensor: """simple docstring""" a__ : int = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__lowercase ) ) # build top-down path a__ : List[str] = len(__lowercase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): a__ : str = laterals[i - 1].shape[2:] a__ : Optional[int] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__lowercase , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs a__ : Optional[Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): a__ : Optional[Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) a__ : Any = torch.cat(__lowercase , dim=1 ) a__ : Optional[int] = self.fpn_bottleneck(__lowercase ) a__ : Optional[Any] = self.classifier(__lowercase ) return output class snake_case__ (nn.Module ): """simple docstring""" def __init__( self , __lowercase , __lowercase = 2 , __lowercase = 3 , __lowercase = 1 ) -> None: """simple docstring""" super().__init__() a__ : Union[str, Any] = config a__ : Union[str, Any] = config.auxiliary_in_channels a__ : Tuple = config.auxiliary_channels a__ : str = config.auxiliary_num_convs a__ : Tuple = config.auxiliary_concat_input a__ : str = in_index a__ : Tuple = (kernel_size // 2) * dilation a__ : List[str] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__lowercase , padding=__lowercase , dilation=__lowercase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__lowercase , padding=__lowercase , dilation=__lowercase ) ) if self.num_convs == 0: a__ : int = nn.Identity() else: a__ : int = nn.Sequential(*__lowercase ) if self.concat_input: a__ : Optional[int] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__lowercase , padding=kernel_size // 2 ) a__ : Union[str, Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[int]: """simple docstring""" if isinstance(__lowercase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> torch.Tensor: """simple docstring""" a__ : str = encoder_hidden_states[self.in_index] a__ : List[Any] = self.convs(__lowercase ) if self.concat_input: a__ : Tuple = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) a__ : List[Any] = self.classifier(__lowercase ) return output class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :Union[str, Any] = UperNetConfig __lowerCAmelCase :str = "pixel_values" __lowerCAmelCase :int = True def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Dict: """simple docstring""" if isinstance(__lowercase , __lowercase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=False ) -> List[str]: """simple docstring""" if isinstance(__lowercase , __lowercase ): a__ : Dict = value _lowercase : Union[str, Any] =r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _lowercase : List[Any] =r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , A__ , ) class snake_case__ (A__ ): """simple docstring""" def __init__( self , __lowercase ) -> List[Any]: """simple docstring""" super().__init__(__lowercase ) a__ : Optional[Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) a__ : Tuple = UperNetHead(__lowercase , in_channels=self.backbone.channels ) a__ : Union[str, Any] = UperNetFCNHead(__lowercase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=__lowercase , config_class=_CONFIG_FOR_DOC ) def SCREAMING_SNAKE_CASE__( self , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , ) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" a__ : Tuple = return_dict if return_dict is not None else self.config.use_return_dict a__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a__ : Union[str, Any] = output_attentions if output_attentions is not None else self.config.output_attentions a__ : int = self.backbone.forward_with_filtered_kwargs( __lowercase , output_hidden_states=__lowercase , output_attentions=__lowercase ) a__ : Any = outputs.feature_maps a__ : Tuple = self.decode_head(__lowercase ) a__ : Any = nn.functional.interpolate(__lowercase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__lowercase ) a__ : Tuple = None if self.auxiliary_head is not None: a__ : Dict = self.auxiliary_head(__lowercase ) a__ : int = nn.functional.interpolate( __lowercase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__lowercase ) a__ : List[Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss a__ : Optional[Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) a__ : int = loss_fct(__lowercase , __lowercase ) a__ : List[Any] = loss_fct(__lowercase , __lowercase ) a__ : Optional[int] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: a__ : Tuple = (logits,) + outputs[1:] else: a__ : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__lowercase , logits=__lowercase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
266
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class snake_case__ (A__ ): """simple docstring""" def __init__( self , __lowercase , __lowercase ) -> int: """simple docstring""" a__ : Tuple = params a__ : str = np.array(__lowercase ) a__ : List[Any] = np.array([len(__lowercase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , __lowercase ) -> Any: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Dict: """simple docstring""" return len(self.lengths ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : int = self.params.max_model_input_size a__ : int = self.lengths > max_len logger.info(F'''Splitting {sum(__lowercase )} too long sequences.''' ) def divide_chunks(__lowercase , __lowercase ): return [l[i : i + n] for i in range(0 , len(__lowercase ) , __lowercase )] a__ : Any = [] a__ : Optional[int] = [] if self.params.mlm: a__ , a__ : Any = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: a__ , a__ : Dict = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: a__ : int = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: a__ : str = np.insert(__lowercase , 0 , __lowercase ) if sub_s[-1] != sep_id: a__ : List[str] = np.insert(__lowercase , len(__lowercase ) , __lowercase ) assert len(__lowercase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__lowercase ) new_tok_ids.extend(__lowercase ) new_lengths.extend([len(__lowercase ) for l in sub_seqs] ) a__ : Optional[int] = np.array(__lowercase ) a__ : Any = np.array(__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Union[str, Any] = len(self ) a__ : List[str] = self.lengths > 1_1 a__ : Dict = self.token_ids[indices] a__ : List[str] = self.lengths[indices] a__ : int = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: a__ : Union[str, Any] = self.params.special_tok_ids["""unk_token"""] a__ : List[Any] = len(self ) a__ : Optional[int] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) a__ : Optional[Any] = (unk_occs / self.lengths) < 0.5 a__ : Tuple = self.token_ids[indices] a__ : Union[str, Any] = self.lengths[indices] a__ : Tuple = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[int]: """simple docstring""" a__ : Optional[int] = [t[0] for t in batch] a__ : Any = [t[1] for t in batch] assert len(__lowercase ) == len(__lowercase ) # Max for paddings a__ : List[Any] = max(__lowercase ) # Pad token ids if self.params.mlm: a__ : int = self.params.special_tok_ids["""pad_token"""] else: a__ : List[str] = self.params.special_tok_ids["""unk_token"""] a__ : int = [list(t.astype(__lowercase ) ) + [pad_idx] * (max_seq_len_ - len(__lowercase )) for t in token_ids] assert len(tk_ ) == len(__lowercase ) assert all(len(__lowercase ) == max_seq_len_ for t in tk_ ) a__ : List[Any] = torch.tensor(tk_ ) # (bs, max_seq_len_) a__ : Optional[int] = torch.tensor(__lowercase ) # (bs) return tk_t, lg_t
266
1
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a ( __a, unittest.TestCase ): """simple docstring""" UpperCAmelCase = PhobertTokenizer UpperCAmelCase = False def UpperCamelCase ( self: List[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = ["""T@@""", """i""", """I""", """R@@""", """r""", """e@@"""] A__ = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) A__ = ["""#version: 0.2""", """l à</w>"""] A__ = {"""unk_token""": """<unk>"""} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_UpperCamelCase ) ) def UpperCamelCase ( self: Union[str, Any] , **UpperCamelCase: Any ): """simple docstring""" kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: int ): """simple docstring""" A__ = """Tôi là VinAI Research""" A__ = """T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>""" return input_text, output_text def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A__ = """Tôi là VinAI Research""" A__ = """T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h""".split() A__ = tokenizer.tokenize(_UpperCamelCase ) print(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) A__ = tokens + [tokenizer.unk_token] A__ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase )
335
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __a , unittest.TestCase ): _lowercase =None _lowercase =BloomTokenizerFast _lowercase =BloomTokenizerFast _lowercase =True _lowercase =False _lowercase ='''tokenizer_file''' _lowercase ={'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def __a ( self ) -> Dict: super().setUp() lowerCAmelCase_ = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self , **_UpperCamelCase ) -> Tuple: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] lowerCAmelCase_ = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] lowerCAmelCase_ = tokenizer.batch_encode_plus(_UpperCamelCase )["input_ids"] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = tokenizer.batch_decode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __a ( self , _UpperCamelCase=6 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowerCAmelCase_ = "This is a simple input" lowerCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ = ("This is a simple input", "This is a pair") lowerCAmelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(_UpperCamelCase , max_length=_UpperCamelCase ) tokenizer_r.encode_plus(_UpperCamelCase , max_length=_UpperCamelCase ) tokenizer_r.batch_encode_plus(_UpperCamelCase , max_length=_UpperCamelCase ) tokenizer_r.encode(_UpperCamelCase , max_length=_UpperCamelCase ) tokenizer_r.batch_encode_plus(_UpperCamelCase , max_length=_UpperCamelCase ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) lowerCAmelCase_ = None # Hotfixing padding = None self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = load_dataset("xnli" , "all_languages" , split="test" , streaming=_UpperCamelCase ) lowerCAmelCase_ = next(iter(_UpperCamelCase ) )["premise"] # pick up one data lowerCAmelCase_ = list(sample_data.values() ) lowerCAmelCase_ = list(map(tokenizer.encode , _UpperCamelCase ) ) lowerCAmelCase_ = [tokenizer.decode(_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) for x in output_tokens] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> List[Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
231
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
364
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase ( unittest.TestCase ): def a__ ( self ) -> Any: # A mock response for an HTTP head request to emulate server down _A : Optional[int] = mock.Mock() _A : Optional[Any] = 500 _A : Dict = {} _A : Union[str, Any] = HTTPError _A : List[Any] = {} # Download this model to make sure it's in the cache. _A : int = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=_a ) as mock_head: _A : List[Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def a__ ( self ) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down _A : str = mock.Mock() _A : Any = 500 _A : Optional[int] = {} _A : List[str] = HTTPError _A : int = {} # Download this model to make sure it's in the cache. _A : int = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=_a ) as mock_head: _A : str = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def a__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 try: _A : Tuple = tempfile.mktemp() with open(_a , """wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" , _a ) _A : str = AlbertTokenizer.from_pretrained(_a ) finally: os.remove(_a ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" , """wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" , _a ) _A : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def a__ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 _A : Dict = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class lowercase ( unittest.TestCase ): _a = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def a__ ( cls ) -> Tuple: _A : int = TOKEN HfFolder.save_token(_a ) @classmethod def a__ ( cls ) -> List[Any]: try: delete_repo(token=cls._token , repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def a__ ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[Any] = os.path.join(_a , """vocab.txt""" ) with open(_a , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _A : Optional[Any] = BertTokenizer(_a ) tokenizer.push_to_hub("""test-tokenizer""" , use_auth_token=self._token ) _A : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_a , repo_id="""test-tokenizer""" , push_to_hub=_a , use_auth_token=self._token ) _A : List[str] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[int] = os.path.join(_a , """vocab.txt""" ) with open(_a , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _A : Tuple = BertTokenizer(_a ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" , use_auth_token=self._token ) _A : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _a , repo_id="""valid_org/test-tokenizer-org""" , push_to_hub=_a , use_auth_token=self._token ) _A : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def a__ ( self ) -> str: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _A : Union[str, Any] = os.path.join(_a , """vocab.txt""" ) with open(_a , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _A : str = CustomTokenizer(_a ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) _A : Optional[int] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_a ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _A : Any = os.path.join(_a , """vocab.txt""" ) with open(_a , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _A : Dict = BertTokenizerFast.from_pretrained(_a ) bert_tokenizer.save_pretrained(_a ) _A : Dict = CustomTokenizerFast.from_pretrained(_a ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) _A : Tuple = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_a ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizerFast""" ) _A : Tuple = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' , use_fast=_a , trust_remote_code=_a ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: _A : Optional[Any] = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def a__ ( self ) -> Union[str, Any]: _A : List[Any] = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS]""", """ This is a """, """extra_id_100"""] ) def a__ ( self ) -> Dict: _A : List[Any] = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) , ["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) , ["""BC""", """A"""] ) def a__ ( self ) -> Dict: _A : Dict = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def a__ ( self ) -> List[Any]: _A : Optional[Any] = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def a__ ( self ) -> List[Any]: _A : Dict = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) , ["""AB""", """C"""] ) def a__ ( self ) -> int: _A : Any = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) , ["""ABC""", """D"""] ) def a__ ( self ) -> List[Any]: # Even if the offsets are wrong, we necessarily output correct string # parts. _A : Tuple = Trie() _A : int = trie.cut_text("""ABC""" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(_a , ["""AB""", """C"""] )
26
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> List[Any]: # noqa: E741 _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) _lowerCAmelCase : str = 0 _lowerCAmelCase : Any = [0] * n _lowerCAmelCase : str = [False] * n _lowerCAmelCase : str = [False] * n def dfs(_lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str ): if parent == root: out_edge_count += 1 _lowerCAmelCase : Any = True _lowerCAmelCase : int = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase : Union[str, Any] = dfs(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[int] = min(low[at] ,low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase : int = True # AP found via cycle if at == low[to]: _lowerCAmelCase : Tuple = True else: _lowerCAmelCase : Union[str, Any] = min(low[at] ,_lowerCamelCase ) return out_edge_count for i in range(_lowerCamelCase ): if not visited[i]: _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = dfs(_lowerCamelCase ,_lowerCamelCase ,-1 ,_lowerCamelCase ) _lowerCAmelCase : List[str] = out_edge_count > 1 for x in range(len(_lowerCamelCase ) ): if is_art[x] is True: print(_lowerCamelCase ) # Adjacency list of graph _a : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
