code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __lowerCAmelCase : Dict =DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __lowerCAmelCase : List[Any] ="main" # Default branch name __lowerCAmelCase : int ="f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) __lowerCAmelCase : List[Any] ="aaaaaaa" # This commit does not exist, so we should 404. __lowerCAmelCase : Optional[int] ="d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes __lowerCAmelCase : Dict ="4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def UpperCamelCase ( ): print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def UpperCamelCase ( ): print("Bonjour!" ) yield print("Au revoir!" ) class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :str )-> List[str]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class UpperCAmelCase ( unittest.TestCase ): @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :Union[str, Any] )-> Any: with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCAmelCase_ ( self :Dict , lowercase_ :Optional[Any] )-> Tuple: with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :int )-> Union[str, Any]: with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def UpperCAmelCase_ ( self :int )-> Dict: self.assertEqual(find_labels(lowercase_ ) , ["labels"] ) self.assertEqual(find_labels(lowercase_ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(lowercase_ ) , ["start_positions", "end_positions"] ) class UpperCAmelCase ( UpperCamelCase__ ): pass self.assertEqual(find_labels(lowercase_ ) , ["labels"] ) @require_tf def UpperCAmelCase_ ( self :Union[str, Any] )-> Union[str, Any]: self.assertEqual(find_labels(lowercase_ ) , ["labels"] ) self.assertEqual(find_labels(lowercase_ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(lowercase_ ) , ["start_positions", "end_positions"] ) class UpperCAmelCase ( UpperCamelCase__ ): pass self.assertEqual(find_labels(lowercase_ ) , ["labels"] ) @require_flax def UpperCAmelCase_ ( self :Dict )-> str: # Flax models don't have labels self.assertEqual(find_labels(lowercase_ ) , [] ) self.assertEqual(find_labels(lowercase_ ) , [] ) self.assertEqual(find_labels(lowercase_ ) , [] ) class UpperCAmelCase ( UpperCamelCase__ ): pass self.assertEqual(find_labels(lowercase_ ) , [] )
237
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=UpperCamelCase__ ): __lowercase = ["""note_seq"""] def __init__( self :Optional[Any] , *lowercase_ :List[Any] , **lowercase_ :List[str] )-> int: requires_backends(self , ["note_seq"] ) @classmethod def UpperCAmelCase_ ( cls :str , *lowercase_ :Union[str, Any] , **lowercase_ :Any )-> Optional[int]: requires_backends(cls , ["note_seq"] ) @classmethod def UpperCAmelCase_ ( cls :Dict , *lowercase_ :Tuple , **lowercase_ :List[Any] )-> Optional[Any]: requires_backends(cls , ["note_seq"] )
237
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__ : Optional[int] ={ '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any =['''ConvNextFeatureExtractor'''] A__ : str =['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] =[ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str =[ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A__ : int =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
220
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration A__ : str =5_00_00 A__ : Optional[int] =50_00 A__ , A__ : Optional[int] =os.path.split(__file__) A__ : Tuple =os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" for i in range(lowerCAmelCase ): _lowerCAmelCase = dataset[i] @get_duration def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" for i in range(0 , len(lowerCAmelCase ) , lowerCAmelCase ): _lowerCAmelCase = dataset[i : i + batch_size] @get_duration def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" with dataset.formatted_as(type=lowerCAmelCase ): for i in range(lowerCAmelCase ): _lowerCAmelCase = dataset[i] @get_duration def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" with dataset.formatted_as(type=lowerCAmelCase ): for i in range(0 , lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = dataset[i : i + batch_size] def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = {"""num examples""": SPEED_TEST_N_EXAMPLES} _lowerCAmelCase = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_00}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10_00}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10_00}), ] _lowerCAmelCase = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_00}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10_00}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) _lowerCAmelCase = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) _lowerCAmelCase = generate_example_dataset( os.path.join(lowerCAmelCase , """dataset.arrow""" ) , lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes={"""list""": (1_00,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(lowerCAmelCase ) ) _lowerCAmelCase = func(lowerCAmelCase , **lowerCAmelCase ) print("""shuffling dataset""" ) _lowerCAmelCase = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(lowerCAmelCase ) ) _lowerCAmelCase = func( lowerCAmelCase , **lowerCAmelCase ) with open(lowerCAmelCase , """wb""" ) as f: f.write(json.dumps(lowerCAmelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
220
1
"""simple docstring""" import itertools import math def lowercase ( A_ )-> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( )-> Tuple: '''simple docstring''' a : Tuple = 2 while True: if is_prime(A_ ): yield num num += 1 def lowercase ( A_ = 10_001 )-> int: '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , A_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
40
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = "▁" _lowercase : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} _lowercase : Optional[int] = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), } } _lowercase : str = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off _lowercase : List[Any] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Any = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token lowercase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) lowercase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) lowercase_ : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowercase_ : Tuple = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase_ : str = 1 lowercase_ : str = len(self.sp_model ) lowercase_ : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__SCREAMING_SNAKE_CASE ) } lowercase_ : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} lowercase_ : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase_ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase_ : Optional[Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase_ : Optional[Any] = src_lang if src_lang is not None else '''en_XX''' lowercase_ : str = self.lang_code_to_id[self._src_lang] lowercase_ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" lowercase_ : Optional[int] = self.__dict__.copy() lowercase_ : Dict = None lowercase_ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : Dict = {} lowercase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _snake_case ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _snake_case ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = [1] * len(self.prefix_tokens ) lowercase_ : Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : Optional[int] = [self.sep_token_id] lowercase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase_ : Optional[Any] = src_lang lowercase_ : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = tgt_lang_id return inputs def _snake_case ( self ): """simple docstring""" lowercase_ : str = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : Any = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Tuple = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowercase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : List[str] = src_lang lowercase_ : int = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = self.lang_code_to_id[src_lang] lowercase_ : Optional[Any] = [] lowercase_ : List[str] = [self.eos_token_id, self.cur_lang_code] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = self.lang_code_to_id[lang] lowercase_ : Dict = [] lowercase_ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code]
93
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowerCAmelCase__ = (720, 1_280) # Height, Width lowerCAmelCase__ = (0.4, 0.6) # if height or width lower than this scale, drop it. lowerCAmelCase__ = 1 / 100 lowerCAmelCase__ = '''''' lowerCAmelCase__ = '''''' lowerCAmelCase__ = '''''' lowerCAmelCase__ = 250 def a__ ( ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : List[str] = get_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for index in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = random.sample(range(len(SCREAMING_SNAKE_CASE ) ) , 4 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = update_image_and_anno( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , filter_scale=SCREAMING_SNAKE_CASE , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCAmelCase : List[Any] = random_chars(3_2 ) lowerCAmelCase : Dict = path.split(os.sep )[-1].rsplit("." , 1 )[0] lowerCAmelCase : Union[str, Any] = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) lowerCAmelCase : List[Any] = [] for anno in new_annos: lowerCAmelCase : str = anno[3] - anno[1] lowerCAmelCase : List[Any] = anno[4] - anno[2] lowerCAmelCase : Optional[int] = anno[1] + width / 2 lowerCAmelCase : List[str] = anno[2] + height / 2 lowerCAmelCase : Optional[int] = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(SCREAMING_SNAKE_CASE ) with open(f"""{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Union[str, Any] = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE , "*.txt" ) ): lowerCAmelCase : str = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(SCREAMING_SNAKE_CASE ) as in_file: lowerCAmelCase : List[str] = in_file.readlines() lowerCAmelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE , f"""{label_name}.jpg""" ) lowerCAmelCase : Optional[int] = [] for obj_list in obj_lists: lowerCAmelCase : Optional[Any] = obj_list.rstrip("\n" ).split(" " ) lowerCAmelCase : Union[str, Any] = float(obj[1] ) - float(obj[3] ) / 2 lowerCAmelCase : Tuple = float(obj[2] ) - float(obj[4] ) / 2 lowerCAmelCase : List[str] = float(obj[1] ) + float(obj[3] ) / 2 lowerCAmelCase : Optional[Any] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE ) labels.append(SCREAMING_SNAKE_CASE ) return img_paths, labels def a__ ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : tuple[int, int] , SCREAMING_SNAKE_CASE : tuple[float, float] , SCREAMING_SNAKE_CASE : float = 0.0 , ): '''simple docstring''' lowerCAmelCase : List[Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowerCAmelCase : List[str] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase : Union[str, Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase : Dict = int(scale_x * output_size[1] ) lowerCAmelCase : List[Any] = int(scale_y * output_size[0] ) lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[Any] = [] for i, index in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[int] = all_img_list[index] path_list.append(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = all_annos[index] lowerCAmelCase : Union[str, Any] = cva.imread(SCREAMING_SNAKE_CASE ) if i == 0: # top-left lowerCAmelCase : Any = cva.resize(SCREAMING_SNAKE_CASE , (divid_point_x, divid_point_y) ) lowerCAmelCase : Optional[Any] = img for bbox in img_annos: lowerCAmelCase : Union[str, Any] = bbox[1] * scale_x lowerCAmelCase : Dict = bbox[2] * scale_y lowerCAmelCase : Optional[int] = bbox[3] * scale_x lowerCAmelCase : List[str] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowerCAmelCase : Optional[int] = cva.resize(SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, divid_point_y) ) lowerCAmelCase : Optional[int] = img for bbox in img_annos: lowerCAmelCase : Dict = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase : Dict = bbox[2] * scale_y lowerCAmelCase : Optional[int] = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase : Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowerCAmelCase : Union[str, Any] = cva.resize(SCREAMING_SNAKE_CASE , (divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase : List[Any] = img for bbox in img_annos: lowerCAmelCase : str = bbox[1] * scale_x lowerCAmelCase : Tuple = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase : Optional[Any] = bbox[3] * scale_x lowerCAmelCase : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowerCAmelCase : List[Any] = cva.resize( SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase : Optional[Any] = img for bbox in img_annos: lowerCAmelCase : Union[str, Any] = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase : str = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase : int = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase : str = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowerCAmelCase : Union[str, Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" lowerCAmelCase : Optional[int] = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print('''DONE ✅''')
133
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
133
1
def _UpperCAmelCase ( snake_case = 60_08_51_47_51_43 ): """simple docstring""" try: _lowerCAmelCase = int(snake_case ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 2 _lowerCAmelCase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _lowerCAmelCase = i while n % i == 0: _lowerCAmelCase = n // i i += 1 return int(snake_case ) if __name__ == "__main__": print(f"{solution() = }")
82
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = AudioLDMPipeline __lowerCamelCase = TEXT_TO_AUDIO_PARAMS __lowerCamelCase = TEXT_TO_AUDIO_BATCH_PARAMS __lowerCamelCase = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_snake_case , ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) _lowerCAmelCase = ClapTextModelWithProjection(_snake_case ) _lowerCAmelCase = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) _lowerCAmelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_snake_case , ) _lowerCAmelCase = SpeechTaHifiGan(_snake_case ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def snake_case ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_snake_case ) else: _lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 _lowerCAmelCase = audio[:10] _lowerCAmelCase = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] _lowerCAmelCase = audioldm_pipe.tokenizer( _snake_case , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_snake_case , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs["""input_ids"""].to(_snake_case ) _lowerCAmelCase = audioldm_pipe.text_encoder( _snake_case , ) _lowerCAmelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase = F.normalize(_snake_case , dim=-1 ) _lowerCAmelCase = prompt_embeds # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * ["""this is a negative prompt"""] _lowerCAmelCase = negative_prompt _lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] _lowerCAmelCase = [] for p in [prompt, negative_prompt]: _lowerCAmelCase = audioldm_pipe.tokenizer( _snake_case , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_snake_case , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs["""input_ids"""].to(_snake_case ) _lowerCAmelCase = audioldm_pipe.text_encoder( _snake_case , ) _lowerCAmelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase = F.normalize(_snake_case , dim=-1 ) embeds.append(_snake_case ) _lowerCAmelCase , _lowerCAmelCase = embeds # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=_snake_case ) _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = """egg cracking""" _lowerCAmelCase = audioldm_pipe(**_snake_case , negative_prompt=_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 _lowerCAmelCase = audio[:10] _lowerCAmelCase = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=_snake_case ) _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=2 , num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = audioldm_pipe.vocoder.config.sampling_rate _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.016 , **_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.016 _lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.032 , **_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.032 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = ["""hey"""] _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=1 ) _lowerCAmelCase = output.audios.shape assert audio_shape == (1, 256) _lowerCAmelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _lowerCAmelCase = SpeechTaHifiGan(_snake_case ).to(_snake_case ) _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=1 ) _lowerCAmelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def snake_case ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_snake_case ) def snake_case ( self ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=_snake_case ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def snake_case ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case ) @slow class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self , _snake_case , _snake_case="cpu" , _snake_case=torch.floataa , _snake_case=0 ): """simple docstring""" _lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase = np.random.RandomState(_snake_case ).standard_normal((1, 8, 128, 16) ) _lowerCAmelCase = torch.from_numpy(_snake_case ).to(device=_snake_case , dtype=_snake_case ) _lowerCAmelCase = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_inputs(_snake_case ) _lowerCAmelCase = 25 _lowerCAmelCase = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81920 _lowerCAmelCase = audio[77230:77240] _lowerCAmelCase = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) _lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _lowerCAmelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81920 _lowerCAmelCase = audio[27780:27790] _lowerCAmelCase = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) _lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