44
0
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
362
"""simple docstring""" def lowercase_ ( _lowerCamelCase: int = 4000000 ) -> int: '''simple docstring''' __lowerCamelCase : Tuple = [0, 1] __lowerCamelCase : Union[str, Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __lowerCamelCase : Tuple = 0 for j in range(len(_lowerCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"""{solution() = }""")
64
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """camembert""" def __init__( self :List[Any] , lowerCamelCase :str=3_0522 , lowerCamelCase :int=768 , lowerCamelCase :List[str]=12 , lowerCamelCase :List[Any]=12 , lowerCamelCase :str=3072 , lowerCamelCase :Optional[int]="gelu" , lowerCamelCase :Optional[Any]=0.1 , lowerCamelCase :Any=0.1 , lowerCamelCase :str=512 , lowerCamelCase :List[str]=2 , lowerCamelCase :str=0.02 , lowerCamelCase :Any=1e-12 , lowerCamelCase :int=1 , lowerCamelCase :Dict=0 , lowerCamelCase :Tuple=2 , lowerCamelCase :Optional[Any]="absolute" , lowerCamelCase :Dict=True , lowerCamelCase :int=None , **lowerCamelCase :Dict , ) -> str: super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache UpperCAmelCase__ = classifier_dropout class _UpperCamelCase ( lowerCAmelCase ): @property def UpperCAmelCase_ ( self :int ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
169
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _lowerCAmelCase : List[Any] = "scheduler_config.json" class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 2 UpperCAmelCase_ = 3 UpperCAmelCase_ = 4 UpperCAmelCase_ = 5 @dataclass class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 42 class _UpperCamelCase : UpperCAmelCase_ = SCHEDULER_CONFIG_NAME UpperCAmelCase_ = ["""dtype"""] UpperCAmelCase_ = [] UpperCAmelCase_ = True @classmethod def UpperCAmelCase_ ( cls :List[Any] , lowerCamelCase :Dict[str, Any] = None , lowerCamelCase :Optional[str] = None , lowerCamelCase :Any=False , **lowerCamelCase :Dict , ) -> str: UpperCAmelCase__ , UpperCAmelCase__ = cls.load_config( pretrained_model_name_or_path=lowerCamelCase , subfolder=lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase , ) UpperCAmelCase__ , UpperCAmelCase__ = cls.from_config(lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase ) if hasattr(lowerCamelCase , "create_state" ) and getattr(lowerCamelCase , "has_state" , lowerCamelCase ): UpperCAmelCase__ = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :Union[str, os.PathLike] , lowerCamelCase :bool = False , **lowerCamelCase :Optional[int] ) -> Dict: self.save_config(save_directory=lowerCamelCase , push_to_hub=lowerCamelCase , **lowerCamelCase ) @property def UpperCAmelCase_ ( self :List[Any] ) -> Any: return self._get_compatibles() @classmethod def UpperCAmelCase_ ( cls :str ) -> Optional[int]: UpperCAmelCase__ = list(set([cls.__name__] + cls._compatibles ) ) UpperCAmelCase__ = importlib.import_module(__name__.split("." )[0] ) UpperCAmelCase__ = [ getattr(lowerCamelCase , lowerCamelCase ) for c in compatible_classes_str if hasattr(lowerCamelCase , lowerCamelCase ) ] return compatible_classes def lowerCAmelCase ( _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : Tuple[int] ): """simple docstring""" assert len(_lowerCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_lowerCAmelCase ) - x.ndim) ) , _lowerCAmelCase ) def lowerCAmelCase ( _lowerCAmelCase : int , _lowerCAmelCase : List[str]=0.999 , _lowerCAmelCase : Optional[int]=jnp.floataa ): """simple docstring""" def alpha_bar(_lowerCAmelCase : Tuple ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 UpperCAmelCase__ = [] for i in range(_lowerCAmelCase ): UpperCAmelCase__ = i / num_diffusion_timesteps UpperCAmelCase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_lowerCAmelCase ) / alpha_bar(_lowerCAmelCase ) , _lowerCAmelCase ) ) return jnp.array(_lowerCAmelCase , dtype=_lowerCAmelCase ) @flax.struct.dataclass class _UpperCamelCase : UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 @classmethod def UpperCAmelCase_ ( cls :Optional[Any] , lowerCamelCase :Optional[int] ) -> Optional[int]: UpperCAmelCase__ = scheduler.config if config.trained_betas is not None: UpperCAmelCase__ = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": UpperCAmelCase__ = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase__ = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase__ = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) UpperCAmelCase__ = 1.0 - betas UpperCAmelCase__ = jnp.cumprod(lowerCamelCase , axis=0 ) return cls( alphas=lowerCamelCase , betas=lowerCamelCase , alphas_cumprod=lowerCamelCase , ) def lowerCAmelCase ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ): """simple docstring""" UpperCAmelCase__ = state.alphas_cumprod UpperCAmelCase__ = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase__ = sqrt_alpha_prod.flatten() UpperCAmelCase__ = broadcast_to_shape_from_left(_lowerCAmelCase , original_samples.shape ) UpperCAmelCase__ = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase__ = sqrt_one_minus_alpha_prod.flatten() UpperCAmelCase__ = broadcast_to_shape_from_left(_lowerCAmelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowerCAmelCase ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = get_sqrt_alpha_prod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowerCAmelCase ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = get_sqrt_alpha_prod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
169
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _a ( unittest.TestCase ): def snake_case ( self : Tuple ) -> Dict: '''simple docstring''' _UpperCamelCase : int = tempfile.mkdtemp() _UpperCamelCase : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _UpperCamelCase : Dict = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], '''do_convert_rgb''': True, } _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname, lowerCAmelCase__ ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCAmelCase__, lowerCAmelCase__ ) def snake_case ( self : str, **lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase__ ) def snake_case ( self : Union[str, Any], **lowerCAmelCase__ : Tuple ) -> str: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase__ ) def snake_case ( self : Any, **lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__ ) def snake_case ( self : str ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def snake_case ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase : List[str] = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] _UpperCamelCase : List[Any] = [Image.fromarray(np.moveaxis(lowerCAmelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self : str ) -> Any: '''simple docstring''' _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : int = self.get_rust_tokenizer() _UpperCamelCase : int = self.get_image_processor() _UpperCamelCase : Tuple = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) _UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) _UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer, lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor, lowerCAmelCase__ ) def snake_case ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCamelCase : Dict = self.get_tokenizer(cls_token='''(CLS)''', sep_token='''(SEP)''' ) _UpperCamelCase : List[str] = self.get_image_processor(do_normalize=lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname, cls_token='''(CLS)''', sep_token='''(SEP)''', do_normalize=lowerCAmelCase__ ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCAmelCase__ ) def snake_case ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : List[str] = self.get_image_processor() _UpperCamelCase : str = self.get_tokenizer() _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : List[str] = self.prepare_image_inputs() _UpperCamelCase : Any = image_processor(lowerCAmelCase__, return_tensors='''np''' ) _UpperCamelCase : Any = processor(images=lowerCAmelCase__, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Tuple = self.get_image_processor() _UpperCamelCase : Optional[Any] = self.get_tokenizer() _UpperCamelCase : Any = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : Tuple = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase : List[str] = processor(text=lowerCAmelCase__ ) _UpperCamelCase : Any = tokenizer(lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def snake_case ( self : Dict ) -> Tuple: '''simple docstring''' _UpperCamelCase : Tuple = self.get_image_processor() _UpperCamelCase : Optional[Any] = self.get_tokenizer() _UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : Any = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase : Union[str, Any] = self.prepare_image_inputs() _UpperCamelCase : str = processor(text=lowerCAmelCase__, images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def snake_case ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : int = self.get_image_processor() _UpperCamelCase : int = self.get_tokenizer() _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCamelCase : List[Any] = processor.batch_decode(lowerCAmelCase__ ) _UpperCamelCase : Dict = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__ ) def snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase : Any = self.get_image_processor() _UpperCamelCase : Optional[int] = self.get_tokenizer() _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : Any = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase : int = self.prepare_image_inputs() _UpperCamelCase : Dict = processor(text=lowerCAmelCase__, images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
364
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = AltDiffusionPipeline UpperCamelCase = TEXT_TO_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case ( self : int ) -> int: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=3_2, ) _UpperCamelCase : Union[str, Any] = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=lowerCAmelCase__, set_alpha_to_one=lowerCAmelCase__, ) torch.manual_seed(0 ) _UpperCamelCase : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) _UpperCamelCase : str = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, projection_dim=3_2, intermediate_size=3_7, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=5_0_0_2, ) _UpperCamelCase : List[Any] = CLIPTextModel(lowerCAmelCase__ ) _UpperCamelCase : Dict = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) _UpperCamelCase : str = 7_7 _UpperCamelCase : int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case ( self : Dict, lowerCAmelCase__ : Any, lowerCAmelCase__ : int=0 ) -> Optional[int]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith('''mps''' ): _UpperCamelCase : Any = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCamelCase : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCamelCase : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case ( self : List[Any] ) -> List[str]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case ( self : List[Any] ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case ( self : List[str] ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : int = self.get_dummy_components() torch.manual_seed(0 ) _UpperCamelCase : Any = RobertaSeriesConfig( hidden_size=3_2, project_dim=3_2, intermediate_size=3_7, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, vocab_size=5_0_0_2, ) # TODO: remove after fixing the non-deterministic text encoder _UpperCamelCase : Tuple = RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) _UpperCamelCase : str = text_encoder _UpperCamelCase : List[Any] = AltDiffusionPipeline(**lowerCAmelCase__ ) _UpperCamelCase : List[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = '''A photo of an astronaut''' _UpperCamelCase : Any = alt_pipe(**lowerCAmelCase__ ) _UpperCamelCase : Any = output.images _UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCamelCase : List[Any] = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : Optional[Any] = self.get_dummy_components() _UpperCamelCase : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) torch.manual_seed(0 ) _UpperCamelCase : int = RobertaSeriesConfig( hidden_size=3_2, project_dim=3_2, intermediate_size=3_7, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, vocab_size=5_0_0_2, ) # TODO: remove after fixing the non-deterministic text encoder _UpperCamelCase : Tuple = RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) _UpperCamelCase : int = text_encoder _UpperCamelCase : str = AltDiffusionPipeline(**lowerCAmelCase__ ) _UpperCamelCase : List[str] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = alt_pipe(**lowerCAmelCase__ ) _UpperCamelCase : List[str] = output.images _UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCamelCase : List[Any] = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _a ( unittest.TestCase ): def snake_case ( self : List[str] ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase : str = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''', safety_checker=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : int = '''A painting of a squirrel eating a burger''' _UpperCamelCase : int = torch.manual_seed(0 ) _UpperCamelCase : Dict = alt_pipe([prompt], generator=lowerCAmelCase__, guidance_scale=6.0, num_inference_steps=2_0, output_type='''np''' ) _UpperCamelCase : Optional[int] = output.images _UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCamelCase : List[str] = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case ( self : str ) -> str: '''simple docstring''' _UpperCamelCase : Any = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''', subfolder='''scheduler''' ) _UpperCamelCase : Dict = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__ ) _UpperCamelCase : Dict = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = '''A painting of a squirrel eating a burger''' _UpperCamelCase : Optional[Any] = torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = alt_pipe([prompt], generator=lowerCAmelCase__, num_inference_steps=2, output_type='''numpy''' ) _UpperCamelCase : Tuple = output.images _UpperCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCamelCase : str = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
128
0
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self :Optional[Any] , snake_case :Optional[Any]="</s>" , snake_case :Dict="<unk>" , snake_case :List[str]="<pad>" , snake_case :Optional[Any]=125 , snake_case :Any=None , **snake_case :Optional[Any] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: A_ : Optional[int] = [f"<extra_id_{i}>" for i in range(snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens A_ : Union[str, Any] = len(set(filter(lambda snake_case : bool("extra_id" in str(snake_case ) ) , snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) A_ : Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else pad_token A_ : int = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else eos_token A_ : List[Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else unk_token super().__init__( eos_token=snake_case , unk_token=snake_case , pad_token=snake_case , extra_ids=snake_case , additional_special_tokens=snake_case , **snake_case , ) A_ : str = extra_ids A_ : Tuple = 2**8 # utf is 8 bits # define special tokens dict A_ : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } A_ : List[str] = len(self.special_tokens_encoder ) A_ : str = len(snake_case ) for i, token in enumerate(snake_case ): A_ : str = self.vocab_size + i - n A_ : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :List[int] , snake_case :Optional[List[int]] = None , snake_case :bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case )) + [1] return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1] def SCREAMING_SNAKE_CASE ( self :str , snake_case :List[int] ): '''simple docstring''' if len(snake_case ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[int] , snake_case :Optional[List[int]] = None ): '''simple docstring''' A_ : Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE ( self :Any , snake_case :List[int] , snake_case :Optional[List[int]] = None ): '''simple docstring''' A_ : Tuple = self._add_eos_if_not_present(snake_case ) if token_ids_a is None: return token_ids_a else: A_ : Union[str, Any] = self._add_eos_if_not_present(snake_case ) return token_ids_a + token_ids_a def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :str ): '''simple docstring''' A_ : str = [chr(snake_case ) for i in text.encode("utf-8" )] return tokens def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Union[str, Any] ): '''simple docstring''' if token in self.special_tokens_encoder: A_ : Optional[Any] = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: A_ : str = self.added_tokens_encoder[token] elif len(snake_case ) != 1: A_ : str = self.unk_token_id else: A_ : List[Any] = ord(snake_case ) + self._num_special_tokens return token_id def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :Optional[Any] ): '''simple docstring''' if index in self.special_tokens_decoder: A_ : Union[str, Any] = self.special_tokens_decoder[index] else: A_ : Optional[int] = chr(index - self._num_special_tokens ) return token def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Any ): '''simple docstring''' A_ : Any = B"" for token in tokens: if token in self.special_tokens_decoder: A_ : List[str] = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: A_ : Dict = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: A_ : Tuple = token.encode("utf-8" ) elif token in self.added_tokens_encoder: A_ : Optional[Any] = token.encode("utf-8" ) else: A_ : Any = bytes([ord(snake_case )] ) bstring += tok_string A_ : int = bstring.decode("utf-8" , errors="ignore" ) return string def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :str , snake_case :Optional[str] = None ): '''simple docstring''' return ()
300
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , **snake_case :str ): '''simple docstring''' A_ : Dict = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case ) return config def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.check_over_configs(thresholding=snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Tuple = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : List[str] = scheduler_class(**snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : int = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : int = scheduler_class(**snake_case ) A_ : Tuple = len(snake_case ) A_ : List[str] = self.dummy_model() A_ : Optional[Any] = self.dummy_sample_deter A_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Tuple = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Dict = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : Optional[int] = pred_prev_sample A_ : Tuple = torch.sum(torch.abs(snake_case ) ) A_ : str = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[int] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config(prediction_type="v_prediction" ) A_ : List[str] = scheduler_class(**snake_case ) A_ : int = len(snake_case ) A_ : Dict = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Any = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Optional[int] = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Tuple = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : List[str] = pred_prev_sample A_ : Optional[Any] = torch.sum(torch.abs(snake_case ) ) A_ : List[str] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Dict = scheduler_class(**snake_case ) A_ : Optional[int] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case ) A_ : Optional[int] = scheduler.timesteps for i, timestep in enumerate(snake_case ): if i == len(snake_case ) - 1: A_ : str = -1 else: A_ : List[str] = timesteps[i + 1] A_ : Optional[int] = scheduler.previous_timestep(snake_case ) A_ : List[str] = prev_t.item() self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Optional[Any] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config() A_ : Tuple = scheduler_class(**snake_case ) A_ : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(snake_case , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Any = self.scheduler_classes[0] A_ : Union[str, Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Union[str, Any] = [100, 87, 50, 1, 0] A_ : Optional[int] = len(snake_case ) with self.assertRaises(snake_case , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case , timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case )
300
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowercase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self , *__UpperCamelCase , **__UpperCamelCase ) -> None: '''simple docstring''' warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
171
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase : List[str] = None lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : int = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} lowercase : Optional[Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } lowercase : List[str] = { "google/rembert": 256, } lowercase : Tuple = "▁" class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Optional[int] = VOCAB_FILES_NAMES lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[int] = RemBertTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="[CLS]" , __UpperCamelCase="[SEP]" , __UpperCamelCase="<unk>" , __UpperCamelCase="[SEP]" , __UpperCamelCase="<pad>" , __UpperCamelCase="[CLS]" , __UpperCamelCase="[MASK]" , **__UpperCamelCase , ) -> Dict: '''simple docstring''' __UpperCamelCase : str = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , **__UpperCamelCase , ) __UpperCamelCase : Any = do_lower_case __UpperCamelCase : List[str] = remove_space __UpperCamelCase : Optional[Any] = keep_accents __UpperCamelCase : Union[str, Any] = vocab_file __UpperCamelCase : Any = False if not self.vocab_file else True def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' __UpperCamelCase : Any = [self.sep_token_id] __UpperCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' __UpperCamelCase : Tuple = [self.sep_token_id] __UpperCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error("Vocabulary path ({}) should be a directory".format(__UpperCamelCase ) ) return __UpperCamelCase : Optional[int] = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
171
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str: assert isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" ,[False, True] ) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: lowerCamelCase : Tuple = tmp_path / "cache" lowerCamelCase : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase : Union[str, Any] = SqlDatasetReader( "dataset" ,"sqlite:///" + sqlite_path ,cache_dir=_SCREAMING_SNAKE_CASE ,keep_in_memory=_SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @require_sqlalchemy @pytest.mark.parametrize( "features" ,[ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] ,) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str: lowerCamelCase : Tuple = tmp_path / "cache" lowerCamelCase : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase : Optional[Any] = features.copy() if features else default_expected_features lowerCamelCase : int = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase : Optional[int] = SqlDatasetReader("dataset" ,"sqlite:///" + sqlite_path ,features=_SCREAMING_SNAKE_CASE ,cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def A ( _SCREAMING_SNAKE_CASE ) -> Dict: with contextlib.closing(sqlitea.connect(_SCREAMING_SNAKE_CASE ) ) as con: lowerCamelCase : List[str] = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[str]: lowerCamelCase : str = tmp_path / "cache" lowerCamelCase : str = os.path.join(_SCREAMING_SNAKE_CASE ,"tmp.sql" ) lowerCamelCase : Optional[int] = SqlDatasetReader("dataset" ,"sqlite:///" + sqlite_path ,cache_dir=_SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(_SCREAMING_SNAKE_CASE ,"dataset" ,"sqlite:///" + output_sqlite_path ,num_proc=1 ).write() lowerCamelCase : Optional[Any] = iter_sql_file(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = iter_sql_file(_SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowerCamelCase : Optional[Any] = tmp_path / "cache" lowerCamelCase : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE ,"tmp.sql" ) lowerCamelCase : List[str] = SqlDatasetReader("dataset" ,"sqlite:///" + sqlite_path ,cache_dir=_SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(_SCREAMING_SNAKE_CASE ,"dataset" ,"sqlite:///" + output_sqlite_path ,num_proc=2 ).write() lowerCamelCase : List[str] = iter_sql_file(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Any = iter_sql_file(_SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[Any]: lowerCamelCase : List[Any] = tmp_path / "cache" lowerCamelCase : List[str] = os.path.join(_SCREAMING_SNAKE_CASE ,"tmp.sql" ) lowerCamelCase : Optional[int] = SqlDatasetReader("dataset" ,"sqlite:///" + sqlite_path ,cache_dir=_SCREAMING_SNAKE_CASE ).read() with pytest.raises(_SCREAMING_SNAKE_CASE ): SqlDatasetWriter(_SCREAMING_SNAKE_CASE ,"dataset" ,"sqlite:///" + output_sqlite_path ,num_proc=0 ).write()
48
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int | float: """simple docstring""" if len(__snake_case ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(__snake_case ) or left < -len(__snake_case ) or right >= len(__snake_case ) or right < -len(__snake_case ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] _UpperCamelCase = (left + right) >> 1 # the middle _UpperCamelCase = find_max(__snake_case, __snake_case, __snake_case ) # find max in range[left, mid] _UpperCamelCase = find_max(__snake_case, mid + 1, __snake_case ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
194
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] __A = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def snake_case_(_UpperCamelCase ) -> Union[str, Any]: """simple docstring""" _snake_case = torch.load(_UpperCamelCase , map_location='''cpu''' ) return sd def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=rename_keys_prefix ) -> List[Any]: """simple docstring""" _snake_case = OrderedDict() _snake_case = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _snake_case = key for name_pair in rename_keys_prefix: _snake_case = new_key.replace(name_pair[0] , name_pair[1] ) _snake_case = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _snake_case = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: _snake_case = '''pretraining''' if "vcr" in checkpoint_path: _snake_case = {'''visual_embedding_dim''': 512} elif "vqa_advanced" in checkpoint_path: _snake_case = {'''visual_embedding_dim''': 2_048} elif "vqa" in checkpoint_path: _snake_case = {'''visual_embedding_dim''': 2_048} elif "nlvr" in checkpoint_path: _snake_case = {'''visual_embedding_dim''': 1_024} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: _snake_case = {'''visual_embedding_dim''': 512} _snake_case = '''multichoice''' elif "vqa_advanced" in checkpoint_path: _snake_case = {'''visual_embedding_dim''': 2_048} _snake_case = '''vqa_advanced''' elif "vqa" in checkpoint_path: _snake_case = {'''visual_embedding_dim''': 2_048, '''num_labels''': 3_129} _snake_case = '''vqa''' elif "nlvr" in checkpoint_path: _snake_case = { '''visual_embedding_dim''': 1_024, '''num_labels''': 2, } _snake_case = '''nlvr''' _snake_case = VisualBertConfig(**_UpperCamelCase ) # Load State Dict _snake_case = load_state_dict(_UpperCamelCase ) _snake_case = get_new_dict(_UpperCamelCase , _UpperCamelCase ) if model_type == "pretraining": _snake_case = VisualBertForPreTraining(_UpperCamelCase ) elif model_type == "vqa": _snake_case = VisualBertForQuestionAnswering(_UpperCamelCase ) elif model_type == "nlvr": _snake_case = VisualBertForVisualReasoning(_UpperCamelCase ) elif model_type == "multichoice": _snake_case = VisualBertForMultipleChoice(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) # Save Checkpoints Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') __A = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
360
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
278
0
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase : Union[str, Any] =4 lowerCAmelCase : int =3 class a_ ( _lowerCAmelCase ): pass def UpperCAmelCase_ ( __lowerCamelCase : List[str] ): for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def UpperCAmelCase_ ( ): lowercase_ :Any = int(os.environ["RANK"] ) lowercase_ :str = int(os.environ["WORLD_SIZE"] ) lowercase_ :int = ArgumentParser() parser.add_argument("--streaming" ,type=__lowerCamelCase ) parser.add_argument("--local_rank" ,type=__lowerCamelCase ) parser.add_argument("--num_workers" ,type=__lowerCamelCase ,default=0 ) lowercase_ :Dict = parser.parse_args() lowercase_ :Optional[int] = args.streaming lowercase_ :List[Any] = args.num_workers lowercase_ :Tuple = {"shards": [F'shard_{shard_idx}' for shard_idx in range(__lowerCamelCase )]} lowercase_ :Tuple = IterableDataset.from_generator(__lowerCamelCase ,gen_kwargs=__lowerCamelCase ) if not streaming: lowercase_ :Optional[Any] = Dataset.from_list(list(__lowerCamelCase ) ) lowercase_ :Union[str, Any] = split_dataset_by_node(__lowerCamelCase ,rank=__lowerCamelCase ,world_size=__lowerCamelCase ) lowercase_ :List[str] = torch.utils.data.DataLoader(__lowerCamelCase ,num_workers=__lowerCamelCase ) lowercase_ :Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase_ :Optional[Any] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase_ :Union[str, Any] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
223
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : List[str] ,__lowerCamelCase : Dict=True ,__lowerCamelCase : List[Any]="pt" ): lowercase_ :Dict = {"add_prefix_space": True} if isinstance(__lowerCamelCase ,__lowerCamelCase ) and not line.startswith(" " ) else {} lowercase_ :str = padding_side return tokenizer( [line] ,max_length=__lowerCamelCase ,padding="max_length" if pad_to_max_length else None ,truncation=__lowerCamelCase ,return_tensors=__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,**__lowerCamelCase ,) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : Dict ,__lowerCamelCase : str=None ,): lowercase_ :Optional[int] = input_ids.ne(__lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class a_ ( _lowerCAmelCase ): def __init__( self : Optional[int] , lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : str="train" , lowercase : Dict=None , lowercase : Tuple=None , lowercase : List[str]=None , lowercase : int="" , ): """simple docstring""" super().