82
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
363
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = None lowerCAmelCase_ = BloomTokenizerFast lowerCAmelCase_ = BloomTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = '''tokenizer_file''' lowerCAmelCase_ = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def _snake_case ( self ): """simple docstring""" super().setUp() lowercase_ : List[Any] = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = self.get_rust_tokenizer() lowercase_ : Optional[Any] = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] lowercase_ : Union[str, Any] = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] lowercase_ : Dict = tokenizer.batch_encode_plus(__SCREAMING_SNAKE_CASE )['''input_ids'''] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE=6 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : int = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase_ : Optional[int] = '''This is a simple input''' lowercase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] lowercase_ : List[str] = ('''This is a simple input''', '''This is a pair''') lowercase_ : Union[str, Any] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) tokenizer_r.batch_encode_plus(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) tokenizer_r.encode(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) tokenizer_r.batch_encode_plus(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) lowercase_ : Optional[Any] = None # Hotfixing padding = None self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Simple input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Simple input self.assertRaises( __SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' , ) # Pair input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Pair input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Pair input self.assertRaises( __SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' , ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = self.get_rust_tokenizer() lowercase_ : Tuple = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = next(iter(__SCREAMING_SNAKE_CASE ) )['''premise'''] # pick up one data lowercase_ : List[Any] = list(sample_data.values() ) lowercase_ : Tuple = list(map(tokenizer.encode , __SCREAMING_SNAKE_CASE ) ) lowercase_ : Any = [tokenizer.decode(__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) for x in output_tokens] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
264
0
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def UpperCAmelCase_ ( __lowercase : str ) -> None: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = analyze_text(__lowercase ) _UpperCAmelCase = list(" " + ascii_lowercase ) # what is our total sum of probabilities. _UpperCAmelCase = sum(single_char_strings.values() ) # one length string _UpperCAmelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _UpperCAmelCase = single_char_strings[ch] _UpperCAmelCase = my_str / all_sum my_fir_sum += prob * math.loga(__lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string _UpperCAmelCase = sum(two_char_strings.values() ) _UpperCAmelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _UpperCAmelCase = cha + cha if sequence in two_char_strings: _UpperCAmelCase = two_char_strings[sequence] _UpperCAmelCase = int(__lowercase ) / all_sum my_sec_sum += prob * math.loga(__lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def UpperCAmelCase_ ( __lowercase : str ) -> tuple[dict, dict]: '''simple docstring''' _UpperCAmelCase = Counter() # type: ignore _UpperCAmelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
22
"""simple docstring""" import random def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = [], [], [] for element in data: if element < pivot: less.append(A_ ) elif element > pivot: greater.append(A_ ) else: equal.append(A_ ) return less, equal, greater def __SCREAMING_SNAKE_CASE ( A_ , A_ ): # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(A_ ) or index < 0: return None lowerCAmelCase__ : str = items[random.randint(0 , len(A_ ) - 1 )] lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = _partition(A_ , A_ ) lowerCAmelCase__ : str = len(A_ ) lowerCAmelCase__ : Optional[Any] = len(A_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(A_ , A_ ) # must be in larger else: return quick_select(A_ , index - (m + count) )
106
0
def lowercase( UpperCamelCase_ ) -> bool: '''simple docstring''' UpperCamelCase = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowercase( UpperCamelCase_ = 5000 ) -> int: '''simple docstring''' UpperCamelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , UpperCamelCase_ )] for i, pentagonal_i in enumerate(UpperCamelCase_ ): for j in range(UpperCamelCase_ , len(UpperCamelCase_ ) ): UpperCamelCase = pentagonal_nums[j] UpperCamelCase = pentagonal_i + pentagonal_j UpperCamelCase = pentagonal_j - pentagonal_i if is_pentagonal(UpperCamelCase_ ) and is_pentagonal(UpperCamelCase_ ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
371
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off _SCREAMING_SNAKE_CASE = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] _SCREAMING_SNAKE_CASE = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """whisper""" __lowerCAmelCase = ["""past_key_values"""] __lowerCAmelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowerCamelCase_ : Tuple=5_1865 , lowerCamelCase_ : Dict=80 , lowerCamelCase_ : str=6 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : Optional[int]=4 , lowerCamelCase_ : Optional[int]=1536 , lowerCamelCase_ : int=1536 , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : str=5_0257 , lowerCamelCase_ : Any=True , lowerCamelCase_ : int=True , lowerCamelCase_ : List[str]="gelu" , lowerCamelCase_ : int=256 , lowerCamelCase_ : str=0.0 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Any=0.0_2 , lowerCamelCase_ : str=False , lowerCamelCase_ : List[str]=1500 , lowerCamelCase_ : Dict=448 , lowerCamelCase_ : Tuple=5_0256 , lowerCamelCase_ : Tuple=5_0256 , lowerCamelCase_ : List[Any]=5_0256 , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Optional[int]=[220, 5_0256] , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : Dict=256 , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : List[Any]=0.0_5 , lowerCamelCase_ : Dict=10 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Tuple=0.0 , lowerCamelCase_ : str=10 , lowerCamelCase_ : Dict=0 , lowerCamelCase_ : Optional[int]=7 , **lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = num_mel_bins UpperCamelCase = d_model UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = encoder_ffn_dim UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = encoder_layers UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase = max_source_positions UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks UpperCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , suppress_tokens=lowerCamelCase_ , begin_suppress_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCamelCase = {0: """batch"""} else: UpperCamelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction="""inputs""" ) return common_inputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional["TensorType"] = None , lowerCamelCase_ : int = 2_2050 , lowerCamelCase_ : float = 5.0 , lowerCamelCase_ : int = 220 , ): """simple docstring""" UpperCamelCase = OrderedDict() UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase_ , framework=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , time_duration=lowerCamelCase_ , frequency=lowerCamelCase_ , ) UpperCamelCase = encoder_inputs["""input_features"""].shape[2] UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = encoder_inputs.pop("""input_features""" ) UpperCamelCase = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCamelCase = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def lowerCamelCase_ ( self : int ): """simple docstring""" return 1E-3
165
0
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class a__ ( unittest.TestCase ): def __magic_name__ ( self ): lowercase : Optional[int] = "ylacombe/bark-small" lowercase : List[str] = tempfile.mkdtemp() lowercase : List[str] = "en_speaker_1" lowercase : Any = "This is a test string" lowercase : Optional[Any] = "speaker_embeddings_path.json" lowercase : Any = "speaker_embeddings" def __magic_name__ ( self , **_a ): return AutoTokenizer.from_pretrained(self.checkpoint , **_a ) def __magic_name__ ( self ): shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ): lowercase : Optional[Any] = self.get_tokenizer() lowercase : Union[str, Any] = BarkProcessor(tokenizer=_a ) processor.save_pretrained(self.tmpdirname ) lowercase : List[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ): lowercase : Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase : Tuple = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase : Dict = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ): lowercase : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase : List[str] = 35 lowercase : str = 2 lowercase : Tuple = 8 lowercase : List[str] = { "semantic_prompt": np.ones(_a ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase : Optional[int] = processor(text=self.input_string , voice_preset=_a ) lowercase : str = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_a , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase : Optional[Any] = os.path.join(self.tmpdirname , "file.npz" ) np.savez(_a , **_a ) lowercase : Optional[Any] = processor(text=self.input_string , voice_preset=_a ) lowercase : Union[str, Any] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_a , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase : Dict = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.get_tokenizer() lowercase : Optional[Any] = BarkProcessor(tokenizer=_a ) lowercase : Dict = processor(text=self.input_string ) lowercase : str = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
202
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A : Dict = logging.get_logger(__name__) def __magic_name__ ( __snake_case : Any ) -> Any: lowercase : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase : Optional[int] = 1024 lowercase : Dict = 4096 lowercase : Union[str, Any] = 24 lowercase : str = 16 lowercase : Dict = [5, 11, 17, 23] lowercase : Any = [256, 512, 1024, 1024] lowercase : Optional[Any] = (1, 384, 384) if "ade" in checkpoint_url: lowercase : List[Any] = True lowercase : Union[str, Any] = 150 lowercase : Dict = "huggingface/label-files" lowercase : Optional[Any] = "ade20k-id2label.json" lowercase : Optional[int] = json.load(open(cached_download(hf_hub_url(__snake_case , __snake_case , repo_type="dataset" ) ) , "r" ) ) lowercase : List[Any] = {int(__snake_case ): v for k, v in idalabel.items()} lowercase : Optional[Any] = idalabel lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase : Optional[int] = [1, 150, 480, 480] return config, expected_shape def __magic_name__ ( __snake_case : Union[str, Any] ) -> Optional[int]: lowercase : Optional[Any] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def __magic_name__ ( __snake_case : Union[str, Any] ) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase : Tuple = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: lowercase : Tuple = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: lowercase : Optional[int] = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: lowercase : List[Any] = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: lowercase : str = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: lowercase : Any = name.replace("proj" , "projection" ) if "blocks" in name: lowercase : Tuple = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: lowercase : Optional[int] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowercase : str = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: lowercase : Dict = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowercase : Any = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: lowercase : Optional[Any] = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: lowercase : Optional[int] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: lowercase : Any = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: lowercase : Tuple = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: lowercase : int = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: lowercase : Union[str, Any] = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: lowercase : int = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase : Union[str, Any] = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: lowercase : Tuple = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: lowercase : Union[str, Any] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: lowercase : List[Any] = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: lowercase : Optional[int] = name.replace("conv1" , "convolution1" ) if "conv2" in name: lowercase : Union[str, Any] = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase : str = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase : Dict = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase : str = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowercase : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowercase : Union[str, Any] = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowercase : Optional[int] = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowercase : str = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowercase : str = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowercase : Any = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowercase : List[str] = name.replace("pretrained" , "dpt" ) if "bn" in name: lowercase : Optional[int] = name.replace("bn" , "batch_norm" ) if "head" in name: lowercase : Union[str, Any] = name.replace("head" , "head.head" ) if "encoder.norm" in name: lowercase : List[str] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: lowercase : Optional[Any] = name.replace("auxlayer" , "auxiliary_head.head" ) return name def __magic_name__ ( __snake_case : str , __snake_case : str ) -> Any: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Union[str, Any] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) lowercase : List[str] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase : int = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : int = in_proj_weight[ -config.hidden_size :, : ] lowercase : Tuple = in_proj_bias[-config.hidden_size :] def __magic_name__ ( ) -> int: lowercase : str = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase : str = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def __magic_name__ ( __snake_case : List[Any] , __snake_case : str , __snake_case : Tuple , __snake_case : Tuple ) -> Tuple: lowercase , lowercase : Tuple = get_dpt_config(__snake_case ) # load original state_dict from URL lowercase : List[Any] = torch.hub.load_state_dict_from_url(__snake_case , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__snake_case ) # rename keys for key in state_dict.copy().keys(): lowercase : Any = state_dict.pop(__snake_case ) lowercase : Optional[int] = val # read in qkv matrices read_in_q_k_v(__snake_case , __snake_case ) # load HuggingFace model lowercase : List[str] = DPTForSemanticSegmentation(__snake_case ) if "ade" in checkpoint_url else DPTForDepthEstimation(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Check outputs on an image lowercase : Any = 480 if "ade" in checkpoint_url else 384 lowercase : Optional[Any] = DPTImageProcessor(size=__snake_case ) lowercase : Any = prepare_img() lowercase : Union[str, Any] = image_processor(__snake_case , return_tensors="pt" ) # forward pass lowercase : Optional[int] = model(**__snake_case ).logits if "ade" in checkpoint_url else model(**__snake_case ).predicted_depth # Assert logits lowercase : Optional[int] = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] ) if "ade" in checkpoint_url: lowercase : List[str] = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] ) assert outputs.shape == torch.Size(__snake_case ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __snake_case , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __snake_case ) ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__snake_case , __snake_case ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=__snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(__snake_case , __snake_case ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=__snake_case , ) if __name__ == "__main__": _A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) _A : Dict = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