__init__() lowercase_ :List[Any] = Path(lowercase ).joinpath(type_path + ".source" ) lowercase_ :Dict = Path(lowercase ).joinpath(type_path + ".target" ) lowercase_ :Optional[int] = self.get_char_lens(self.src_file ) lowercase_ :List[str] = max_source_length lowercase_ :str = max_target_length assert min(self.src_lens ) > 0, F'found empty line in {self.src_file}' lowercase_ :int = tokenizer lowercase_ :Dict = prefix if n_obs is not None: lowercase_ :Union[str, Any] = self.src_lens[:n_obs] lowercase_ :Optional[int] = src_lang lowercase_ :str = tgt_lang def __len__( self : Tuple ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : str , lowercase : Dict ): """simple docstring""" lowercase_ :Tuple = index + 1 # linecache starts at 1 lowercase_ :Optional[Any] = self.prefix + linecache.getline(str(self.src_file ) , lowercase ).rstrip("\n" ) lowercase_ :List[str] = linecache.getline(str(self.tgt_file ) , lowercase ).rstrip("\n" ) assert source_line, F'empty source line for index {index}' assert tgt_line, F'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase_ :List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase ) else self.tokenizer ) lowercase_ :int = self.tokenizer.generator if isinstance(self.tokenizer , lowercase ) else self.tokenizer lowercase_ :List[str] = encode_line(lowercase , lowercase , self.max_source_length , "right" ) lowercase_ :Any = encode_line(lowercase , lowercase , self.max_target_length , "right" ) lowercase_ :Dict = source_inputs["input_ids"].squeeze() lowercase_ :Tuple = target_inputs["input_ids"].squeeze() lowercase_ :Optional[int] = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase__ ( lowercase : Union[str, Any] ): """simple docstring""" return [len(lowercase ) for x in Path(lowercase ).open().readlines()] def lowercase__ ( self : str , lowercase : List[Any] ): """simple docstring""" lowercase_ :Optional[int] = torch.stack([x["input_ids"] for x in batch] ) lowercase_ :Dict = torch.stack([x["attention_mask"] for x in batch] ) lowercase_ :List[str] = torch.stack([x["decoder_input_ids"] for x in batch] ) lowercase_ :Any = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) lowercase_ :str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) lowercase_ :Union[str, Any] = trim_batch(lowercase , lowercase ) lowercase_ , lowercase_ :Optional[Any] = trim_batch(lowercase , lowercase , attention_mask=lowercase ) lowercase_ :Tuple = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowerCAmelCase : List[str] =getLogger(__name__) def UpperCAmelCase_ ( __lowerCamelCase : List[List] ): return list(itertools.chain.from_iterable(__lowerCamelCase ) ) def UpperCAmelCase_ ( __lowerCamelCase : str ): lowercase_ :List[str] = get_git_info() save_json(__lowerCamelCase ,os.path.join(__lowerCamelCase ,"git_log.json" ) ) def UpperCAmelCase_ ( __lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : List[Any]=4 ,**__lowerCamelCase : List[str] ): with open(__lowerCamelCase ,"w" ) as f: json.dump(__lowerCamelCase ,__lowerCamelCase ,indent=__lowerCamelCase ,**__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : Tuple ): with open(__lowerCamelCase ) as f: return json.load(__lowerCamelCase ) def UpperCAmelCase_ ( ): lowercase_ :Dict = git.Repo(search_parent_directories=__lowerCamelCase ) lowercase_ :List[str] = { "repo_id": str(__lowerCamelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase_ ( __lowerCamelCase : Callable ,__lowerCamelCase : Iterable ): return list(map(__lowerCamelCase ,__lowerCamelCase ) ) def UpperCAmelCase_ ( __lowerCamelCase : Union[str, Any] ,__lowerCamelCase : List[str] ): with open(__lowerCamelCase ,"wb" ) as f: return pickle.dump(__lowerCamelCase ,__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : str ): def remove_articles(__lowerCamelCase : Optional[int] ): return re.sub(r"\b(a|an|the)\b" ," " ,__lowerCamelCase ) def white_space_fix(__lowerCamelCase : Dict ): return " ".join(text.split() ) def remove_punc(__lowerCamelCase : Optional[Any] ): lowercase_ :Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCamelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) ) def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[int] ): lowercase_ :Tuple = normalize_answer(__lowerCamelCase ).split() lowercase_ :Dict = normalize_answer(__lowerCamelCase ).split() lowercase_ :Tuple = Counter(__lowerCamelCase ) & Counter(__lowerCamelCase ) lowercase_ :Tuple = sum(common.values() ) if num_same == 0: return 0 lowercase_ :Union[str, Any] = 1.0 * num_same / len(__lowerCamelCase ) lowercase_ :List[Any] = 1.0 * num_same / len(__lowerCamelCase ) lowercase_ :Tuple = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : Union[str, Any] ): return normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : List[str] ): assert len(__lowerCamelCase ) == len(__lowerCamelCase ) lowercase_ :Any = 0 for hypo, pred in zip(__lowerCamelCase ,__lowerCamelCase ): em += exact_match_score(__lowerCamelCase ,__lowerCamelCase ) if len(__lowerCamelCase ) > 0: em /= len(__lowerCamelCase ) return {"em": em} def UpperCAmelCase_ ( __lowerCamelCase : str ): return model_prefix.startswith("rag" ) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : int ): lowercase_ :Dict = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase_ :List[str] = "dropout_rate" for p in extra_params: if getattr(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ): if not hasattr(__lowerCamelCase ,__lowerCamelCase ) and not hasattr(__lowerCamelCase ,equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(__lowerCamelCase ) ) delattr(__lowerCamelCase ,__lowerCamelCase ) continue lowercase_ :List[Any] = p if hasattr(__lowerCamelCase ,__lowerCamelCase ) else equivalent_param[p] setattr(__lowerCamelCase ,__lowerCamelCase ,getattr(__lowerCamelCase ,__lowerCamelCase ) ) delattr(__lowerCamelCase ,__lowerCamelCase ) return hparams, config
223
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = [1] lowercase_ , lowercase_ , lowercase_ = 0, 0, 0 lowercase_ = ugly_nums[ia] * 2 lowercase_ = ugly_nums[ia] * 3 lowercase_ = ugly_nums[ia] * 5 for _ in range(1 , __lowerCAmelCase ): lowercase_ = min(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ugly_nums.append(__lowerCAmelCase ) if next_num == next_a: ia += 1 lowercase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowercase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowercase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(200) = }")
313
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase : Union[str, Any] = 10 UpperCAmelCase : Union[str, Any] = 256 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]: '''simple docstring''' if len(__lowerCAmelCase ) < MIN_NUM_TOKENS: return None lowercase_ = MinHash(num_perm=__lowerCAmelCase ) for token in set(__lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , *, lowerCAmelCase_ : float = 0.85 , ): """simple docstring""" lowercase_ = duplication_jaccard_threshold lowercase_ = NUM_PERM lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) lowercase_ = defaultdict(lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash): """simple docstring""" lowercase_ = self._index.query(lowerCAmelCase_) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''') return self._index.insert(lowerCAmelCase_ , lowerCAmelCase_) if len(lowerCAmelCase_) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowercase_ = [base] + list(lowerCAmelCase_) # reformat the cluster to be a list of dict lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase_) return duplicate_clusters def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.get_duplicate_clusters() with open(lowerCAmelCase_ , """w""") as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ , lowercase_ = element lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ): di.add(__lowerCAmelCase , __lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = get_tokens(__lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase : Optional[Any] = None def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for elementa in cluster: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase_ = 1 extremes.append(__lowerCAmelCase ) return extremes def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' global _shared_dataset lowercase_ = dataset lowercase_ = [] lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ): extremes_list.append(__lowerCAmelCase ) return extremes_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} lowercase_ = {} lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowercase_ = element lowercase_ = duplicate_indices - set(extreme_dict.keys() ) lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase_ = element["""base_index"""] in extreme_dict if element["is_extreme"]: lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""] print(F'''Original dataset size: {len(__lowerCAmelCase )}''' ) print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' ) print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' ) return ds_filter, duplicate_clusters
313
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Union[str, Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys snake_case_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
83
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase : Tuple = 192 UpperCAmelCase : str = 768 UpperCAmelCase : List[Any] = 12 UpperCAmelCase : List[Any] = 3 UpperCAmelCase : List[Any] = [800, 1333] UpperCAmelCase : List[str] = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Union[str, Any] = 330 UpperCAmelCase : Union[str, Any] = 14 UpperCAmelCase : Any = 6 UpperCAmelCase : int = 1320 elif "yolos_s" in yolos_name: UpperCAmelCase : Union[str, Any] = 384 UpperCAmelCase : Dict = 1536 UpperCAmelCase : str = 12 UpperCAmelCase : List[str] = 6 elif "yolos_b" in yolos_name: UpperCAmelCase : int = [800, 1344] UpperCAmelCase : Optional[int] = 91 UpperCAmelCase : int = "huggingface/label-files" UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json" UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def lowercase ( __magic_name__ ): '''simple docstring''' if "backbone" in name: UpperCAmelCase : int = name.replace("backbone" , "vit" ) if "cls_token" in name: UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase : Any = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" ) return name def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: UpperCAmelCase : str = key.split("." ) UpperCAmelCase : List[Any] = int(key_split[2] ) UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase : Optional[int] = val[:dim, :] UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2, : ] UpperCAmelCase : Any = val[-dim:, :] else: UpperCAmelCase : Tuple = val[:dim] UpperCAmelCase : List[str] = val[dim : dim * 2] UpperCAmelCase : Any = val[-dim:] else: UpperCAmelCase : Union[str, Any] = val return orig_state_dict def lowercase ( ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ ) # load original state_dict UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"] # load 🤗 model UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ ) model.eval() UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512 UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ ) UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase : List[str] = model(**__magic_name__ ) UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None if yolos_name == "yolos_ti": UpperCAmelCase : str = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) UpperCAmelCase : Tuple = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase : Union[str, Any] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) UpperCAmelCase : List[str] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase : List[str] = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) UpperCAmelCase : Dict = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Dict = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) UpperCAmelCase : List[Any] = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": UpperCAmelCase : str = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: UpperCAmelCase : int = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) UpperCAmelCase : Tuple = model_mapping[yolos_name] image_processor.push_to_hub(__magic_name__ , organization="hustvl" ) model.push_to_hub(__magic_name__ , organization="hustvl" ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a : str = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
311
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" A : Union[str, Any] = args.log_outputs A : int = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric A : Dict = load_metric("""wer""" ) A : Dict = load_metric("""cer""" ) # compute metrics A : Dict = wer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) A : int = cer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) # print & log results A : Union[str, Any] = f'''WER: {wer_result}\nCER: {cer_result}''' print(_lowerCAmelCase ) with open(f'''{dataset_id}_eval_results.txt''' , """w""" ) as f: f.write(_lowerCAmelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A : Tuple = f'''log_{dataset_id}_predictions.txt''' A : Optional[int] = f'''log_{dataset_id}_targets.txt''' with open(_lowerCAmelCase , """w""" ) as p, open(_lowerCAmelCase , """w""" ) as t: # mapping function to write output def write_to_file(_lowerCAmelCase , _lowerCAmelCase ): p.write(f'''{i}''' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(f'''{i}''' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(_lowerCAmelCase , with_indices=_lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase ) -> str: """simple docstring""" A : int = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A : Any = re.sub(_lowerCAmelCase , """""" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A : Optional[int] = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: A : Optional[int] = """ """.join(text.split(_lowerCAmelCase ) ) return text def __UpperCamelCase ( _lowerCAmelCase ) -> List[str]: """simple docstring""" A : List[str] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_lowerCAmelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A : int = AutoFeatureExtractor.from_pretrained(args.model_id ) A : Union[str, Any] = feature_extractor.sampling_rate # resample audio A : Any = dataset.cast_column("""audio""" , Audio(sampling_rate=_lowerCAmelCase ) ) # load eval pipeline if args.device is None: A : Tuple = 0 if torch.cuda.is_available() else -1 A : List[Any] = pipeline("""automatic-speech-recognition""" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(_lowerCAmelCase ): A : List[str] = asr( batch["""audio"""]["""array"""] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A : List[str] = prediction["""text"""] A : Union[str, Any] = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples A : List[Any] = dataset.map(_lowerCAmelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:str = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) SCREAMING_SNAKE_CASE_:List[str] = parser.parse_args() main(args)
115
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=14, lowerCamelCase__=7, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=False, lowerCamelCase__=True, lowerCamelCase__=99, lowerCamelCase__=32, lowerCamelCase__=4, lowerCamelCase__=4, lowerCamelCase__=4, lowerCamelCase__=37, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=0.02, ): A : List[str] = parent A : Any = batch_size A : Dict = seq_length A : Tuple = is_training A : Any = use_input_mask A : Any = use_token_type_ids A : Any = use_labels A : Optional[int] = vocab_size A : Dict = hidden_size A : Dict = rotary_dim A : Dict = num_hidden_layers A : Tuple = num_attention_heads A : Tuple = intermediate_size A : Union[str, Any] = hidden_act A : Dict = hidden_dropout_prob A : List[str] = attention_probs_dropout_prob A : Optional[int] = max_position_embeddings A : str = initializer_range A : Any = None A : Any = vocab_size - 1 A : int = vocab_size - 1 A : int = vocab_size - 1 def _lowerCAmelCase ( self ): A : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) A : Optional[int] = None if self.use_input_mask: A : Any = random_attention_mask([self.batch_size, self.seq_length] ) A : int = GPTJConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, use_cache=lowerCamelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, rotary_dim=self.rotary_dim, ) return (config, input_ids, input_mask) def _lowerCAmelCase ( self ): A : List[str] = self.prepare_config_and_inputs() A , A , A : List[str] = config_and_inputs A : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Optional[int] = 20 A : Tuple = model_class_name(lowerCamelCase__ ) A : Dict = model.init_cache(input_ids.shape[0], lowerCamelCase__ ) A : int = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="""i4""" ) A : Optional[int] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) A : List[Any] = model( input_ids[:, :-1], attention_mask=lowerCamelCase__, past_key_values=lowerCamelCase__, position_ids=lowerCamelCase__, ) A : List[Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="""i4""" ) A : Any = model( input_ids[:, -1:], attention_mask=lowerCamelCase__, past_key_values=outputs_cache.past_key_values, position_ids=lowerCamelCase__, ) A : Any = model(lowerCamelCase__ ) A : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=f'''Max diff is {diff}''' ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Any = 20 A : Any = model_class_name(lowerCamelCase__ ) A : Dict = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )], axis=-1, ) A : str = model.init_cache(input_ids.shape[0], lowerCamelCase__ ) A : Any = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) A : Optional[int] = model( input_ids[:, :-1], attention_mask=lowerCamelCase__, past_key_values=lowerCamelCase__, position_ids=lowerCamelCase__, ) A : str = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="""i4""" ) A : List[Any] = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=lowerCamelCase__, position_ids=lowerCamelCase__, ) A : Union[str, Any] = model(lowerCamelCase__, attention_mask=lowerCamelCase__ ) A : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=f'''Max diff is {diff}''' ) @require_flax class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase : Optional[int] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _lowerCAmelCase ( self ): A : List[Any] = FlaxGPTJModelTester(self ) def _lowerCAmelCase ( self ): for model_class_name in self.all_model_classes: A , A , A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): for model_class_name in self.all_model_classes: A , A , A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) @tooslow def _lowerCAmelCase ( self ): A : int = GPTaTokenizer.from_pretrained("""gpt2""", pad_token="""<|endoftext|>""", padding_side="""left""" ) A : Optional[int] = tokenizer(["""Hello this is a long string""", """Hey"""], return_tensors="""np""", padding=lowerCamelCase__, truncation=lowerCamelCase__ ) A : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) A : str = False A : Optional[Any] = model.config.eos_token_id A : Union[str, Any] = jax.jit(model.generate ) A : str = jit_generate( inputs["""input_ids"""], attention_mask=inputs["""attention_mask"""], pad_token_id=tokenizer.pad_token_id ).sequences A : Optional[Any] = tokenizer.batch_decode(lowerCamelCase__, skip_special_tokens=lowerCamelCase__ ) A : Tuple = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) @is_pt_flax_cross_test def _lowerCAmelCase ( self ): A , A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs A : Any = self._prepare_for_class(lowerCamelCase__, lowerCamelCase__ ) A : Dict = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning A : str = getattr(lowerCamelCase__, lowerCamelCase__ ) A , A : Optional[int] = pt_inputs["""input_ids"""].shape A : List[str] = np.random.randint(0, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): A : List[Any] = 0 A : Tuple = 1 A : Optional[int] = 0 A : str = 1 A : Dict = pt_model_class(lowerCamelCase__ ).eval() A : int = model_class(lowerCamelCase__, dtype=jnp.floataa ) A : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowerCamelCase__ ) A : Dict = fx_state with torch.no_grad(): A : Optional[int] = pt_model(**lowerCamelCase__ ).to_tuple() A : str = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ), len(lowerCamelCase__ ), """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase__, lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) A : Union[str, Any] = model_class.from_pretrained(lowerCamelCase__, from_pt=lowerCamelCase__ ) A : Any = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ), len(lowerCamelCase__ ), """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(lowerCamelCase__, lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1], pt_output[:, -1].numpy(), 4e-2 ) @is_pt_flax_cross_test def _lowerCAmelCase ( self ): A , A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs A : int = self._prepare_for_class(lowerCamelCase__, lowerCamelCase__ ) A : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning A : Dict = getattr(lowerCamelCase__, lowerCamelCase__ ) A : int = pt_model_class(lowerCamelCase__ ).eval() A : int = model_class(lowerCamelCase__, dtype=jnp.floataa ) A : List[str] = load_flax_weights_in_pytorch_model(lowerCamelCase__, fx_model.params ) A , A : Optional[int] = pt_inputs["""input_ids"""].shape A : Optional[int] = np.random.randint(0, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): A : Tuple = 0 A : Tuple = 1 A : str = 0 A : int = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): A : List[str] = pt_model(**lowerCamelCase__ ).to_tuple() A : Optional[int] = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ), len(lowerCamelCase__ ), """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase__, lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) A : str = pt_model_class.from_pretrained(lowerCamelCase__, from_flax=lowerCamelCase__ ) with torch.no_grad(): A : str = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ), len(lowerCamelCase__ ), """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase__, lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2 ) @tooslow def _lowerCAmelCase ( self ): for model_class_name in self.all_model_classes: A : Union[str, Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) A : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
115
1
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) snake_case_ = str(SCREAMING_SNAKE_CASE__ ) snake_case_ = ''''''.join(sorted(SCREAMING_SNAKE_CASE__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 99 ): if not 0 < percent < 100: raise ValueError('''solution() only accepts values from 0 to 100''' ) snake_case_ = 0 snake_case_ = 1 while True: if check_bouncy(SCREAMING_SNAKE_CASE__ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(99)}""")
8
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') lowerCAmelCase = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = None # source code of `config_class` lowercase__ = inspect.getsource(SCREAMING_SNAKE_CASE ) lowercase__ = _re_checkpoint.findall(SCREAMING_SNAKE_CASE ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): lowercase__ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowercase__ = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: lowercase__ = ckpt_name break return checkpoint def _a ( ): """simple docstring""" lowercase__ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowercase__ = get_checkpoint_from_config_class(SCREAMING_SNAKE_CASE ) lowercase__ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '''\n'''.join(sorted(SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
110
0
"""simple docstring""" def lowercase__ ( snake_case_ :int = 10**9 ): __UpperCAmelCase = 1 __UpperCAmelCase = 2 __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __UpperCAmelCase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
86
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( enum.Enum ): a__ : str = 0 a__ : List[Any] = 1 a__ : str = 2 @add_end_docstrings(_lowerCAmelCase ) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : Optional[Any] , *_lowercase : Any , **_lowercase : Optional[int] ): super().__init__(*_lowercase , **_lowercase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __UpperCAmelCase = None if self.model.config.prefix is not None: __UpperCAmelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __UpperCAmelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._sanitize_parameters(prefix=_lowercase , **self._forward_params ) __UpperCAmelCase = {**self._preprocess_params, **preprocess_params} __UpperCAmelCase = {**self._forward_params, **forward_params} def a ( self : Any , _lowercase : Optional[Any]=None , _lowercase : List[str]=None , _lowercase : int=None , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=None , _lowercase : List[Any]=None , **_lowercase : str , ): __UpperCAmelCase = {} if prefix is not None: __UpperCAmelCase = prefix if prefix: __UpperCAmelCase = self.tokenizer( _lowercase , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) __UpperCAmelCase = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ''' [None, \'hole\']''' ) __UpperCAmelCase = handle_long_generation preprocess_params.update(_lowercase ) __UpperCAmelCase = generate_kwargs __UpperCAmelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) __UpperCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) __UpperCAmelCase = ReturnType.TENSORS if return_type is not None: __UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: __UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: __UpperCAmelCase = self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) if len(_lowercase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) __UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a ( self : Optional[int] , *_lowercase : Optional[int] , **_lowercase : Any ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_lowercase , **_lowercase ) def __call__( self : List[str] , _lowercase : str , **_lowercase : Optional[Any] ): return super().__call__(_lowercase , **_lowercase ) def a ( self : Union[str, Any] , _lowercase : Any , _lowercase : Dict="" , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ): __UpperCAmelCase = self.tokenizer( prefix + prompt_text , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) __UpperCAmelCase = prompt_text if handle_long_generation == "hole": __UpperCAmelCase = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: __UpperCAmelCase = generate_kwargs['''max_new_tokens'''] else: __UpperCAmelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __UpperCAmelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) __UpperCAmelCase = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: __UpperCAmelCase = inputs['''attention_mask'''][:, -keep_length:] return inputs def a ( self : Union[str, Any] , _lowercase : List[str] , **_lowercase : Optional[int] ): __UpperCAmelCase = model_inputs['''input_ids'''] __UpperCAmelCase = model_inputs.get('''attention_mask''' , _lowercase ) # Allow empty prompts if input_ids.shape[1] == 0: __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = 1 else: __UpperCAmelCase = input_ids.shape[0] __UpperCAmelCase = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __UpperCAmelCase = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: __UpperCAmelCase = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: __UpperCAmelCase = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __UpperCAmelCase = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __UpperCAmelCase = self.model.generate(input_ids=_lowercase , attention_mask=_lowercase , **_lowercase ) __UpperCAmelCase = generated_sequence.shape[0] if self.framework == "pt": __UpperCAmelCase = generated_sequence.reshape(_lowercase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __UpperCAmelCase = tf.reshape(_lowercase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def a ( self : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Optional[int]=ReturnType.FULL_TEXT , _lowercase : List[str]=True ): __UpperCAmelCase = model_outputs['''generated_sequence'''][0] __UpperCAmelCase = model_outputs['''input_ids'''] __UpperCAmelCase = model_outputs['''prompt_text'''] __UpperCAmelCase = generated_sequence.numpy().tolist() __UpperCAmelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __UpperCAmelCase = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __UpperCAmelCase = self.tokenizer.decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __UpperCAmelCase = 0 else: __UpperCAmelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) ) if return_type == ReturnType.FULL_TEXT: __UpperCAmelCase = prompt_text + text[prompt_length:] else: __UpperCAmelCase = text[prompt_length:] __UpperCAmelCase = {'''generated_text''': all_text} records.append(_lowercase ) return records
86
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = (DEISMultistepScheduler,) snake_case = (('''num_inference_steps''', 25),) def lowerCAmelCase ( self : Any , **__UpperCAmelCase : Dict ): '''simple docstring''' _A = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**__UpperCAmelCase ) return config def lowerCAmelCase ( self : Dict , __UpperCAmelCase : int=0 , **__UpperCAmelCase : Union[str, Any] ): '''simple docstring''' _A = dict(self.forward_default_kwargs ) _A = kwargs.pop("num_inference_steps" , __UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config(**__UpperCAmelCase ) _A = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residuals _A = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase ) _A = scheduler_class.from_pretrained(__UpperCAmelCase ) new_scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residuals _A = dummy_past_residuals[: new_scheduler.config.solver_order] _A , _A = sample, sample for t in range(__UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): _A = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample _A = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase ( self : str ): '''simple docstring''' pass def lowerCAmelCase ( self : Dict , __UpperCAmelCase : Tuple=0 , **__UpperCAmelCase : List[Any] ): '''simple docstring''' _A = dict(self.forward_default_kwargs ) _A = kwargs.pop("num_inference_steps" , __UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _A = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase ) _A = scheduler_class.from_pretrained(__UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _A = dummy_past_residuals[: new_scheduler.config.solver_order] _A = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample _A = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase ( self : Dict , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Tuple ): '''simple docstring''' if scheduler is None: _A = self.scheduler_classes[0] _A = self.get_scheduler_config(**__UpperCAmelCase ) _A = scheduler_class(**__UpperCAmelCase ) _A = self.scheduler_classes[0] _A = self.get_scheduler_config(**__UpperCAmelCase ) _A = scheduler_class(**__UpperCAmelCase ) _A = 10 _A = self.dummy_model() _A = self.dummy_sample_deter scheduler.set_timesteps(__UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = model(__UpperCAmelCase , __UpperCAmelCase ) _A = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample return sample def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = dict(self.forward_default_kwargs ) _A = kwargs.pop("num_inference_steps" , __UpperCAmelCase ) for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**__UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCAmelCase , "set_timesteps" ): scheduler.set_timesteps(__UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(__UpperCAmelCase , "set_timesteps" ): _A = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _A = [residual + 0.2, residual + 0.15, residual + 0.10] _A = dummy_past_residuals[: scheduler.config.solver_order] _A = scheduler.timesteps[5] _A = scheduler.timesteps[6] _A = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample _A = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = DEISMultistepScheduler(**self.get_scheduler_config() ) _A = self.full_loop(scheduler=__UpperCAmelCase ) _A = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 _A = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _A = DPMSolverMultistepScheduler.from_config(scheduler.config ) _A = UniPCMultistepScheduler.from_config(scheduler.config ) _A = DEISMultistepScheduler.from_config(scheduler.config ) _A = self.full_loop(scheduler=__UpperCAmelCase ) _A = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def lowerCAmelCase ( self : List[str] ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=__UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__UpperCAmelCase , prediction_type=__UpperCAmelCase , sample_max_value=__UpperCAmelCase , algorithm_type="deis" , solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , algorithm_type=__UpperCAmelCase , ) _A = self.full_loop( solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , algorithm_type=__UpperCAmelCase , ) assert not torch.isnan(__UpperCAmelCase ).any(), "Samples have nan numbers" def lowerCAmelCase ( self : Tuple ): '''simple docstring''' self.check_over_configs(lower_order_final=__UpperCAmelCase ) self.check_over_configs(lower_order_final=__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__UpperCAmelCase , time_step=0 ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = self.full_loop() _A = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = self.full_loop(prediction_type="v_prediction" ) _A = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.scheduler_classes[0] _A = self.get_scheduler_config(thresholding=__UpperCAmelCase , dynamic_thresholding_ratio=0 ) _A = scheduler_class(**__UpperCAmelCase ) _A = 10 _A = self.dummy_model() _A = self.dummy_sample_deter.half() scheduler.set_timesteps(__UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = model(__UpperCAmelCase , __UpperCAmelCase ) _A = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
79
'''simple docstring''' def __lowercase ( __lowercase ) -> int: '''simple docstring''' assert isinstance(__lowercase , __lowercase ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: _A = F'''The input value of [n={number}] has to be > 0''' raise ValueError(__lowercase ) else: _A = sylvester(number - 1 ) _A = num - 1 _A = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
79
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = '''▁''' _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } _SCREAMING_SNAKE_CASE = { '''google/pegasus-xsum''': 5_1_2, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Any = VOCAB_FILES_NAMES a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : int = PegasusTokenizer a : Union[str, Any] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<pad>" ,_lowerCamelCase="</s>" ,_lowerCamelCase="<unk>" ,_lowerCamelCase="<mask_2>" ,_lowerCamelCase="<mask_1>" ,_lowerCamelCase=None ,_lowerCamelCase=103 ,**_lowerCamelCase ,) -> Any: '''simple docstring''' __lowercase = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase ,_lowerCamelCase ): raise TypeError( f"additional_special_tokens should be of type {type(_lowerCamelCase )}, but is" f" {type(_lowerCamelCase )}" ) __lowercase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(_lowerCamelCase ) ,self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) __lowercase = additional_special_tokens_extended else: __lowercase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 ,self.offset )] super().__init__( _lowerCamelCase ,tokenizer_file=_lowerCamelCase ,pad_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,unk_token=_lowerCamelCase ,mask_token=_lowerCamelCase ,mask_token_sent=_lowerCamelCase ,offset=_lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = vocab_file __lowercase = False if not self.vocab_file else True def _UpperCAmelCase (self ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( _lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file ,_lowerCamelCase ) return (out_vocab_file,)