202
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __A : List[str] = logging.get_logger(__name__) __A : Tuple = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCAmelCase : int = model_type_to_module_name(_UpperCAmelCase ) lowerCAmelCase : Any = importlib.import_module(f".{module_name}", 'transformers.models' ) try: return getattr(_UpperCAmelCase, _UpperCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase, '__name__', _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCAmelCase : List[Any] = importlib.import_module('transformers' ) if hasattr(_UpperCAmelCase, _UpperCAmelCase ): return getattr(_UpperCAmelCase, _UpperCAmelCase ) return None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' lowerCAmelCase : Any = get_file_from_repo( _UpperCAmelCase, _UpperCAmelCase, cache_dir=_UpperCAmelCase, force_download=_UpperCAmelCase, resume_download=_UpperCAmelCase, proxies=_UpperCAmelCase, use_auth_token=_UpperCAmelCase, revision=_UpperCAmelCase, local_files_only=_UpperCAmelCase, ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(_UpperCAmelCase, encoding='utf-8' ) as reader: return json.load(_UpperCAmelCase ) class __A : def __init__( self : Tuple ): raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(UpperCAmelCase_ ) def lowercase__ ( cls : Any , UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = kwargs.pop('config' , UpperCAmelCase_ ) lowerCAmelCase : int = kwargs.pop('trust_remote_code' , UpperCAmelCase_ ) lowerCAmelCase : int = True lowerCAmelCase : str = FeatureExtractionMixin.get_feature_extractor_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = config_dict.get('feature_extractor_type' , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): lowerCAmelCase : List[str] = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : str = AutoConfig.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) # It could be in `config.feature_extractor_type`` lowerCAmelCase : Any = getattr(UpperCAmelCase_ , 'feature_extractor_type' , UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: lowerCAmelCase : Optional[int] = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: lowerCAmelCase : Optional[int] = feature_extractor_class_from_name(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = feature_extractor_auto_map is not None lowerCAmelCase : Dict = feature_extractor_class is not None or type(UpperCAmelCase_ ) in FEATURE_EXTRACTOR_MAPPING lowerCAmelCase : Dict = resolve_trust_remote_code( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if has_remote_code and trust_remote_code: lowerCAmelCase : Any = get_class_from_dynamic_module( UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = kwargs.pop('code_revision' , UpperCAmelCase_ ) if os.path.isdir(UpperCAmelCase_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(UpperCAmelCase_ ) in FEATURE_EXTRACTOR_MAPPING: lowerCAmelCase : Union[str, Any] = FEATURE_EXTRACTOR_MAPPING[type(UpperCAmelCase_ )] return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) raise ValueError( f"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " f"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}" ) @staticmethod def lowercase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ): FEATURE_EXTRACTOR_MAPPING.register(UpperCAmelCase_ , UpperCAmelCase_ )
351
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
1
'''simple docstring''' import torch from torch import nn class UpperCAmelCase ( nn.Module): def __init__( self : List[str], a_ : Optional[Any], a_ : List[Any], a_ : Union[str, Any], a_ : Union[str, Any], a_ : List[Any]=1, a_ : List[str]=False ): """simple docstring""" super().__init__() UpperCamelCase__ = n_token UpperCamelCase__ = d_embed UpperCamelCase__ = d_proj UpperCamelCase__ = cutoffs + [n_token] UpperCamelCase__ = [0] + self.cutoffs UpperCamelCase__ = div_val UpperCamelCase__ = self.cutoffs[0] UpperCamelCase__ = len(self.cutoffs ) - 1 UpperCamelCase__ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCamelCase__ = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed ) ) UpperCamelCase__ = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCamelCase__ = nn.ModuleList() UpperCamelCase__ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a_, a_ ) ) ) else: self.out_projs.append(a_ ) self.out_layers.append(nn.Linear(a_, a_ ) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase__ , UpperCamelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a_, a_ ) ) ) self.out_layers.append(nn.Linear(a_, r_idx - l_idx ) ) UpperCamelCase__ = keep_order def lowercase_ ( self : Tuple, a_ : Dict, a_ : Tuple, a_ : str, a_ : Union[str, Any] ): """simple docstring""" if proj is None: UpperCamelCase__ = nn.functional.linear(a_, a_, bias=a_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCamelCase__ = nn.functional.linear(a_, proj.t().contiguous() ) UpperCamelCase__ = nn.functional.linear(a_, a_, bias=a_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowercase_ ( self : Union[str, Any], a_ : Union[str, Any], a_ : List[Any]=None, a_ : List[Any]=False ): """simple docstring""" if labels is not None: # Shift so that tokens < n predict n UpperCamelCase__ = hidden[..., :-1, :].contiguous() UpperCamelCase__ = labels[..., 1:].contiguous() UpperCamelCase__ = hidden.view(-1, hidden.size(-1 ) ) UpperCamelCase__ = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: UpperCamelCase__ = hidden.view(-1, hidden.size(-1 ) ) if self.n_clusters == 0: UpperCamelCase__ = self._compute_logit(a_, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0] ) if labels is not None: UpperCamelCase__ = labels != -100 UpperCamelCase__ = torch.zeros_like(a_, dtype=hidden.dtype, device=hidden.device ) UpperCamelCase__ = ( -nn.functional.log_softmax(a_, dim=-1 )[mask].gather(1, labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCamelCase__ = nn.functional.log_softmax(a_, dim=-1 ) else: # construct weights and biases UpperCamelCase__ , UpperCamelCase__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase__ , UpperCamelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase__ = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase__ = self.out_layers[i].weight UpperCamelCase__ = self.out_layers[i].bias if i == 0: UpperCamelCase__ = torch.cat([weight_i, self.cluster_weight], dim=0 ) UpperCamelCase__ = torch.cat([bias_i, self.cluster_bias], dim=0 ) weights.append(a_ ) biases.append(a_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = weights[0], biases[0], self.out_projs[0] UpperCamelCase__ = self._compute_logit(a_, a_, a_, a_ ) UpperCamelCase__ = nn.functional.log_softmax(a_, dim=1 ) if labels is None: UpperCamelCase__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCamelCase__ = torch.zeros_like(a_, dtype=hidden.dtype, device=hidden.device ) UpperCamelCase__ = 0 UpperCamelCase__ = [0] + self.cutoffs for i in range(len(a_ ) - 1 ): UpperCamelCase__ , UpperCamelCase__ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCamelCase__ = (labels >= l_idx) & (labels < r_idx) UpperCamelCase__ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCamelCase__ = labels.index_select(0, a_ ) - l_idx UpperCamelCase__ = head_logprob.index_select(0, a_ ) UpperCamelCase__ = hidden.index_select(0, a_ ) else: UpperCamelCase__ = hidden if i == 0: if labels is not None: UpperCamelCase__ = head_logprob_i.gather(1, target_i[:, None] ).squeeze(1 ) else: UpperCamelCase__ = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = weights[i], biases[i], self.out_projs[i] UpperCamelCase__ = self._compute_logit(a_, a_, a_, a_ ) UpperCamelCase__ = nn.functional.log_softmax(a_, dim=1 ) UpperCamelCase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCamelCase__ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1, target_i[:, None] ).squeeze(1 ) else: UpperCamelCase__ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCamelCase__ = logprob_i if labels is not None: if (hasattr(self, "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0, a_, -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowercase_ ( self : Tuple, a_ : Optional[Any] ): """simple docstring""" if self.n_clusters == 0: UpperCamelCase__ = self._compute_logit(a_, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0] ) return nn.functional.log_softmax(a_, dim=-1 ) else: # construct weights and biases UpperCamelCase__ , UpperCamelCase__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase__ , UpperCamelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase__ = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase__ = self.out_layers[i].weight UpperCamelCase__ = self.out_layers[i].bias if i == 0: UpperCamelCase__ = torch.cat([weight_i, self.cluster_weight], dim=0 ) UpperCamelCase__ = torch.cat([bias_i, self.cluster_bias], dim=0 ) weights.append(a_ ) biases.append(a_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = weights[0], biases[0], self.out_projs[0] UpperCamelCase__ = self._compute_logit(a_, a_, a_, a_ ) UpperCamelCase__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCamelCase__ = nn.functional.log_softmax(a_, dim=1 ) UpperCamelCase__ = [0] + self.cutoffs for i in range(len(a_ ) - 1 ): UpperCamelCase__ , UpperCamelCase__ = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCamelCase__ = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = weights[i], biases[i], self.out_projs[i] UpperCamelCase__ = self._compute_logit(a_, a_, a_, a_ ) UpperCamelCase__ = nn.functional.log_softmax(a_, dim=1 ) UpperCamelCase__ = head_logprob[:, -i] + tail_logprob_i UpperCamelCase__ = logprob_i return out
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = 0 while len(_UpperCamelCase ) > 1: UpperCamelCase__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCamelCase__ = files.index(min(_UpperCamelCase ) ) temp += files[min_index] files.pop(_UpperCamelCase ) files.append(_UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
31
1
"""simple docstring""" import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ProphetNetTokenizer __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self ) -> List[str]: super().setUp() a =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Tuple: a ='''UNwant\u00E9d,running''' a ='''unwanted, running''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.tokenizer_class(self.vocab_file ) a =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , [9, 6, 7, 12, 10, 11] ) def SCREAMING_SNAKE_CASE ( self ) -> Any: a =BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =BasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =BasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =BasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =BasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =BasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =BasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =BasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE ( self ) -> Any: a =BasicTokenizer(do_lower_case=__A , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] a ={} for i, token in enumerate(__A ): a =i a =WordpieceTokenizer(vocab=__A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> int: a =self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) a =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] a =[1037, 2146, 2_0423, 2005, 7680, 7849, 3989, 1012, 102] a =tokenizer(__A , padding=__A , return_tensors='''pt''' ) self.assertIsInstance(__A , __A ) a =list(batch.input_ids.numpy()[0] ) self.assertListEqual(__A , __A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def SCREAMING_SNAKE_CASE ( self ) -> int: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) a =tokenizer.encode('''sequence builders''' , add_special_tokens=__A ) a =tokenizer.encode('''multi-sequence build''' , add_special_tokens=__A ) a =tokenizer.build_inputs_with_special_tokens(__A ) a =tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
81
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def lowerCamelCase ( __lowerCamelCase : str ) ->str: if not sentence: return "" _SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , __lowerCamelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
58
0
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowercase__ = CLIPTokenizer lowercase__ = CLIPTokenizerFast lowercase__ = True lowercase__ = {} lowercase__ = False def UpperCAmelCase_ ( self : Tuple ) -> Dict: '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase =['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __UpperCamelCase =dict(zip(a_ , range(len(a_ ) ) ) ) __UpperCamelCase =['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] __UpperCamelCase ={'''unk_token''': '''<unk>'''} __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a_ ) ) def UpperCAmelCase_ ( self : Optional[Any] , **UpperCamelCase__ : str ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase_ ( self : str , **UpperCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase ='''lower newer''' __UpperCamelCase ='''lower newer''' return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase ='''lower newer''' __UpperCamelCase =['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] __UpperCamelCase =tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) __UpperCamelCase =tokens + [tokenizer.unk_token] __UpperCamelCase =[10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) @require_ftfy def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase =self.tokenizer_class.from_pretrained(a_ , **a_ ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) __UpperCamelCase ='''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' __UpperCamelCase =tokenizer_s.tokenize(a_ ) __UpperCamelCase =tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __UpperCamelCase ='''xa\u0303y''' + ''' ''' + '''x\xe3y''' __UpperCamelCase =tokenizer_s.tokenize(a_ ) __UpperCamelCase =tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on unicode of space type __UpperCamelCase =[ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __UpperCamelCase =tokenizer_s.tokenize(a_ ) __UpperCamelCase =tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on unicode of line break type __UpperCamelCase =[ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __UpperCamelCase =tokenizer_s.tokenize(a_ ) __UpperCamelCase =tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase ='''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCamelCase =f"""{text_of_1_token} {text_of_1_token}""" __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , ) __UpperCamelCase =tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )) , ) __UpperCamelCase =f""" {text}""" __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , ) __UpperCamelCase =tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )) , ) def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' super().test_tokenization_python_rust_equals() def UpperCAmelCase_ ( self : List[str] ) -> Tuple: '''simple docstring''' pass
359
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : int = 1_0_0_0 ): """simple docstring""" __UpperCamelCase =-1 __UpperCamelCase =0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __UpperCamelCase =(n * n - 2 * a * n) // (2 * n - 2 * a) __UpperCamelCase =n - a - b if c * c == (a * a + b * b): __UpperCamelCase =a * b * c if candidate >= product: __UpperCamelCase =candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
85
0
import functools def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not all(isinstance(lowercase_ , lowercase_ ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(lowercase_ ) != 3 or not all(isinstance(lowercase_ , lowercase_ ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(lowercase_ ) == 0: return 0 if min(lowercase_ ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(lowercase_ ) >= 366: raise ValueError('''All days elements should be less than 366''' ) A__ = set(lowercase_ ) @functools.cache def dynamic_programming(lowercase_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
14
"""simple docstring""" def __lowercase ( _a , _a , _a=False ): if isinstance(_a , _a ) and isinstance(_a , _a ): snake_case_ : Union[str, Any] = len(set_a.intersection(_a ) ) if alternative_union: snake_case_ : Any = len(_a ) + len(_a ) else: snake_case_ : str = len(set_a.union(_a ) ) return intersection / union if isinstance(_a , (list, tuple) ) and isinstance(_a , (list, tuple) ): snake_case_ : str = [element for element in set_a if element in set_b] if alternative_union: snake_case_ : Tuple = len(_a ) + len(_a ) return len(_a ) / union else: snake_case_ : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(_a ) / len(_a ) return len(_a ) / len(_a ) return None if __name__ == "__main__": lowercase__ : Any = {'''a''', '''b''', '''c''', '''d''', '''e'''} lowercase__ : Optional[Any] = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
264