217
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Union[str, Any] = "gpt_neox_japanese" def __init__(self ,_lowerCamelCase=32000 ,_lowerCamelCase=2560 ,_lowerCamelCase=32 ,_lowerCamelCase=32 ,_lowerCamelCase=4 ,_lowerCamelCase="gelu" ,_lowerCamelCase=1.0_0 ,_lowerCamelCase=10000 ,_lowerCamelCase=2048 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-5 ,_lowerCamelCase=True ,_lowerCamelCase=31996 ,_lowerCamelCase=31999 ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.0 ,**_lowerCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__(bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,**_lowerCamelCase ) __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_multiple_size __lowercase = hidden_act __lowercase = rotary_pct __lowercase = rotary_emb_base __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = use_cache __lowercase = attention_dropout __lowercase = hidden_dropout
217
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : int = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) lowerCAmelCase__ : Optional[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" lowerCAmelCase__ : Union[str, Any] = model(__UpperCAmelCase )["last_hidden_state"] lowerCAmelCase__ : List[Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape ,__UpperCAmelCase ) # compare the actual values for a slice. lowerCAmelCase__ : Optional[Any] = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
37
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _snake_case : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _snake_case : int = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _snake_case : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) _snake_case : List[str] = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) _snake_case : Any = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions _snake_case : Optional[Any] = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) _snake_case : int = tf.keras.preprocessing.image.img_to_array(test_image) _snake_case : Tuple = np.expand_dims(test_image, axis=0) _snake_case : Any = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _snake_case : Any = "Normal" if result[0][0] == 1: _snake_case : List[str] = "Abnormality detected"
123
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
15
import argparse import os import torch from transformers.utils import WEIGHTS_NAME a__ = ['''small''', '''medium''', '''large'''] a__ = '''lm_head.decoder.weight''' a__ = '''lm_head.weight''' def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]: """simple docstring""" _a : Any = torch.load(__a ) _a : List[str] = d.pop(__a ) os.makedirs(__a ,exist_ok=__a ) torch.save(__a ,os.path.join(__a ,__a ) ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) a__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') a__ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Dict=7 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : Union[str, Any]=30 , _UpperCAmelCase : Union[str, Any]=4_00 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , _UpperCAmelCase : Any=[0.5, 0.5, 0.5] , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : int=1 / 2_55 , _UpperCAmelCase : int=True , ) -> List[str]: """simple docstring""" __lowercase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_pad def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=False ) -> str: """simple docstring""" if not batched: __lowercase = image_inputs[0] if isinstance(_UpperCAmelCase , Image.Image ): __lowercase , __lowercase = image.size else: __lowercase , __lowercase = image.shape[1], image.shape[2] if w < h: __lowercase = int(self.size['shortest_edge'] * h / w ) __lowercase = self.size['shortest_edge'] elif w > h: __lowercase = self.size['shortest_edge'] __lowercase = int(self.size['shortest_edge'] * w / h ) else: __lowercase = self.size['shortest_edge'] __lowercase = self.size['shortest_edge'] else: __lowercase = [] for image in image_inputs: __lowercase , __lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowercase = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[0] )[0] __lowercase = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : str = DetaImageProcessor if is_vision_available() else None def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = DetaImageProcessingTester(self ) @property def a__ ( self : List[str] ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : Any ) -> Dict: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_rescale' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_pad' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" pass def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase , __lowercase = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __lowercase = json.loads(f.read() ) __lowercase = {'image_id': 3_97_69, 'annotations': target} # encode them __lowercase = DetaImageProcessor() __lowercase = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , return_tensors='pt' ) # verify pixel values __lowercase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCAmelCase ) __lowercase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) ) # verify area __lowercase = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCAmelCase ) ) # verify boxes __lowercase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCAmelCase ) __lowercase = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCAmelCase , atol=1e-3 ) ) # verify image_id __lowercase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCAmelCase ) ) # verify is_crowd __lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCAmelCase ) ) # verify class_labels __lowercase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCAmelCase ) ) # verify orig_size __lowercase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCAmelCase ) ) # verify size __lowercase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCAmelCase ) ) @slow def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __lowercase = json.loads(f.read() ) __lowercase = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} __lowercase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __lowercase = DetaImageProcessor(format='coco_panoptic' ) __lowercase = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , masks_path=_UpperCAmelCase , return_tensors='pt' ) # verify pixel values __lowercase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCAmelCase ) __lowercase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) ) # verify area __lowercase = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCAmelCase ) ) # verify boxes __lowercase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCAmelCase ) __lowercase = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCAmelCase , atol=1e-3 ) ) # verify image_id __lowercase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCAmelCase ) ) # verify is_crowd __lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCAmelCase ) ) # verify class_labels __lowercase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCAmelCase ) ) # verify masks __lowercase = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _UpperCAmelCase ) # verify orig_size __lowercase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCAmelCase ) ) # verify size __lowercase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCAmelCase ) )
325
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict: __lowercase = factor * value __lowercase = value while not is_prime(SCREAMING_SNAKE_CASE ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE ) return value
325
1
UpperCamelCase__ = "Tobias Carryer" from time import time class __SCREAMING_SNAKE_CASE : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=int(time() ) ): # noqa: B008 UpperCamelCase__ = multiplier UpperCamelCase__ = increment UpperCamelCase__ = modulo UpperCamelCase__ = seed def _lowerCamelCase ( self ): UpperCamelCase__ = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. UpperCamelCase__ = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
87
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
87
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __lowerCAmelCase = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def __lowerCamelCase ( ) -> Optional[int]: _a : List[Any] = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _a : Any = get_sagemaker_input() else: _a : Optional[Any] = get_cluster_input() return config def __lowerCamelCase ( lowerCAmelCase_=None ) -> Any: if subparsers is not None: _a : Tuple = subparsers.add_parser('config' , description=lowerCAmelCase_ ) else: _a : List[Any] = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase_ ) parser.add_argument( '--config_file' , default=lowerCAmelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[str, Any]: _a : Dict = get_user_input() if args.config_file is not None: _a : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) _a : str = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(f"""accelerate configuration saved at {config_file}""" ) def __lowerCamelCase ( ) -> Any: _a : Union[str, Any] = config_command_parser() _a : List[Any] = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
89
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : str = ["""image_processor""", """tokenizer"""] a_ : List[str] = """ViTImageProcessor""" a_ : List[str] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : List[str] , a_ : str=None , a_ : Dict=None , **a_ : List[Any] ): lowerCAmelCase_ : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a_ , ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("feature_extractor" ) lowerCAmelCase_ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a_ , a_ ) def __call__( self : Union[str, Any] , a_ : Any=None , a_ : Dict=None , a_ : List[str]=None , a_ : str=None , **a_ : Any ): if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if visual_prompt is not None: lowerCAmelCase_ : Optional[Any] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if images is not None: lowerCAmelCase_ : List[str] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if visual_prompt is not None and images is not None: lowerCAmelCase_ : Union[str, Any] = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ : Dict = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def lowerCamelCase ( self : Optional[int] , *a_ : Optional[Any] , **a_ : List[str] ): return self.tokenizer.batch_decode(*a_ , **a_ ) def lowerCamelCase ( self : Optional[Any] , *a_ : Tuple , **a_ : Tuple ): return self.tokenizer.decode(*a_ , **a_ ) @property def lowerCamelCase ( self : List[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a_ , ) return self.image_processor_class @property def lowerCamelCase ( self : Dict ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a_ , ) return self.image_processor
241
0
def _A ( lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 7 , lowerCAmelCase_ : int = 100_0000 ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 for current_denominator in range(1 , limit + 1 ): lowerCAmelCase__ = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: lowerCAmelCase__ = current_numerator lowerCAmelCase__ = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
221
from statistics import mean, stdev def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int = 3 ): """simple docstring""" lowerCAmelCase__ = min(lowerCAmelCase_ ) lowerCAmelCase__ = max(lowerCAmelCase_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase_ ) for x in data] def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int = 3 ): """simple docstring""" lowerCAmelCase__ = mean(lowerCAmelCase_ ) lowerCAmelCase__ = stdev(lowerCAmelCase_ ) # standardize data return [round((x - mu) / (sigma) , lowerCAmelCase_ ) for x in data]
221
1
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt') def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1_6000 ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = int(round(sample_rate * max_length ) ) if len(SCREAMING_SNAKE_CASE__ ) <= sample_length: return wav _SCREAMING_SNAKE_CASE : str = randint(0 , len(SCREAMING_SNAKE_CASE__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class lowercase__ : '''simple docstring''' A_ : Tuple = field(default=lowerCamelCase__ , metadata={"""help""": """Name of a dataset from the datasets package"""} ) A_ : Any = field( default=lowerCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) A_ : List[str] = field( default=lowerCamelCase__ , metadata={"""help""": """A file containing the training audio paths and labels."""} ) A_ : Any = field( default=lowerCamelCase__ , metadata={"""help""": """A file containing the validation audio paths and labels."""} ) A_ : Tuple = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) A_ : Dict = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) A_ : Any = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , ) A_ : Optional[Any] = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""} ) A_ : Any = field( default=lowerCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) A_ : Optional[Any] = field( default=lowerCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) A_ : Tuple = field( default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class lowercase__ : '''simple docstring''' A_ : List[Any] = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) A_ : Optional[int] = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) A_ : List[Any] = field( default=lowerCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""} ) A_ : Optional[Any] = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) A_ : Optional[int] = field( default=lowerCamelCase__ , metadata={"""help""": """Name or path of preprocessor config."""} ) A_ : int = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""} ) A_ : Optional[int] = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""} ) A_ : List[Any] = field( default=lowerCamelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) A_ : Dict = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) A_ : List[Any] = field( default=lowerCamelCase__ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def UpperCAmelCase_ ( self ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , __A , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Optional[int] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _SCREAMING_SNAKE_CASE : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. _SCREAMING_SNAKE_CASE : List[Any] = DatasetDict() _SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _SCREAMING_SNAKE_CASE : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ f"""{", ".join(raw_datasets["train"].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ f"""{", ".join(raw_datasets["train"].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _SCREAMING_SNAKE_CASE : Dict = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _SCREAMING_SNAKE_CASE : str = feature_extractor.model_input_names[0] def train_transforms(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : int = [] for audio in batch[data_args.audio_column_name]: _SCREAMING_SNAKE_CASE : List[Any] = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE : Dict = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE__ )} _SCREAMING_SNAKE_CASE : Union[str, Any] = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : Optional[Any] = [audio['''array'''] for audio in batch[data_args.audio_column_name]] _SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE : str = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE__ )} _SCREAMING_SNAKE_CASE : str = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _SCREAMING_SNAKE_CASE : int = raw_datasets['''train'''].features[data_args.label_column_name].names _SCREAMING_SNAKE_CASE : Any = {}, {} for i, label in enumerate(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = str(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : str = label # Load the accuracy metric from the datasets package _SCREAMING_SNAKE_CASE : Dict = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : List[Any] = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE__ , references=eval_pred.label_ids ) _SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE__ ) , labelaid=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _SCREAMING_SNAKE_CASE : Any = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _SCREAMING_SNAKE_CASE : int = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(SCREAMING_SNAKE_CASE__ , output_all_columns=SCREAMING_SNAKE_CASE__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: _SCREAMING_SNAKE_CASE : Dict = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(SCREAMING_SNAKE_CASE__ , output_all_columns=SCREAMING_SNAKE_CASE__ ) # Initialize our trainer _SCREAMING_SNAKE_CASE : List[str] = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: _SCREAMING_SNAKE_CASE : List[str] = None if training_args.resume_from_checkpoint is not None: _SCREAMING_SNAKE_CASE : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: _SCREAMING_SNAKE_CASE : Optional[int] = last_checkpoint _SCREAMING_SNAKE_CASE : str = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _SCREAMING_SNAKE_CASE : str = trainer.evaluate() trainer.log_metrics("""eval""" , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("""eval""" , SCREAMING_SNAKE_CASE__ ) # Write model card and (optionally) push to hub _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
200
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description ) else: UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments UpperCAmelCase : Optional[int] = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase : List[str] = defaults.commands if not args.tpu_name: UpperCAmelCase : Tuple = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase : int = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase : Dict = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ): UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: UpperCAmelCase : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCAmelCase ): UpperCAmelCase : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command UpperCAmelCase : int = '''; '''.join(UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(UpperCAmelCase )}''' ) return subprocess.run(UpperCAmelCase ) print('''Successfully setup pod.''' ) def a__ ( ) -> Any: UpperCAmelCase : Any = tpu_command_parser() UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(UpperCAmelCase )
336
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase ) -> bool: snake_case_ = str(UpperCAmelCase ) return len(UpperCAmelCase ) == 9 and set(UpperCAmelCase ) == set('123456789' ) def UpperCAmelCase ( ) -> int | None: for base_num in range(9999 , 4999 , -1 ): snake_case_ = 100002 * base_num if is_9_pandigital(UpperCAmelCase ): return candidate for base_num in range(333 , 99 , -1 ): snake_case_ = 1002003 * base_num if is_9_pandigital(UpperCAmelCase ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
312
"""simple docstring""" __UpperCamelCase = 256 # Modulus to hash a string __UpperCamelCase = 100_0003 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCAmelCase ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: snake_case_ = 'abc1abc12' snake_case_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case_ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) and not rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 2) snake_case_ = 'ABABX' snake_case_ = 'ABABZABABYABABX' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 3) snake_case_ = 'AAAB' snake_case_ = 'ABAAAAAB' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 4) snake_case_ = 'abcdabcy' snake_case_ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 5) snake_case_ = 'Lü' snake_case_ = 'Lüsai' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'Lue' assert not rabin_karp(UpperCAmelCase , UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
312
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=2 , _lowerCamelCase=24 , _lowerCamelCase=16 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=None , _lowerCamelCase=2 , _lowerCamelCase=2 , ): UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : Optional[int] = max_length UpperCAmelCase__ : int = num_mel_bins UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Any = num_attention_heads UpperCAmelCase__ : int = intermediate_size UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : Any = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : List[Any] = scope UpperCAmelCase__ : str = frequency_stride UpperCAmelCase__ : str = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase__ : str = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase__ : Optional[Any] = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase__ : Dict = frequency_out_dimension * time_out_dimension UpperCAmelCase__ : Dict = num_patches + 2 def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) UpperCAmelCase__ : List[str] = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase__ : Dict = self.get_config() return config, input_values, labels def snake_case__ ( self): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Dict = ASTModel(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self): UpperCAmelCase__ : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase__ : Any = {"""input_values""": input_values} return config, inputs_dict @require_torch class _snake_case ( a__ , a__ , unittest.TestCase ): lowerCAmelCase :int = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase :List[str] = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) lowerCAmelCase :List[Any] = False lowerCAmelCase :Any = False lowerCAmelCase :Optional[int] = False lowerCAmelCase :int = False def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = ASTModelTester(self) UpperCAmelCase__ : List[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37) def snake_case__ ( self): self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""") def snake_case__ ( self): pass def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(_lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCAmelCase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear)) def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class(_lowerCamelCase) UpperCAmelCase__ : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Optional[int] = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["""input_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase) @slow def snake_case__ ( self): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = ASTModel.from_pretrained(_lowerCamelCase) self.assertIsNotNone(_lowerCamelCase) def _UpperCamelCase ( ): UpperCAmelCase__ : Dict = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) UpperCAmelCase__ , UpperCAmelCase__ : int = torchaudio.load(UpperCamelCase__ ) return audio, sampling_rate @require_torch @require_torchaudio class _snake_case ( unittest.TestCase ): @cached_property def snake_case__ ( self): return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""") if is_torchaudio_available() else None ) @slow def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = self.default_feature_extractor UpperCAmelCase__ : List[str] = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""").to(_lowerCamelCase) UpperCAmelCase__ : str = self.default_feature_extractor UpperCAmelCase__ , UpperCAmelCase__ : Dict = prepare_audio() UpperCAmelCase__ : Dict = audio.squeeze().numpy() UpperCAmelCase__ : Union[str, Any] = feature_extractor(_lowerCamelCase , sampling_rate=_lowerCamelCase , return_tensors="""pt""").to(_lowerCamelCase) # forward pass with torch.no_grad(): UpperCAmelCase__ : Tuple = model(**_lowerCamelCase) # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 527)) self.assertEqual(outputs.logits.shape , _lowerCamelCase) UpperCAmelCase__ : Tuple = torch.tensor([-0.8760, -7.0042, -8.6602]).to(_lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4))
163
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): UpperCAmelCase__ : str = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } UpperCAmelCase__ , UpperCAmelCase__ : int = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCAmelCase__ : Union[str, Any] = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) assert base_extractor.is_extractable(UpperCamelCase__ ) UpperCAmelCase__ : int = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ : Union[str, Any] = file_path.read_text(encoding="""utf-8""" ) else: UpperCAmelCase__ : str = output_path.read_text(encoding="""utf-8""" ) UpperCAmelCase__ : Union[str, Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): UpperCAmelCase__ : Dict = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } UpperCAmelCase__ : List[str] = input_paths[compression_format] if input_path is None: UpperCAmelCase__ : Optional[Any] = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) UpperCAmelCase__ : Dict = Extractor.infer_extractor_format(UpperCamelCase__ ) assert extractor_format is not None UpperCAmelCase__ : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ : Dict = file_path.read_text(encoding="""utf-8""" ) else: UpperCAmelCase__ : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) UpperCAmelCase__ : str = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): import tarfile UpperCAmelCase__ : Optional[int] = tmp_path / """data_dot_dot""" directory.mkdir() UpperCAmelCase__ : Optional[Any] = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(UpperCamelCase__ , """w""" ) as f: f.add(UpperCamelCase__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def _UpperCamelCase ( UpperCamelCase__ ): import tarfile UpperCAmelCase__ : List[str] = tmp_path / """data_sym_link""" directory.mkdir() UpperCAmelCase__ : Optional[int] = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=UpperCamelCase__ ) with tarfile.TarFile(UpperCamelCase__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Any = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } UpperCAmelCase__ : str = insecure_tar_files[insecure_tar_file] UpperCAmelCase__ : Union[str, Any] = tmp_path / """extracted""" TarExtractor.extract(UpperCamelCase__ , UpperCamelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _UpperCamelCase ( UpperCamelCase__ ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number UpperCAmelCase__ : Tuple = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 UpperCAmelCase__ : Any = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(UpperCamelCase__ ) assert zipfile.is_zipfile(str(UpperCamelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(UpperCamelCase__ ) # but we're right
163
1
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :int ) -> List[str]: a__ = ['a', 'b', 'c'] # Defaults to last layer if both are None a__ , a__ = get_aligned_output_features_output_indices(__snake_case ,__snake_case ,__snake_case ) self.assertEqual(__snake_case ,['c'] ) self.assertEqual(__snake_case ,[2] ) # Out indices set to match out features a__ , a__ = get_aligned_output_features_output_indices(['a', 'c'] ,__snake_case ,__snake_case ) self.assertEqual(__snake_case ,['a', 'c'] ) self.assertEqual(__snake_case ,[0, 2] ) # Out features set to match out indices a__ , a__ = get_aligned_output_features_output_indices(__snake_case ,[0, 2] ,__snake_case ) self.assertEqual(__snake_case ,['a', 'c'] ) self.assertEqual(__snake_case ,[0, 2] ) # Out features selected from negative indices a__ , a__ = get_aligned_output_features_output_indices(__snake_case ,[-3, -1] ,__snake_case ) self.assertEqual(__snake_case ,['a', 'c'] ) self.assertEqual(__snake_case ,[-3, -1] ) def lowerCamelCase__( self :str ) -> Any: # Stage names must be set with self.assertRaises(__snake_case ): verify_out_features_out_indices(['a', 'b'] ,(0, 1) ,__snake_case ) # Out features must be a list with self.assertRaises(__snake_case ): verify_out_features_out_indices(('a', 'b') ,(0, 1) ,['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(__snake_case ): verify_out_features_out_indices(['a', 'b'] ,(0, 1) ,['a'] ) # Out indices must be a list or tuple with self.assertRaises(__snake_case ): verify_out_features_out_indices(__snake_case ,0 ,['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(__snake_case ): verify_out_features_out_indices(__snake_case ,(0, 1) ,['a'] ) # Out features and out indices must be the same length with self.assertRaises(__snake_case ): verify_out_features_out_indices(['a', 'b'] ,(0,) ,['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(__snake_case ): verify_out_features_out_indices(['a', 'b'] ,(0, 2) ,['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(__snake_case ): verify_out_features_out_indices(['b', 'a'] ,(0, 1) ,['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] ,(0, 1, -1) ,['a', 'b', 'c', 'd'] ) def lowerCamelCase__( self :Dict ) -> Tuple: a__ = BackboneMixin() a__ = ['a', 'b', 'c'] a__ = ['a', 'c'] a__ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features ,['a', 'c'] ) self.assertEqual(backbone.out_indices ,[0, 2] ) # Check out features and indices are updated correctly a__ = ['a', 'b'] self.assertEqual(backbone.out_features ,['a', 'b'] ) self.assertEqual(backbone.out_indices ,[0, 1] ) a__ = [-3, -1] self.assertEqual(backbone.out_features ,['a', 'c'] ) self.assertEqual(backbone.out_indices ,[-3, -1] )
109
from __future__ import annotations def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
109
1
import math def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> list: UpperCamelCase__ : Tuple = [True] * n UpperCamelCase__ : Optional[Any] = False UpperCamelCase__ : int = False UpperCamelCase__ : Any = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCamelCase__ : int = i * 2 while index < n: UpperCamelCase__ : Union[str, Any] = False UpperCamelCase__ : Dict = index + i UpperCamelCase__ : List[str] = [2] for i in range(3 , SCREAMING_SNAKE_CASE__ , 2 ): if is_prime[i]: primes.append(SCREAMING_SNAKE_CASE__ ) return primes def lowerCAmelCase_ ( __UpperCAmelCase: int = 9999_6666_3333 ) -> int: UpperCamelCase__ : int = math.floor(math.sqrt(SCREAMING_SNAKE_CASE__ ) ) + 100 UpperCamelCase__ : List[Any] = prime_sieve(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = primes[prime_index] while (last_prime**2) <= limit: UpperCamelCase__ : str = primes[prime_index + 1] UpperCamelCase__ : str = last_prime**2 UpperCamelCase__ : Dict = next_prime**2 # Get numbers divisible by lps(current) UpperCamelCase__ : List[str] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCamelCase__ : Optional[int] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCamelCase__ : List[str] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCamelCase__ : Union[str, Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
201
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowercase_ = "true" def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=82 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 ) -> Optional[Any]: '''simple docstring''' set_seed(42 ) A__ = RegressionModel() A__ = deepcopy(SCREAMING_SNAKE_CASE__ ) A__ = RegressionDataset(length=SCREAMING_SNAKE_CASE__ ) A__ = DataLoader(SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) model.to(accelerator.device ) A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model, ddp_model, dataloader def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> int: '''simple docstring''' A__ = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) A__ = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(SCREAMING_SNAKE_CASE__ : List[Any] ): A__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs with accelerator.main_process_first(): A__ = dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) A__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE__ : Dict ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=16 ) def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> str: '''simple docstring''' A__ = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE__ , split_batches=SCREAMING_SNAKE_CASE__ ) A__ = get_dataloader(SCREAMING_SNAKE_CASE__ , not dispatch_batches ) A__ = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ ) A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: '''simple docstring''' A__ = [] for batch in dataloader: A__ , A__ = batch.values() with torch.no_grad(): A__ = model(SCREAMING_SNAKE_CASE__ ) A__ , A__ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) A__ , A__ = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE__ ) targs.append(SCREAMING_SNAKE_CASE__ ) A__ , A__ = torch.cat(SCREAMING_SNAKE_CASE__ ), torch.cat(SCREAMING_SNAKE_CASE__ ) return logits, targs def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int=82 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=16 ) -> List[Any]: '''simple docstring''' A__ , A__ , A__ = get_basic_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ , A__ = generate_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert ( len(SCREAMING_SNAKE_CASE__ ) == num_samples ), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE__ )}' def _snake_case( SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False ) -> str: '''simple docstring''' A__ = evaluate.load('glue' , 'mrpc' ) A__ , A__ = get_mrpc_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # First do baseline A__ , A__ , A__ = setup['no'] model.to(SCREAMING_SNAKE_CASE__ ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE__ ) with torch.inference_mode(): A__ = model(**SCREAMING_SNAKE_CASE__ ) A__ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=batch['labels'] ) A__ = metric.compute() # Then do distributed A__ , A__ , A__ = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): A__ = model(**SCREAMING_SNAKE_CASE__ ) A__ = outputs.logits.argmax(dim=-1 ) A__ = batch['labels'] A__ , A__ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ ) A__ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def _snake_case( ) -> Optional[Any]: '''simple docstring''' A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ ) if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(SCREAMING_SNAKE_CASE__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) A__ = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE__ , 512 ) accelerator.state._reset_state() def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