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class _lowercase ( SCREAMING_SNAKE_CASE_ ): lowercase = 'canine' def __init__( self : Optional[int] , snake_case : Union[str, Any]=7_6_8 , snake_case : Optional[int]=1_2 , snake_case : Optional[int]=1_2 , snake_case : List[str]=3_0_7_2 , snake_case : List[str]="gelu" , snake_case : Union[str, Any]=0.1 , snake_case : str=0.1 , snake_case : List[str]=1_6_3_8_4 , snake_case : Union[str, Any]=1_6 , snake_case : List[Any]=0.02 , snake_case : List[Any]=1e-12 , snake_case : List[str]=0 , snake_case : Dict=0XE000 , snake_case : List[str]=0XE001 , snake_case : Union[str, Any]=4 , snake_case : Dict=4 , snake_case : Optional[int]=8 , snake_case : Tuple=1_6_3_8_4 , snake_case : Optional[int]=1_2_8 , **snake_case : int , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) UpperCamelCase_ : Union[str, Any] = max_position_embeddings UpperCamelCase_ : Dict = hidden_size UpperCamelCase_ : Union[str, Any] = num_hidden_layers UpperCamelCase_ : Tuple = num_attention_heads UpperCamelCase_ : List[Any] = intermediate_size UpperCamelCase_ : str = hidden_act UpperCamelCase_ : Union[str, Any] = hidden_dropout_prob UpperCamelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase_ : Optional[Any] = initializer_range UpperCamelCase_ : int = type_vocab_size UpperCamelCase_ : Any = layer_norm_eps # Character config: UpperCamelCase_ : Optional[int] = downsampling_rate UpperCamelCase_ : List[str] = upsampling_kernel_size UpperCamelCase_ : List[Any] = num_hash_functions UpperCamelCase_ : List[Any] = num_hash_buckets UpperCamelCase_ : Any = local_transformer_stride
350
import numpy # List of input, output pairs a_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) a_ = (((515, 22, 13), 555), ((61, 35, 49), 150)) a_ = [2, 4, 1, 5] a_ = len(train_data) a_ = 0.009 def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : Any="train" ): return calculate_hypothesis_value(lowerCamelCase , lowerCamelCase ) - output( lowerCamelCase , lowerCamelCase ) def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : List[str] = 0 for i in range(len(lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __lowercase ( lowerCamelCase : int , lowerCamelCase : Any ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict=m ): UpperCamelCase_ : str = 0 for i in range(lowerCamelCase ): if index == -1: summation_value += _error(lowerCamelCase ) else: summation_value += _error(lowerCamelCase ) * train_data[i][0][index] return summation_value def __lowercase ( lowerCamelCase : int ): UpperCamelCase_ : List[str] = summation_of_cost_derivative(lowerCamelCase , lowerCamelCase ) / m return cost_derivative_value def __lowercase ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase_ : Optional[int] = 0.0_0_0_0_0_2 UpperCamelCase_ : Optional[int] = 0 UpperCamelCase_ : Union[str, Any] = 0 while True: j += 1 UpperCamelCase_ : Dict = [0, 0, 0, 0] for i in range(0 , len(lowerCamelCase ) ): UpperCamelCase_ : Any = get_cost_derivative(i - 1 ) UpperCamelCase_ : List[str] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase , lowerCamelCase , atol=lowerCamelCase , rtol=lowerCamelCase , ): break UpperCamelCase_ : Optional[Any] = temp_parameter_vector print(('Number of iterations:', j) ) def __lowercase ( ): for i in range(len(lowerCamelCase ) ): print(('Actual output value:', output(lowerCamelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(lowerCamelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
50
0
from bisect import bisect from itertools import accumulate def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = sorted(zip(lowercase__ , lowercase__ ) , key=lambda lowercase__ : x[0] / x[1] , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = [i[0] for i in r], [i[1] for i in r] __SCREAMING_SNAKE_CASE : Dict = list(accumulate(lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = bisect(lowercase__ , lowercase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
9
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__): """simple docstring""" UpperCamelCase__ = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self: Tuple , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 5_0257 , __lowerCamelCase: int = 1024 , __lowerCamelCase: int = 768 , __lowerCamelCase: int = 12 , __lowerCamelCase: int = 12 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: str = "gelu_new" , __lowerCamelCase: float = 0.1 , __lowerCamelCase: float = 0.1 , __lowerCamelCase: float = 0.1 , __lowerCamelCase: float = 1e-5 , __lowerCamelCase: float = 0.02 , __lowerCamelCase: bool = True , __lowerCamelCase: bool = True , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' super().__init__() UpperCamelCase__: Union[str, Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" F" `n_embd`: {n_embd} are not equal." ) UpperCamelCase__: List[str] = prefix_inner_dim UpperCamelCase__: Optional[int] = prefix_hidden_dim UpperCamelCase__: Dict = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCamelCase__: Tuple = ( nn.Linear(self.prefix_hidden_dim , __lowerCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCamelCase__: List[str] = GPTaConfig( vocab_size=__lowerCamelCase , n_positions=__lowerCamelCase , n_embd=__lowerCamelCase , n_layer=__lowerCamelCase , n_head=__lowerCamelCase , n_inner=__lowerCamelCase , activation_function=__lowerCamelCase , resid_pdrop=__lowerCamelCase , embd_pdrop=__lowerCamelCase , attn_pdrop=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , initializer_range=__lowerCamelCase , scale_attn_weights=__lowerCamelCase , use_cache=__lowerCamelCase , scale_attn_by_inverse_layer_idx=__lowerCamelCase , reorder_and_upcast_attn=__lowerCamelCase , ) UpperCamelCase__: Any = GPTaLMHeadModel(__lowerCamelCase ) def UpperCAmelCase_ ( self: int , __lowerCamelCase: torch.Tensor , __lowerCamelCase: torch.Tensor , __lowerCamelCase: Optional[torch.Tensor] = None , __lowerCamelCase: Optional[torch.Tensor] = None , ): '''simple docstring''' UpperCamelCase__: Optional[int] = self.transformer.transformer.wte(__lowerCamelCase ) UpperCamelCase__: Dict = self.encode_prefix(__lowerCamelCase ) UpperCamelCase__: List[Any] = self.decode_prefix(__lowerCamelCase ) UpperCamelCase__: str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: UpperCamelCase__: Union[str, Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) UpperCamelCase__: Any = torch.cat((dummy_token, input_ids) , dim=1 ) UpperCamelCase__: str = self.transformer(inputs_embeds=__lowerCamelCase , labels=__lowerCamelCase , attention_mask=__lowerCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCAmelCase_ ( self: Any , __lowerCamelCase: int , __lowerCamelCase: torch.device ): '''simple docstring''' return torch.zeros(__lowerCamelCase , self.prefix_length , dtype=torch.intaa , device=__lowerCamelCase ) def UpperCAmelCase_ ( self: Union[str, Any] , __lowerCamelCase: List[Any] ): '''simple docstring''' return self.encode_prefix(__lowerCamelCase ) @torch.no_grad() def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: List[str] ): '''simple docstring''' UpperCamelCase__: Any = torch.split(__lowerCamelCase , 1 , dim=0 ) UpperCamelCase__: Dict = [] UpperCamelCase__: Union[str, Any] = [] for feature in features: UpperCamelCase__: Tuple = self.decode_prefix(feature.to(__lowerCamelCase ) ) # back to the clip feature # Only support beam search for now UpperCamelCase__ , UpperCamelCase__: List[Any] = self.generate_beam( input_embeds=__lowerCamelCase , device=__lowerCamelCase , eos_token_id=__lowerCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) UpperCamelCase__: str = torch.stack(__lowerCamelCase ) UpperCamelCase__: str = torch.stack(__lowerCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCAmelCase_ ( self: str , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Dict=None , __lowerCamelCase: int = 5 , __lowerCamelCase: int = 67 , __lowerCamelCase: float = 1.0 , __lowerCamelCase: Optional[int] = None , ): '''simple docstring''' UpperCamelCase__: Tuple = eos_token_id UpperCamelCase__: List[str] = None UpperCamelCase__: Any = None UpperCamelCase__: Optional[int] = torch.ones(__lowerCamelCase , device=__lowerCamelCase , dtype=torch.int ) UpperCamelCase__: Dict = torch.zeros(__lowerCamelCase , device=__lowerCamelCase , dtype=torch.bool ) if input_embeds is not None: UpperCamelCase__: Dict = input_embeds else: UpperCamelCase__: Optional[int] = self.transformer.transformer.wte(__lowerCamelCase ) for i in range(__lowerCamelCase ): UpperCamelCase__: Union[str, Any] = self.transformer(inputs_embeds=__lowerCamelCase ) UpperCamelCase__: Tuple = outputs.logits UpperCamelCase__: Dict = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCamelCase__: List[str] = logits.softmax(-1 ).log() if scores is None: UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = logits.topk(__lowerCamelCase , -1 ) UpperCamelCase__: str = generated.expand(__lowerCamelCase , *generated.shape[1:] ) UpperCamelCase__ , UpperCamelCase__: Dict = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: UpperCamelCase__: int = next_tokens else: UpperCamelCase__: Optional[int] = tokens.expand(__lowerCamelCase , *tokens.shape[1:] ) UpperCamelCase__: str = torch.cat((tokens, next_tokens) , dim=1 ) else: UpperCamelCase__: Optional[Any] = -float(np.inf ) UpperCamelCase__: Any = 0 UpperCamelCase__: List[str] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCamelCase__: Any = scores_sum / seq_lengths[:, None] UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = scores_sum_average.view(-1 ).topk(__lowerCamelCase , -1 ) UpperCamelCase__: Dict = next_tokens // scores_sum.shape[1] UpperCamelCase__: Optional[int] = seq_lengths[next_tokens_source] UpperCamelCase__: int = next_tokens % scores_sum.shape[1] UpperCamelCase__: Optional[int] = next_tokens.unsqueeze(1 ) UpperCamelCase__: Tuple = tokens[next_tokens_source] UpperCamelCase__: Tuple = torch.cat((tokens, next_tokens) , dim=1 ) UpperCamelCase__: List[Any] = generated[next_tokens_source] UpperCamelCase__: int = scores_sum_average * seq_lengths UpperCamelCase__: Dict = is_stopped[next_tokens_source] UpperCamelCase__: List[str] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) UpperCamelCase__: Any = torch.cat((generated, next_token_embed) , dim=1 ) UpperCamelCase__: Union[str, Any] = is_stopped + next_tokens.eq(__lowerCamelCase ).squeeze() if is_stopped.all(): break UpperCamelCase__: Optional[Any] = scores / seq_lengths UpperCamelCase__: int = scores.argsort(descending=__lowerCamelCase ) # tokens tensors are already padded to max_seq_length UpperCamelCase__: Dict = [tokens[i] for i in order] UpperCamelCase__: Any = torch.stack(__lowerCamelCase , dim=0 ) UpperCamelCase__: int = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
149
0
from collections import defaultdict def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = first_str.lower().strip() lowerCamelCase_ = second_str.lower().strip() # Remove whitespace lowerCamelCase_ = first_str.replace(" " , "" ) lowerCamelCase_ = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): return False # Default values for count should be 0 lowerCamelCase_ = defaultdict(lowerCamelCase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowerCamelCase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __A =input('''Enter the first string ''').strip() __A =input('''Enter the second string ''').strip() __A =check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
47
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.0_2 , lowercase=3 , lowercase=4 , lowercase=None , ) -> Optional[int]: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_( self ) -> Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: lowerCamelCase_ = BioGptModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , attention_mask=lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Any: lowerCamelCase_ = BioGptForCausalLM(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Tuple: lowerCamelCase_ = BioGptModel(config=lowercase ) model.to(lowercase ) model.eval() # create attention mask lowerCamelCase_ = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase ) lowerCamelCase_ = self.seq_length // 2 lowerCamelCase_ = 0 # first forward pass lowerCamelCase_ , lowerCamelCase_ = model(lowercase , attention_mask=lowercase ).to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids lowerCamelCase_ = ids_tensor((1,) , lowercase ).item() + 1 lowerCamelCase_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) lowerCamelCase_ = random_other_next_tokens # append to next input_ids and attn_mask lowerCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase )] , dim=1 , ) # get two different outputs lowerCamelCase_ = model(lowercase , attention_mask=lowercase )["last_hidden_state"] lowerCamelCase_ = model(lowercase , past_key_values=lowercase , attention_mask=lowercase )["last_hidden_state"] # select random slice lowerCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Dict: lowerCamelCase_ = BioGptModel(config=lowercase ).to(lowercase ).eval() lowerCamelCase_ = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase ) # first forward pass lowerCamelCase_ = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) lowerCamelCase_ , lowerCamelCase_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCamelCase_ = model(lowercase , attention_mask=lowercase )["last_hidden_state"] lowerCamelCase_ = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[ "last_hidden_state" ] # select random slice lowerCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase , lowercase=False ) -> Optional[int]: lowerCamelCase_ = BioGptForCausalLM(lowercase ) model.to(lowercase ) if gradient_checkpointing: model.gradient_checkpointing_enable() lowerCamelCase_ = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def SCREAMING_SNAKE_CASE_( self , lowercase , *lowercase ) -> List[Any]: lowerCamelCase_ = BioGptModel(lowercase ) lowerCamelCase_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Any: lowerCamelCase_ = self.num_labels lowerCamelCase_ = BioGptForTokenClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowerCAmelCase__ = (BioGptForCausalLM,) if is_torch_available() else () lowerCAmelCase__ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = BioGptModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ = type self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase , gradient_checkpointing=lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(lowercase ) lowerCamelCase_ = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) lowerCamelCase_ = "left" # Define PAD Token = EOS Token = 50256 lowerCamelCase_ = tokenizer.eos_token lowerCamelCase_ = model.config.eos_token_id # use different length sentences to test batching lowerCamelCase_ = [ "Hello, my dog is a little", "Today, I", ] lowerCamelCase_ = tokenizer(lowercase , return_tensors="pt" , padding=lowercase ) lowerCamelCase_ = inputs["input_ids"].to(lowercase ) lowerCamelCase_ = model.generate( input_ids=lowercase , attention_mask=inputs["attention_mask"].to(lowercase ) , ) lowerCamelCase_ = tokenizer(sentences[0] , return_tensors="pt" ).input_ids.to(lowercase ) lowerCamelCase_ = model.generate(input_ids=lowercase ) lowerCamelCase_ = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() lowerCamelCase_ = tokenizer(sentences[1] , return_tensors="pt" ).input_ids.to(lowercase ) lowerCamelCase_ = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) lowerCamelCase_ = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) lowerCamelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) lowerCamelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) lowerCamelCase_ = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) @slow def SCREAMING_SNAKE_CASE_( self ) -> int: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = BioGptModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = input_dict["input_ids"] lowerCamelCase_ = input_ids.ne(1 ).to(lowercase ) lowerCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase_ = BioGptForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = "multi_label_classification" lowerCamelCase_ = input_dict["input_ids"] lowerCamelCase_ = input_ids.ne(1 ).to(lowercase ) lowerCamelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase_ = BioGptForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) lowerCamelCase_ = torch.tensor([[2, 4805, 9, 656, 21]] ) lowerCamelCase_ = model(lowercase )[0] lowerCamelCase_ = 42384 lowerCamelCase_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , lowercase ) lowerCamelCase_ = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) lowerCamelCase_ = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(lowercase ) torch.manual_seed(0 ) lowerCamelCase_ = tokenizer("COVID-19 is" , return_tensors="pt" ).to(lowercase ) lowerCamelCase_ = model.generate( **lowercase , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=lowercase , ) lowerCamelCase_ = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase ) lowerCamelCase_ = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(lowercase , lowercase )
47
1
import math def A_ ( _UpperCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A_ ( _UpperCAmelCase = 1_00_01 ): try: SCREAMING_SNAKE_CASE_: Any = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) SCREAMING_SNAKE_CASE_: list[int] = [] SCREAMING_SNAKE_CASE_: str = 2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
13
def lowerCamelCase__ ( _a , _a): _validate_point(_a) _validate_point(_a) if len(_a) != len(_a): raise ValueError("Both points must be in the same n-dimensional space") return float(sum(abs(a - b) for a, b in zip(_a , _a))) def lowerCamelCase__ ( _a): if point: if isinstance(_a , _a): for item in point: if not isinstance(_a , (int, float)): SCREAMING_SNAKE_CASE : List[Any] = ( "Expected a list of numbers as input, found " f"{type(_a).__name__}" ) raise TypeError(_a) else: SCREAMING_SNAKE_CASE : List[Any] = f"Expected a list of numbers as input, found {type(_a).__name__}" raise TypeError(_a) else: raise ValueError("Missing an input") def lowerCamelCase__ ( _a , _a): _validate_point(_a) _validate_point(_a) if len(_a) != len(_a): raise ValueError("Both points must be in the same n-dimensional space") return float(sum(abs(x - y) for x, y in zip(_a , _a))) if __name__ == "__main__": import doctest doctest.testmod()