7
0
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case ) -> float: """simple docstring""" _validate_point(__snake_case ) _validate_point(__snake_case ) if len(__snake_case ) != len(__snake_case ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(__snake_case, __snake_case ) ) ) def lowerCamelCase__ ( __snake_case ) -> None: """simple docstring""" if point: if isinstance(__snake_case, __snake_case ): for item in point: if not isinstance(__snake_case, (int, float) ): _UpperCamelCase = ( '''Expected a list of numbers as input, found ''' F'''{type(__snake_case ).__name__}''' ) raise TypeError(__snake_case ) else: _UpperCamelCase = F'''Expected a list of numbers as input, found {type(__snake_case ).__name__}''' raise TypeError(__snake_case ) else: raise ValueError('''Missing an input''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> float: """simple docstring""" _validate_point(__snake_case ) _validate_point(__snake_case ) if len(__snake_case ) != len(__snake_case ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(__snake_case, __snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
100
0
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase( _a ): lowercase_ : Dict = ["""image_processor""", """tokenizer"""] lowercase_ : Optional[Any] = """FlavaImageProcessor""" lowercase_ : List[str] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Dict = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase, ) _lowercase : List[Any] = kwargs.pop('feature_extractor') _lowercase : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowerCamelCase, lowerCamelCase) _lowercase : int = self.image_processor def __call__( self, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = True, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = None, lowerCamelCase = 0, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = True, lowerCamelCase = None, **lowerCamelCase, ) -> Dict: """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: _lowercase : Optional[int] = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) if images is not None: _lowercase : str = self.image_processor( lowerCamelCase, return_image_mask=lowerCamelCase, return_codebook_pixels=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) if text is not None and images is not None: encoding.update(lowerCamelCase) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase), tensor_type=lowerCamelCase) def UpperCamelCase ( self, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Dict = self.tokenizer.model_input_names _lowercase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.', lowerCamelCase, ) return self.image_processor_class @property def UpperCamelCase ( self) -> int: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.', lowerCamelCase, ) return self.image_processor
21
'''simple docstring''' def snake_case_ (_a : str , _a : str ): UpperCAmelCase = len(_a ) + 1 UpperCAmelCase = len(_a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase = [[0 for i in range(_a )] for j in range(_a )] # since string of zero length match pattern of zero length UpperCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _a ): UpperCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _a ): UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _a ): for j in range(1 , _a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase = dp[i - 1][j] else: UpperCAmelCase = 0 else: UpperCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") A ='aab' A ='c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
34
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCAmelCase : List[str] = logging.get_logger(__name__) class __lowerCAmelCase : _a = 42 _a = None @staticmethod def SCREAMING_SNAKE_CASE ( ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: int , _lowerCAmelCase: str , **_lowerCAmelCase: int ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: List[Any] ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): if not self.is_available(): raise RuntimeError( F"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Any ): return F"`pip install {cls.pip_package or cls.name}`" class __lowerCAmelCase ( UpperCamelCase__): _a = """optuna""" @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_optuna_available() def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: Tuple , _lowerCAmelCase: int , _lowerCAmelCase: str , **_lowerCAmelCase: Tuple ): return run_hp_search_optuna(__a , __a , __a , **__a ) def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: Union[str, Any] ): return default_hp_space_optuna(__a ) class __lowerCAmelCase ( UpperCamelCase__): _a = """ray""" _a = """'ray[tune]'""" @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_ray_available() def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: str , **_lowerCAmelCase: Optional[int] ): return run_hp_search_ray(__a , __a , __a , **__a ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: List[str] ): return default_hp_space_ray(__a ) class __lowerCAmelCase ( UpperCamelCase__): _a = """sigopt""" @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_sigopt_available() def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: int , _lowerCAmelCase: str , **_lowerCAmelCase: Optional[Any] ): return run_hp_search_sigopt(__a , __a , __a , **__a ) def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: Tuple ): return default_hp_space_sigopt(__a ) class __lowerCAmelCase ( UpperCamelCase__): _a = """wandb""" @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_wandb_available() def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: int , _lowerCAmelCase: str , **_lowerCAmelCase: Tuple ): return run_hp_search_wandb(__a , __a , __a , **__a ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: int ): return default_hp_space_wandb(__a ) _UpperCAmelCase : Any = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCAmelCase__ ( ): lowercase :Any = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(snake_case_ ) > 0: lowercase :Optional[int] = available_backends[0].name if len(snake_case_ ) > 1: logger.info( F"{len(snake_case_ )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
368
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: Any , _lowerCAmelCase: int , _lowerCAmelCase: str , _lowerCAmelCase: Union[str, Any] ): lowercase :List[str] = dataset lowercase :Optional[int] = process lowercase :Union[str, Any] = params def __len__( self: str ): return len(self.dataset ) def __getitem__( self: int , _lowerCAmelCase: Dict ): lowercase :Union[str, Any] = self.dataset[i] lowercase :Optional[int] = self.process(_lowerCAmelCase , **self.params ) return processed class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: int , _lowerCAmelCase: Tuple , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Optional[int]=None ): lowercase :Optional[Any] = loader lowercase :int = infer lowercase :Dict = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether lowercase :Union[str, Any] = None lowercase :Any = loader_batch_size # Internal bookkeeping lowercase :Optional[Any] = None lowercase :Dict = None def __len__( self: Tuple ): return len(self.loader ) def __iter__( self: List[str] ): lowercase :Dict = iter(self.loader ) return self def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice lowercase :Optional[int] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) lowercase :str = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Convert ModelOutput to tuple first lowercase :Dict = element.to_tuple() if isinstance(element[0] , torch.Tensor ): lowercase :int = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowercase :List[str] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): lowercase :Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowercase :List[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around lowercase :Optional[int] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowercase :Optional[Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowercase :Any = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. lowercase :List[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 lowercase :List[Any] = self._loader_batch_data.__class__(_lowerCAmelCase ) self._loader_batch_index += 1 return result def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch lowercase :Tuple = next(self.iterator ) lowercase :Dict = self.infer(_lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCAmelCase , torch.Tensor ): lowercase :List[str] = processed else: lowercase :Tuple = list(processed.keys() )[0] lowercase :Optional[Any] = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Optional[int] = len(_lowerCAmelCase ) else: lowercase :Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowercase :Tuple = observed_batch_size # Setting internal index to unwrap the batch lowercase :int = processed lowercase :Optional[Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: Union[str, Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: str , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __iter__( self: Tuple ): lowercase :List[str] = iter(self.loader ) lowercase :str = None return self def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): if self.subiterator is None: lowercase :List[Any] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item lowercase :str = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators lowercase :Tuple = self.infer(next(self.iterator ) , **self.params ) lowercase :Dict = next(self.subiterator ) return processed class __lowerCAmelCase ( lowerCAmelCase): def __iter__( self: str ): lowercase :List[Any] = iter(self.loader ) return self def SCREAMING_SNAKE_CASE ( self: str ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. lowercase :str = False lowercase :int = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: lowercase :str = self.loader_batch_item() lowercase :int = item.pop("is_last" ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator while not is_last: lowercase :str = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCAmelCase , torch.Tensor ): lowercase :Tuple = processed else: lowercase :Union[str, Any] = list(processed.keys() )[0] lowercase :Any = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Dict = len(_lowerCAmelCase ) else: lowercase :List[str] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowercase :Union[str, Any] = observed_batch_size lowercase :str = processed lowercase :Optional[int] = 0 while self._loader_batch_index < self.loader_batch_size: lowercase :Any = self.loader_batch_item() lowercase :int = item.pop("is_last" ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator else: lowercase :Optional[Any] = processed lowercase :str = item.pop("is_last" ) accumulator.append(_lowerCAmelCase ) return accumulator class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: Union[str, Any] , _lowerCAmelCase: Dataset , _lowerCAmelCase: str ): lowercase :Tuple = dataset lowercase :Dict = key def __len__( self: Any ): return len(self.dataset ) def __getitem__( self: int , _lowerCAmelCase: int ): return self.dataset[i][self.key] class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: List[Any] , _lowerCAmelCase: Dataset , _lowerCAmelCase: str , _lowerCAmelCase: str ): lowercase :Union[str, Any] = dataset lowercase :Optional[int] = keya lowercase :str = keya def __len__( self: Optional[Any] ): return len(self.dataset ) def __getitem__( self: Optional[Any] , _lowerCAmelCase: int ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
158
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 __lowerCAmelCase : str = torch.tensor(tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) ).unsqueeze(0 ) # Batch size 1 __lowerCAmelCase : List[Any] = model(_UpperCamelCase )[0] # The last hidden-state is the first element of the output tuple __lowerCAmelCase : List[str] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __lowerCAmelCase : Optional[int] = logits[0, masked_index, :] __lowerCAmelCase : Tuple = logits.softmax(dim=0 ) __lowerCAmelCase : int = prob.topk(k=_UpperCamelCase , dim=0 ) __lowerCAmelCase : str = ' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_UpperCamelCase ) )] ) __lowerCAmelCase : Optional[int] = tokenizer.mask_token __lowerCAmelCase : List[str] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): __lowerCAmelCase : Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(_UpperCamelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(_UpperCamelCase ) , _UpperCamelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_UpperCamelCase , _UpperCamelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _UpperCamelCase = CamembertTokenizer.from_pretrained("camembert-base") _UpperCamelCase = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() _UpperCamelCase = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
275
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class A__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = AutoModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = TFAutoModelForPreTraining.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = AutoModelForPreTraining.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = AutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : int = TFAutoModelForMaskedLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = AutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : str = AutoModelForMaskedLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Dict = AutoModelForSeqaSeqLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase : Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TFAutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = TFAutoModelForQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 ) __lowerCAmelCase : Tuple = AutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 ) def __lowerCamelCase ( self ): __lowerCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 ) __lowerCAmelCase : Tuple = AutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 )
86
0
from functools import reduce a__: Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def UpperCamelCase__( UpperCamelCase__ : str = N )->int: return max( # mypy cannot properly interpret reduce int(reduce(lambda UpperCamelCase__ , UpperCamelCase__ : str(int(UpperCamelCase__ ) * int(UpperCamelCase__ ) ) , n[i : i + 13] ) ) for i in range(len(UpperCamelCase__ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
39
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_euler''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe([prompt],generator=__lowerCamelCase,guidance_scale=9.0,num_inference_steps=20,output_type='''np''' ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_euler''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe([prompt],generator=__lowerCamelCase,guidance_scale=9.0,num_inference_steps=20,output_type='''np''' ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe( [prompt],generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=15,output_type='''np''',use_karras_sigmas=__lowerCamelCase,) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
39
1