76
0
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class a ( unittest.TestCase ): @slow def __UpperCAmelCase ( self ) -> Tuple: _a = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) _a = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(lowerCAmelCase_ ) from datasets import load_dataset _a = load_dataset('nielsr/rvlcdip-demo' ) _a = dataset['train'][0]['image'].convert('RGB' ) _a = image_processor(lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _a = model(**lowerCAmelCase_ ) _a = outputs.logits _a = torch.Size((1, 16) ) self.assertEqual(logits.shape , lowerCAmelCase_ ) _a = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=lowerCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
365
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _A () -> Optional[Any]: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase__ ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def _A () -> Any: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def _A () -> Dict: '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase__ ): http_head('https://huggingface.co' )
104
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowercase : Dict = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : List[str] = os.path.abspath(SCREAMING_SNAKE_CASE__ ) logger.info(f"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model lowercase : Optional[Any] = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = [] lowercase : List[Any] = [] lowercase : str = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowercase : List[str] = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(f"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' lowercase : List[Any] = name[1:] # figure out how many levels deep the name is lowercase : int = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(SCREAMING_SNAKE_CASE__ ) # read data lowercase : List[Any] = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) names.append("""/""".join(SCREAMING_SNAKE_CASE__ ) ) arrays.append(SCREAMING_SNAKE_CASE__ ) logger.info(f"Read a total of {len(SCREAMING_SNAKE_CASE__ ):,} layers" ) # Sanity check if len(set(SCREAMING_SNAKE_CASE__ ) ) != 1: raise ValueError(f"Found layer names with different depths (layer depth {list(set(SCREAMING_SNAKE_CASE__ ) )})" ) lowercase : Union[str, Any] = list(set(SCREAMING_SNAKE_CASE__ ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = full_name.split("""/""" ) lowercase : int = model lowercase : List[Any] = [] for i, m_name in enumerate(SCREAMING_SNAKE_CASE__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): lowercase : Tuple = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) lowercase : Any = getattr(SCREAMING_SNAKE_CASE__ , """embeddings""" ) lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE__ , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """encoder""" ) lowercase : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , """layer""" ) lowercase : Dict = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , """pooler""" ) lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) lowercase : int = getattr(SCREAMING_SNAKE_CASE__ , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) lowercase : str = getattr(SCREAMING_SNAKE_CASE__ , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) lowercase : Tuple = getattr(SCREAMING_SNAKE_CASE__ , """token_type_embeddings""" ) else: raise ValueError(f"Unknown embedding layer with name {full_name}" ) trace.append("""weight""" ) lowercase : int = getattr(SCREAMING_SNAKE_CASE__ , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) lowercase : Any = getattr(SCREAMING_SNAKE_CASE__ , """attention""" ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) lowercase : Tuple = getattr(SCREAMING_SNAKE_CASE__ , """attention""" ) lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) lowercase : str = getattr(SCREAMING_SNAKE_CASE__ , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE__ , """attention""" ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) lowercase : str = getattr(SCREAMING_SNAKE_CASE__ , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) lowercase : str = getattr(SCREAMING_SNAKE_CASE__ , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) lowercase : int = getattr(SCREAMING_SNAKE_CASE__ , """intermediate""" ) lowercase : int = getattr(SCREAMING_SNAKE_CASE__ , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE__ , """weight""" ) else: logger.warning(f"Ignored {m_name}" ) # for certain layers reshape is necessary lowercase : List[Any] = """.""".join(SCREAMING_SNAKE_CASE__ ) if re.match(R"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , SCREAMING_SNAKE_CASE__ ) or re.match( R"""(\S+)\.attention\.output\.dense\.weight""" , SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowercase : str = array.transpose() if pointer.shape == array.shape: lowercase : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) else: raise ValueError( f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" f" {array.shape}" ) logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: # Instantiate model logger.info(f"Loading model based on config from {config_path}..." ) lowercase : Any = BertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = BertModel(SCREAMING_SNAKE_CASE__ ) # Load weights from checkpoint logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model logger.info(f"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) lowercase : str = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
20
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive '''simple docstring''' lowerCamelCase_ : Tuple = len(_lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase_ : Union[str, Any] = array[0] lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]] lowerCamelCase_ : List[str] = longest_subsequence(_lowercase ) if len(_lowercase ) > len(_lowercase ): lowerCamelCase_ : Any = temp_array else: i += 1 lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot] lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )] if len(_lowercase ) > len(_lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
318
0
from numpy import exp, pi, sqrt def UpperCAmelCase_ (_lowerCAmelCase : str , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : float = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
171
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowercase : Dict = (720, 1280) # Height, Width lowercase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it. lowercase : Tuple = 1 / 100 lowercase : Optional[int] = "" lowercase : Any = "" lowercase : Union[str, Any] = "" lowercase : str = 250 def UpperCAmelCase_ (): __UpperCamelCase , __UpperCamelCase : Dict = get_dataset(_lowerCAmelCase , _lowerCAmelCase ) for index in range(_lowerCAmelCase ): __UpperCamelCase : Optional[int] = random.sample(range(len(_lowerCAmelCase ) ) , 4 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = update_image_and_anno( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , filter_scale=_lowerCAmelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCamelCase : List[str] = random_chars(32 ) __UpperCamelCase : int = path.split(os.sep )[-1].rsplit("." , 1 )[0] __UpperCamelCase : Dict = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , _lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) __UpperCamelCase : str = [] for anno in new_annos: __UpperCamelCase : List[str] = anno[3] - anno[1] __UpperCamelCase : Union[str, Any] = anno[4] - anno[2] __UpperCamelCase : List[str] = anno[1] + width / 2 __UpperCamelCase : str = anno[2] + height / 2 __UpperCamelCase : List[str] = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(_lowerCAmelCase ) with open(F'''{file_root}.txt''' , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def UpperCAmelCase_ (_lowerCAmelCase : str , _lowerCAmelCase : str ): __UpperCamelCase : int = [] __UpperCamelCase : Dict = [] for label_file in glob.glob(os.path.join(_lowerCAmelCase , "*.txt" ) ): __UpperCamelCase : Any = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_lowerCAmelCase ) as in_file: __UpperCamelCase : Any = in_file.readlines() __UpperCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , F'''{label_name}.jpg''' ) __UpperCamelCase : Dict = [] for obj_list in obj_lists: __UpperCamelCase : Optional[int] = obj_list.rstrip("\n" ).split(" " ) __UpperCamelCase : int = float(obj[1] ) - float(obj[3] ) / 2 __UpperCamelCase : Any = float(obj[2] ) - float(obj[4] ) / 2 __UpperCamelCase : Any = float(obj[1] ) + float(obj[3] ) / 2 __UpperCamelCase : Optional[int] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_lowerCAmelCase ) labels.append(_lowerCAmelCase ) return img_paths, labels def UpperCAmelCase_ (_lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : list[int] , _lowerCAmelCase : tuple[int, int] , _lowerCAmelCase : tuple[float, float] , _lowerCAmelCase : float = 0.0 , ): __UpperCamelCase : Union[str, Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __UpperCamelCase : int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase : Optional[int] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase : Any = int(scale_x * output_size[1] ) __UpperCamelCase : str = int(scale_y * output_size[0] ) __UpperCamelCase : str = [] __UpperCamelCase : Optional[int] = [] for i, index in enumerate(_lowerCAmelCase ): __UpperCamelCase : Any = all_img_list[index] path_list.append(_lowerCAmelCase ) __UpperCamelCase : Dict = all_annos[index] __UpperCamelCase : Any = cva.imread(_lowerCAmelCase ) if i == 0: # top-left __UpperCamelCase : Dict = cva.resize(_lowerCAmelCase , (divid_point_x, divid_point_y) ) __UpperCamelCase : Optional[int] = img for bbox in img_annos: __UpperCamelCase : List[str] = bbox[1] * scale_x __UpperCamelCase : Dict = bbox[2] * scale_y __UpperCamelCase : Optional[Any] = bbox[3] * scale_x __UpperCamelCase : int = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __UpperCamelCase : Optional[Any] = cva.resize(_lowerCAmelCase , (output_size[1] - divid_point_x, divid_point_y) ) __UpperCamelCase : Dict = img for bbox in img_annos: __UpperCamelCase : List[Any] = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase : str = bbox[2] * scale_y __UpperCamelCase : Optional[int] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase : List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __UpperCamelCase : Dict = cva.resize(_lowerCAmelCase , (divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase : Tuple = img for bbox in img_annos: __UpperCamelCase : List[Any] = bbox[1] * scale_x __UpperCamelCase : str = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase : Dict = bbox[3] * scale_x __UpperCamelCase : List[str] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __UpperCamelCase : List[Any] = cva.resize( _lowerCAmelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase : Tuple = img for bbox in img_annos: __UpperCamelCase : Union[str, Any] = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase : Optional[int] = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase : Any = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __UpperCamelCase : Optional[int] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def UpperCAmelCase_ (_lowerCAmelCase : int ): assert number_char > 1, "The number of character should greater than 1" __UpperCamelCase : Optional[int] = ascii_lowercase + digits return "".join(random.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
171
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''data2vec-audio''' def __init__( self: Tuple , UpperCamelCase_: Dict=32 , UpperCamelCase_: List[Any]=768 , UpperCamelCase_: int=12 , UpperCamelCase_: List[str]=12 , UpperCamelCase_: str=3_072 , UpperCamelCase_: str="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: int=0.1 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: str=0.1 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: str="gelu" , UpperCamelCase_: Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase_: str=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase_: Any=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase_: int=False , UpperCamelCase_: List[str]=16 , UpperCamelCase_: List[str]=19 , UpperCamelCase_: Optional[Any]=5 , UpperCamelCase_: List[str]=0.05 , UpperCamelCase_: List[str]=10 , UpperCamelCase_: List[Any]=2 , UpperCamelCase_: str=0.0 , UpperCamelCase_: Dict=10 , UpperCamelCase_: Optional[int]=0 , UpperCamelCase_: int="sum" , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: Tuple=False , UpperCamelCase_: Dict=256 , UpperCamelCase_: Optional[int]=(512, 512, 512, 512, 1_500) , UpperCamelCase_: Tuple=(5, 3, 3, 1, 1) , UpperCamelCase_: str=(1, 2, 3, 1, 1) , UpperCamelCase_: List[Any]=512 , UpperCamelCase_: int=0 , UpperCamelCase_: List[str]=1 , UpperCamelCase_: str=2 , UpperCamelCase_: int=False , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Any=2 , UpperCamelCase_: Dict=3 , UpperCamelCase_: str=None , **UpperCamelCase_: Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) lowercase__ = hidden_size lowercase__ = feat_extract_activation lowercase__ = list(UpperCamelCase_ ) lowercase__ = list(UpperCamelCase_ ) lowercase__ = list(UpperCamelCase_ ) lowercase__ = conv_bias lowercase__ = num_conv_pos_embeddings lowercase__ = num_conv_pos_embedding_groups lowercase__ = conv_pos_kernel_size lowercase__ = len(self.conv_dim ) lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_attention_heads lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = feat_proj_dropout lowercase__ = final_dropout lowercase__ = layerdrop lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = vocab_size lowercase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks # ctc loss lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # adapter lowercase__ = add_adapter lowercase__ = adapter_kernel_size lowercase__ = adapter_stride lowercase__ = num_adapter_layers lowercase__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__ = list(UpperCamelCase_ ) lowercase__ = list(UpperCamelCase_ ) lowercase__ = list(UpperCamelCase_ ) lowercase__ = xvector_output_dim @property def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" return math.prod(self.conv_stride )
110
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: with open(SCREAMING_SNAKE_CASE , '''rb''' ) as flax_state_f: lowercase__ = from_bytes(SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE ) ).values() if any(SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE ) lowercase__ = '''''' lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE , sep='''.''' ) lowercase__ = pt_model.state_dict() # keep track of unexpected & missing keys lowercase__ = [] lowercase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = jnp.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) lowercase__ = '''.'''.join(SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict lowercase__ = np.asarray(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor lowercase__ = torch.from_numpy(SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list lowercase__ = list(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) return pt_model
110
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
140
def A_ ( _lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCamelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCamelCase : Union[str, Any] = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowerCAmelCase ) == 26 def A_ ( _lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCamelCase : List[Any] = [False] * 26 for char in input_str: if char.islower(): UpperCamelCase : Tuple = True elif char.isupper(): UpperCamelCase : str = True return all(_lowerCAmelCase ) def A_ ( _lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def A_ ( ) -> None: from timeit import timeit UpperCamelCase : Tuple = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=_lowerCAmelCase ) ) print(timeit("is_pangram_faster()" , setup=_lowerCAmelCase ) ) print(timeit("is_pangram_fastest()" , setup=_lowerCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
140
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __A( unittest.TestCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=4 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_attention_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_choices def UpperCAmelCase_ (self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_attention_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __A( _lowerCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ (self ): UpperCamelCase__ = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase_ (self ): for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowerCamelCase ) UpperCamelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class __A( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) UpperCamelCase__ = jnp.array([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(_lowerCamelCase )[0] UpperCamelCase__ = 5_00_00 UpperCamelCase__ = (1, 6, vocab_size) self.assertEqual(output.shape , _lowerCamelCase ) UpperCamelCase__ = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 ) )
244
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = PegasusTokenizer A_ : int = PegasusTokenizerFast A_ : Optional[Any] = True A_ : Union[str, Any] = True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __A = PegasusTokenizer(_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def _SCREAMING_SNAKE_CASE ( self : int, **_lowerCamelCase : List[Any] ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname, **_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : Dict ): '''simple docstring''' return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = '''</s>''' __A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ), _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ), _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''<pad>''' ) self.assertEqual(vocab_keys[1], '''</s>''' ) self.assertEqual(vocab_keys[-1], '''v''' ) self.assertEqual(len(_lowerCamelCase ), 11_03 ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 11_03 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __A = self.tokenizer_class.from_pretrained(self.tmpdirname ) __A = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) __A = rust_tokenizer([raw_input_str], return_tensors=_lowerCamelCase, add_special_tokens=_lowerCamelCase ).input_ids[0] __A = py_tokenizer([raw_input_str], return_tensors=_lowerCamelCase, add_special_tokens=_lowerCamelCase ).input_ids[0] self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __A = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' __A = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] __A = tokenizer([raw_input_str], return_tensors=_lowerCamelCase ).input_ids[0] self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 __A = '''To ensure a smooth flow of bank resolutions.''' __A = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] __A = tokenizer([raw_input_str], return_tensors=_lowerCamelCase ).input_ids[0] self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = ['''This is going to be way too long.''' * 1_50, '''short example'''] __A = ['''not super long but more than 5 tokens''', '''tiny'''] __A = self._large_tokenizer(_lowerCamelCase, padding=_lowerCamelCase, truncation=_lowerCamelCase, return_tensors='''pt''' ) __A = self._large_tokenizer( text_target=_lowerCamelCase, max_length=5, padding=_lowerCamelCase, truncation=_lowerCamelCase, return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(_lowerCamelCase ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' # fmt: off __A = {'''input_ids''': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase, model_name='''google/bigbird-pegasus-large-arxiv''', revision='''ba85d0851d708441f91440d509690f1ab6353415''', ) @require_sentencepiece @require_tokenizers class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : str = PegasusTokenizer A_ : Union[str, Any] = PegasusTokenizerFast A_ : Any = True A_ : str = True def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __A = PegasusTokenizer(_lowerCamelCase, offset=0, mask_token_sent=_lowerCamelCase, mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int], **_lowerCamelCase : Dict ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname, **_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : List[str] ): '''simple docstring''' return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __A = self.tokenizer_class.from_pretrained(self.tmpdirname ) __A = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) __A = rust_tokenizer([raw_input_str], return_tensors=_lowerCamelCase, add_special_tokens=_lowerCamelCase ).input_ids[0] __A = py_tokenizer([raw_input_str], return_tensors=_lowerCamelCase, add_special_tokens=_lowerCamelCase ).input_ids[0] self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = ['''This is going to be way too long.''' * 10_00, '''short example'''] __A = ['''not super long but more than 5 tokens''', '''tiny'''] __A = self._large_tokenizer(_lowerCamelCase, padding=_lowerCamelCase, truncation=_lowerCamelCase, return_tensors='''pt''' ) __A = self._large_tokenizer( text_target=_lowerCamelCase, max_length=5, padding=_lowerCamelCase, truncation=_lowerCamelCase, return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(_lowerCamelCase ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) __A = self._large_tokenizer(_lowerCamelCase ).input_ids self.assertListEqual( _lowerCamelCase, [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1], )
266
0
import random def snake_case_ ( snake_case , snake_case ) -> tuple: lowercase__ , lowercase__ , lowercase__: Any = [], [], [] for element in data: if element < pivot: less.append(snake_case ) elif element > pivot: greater.append(snake_case ) else: equal.append(snake_case ) return less, equal, greater def snake_case_ ( snake_case , snake_case ) -> Tuple: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(snake_case ) or index < 0: return None lowercase__: Optional[int] = items[random.randint(0 , len(snake_case ) - 1 )] lowercase__: int = 0 lowercase__ , lowercase__ , lowercase__: Optional[Any] = _partition(snake_case , snake_case ) lowercase__: Any = len(snake_case ) lowercase__: List[str] = len(snake_case ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(snake_case , snake_case ) # must be in larger else: return quick_select(snake_case , index - (m + count) )
288
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __lowerCAmelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __a ( __UpperCamelCase ): def __init__( self , lowerCAmelCase__ = 101 ) -> Any: '''simple docstring''' lowercase__: Any = length def __len__( self ) -> List[Any]: '''simple docstring''' return self.length def __getitem__( self , lowerCAmelCase__ ) -> int: '''simple docstring''' return i class __a : def __call__( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return {"input_ids": torch.tensor(lowerCAmelCase__ ), "labels": torch.tensor(lowerCAmelCase__ )} class __a ( nn.Module ): def __init__( self ) -> Tuple: '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. lowercase__: List[str] = nn.Linear(120 , 80 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> int: '''simple docstring''' if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __a ( __UpperCamelCase ): @require_torch_neuroncore def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: int = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() lowercase__: Tuple = self.get_auto_remove_tmp_dir() lowercase__: Optional[int] = F'--output_dir {output_dir}'.split() lowercase__: int = ['torchrun'] + distributed_args + args execute_subprocess_async(lowerCAmelCase__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __a ( __UpperCamelCase ): @require_torch_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: List[str] = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() lowercase__: Tuple = self.get_auto_remove_tmp_dir() lowercase__: List[str] = F'--output_dir {output_dir}'.split() lowercase__: int = ['torchrun'] + distributed_args + args execute_subprocess_async(lowerCAmelCase__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __lowerCAmelCase = HfArgumentParser((TrainingArguments,)) __lowerCAmelCase = parser.parse_args_into_dataclasses()[0] logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_01, 40, 7]: __lowerCAmelCase = DummyDataset(dataset_length) def snake_case_ ( snake_case ) -> Dict: lowercase__: str = list(range(len(snake_case ) ) ) lowercase__: Tuple = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} __lowerCAmelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __lowerCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase = 2 __lowerCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase = None
288
1
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class a ( enum.Enum ): _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 @add_end_docstrings(_a ) class a ( _a ): _lowerCAmelCase = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self , *__magic_name__ , **__magic_name__ ) -> Optional[int]: super().__init__(*A_ , **A_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a = None if self.model.config.prefix is not None: _a = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a = self._sanitize_parameters(prefix=A_ , **self._forward_params ) _a = {**self._preprocess_params, **preprocess_params} _a = {**self._forward_params, **forward_params} def __UpperCAmelCase ( self , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , **__magic_name__ , ) -> Optional[Any]: _a = {} if prefix is not None: _a = prefix if prefix: _a = self.tokenizer( A_ , padding=A_ , add_special_tokens=A_ , return_tensors=self.framework ) _a = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected' ' [None, \'hole\']' ) _a = handle_long_generation preprocess_params.update(A_ ) _a = generate_kwargs _a = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _a = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _a = ReturnType.TENSORS if return_type is not None: _a = return_type if clean_up_tokenization_spaces is not None: _a = clean_up_tokenization_spaces if stop_sequence is not None: _a = self.tokenizer.encode(A_ , add_special_tokens=A_ ) if len(A_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _a = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*A_ , **A_ ) def __call__( self , __magic_name__ , **__magic_name__ ) -> Any: return super().__call__(A_ , **A_ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__="" , __magic_name__=None , **__magic_name__ ) -> int: _a = self.tokenizer( prefix + prompt_text , padding=A_ , add_special_tokens=A_ , return_tensors=self.framework ) _a = prompt_text if handle_long_generation == "hole": _a = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _a = generate_kwargs['max_new_tokens'] else: _a = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _a = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _a = inputs['attention_mask'][:, -keep_length:] return inputs def __UpperCAmelCase ( self , __magic_name__ , **__magic_name__ ) -> Union[str, Any]: _a = model_inputs['input_ids'] _a = model_inputs.get('attention_mask' , A_ ) # Allow empty prompts if input_ids.shape[1] == 0: _a = None _a = None _a = 1 else: _a = input_ids.shape[0] _a = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: _a = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _a = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a = self.model.generate(input_ids=A_ , attention_mask=A_ , **A_ ) _a = generated_sequence.shape[0] if self.framework == "pt": _a = generated_sequence.reshape(A_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a = tf.reshape(A_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=ReturnType.FULL_TEXT , __magic_name__=True ) -> Tuple: _a = model_outputs['generated_sequence'][0] _a = model_outputs['input_ids'] _a = model_outputs['prompt_text'] _a = generated_sequence.numpy().tolist() _a = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a = self.tokenizer.decode( A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a = 0 else: _a = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) ) if return_type == ReturnType.FULL_TEXT: _a = prompt_text + text[prompt_length:] else: _a = text[prompt_length:] _a = {'generated_text': all_text} records.append(A_ ) return records
168
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 8 ) -> str: lowercase__: List[str] = ascii_letters + digits + punctuation return "".join(secrets.choice(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__UpperCAmelCase ) lowercase__: int = i // 3 lowercase__: List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowercase__: Tuple = ( chars_incl + random(__UpperCAmelCase , quotient + remainder ) + random(__UpperCAmelCase , __UpperCAmelCase ) + random(__UpperCAmelCase , __UpperCAmelCase ) ) lowercase__: Any = list(__UpperCAmelCase ) shuffle(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) # random is a generalised function for letters, characters and numbers def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: return "".join(secrets.choice(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: pass # Put your code here... def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: pass # Put your code here... def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: pass # Put your code here... def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = 8 ) -> bool: if len(__UpperCAmelCase ) < min_length: # Your Password must be at least 8 characters long return False lowercase__: int = any(char in ascii_uppercase for char in password ) lowercase__: Dict = any(char in ascii_lowercase for char in password ) lowercase__: Any = any(char in digits for char in password ) lowercase__: Dict = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def SCREAMING_SNAKE_CASE__ ( ) -> int: lowercase__: Dict = int(input('''Please indicate the max length of your password: ''' ).strip() ) lowercase__: Optional[Any] = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''' , password_generator(__UpperCAmelCase ) ) print( '''Alternative Password generated:''' , alternative_password_generator(__UpperCAmelCase , __UpperCAmelCase ) , ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
2
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "rag" _UpperCAmelCase :List[Any] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=" / " , _UpperCAmelCase=" // " , _UpperCAmelCase=5 , _UpperCAmelCase=300 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase="wiki_dpr" , _UpperCAmelCase="train" , _UpperCAmelCase="compressed" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( bos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , prefix=_UpperCAmelCase , vocab_size=_UpperCAmelCase , **_UpperCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__: Optional[Any] = kwargs.pop('''question_encoder''' ) lowercase__: Any = question_encoder_config.pop('''model_type''' ) lowercase__: Tuple = kwargs.pop('''generator''' ) lowercase__: Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__: Optional[int] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Any = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: str = reduce_loss lowercase__: str = label_smoothing lowercase__: Dict = exclude_bos_score lowercase__: Any = do_marginalize lowercase__: Optional[int] = title_sep lowercase__: Any = doc_sep lowercase__: Any = n_docs lowercase__: List[Any] = max_combined_length lowercase__: int = dataset lowercase__: int = dataset_split lowercase__: str = index_name lowercase__: Dict = retrieval_vector_size lowercase__: Dict = retrieval_batch_size lowercase__: List[str] = passages_path lowercase__: str = index_path lowercase__: Optional[Any] = use_dummy_dataset lowercase__: str = output_retrieved lowercase__: List[str] = do_deduplication lowercase__: List[Any] = use_cache if self.forced_eos_token_id is None: lowercase__: int = getattr(self.generator , '''forced_eos_token_id''' , _UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = copy.deepcopy(self.__dict__ ) lowercase__: str = self.question_encoder.to_dict() lowercase__: str = self.generator.to_dict() lowercase__: str = self.__class__.model_type return output
2
1
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore a : Any = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" a : List[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print('''\n'''.join(upper_files) + '''\n''') a : List[Any] = [file for file in filepaths if ''' ''' in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print('''\n'''.join(space_files) + '''\n''') a : Optional[int] = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print('''\n'''.join(hyphen_files) + '''\n''') a : Union[str, Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print('''\n'''.join(nodir_files) + '''\n''') a : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
105
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float ) ->float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
105
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor _A : int =random.Random() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=1.0 , UpperCamelCase=None , UpperCamelCase=None ) -> Optional[Any]: if rng is None: lowerCamelCase__ : str = global_rng lowerCamelCase__ : Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowercase ( unittest.TestCase ): def __init__( self: List[str] , UpperCamelCase__: int , UpperCamelCase__: Optional[Any]=7 , UpperCamelCase__: List[str]=400 , UpperCamelCase__: Optional[Any]=2_000 , UpperCamelCase__: int=24 , UpperCamelCase__: List[str]=24 , UpperCamelCase__: str=0.0 , UpperCamelCase__: List[Any]=16_000 , UpperCamelCase__: Any=True , UpperCamelCase__: str=True , ): lowerCamelCase__ : str = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Optional[int] = min_seq_length lowerCamelCase__ : Union[str, Any] = max_seq_length lowerCamelCase__ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase__ : Any = feature_size lowerCamelCase__ : List[str] = num_mel_bins lowerCamelCase__ : Union[str, Any] = padding_value lowerCamelCase__ : List[str] = sampling_rate lowerCamelCase__ : Union[str, Any] = return_attention_mask lowerCamelCase__ : Any = do_normalize def lowerCamelCase_ ( self: Optional[int] ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: Dict=False , UpperCamelCase__: Optional[int]=False ): def _flatten(UpperCamelCase__: Optional[int] ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: lowerCamelCase__ : Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase__ : List[str] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase__ : List[str] = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowercase ( _lowercase , unittest.TestCase ): a = SpeechaTextFeatureExtractor if is_speech_available() else None def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Tuple = SpeechaTextFeatureExtractionTester(self ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: List[str] ): self.assertTrue(np.all(np.mean(UpperCamelCase__ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase__ , axis=0 ) - 1 ) < 1e-3 ) ) def lowerCamelCase_ ( self: List[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCamelCase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase__ : int = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCamelCase__ : Union[str, Any] = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test feature size lowerCamelCase__ : List[str] = feature_extractor(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase__ : List[str] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features lowerCamelCase__ : str = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test batched lowerCamelCase__ : Any = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features lowerCamelCase__ : str = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase__ : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCamelCase__ : Optional[Any] = np.asarray(UpperCamelCase__ ) lowerCamelCase__ : int = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features lowerCamelCase__ : Optional[Any] = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCamelCase__ : int = ["""longest""", """max_length""", """do_not_pad"""] lowerCamelCase__ : Dict = [None, 16, None] for max_length, padding in zip(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase__ : List[Any] = feature_extractor( UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = inputs.input_features lowerCamelCase__ : List[Any] = inputs.attention_mask lowerCamelCase__ : Dict = [np.sum(UpperCamelCase__ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCamelCase__ : Optional[int] = ["""longest""", """max_length""", """do_not_pad"""] lowerCamelCase__ : Any = [None, 16, None] for max_length, padding in zip(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase__ : List[str] = feature_extractor( UpperCamelCase__ , max_length=UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="""np""" , return_attention_mask=UpperCamelCase__ ) lowerCamelCase__ : Any = inputs.input_features lowerCamelCase__ : List[str] = inputs.attention_mask lowerCamelCase__ : Union[str, Any] = [np.sum(UpperCamelCase__ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCamelCase__ : int = feature_extractor( UpperCamelCase__ , padding="""max_length""" , max_length=4 , truncation=UpperCamelCase__ , return_tensors="""np""" , return_attention_mask=UpperCamelCase__ , ) lowerCamelCase__ : List[Any] = inputs.input_features lowerCamelCase__ : Optional[int] = inputs.attention_mask lowerCamelCase__ : int = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCamelCase__ : Dict = feature_extractor( UpperCamelCase__ , padding="""longest""" , max_length=4 , truncation=UpperCamelCase__ , return_tensors="""np""" , return_attention_mask=UpperCamelCase__ , ) lowerCamelCase__ : Any = inputs.input_features lowerCamelCase__ : Optional[int] = inputs.attention_mask lowerCamelCase__ : Tuple = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) lowerCamelCase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCamelCase__ : Optional[Any] = feature_extractor( UpperCamelCase__ , padding="""longest""" , max_length=16 , truncation=UpperCamelCase__ , return_tensors="""np""" , return_attention_mask=UpperCamelCase__ , ) lowerCamelCase__ : str = inputs.input_features lowerCamelCase__ : List[str] = inputs.attention_mask lowerCamelCase__ : Any = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def lowerCamelCase_ ( self: Optional[Any] ): import torch lowerCamelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ : str = np.random.rand(100 , 32 ).astype(np.floataa ) lowerCamelCase__ : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase__ : Tuple = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase__ : Any = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Optional[Any] ): from datasets import load_dataset lowerCamelCase__ : List[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowerCamelCase__ : Any = ds.sort("""id""" ).select(range(UpperCamelCase__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCamelCase_ ( self: Union[str, Any] ): # fmt: off lowerCamelCase__ : Optional[Any] = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on lowerCamelCase__ : List[Any] = self._load_datasamples(1 ) lowerCamelCase__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ : List[Any] = feature_extractor(UpperCamelCase__ , return_tensors="""pt""" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , UpperCamelCase__ , atol=1e-4 ) )
129
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _A : str ={ '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Union[str, Any] ={ '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Dict ={ '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Dict ={ '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } _A : str ={ '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } _A : int ={ '''num_train_timesteps''': 151, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: if isinstance(UpperCamelCase , UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ) -> Any: lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.0.weight'''] lowerCamelCase__ : int = checkpoint[f'''{old_prefix}.in_layers.0.bias'''] lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.2.weight'''] lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.2.bias'''] lowerCamelCase__ : Optional[Any] = checkpoint[f'''{old_prefix}.emb_layers.1.weight'''] lowerCamelCase__ : Optional[int] = checkpoint[f'''{old_prefix}.emb_layers.1.bias'''] lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.out_layers.0.weight'''] lowerCamelCase__ : Tuple = checkpoint[f'''{old_prefix}.out_layers.0.bias'''] lowerCamelCase__ : str = checkpoint[f'''{old_prefix}.out_layers.3.weight'''] lowerCamelCase__ : int = checkpoint[f'''{old_prefix}.out_layers.3.bias'''] if has_skip: lowerCamelCase__ : Tuple = checkpoint[f'''{old_prefix}.skip_connection.weight'''] lowerCamelCase__ : List[Any] = checkpoint[f'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None ) -> str: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = checkpoint[f'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.norm.weight'''] lowerCamelCase__ : Optional[int] = checkpoint[f'''{old_prefix}.norm.bias'''] lowerCamelCase__ : List[Any] = weight_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : List[Any] = bias_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Any = weight_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Union[str, Any] = bias_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Optional[Any] = ( checkpoint[f'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[Any]: lowerCamelCase__ : str = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : Optional[int] = checkpoint["""time_embed.0.weight"""] lowerCamelCase__ : List[Any] = checkpoint["""time_embed.0.bias"""] lowerCamelCase__ : int = checkpoint["""time_embed.2.weight"""] lowerCamelCase__ : Optional[Any] = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: lowerCamelCase__ : Optional[Any] = checkpoint["""label_emb.weight"""] lowerCamelCase__ : Tuple = checkpoint["""input_blocks.0.0.weight"""] lowerCamelCase__ : List[str] = checkpoint["""input_blocks.0.0.bias"""] lowerCamelCase__ : Optional[Any] = unet_config["""down_block_types"""] lowerCamelCase__ : Any = unet_config["""layers_per_block"""] lowerCamelCase__ : Any = unet_config["""attention_head_dim"""] lowerCamelCase__ : List[Any] = unet_config["""block_out_channels"""] lowerCamelCase__ : str = 1 lowerCamelCase__ : str = channels_list[0] for i, layer_type in enumerate(UpperCamelCase ): lowerCamelCase__ : List[Any] = channels_list[i] lowerCamelCase__ : List[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCamelCase ): lowerCamelCase__ : int = f'''down_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Dict = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : Tuple = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ : List[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCamelCase ): lowerCamelCase__ : Tuple = f'''down_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Optional[Any] = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : str = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ : Union[str, Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) lowerCamelCase__ : Any = f'''down_blocks.{i}.attentions.{j}''' lowerCamelCase__ : Dict = f'''input_blocks.{current_layer}.1''' lowerCamelCase__ : Tuple = convert_attention( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Tuple = f'''down_blocks.{i}.downsamplers.0''' lowerCamelCase__ : str = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : Union[str, Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 lowerCamelCase__ : Union[str, Any] = current_channels # hardcoded the mid-block for now lowerCamelCase__ : Any = """mid_block.resnets.0""" lowerCamelCase__ : Optional[Any] = """middle_block.0""" lowerCamelCase__ : int = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : List[Any] = """mid_block.attentions.0""" lowerCamelCase__ : Dict = """middle_block.1""" lowerCamelCase__ : int = convert_attention(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Any = """mid_block.resnets.1""" lowerCamelCase__ : Tuple = """middle_block.2""" lowerCamelCase__ : int = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Any = unet_config["""up_block_types"""] for i, layer_type in enumerate(UpperCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ : int = f'''up_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Optional[Any] = f'''output_blocks.{current_layer}.0''' lowerCamelCase__ : Any = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Dict = f'''up_blocks.{i}.upsamplers.0''' lowerCamelCase__ : List[str] = f'''output_blocks.{current_layer-1}.1''' lowerCamelCase__ : Optional[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ : str = f'''up_blocks.{i}.resnets.{j}''' lowerCamelCase__ : List[Any] = f'''output_blocks.{current_layer}.0''' lowerCamelCase__ : Optional[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) lowerCamelCase__ : Optional[Any] = f'''up_blocks.{i}.attentions.{j}''' lowerCamelCase__ : Any = f'''output_blocks.{current_layer}.1''' lowerCamelCase__ : Optional[int] = convert_attention( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Tuple = f'''up_blocks.{i}.upsamplers.0''' lowerCamelCase__ : Tuple = f'''output_blocks.{current_layer-1}.2''' lowerCamelCase__ : List[str] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Dict = checkpoint["""out.0.weight"""] lowerCamelCase__ : Dict = checkpoint["""out.0.bias"""] lowerCamelCase__ : Dict = checkpoint["""out.2.weight"""] lowerCamelCase__ : Tuple = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": _A : Tuple =argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') _A : Tuple =parser.parse_args() _A : Optional[int] =strabool(args.class_cond) _A : List[str] =os.path.basename(args.unet_path) print(F'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: _A : int =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _A : Tuple =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _A : Any =TEST_UNET_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: _A : str =None _A : Optional[int] =con_pt_to_diffuser(args.unet_path, unet_config) _A : Optional[int] =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _A : Tuple =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _A : int =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _A : Union[str, Any] =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') _A : str =CMStochasticIterativeScheduler(**scheduler_config) _A : Optional[Any] =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
129
1
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowercase_ ( _lowerCamelCase : str = ""): lowercase__ : str = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" lowercase__ : int = BeautifulSoup(requests.get(_lowerCamelCase).text , "html.parser") lowercase__ : int = soup.find_all("td" , attrs="titleColumn") lowercase__ : Any = soup.find_all("td" , class_="ratingColumn imdbRating") return { title.a.text: float(rating.strong.text) for title, rating in zip(_lowerCamelCase , _lowerCamelCase) } def lowercase_ ( _lowerCamelCase : str = "IMDb_Top_250_Movies.csv"): lowercase__ : Dict = get_imdb_top_aaa_movies() with open(_lowerCamelCase , "w" , newline="") as out_file: lowercase__ : Optional[int] = csv.writer(_lowerCamelCase) writer.writerow(["Movie title", "IMDb rating"]) for title, rating in movies.items(): writer.writerow([title, rating]) if __name__ == "__main__": write_movies()
87
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : Optional[int] = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = '''vivit''' def __init__( self :Optional[Any] , __UpperCamelCase :Dict=2_24 , __UpperCamelCase :int=32 , __UpperCamelCase :Union[str, Any]=[2, 16, 16] , __UpperCamelCase :Optional[Any]=3 , __UpperCamelCase :Optional[Any]=7_68 , __UpperCamelCase :Any=12 , __UpperCamelCase :List[str]=12 , __UpperCamelCase :List[str]=30_72 , __UpperCamelCase :Any="gelu_fast" , __UpperCamelCase :List[Any]=0.0 , __UpperCamelCase :str=0.0 , __UpperCamelCase :Dict=0.02 , __UpperCamelCase :Optional[Any]=1e-06 , __UpperCamelCase :Dict=True , **__UpperCamelCase :Tuple , ): A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = num_frames A = tubelet_size A = num_channels A = qkv_bias super().__init__(**__UpperCamelCase )
292
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean lowerCamelCase = 0 lowerCamelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right lowerCamelCase = tuple[int, int] class _a : def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , )-> Union[str, Any]: lowerCAmelCase__ : int = pos_x lowerCAmelCase__ : List[Any] = pos_y lowerCAmelCase__ : Union[str, Any] = (pos_y, pos_x) lowerCAmelCase__ : Any = goal_x lowerCAmelCase__ : Dict = goal_y lowerCAmelCase__ : Any = g_cost lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : int = self.calculate_heuristic() lowerCAmelCase__ : Any = self.g_cost + self.h_cost def UpperCAmelCase__( self : Optional[int] )-> List[str]: lowerCAmelCase__ : Tuple = self.pos_x - self.goal_x lowerCAmelCase__ : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] )-> Dict: return self.f_cost < other.f_cost class _a : def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple )-> str: lowerCAmelCase__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) lowerCAmelCase__ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ ) lowerCAmelCase__ : str = [self.start] lowerCAmelCase__ : list[Node] = [] lowerCAmelCase__ : int = False def UpperCAmelCase__( self : int )-> List[Any]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase__ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) lowerCAmelCase__ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path lowerCAmelCase__ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : str )-> List[str]: lowerCAmelCase__ : Any = [] for action in delta: lowerCAmelCase__ : str = parent.pos_x + action[1] lowerCAmelCase__ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Dict )-> Dict: lowerCAmelCase__ : Optional[int] = node lowerCAmelCase__ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase__ : Optional[int] = current_node.parent path.reverse() return path class _a : def __init__( self : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] )-> List[Any]: lowerCAmelCase__ : Dict = AStar(lowercase_ , lowercase_ ) lowerCAmelCase__ : Optional[Any] = AStar(lowercase_ , lowercase_ ) lowerCAmelCase__ : Tuple = False def UpperCAmelCase__( self : List[Any] )-> Union[str, Any]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowerCAmelCase__ : List[str] = self.fwd_astar.open_nodes.pop(0 ) lowerCAmelCase__ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) lowerCAmelCase__ : Tuple = current_bwd_node lowerCAmelCase__ : str = current_fwd_node lowerCAmelCase__ : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path lowerCAmelCase__ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Any: lowerCAmelCase__ : List[Any] = self.fwd_astar.retrace_path(lowercase_ ) lowerCAmelCase__ : int = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() lowerCAmelCase__ : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] lowerCamelCase = (0, 0) lowerCamelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCamelCase = time.time() lowerCamelCase = AStar(init, goal) lowerCamelCase = a_star.search() lowerCamelCase = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') lowerCamelCase = time.time() lowerCamelCase = BidirectionalAStar(init, goal) lowerCamelCase = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
351
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase_ ( _a ): """simple docstring""" def wrapper(*_a , **_a ): lowerCAmelCase__ : List[str] = timeit.default_timer() lowerCAmelCase__ : List[Any] = func(*_a , **_a ) lowerCAmelCase__ : Any = timeit.default_timer() - starttime return delta lowerCAmelCase__ : Any = func.__name__ return wrapper def lowerCamelCase_ ( _a , _a=100 , _a=None ): """simple docstring""" lowerCAmelCase__ : str = [] lowerCAmelCase__ : str = seq_shapes or {} for i in range(_a ): lowerCAmelCase__ : List[str] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_a , _ArrayXD ): lowerCAmelCase__ : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_a , datasets.Value ): if v.dtype == "string": lowerCAmelCase__ : Dict = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCAmelCase__ : Any = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_a , datasets.Sequence ): while isinstance(_a , datasets.Sequence ): lowerCAmelCase__ : Optional[int] = v.feature lowerCAmelCase__ : str = seq_shapes[k] lowerCAmelCase__ : Any = np.random.rand(*_a ).astype(v.dtype ) lowerCAmelCase__ : int = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase_ ( _a , _a , _a=100 , _a=None ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = generate_examples(_a , num_examples=_a , seq_shapes=_a ) with ArrowWriter(features=_a , path=_a ) as writer: for key, record in dummy_data: lowerCAmelCase__ : Optional[int] = features.encode_example(_a ) writer.write(_a ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) lowerCAmelCase__ : List[Any] = datasets.Dataset.from_file(filename=_a , info=datasets.DatasetInfo(features=_a ) ) return dataset
211
0
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=2 , UpperCamelCase=8 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=99 , UpperCamelCase=16 , UpperCamelCase=5 , UpperCamelCase=2 , UpperCamelCase=36 , UpperCamelCase="gelu" , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=512 , UpperCamelCase=16 , UpperCamelCase=2 , UpperCamelCase=0.02 , UpperCamelCase=3 , UpperCamelCase=4 , UpperCamelCase=None , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def snake_case ( self ): """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_config() lowerCamelCase_ = 300 return config def snake_case ( self ): """simple docstring""" ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = self.prepare_config_and_inputs() lowerCamelCase_ = True lowerCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = MraModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , token_type_ids=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = True lowerCamelCase_ = MraModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , ) lowerCamelCase_ = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , encoder_hidden_states=UpperCamelCase , ) lowerCamelCase_ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = MraForMaskedLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = MraForQuestionAnswering(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = MraForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = MraForTokenClassification(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.num_choices lowerCamelCase_ = MraForMultipleChoice(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = () def snake_case ( self ): """simple docstring""" lowerCamelCase_ = MraModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ = type self.model_tester.create_and_check_model(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = MraModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @unittest.skip(reason="MRA does not output attentions" ) def snake_case ( self ): """simple docstring""" return @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) lowerCamelCase_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowerCamelCase_ = model(UpperCamelCase )[0] lowerCamelCase_ = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase , atol=1e-4 ) ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) lowerCamelCase_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowerCamelCase_ = model(UpperCamelCase )[0] lowerCamelCase_ = 5_0265 lowerCamelCase_ = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase , atol=1e-4 ) ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) lowerCamelCase_ = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): lowerCamelCase_ = model(UpperCamelCase )[0] lowerCamelCase_ = 5_0265 lowerCamelCase_ = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase , atol=1e-4 ) )
55
'''simple docstring''' a_ : Any = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
55
1
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowercase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : List[Any] ) -> Optional[int]: _snake_case = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) _snake_case = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) _snake_case = '''The dog is cute and lives in the garden house''' _snake_case = jnp.array([tokenizer.encode(__snake_case )] ) _snake_case = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _snake_case = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) _snake_case = model(__snake_case )['''last_hidden_state'''] self.assertEqual(output.shape , __snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __snake_case , atol=1e-3 ) )
371
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def snake_case_(_UpperCamelCase ) -> List[Any]: """simple docstring""" _snake_case = torch.exp(_UpperCamelCase ) _snake_case = torch.sum(_UpperCamelCase , dim=1 ) # sum of exp(x_i) _snake_case = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_UpperCamelCase ) - B / A class lowercase_ ( nn.Module ): def __init__( self : Tuple , A__ : int ) -> Tuple: super().__init__() _snake_case = config.output_attentions _snake_case = config.output_hidden_states _snake_case = nn.ModuleList([BertLayer(A__ ) for _ in range(config.num_hidden_layers )] ) _snake_case = nn.ModuleList([BertHighway(A__ ) for _ in range(config.num_hidden_layers )] ) _snake_case = [-1 for _ in range(config.num_hidden_layers )] def UpperCamelCase_ ( self : Any , A__ : Any ) -> Any: if (type(A__ ) is float) or (type(A__ ) is int): for i in range(len(self.early_exit_entropy ) ): _snake_case = x else: _snake_case = x def UpperCamelCase_ ( self : Any , A__ : Tuple ) -> int: _snake_case = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def UpperCamelCase_ ( self : Tuple , A__ : Optional[int] , A__ : Dict=None , A__ : List[str]=None , A__ : Union[str, Any]=None , A__ : Dict=None , ) -> Dict: _snake_case = () _snake_case = () _snake_case = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _snake_case = all_hidden_states + (hidden_states,) _snake_case = layer_module( A__ , A__ , head_mask[i] , A__ , A__ ) _snake_case = layer_outputs[0] if self.output_attentions: _snake_case = all_attentions + (layer_outputs[1],) _snake_case = (hidden_states,) if self.output_hidden_states: _snake_case = current_outputs + (all_hidden_states,) if self.output_attentions: _snake_case = current_outputs + (all_attentions,) _snake_case = self.highway[i](A__ ) # logits, pooled_output if not self.training: _snake_case = highway_exit[0] _snake_case = entropy(A__ ) _snake_case = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _snake_case = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _snake_case = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(A__ , i + 1 ) else: _snake_case = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _snake_case = all_hidden_states + (hidden_states,) _snake_case = (hidden_states,) if self.output_hidden_states: _snake_case = outputs + (all_hidden_states,) if self.output_attentions: _snake_case = outputs + (all_attentions,) _snake_case = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , __lowercase , ) class lowercase_ ( __lowercase ): def __init__( self : Optional[Any] , A__ : Any ) -> str: super().__init__(A__ ) _snake_case = config _snake_case = BertEmbeddings(A__ ) _snake_case = DeeBertEncoder(A__ ) _snake_case = BertPooler(A__ ) self.init_weights() def UpperCamelCase_ ( self : Tuple ) -> Optional[Any]: self.encoder.init_highway_pooler(self.pooler ) def UpperCamelCase_ ( self : List[str] ) -> Tuple: return self.embeddings.word_embeddings def UpperCamelCase_ ( self : Optional[Any] , A__ : str ) -> str: _snake_case = value def UpperCamelCase_ ( self : Union[str, Any] , A__ : List[Any] ) -> Any: for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(A__ ) @add_start_docstrings_to_model_forward(A__ ) def UpperCamelCase_ ( self : int , A__ : Tuple=None , A__ : Union[str, Any]=None , A__ : Union[str, Any]=None , A__ : Optional[Any]=None , A__ : Dict=None , A__ : Any=None , A__ : str=None , A__ : Optional[int]=None , ) -> Dict: if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: _snake_case = input_ids.size() elif inputs_embeds is not None: _snake_case = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) _snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _snake_case = torch.ones(A__ , device=A__ ) if encoder_attention_mask is None: _snake_case = torch.ones(A__ , device=A__ ) if token_type_ids is None: _snake_case = torch.zeros(A__ , dtype=torch.long , device=A__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _snake_case = self.get_extended_attention_mask(A__ , A__ , A__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _snake_case = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _snake_case = encoder_attention_mask[:, None, None, :] _snake_case = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _snake_case = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _snake_case = self.get_head_mask(A__ , self.config.num_hidden_layers ) _snake_case = self.embeddings( input_ids=A__ , position_ids=A__ , token_type_ids=A__ , inputs_embeds=A__ ) _snake_case = self.encoder( A__ , attention_mask=A__ , head_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(A__ ) _snake_case = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowercase_ ( __lowercase ): def __init__( self : Union[str, Any] , A__ : Dict , A__ : Optional[Any] ) -> List[str]: _snake_case = message _snake_case = exit_layer # start from 1! class lowercase_ ( nn.Module ): def __init__( self : Any , A__ : int ) -> Optional[Any]: super().__init__() _snake_case = BertPooler(A__ ) _snake_case = nn.Dropout(config.hidden_dropout_prob ) _snake_case = nn.Linear(config.hidden_size , config.num_labels ) def UpperCamelCase_ ( self : Optional[Any] , A__ : str ) -> Optional[int]: # Pooler _snake_case = encoder_outputs[0] _snake_case = self.pooler(A__ ) # "return" pooler_output # BertModel _snake_case = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _snake_case = bmodel_output[1] _snake_case = self.dropout(A__ ) _snake_case = self.classifier(A__ ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , __lowercase , ) class lowercase_ ( __lowercase ): def __init__( self : List[str] , A__ : Optional[int] ) -> int: super().__init__(A__ ) _snake_case = config.num_labels _snake_case = config.num_hidden_layers _snake_case = DeeBertModel(A__ ) _snake_case = nn.Dropout(config.hidden_dropout_prob ) _snake_case = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(A__ ) def UpperCamelCase_ ( self : Tuple , A__ : Optional[Any]=None , A__ : List[Any]=None , A__ : Optional[int]=None , A__ : List[Any]=None , A__ : List[Any]=None , A__ : Union[str, Any]=None , A__ : Union[str, Any]=None , A__ : List[Any]=-1 , A__ : str=False , ) -> Dict: _snake_case = self.num_layers try: _snake_case = self.bert( A__ , attention_mask=A__ , token_type_ids=A__ , position_ids=A__ , head_mask=A__ , inputs_embeds=A__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _snake_case = outputs[1] _snake_case = self.dropout(A__ ) _snake_case = self.classifier(A__ ) _snake_case = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _snake_case = e.message _snake_case = e.exit_layer _snake_case = outputs[0] if not self.training: _snake_case = entropy(A__ ) _snake_case = [] _snake_case = [] if labels is not None: if self.num_labels == 1: # We are doing regression _snake_case = MSELoss() _snake_case = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _snake_case = [] for highway_exit in outputs[-1]: _snake_case = highway_exit[0] if not self.training: highway_logits_all.append(A__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _snake_case = MSELoss() _snake_case = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _snake_case = CrossEntropyLoss() _snake_case = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(A__ ) if train_highway: _snake_case = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _snake_case = (loss,) + outputs if not self.training: _snake_case = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _snake_case = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
278
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = ["pixel_values"] def __init__( self : int , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 2_56, 'width': 2_56} __lowercase = get_size_dict(_UpperCAmelCase ) __lowercase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} __lowercase = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self : Any , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _UpperCAmelCase , size=(size['height'], size['width']) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> Any: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase ) __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: __lowercase = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = {'pixel_values': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
325
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: __lowercase = [0 for i in range(r + 1 )] # nc0 = 1 __lowercase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
1
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : List[Any], __snake_case : Any ) -> Tuple: """simple docstring""" A__ : Optional[int] =RemBertConfig.from_json_file(__snake_case ) print("""Building PyTorch model from configuration: {}""".format(str(__snake_case ) ) ) A__ : Union[str, Any] =RemBertModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__snake_case, __snake_case, __snake_case ) # Save pytorch-model print("""Save PyTorch model to {}""".format(__snake_case ) ) torch.save(model.state_dict(), __snake_case ) if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __snake_case : List[str] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
136
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Any , lowerCAmelCase_ : float ) -> float: '''simple docstring''' return 0.0 def __lowerCamelCase ( __snake_case : np.ndarray, __snake_case : int ) -> tuple[int | float, int | float]: """simple docstring""" A__ : Tuple =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) A__ : str =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __lowerCamelCase ( __snake_case : FilterType, __snake_case : int ) -> None: """simple docstring""" A__ : Any =512 A__ : int =[1] + [0] * (size - 1) A__ : int =[filter_type.process(__snake_case ) for item in inputs] A__ : Union[str, Any] =[0] * (samplerate - size) # zero-padding outputs += filler A__ : List[Any] =np.abs(np.fft.fft(__snake_case ) ) A__ : int =20 * np.logaa(__snake_case ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds A__ : Union[str, Any] =get_bounds(__snake_case, __snake_case ) plt.ylim(max([-80, bounds[0]] ), min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__snake_case ) plt.show() def __lowerCamelCase ( __snake_case : FilterType, __snake_case : int ) -> None: """simple docstring""" A__ : List[Any] =512 A__ : List[Any] =[1] + [0] * (size - 1) A__ : Dict =[filter_type.process(__snake_case ) for item in inputs] A__ : Union[str, Any] =[0] * (samplerate - size) # zero-padding outputs += filler A__ : str =np.angle(np.fft.fft(__snake_case ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi, 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__snake_case, -2 * pi ) ) plt.show()
136
1
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bytes: if len(_UpperCamelCase ) != 32: raise ValueError("""Input must be of length 32""" ) A_ = b"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bytes: if i < 0: raise ValueError("""Input must be non-negative""" ) A_ = format(_UpperCamelCase, """08x""" )[-8:] A_ = b"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bytes: A_ = b"""""" for char in message: bit_string += format(_UpperCamelCase, """08b""" ).encode("""utf-8""" ) A_ = format(len(_UpperCamelCase ), """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_UpperCamelCase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Generator[list[int], None, None]: if len(_UpperCamelCase ) % 5_12 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0, len(_UpperCamelCase ), 5_12 ): A_ = bit_string[pos : pos + 5_12] A_ = [] for i in range(0, 5_12, 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ), 2 ) ) yield block_words def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if i < 0: raise ValueError("""Input must be non-negative""" ) A_ = format(_UpperCamelCase, """032b""" ) A_ = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(_UpperCamelCase, 2 ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: return (a + b) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bytes: A_ = preprocess(_UpperCamelCase ) A_ = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states A_ = 0X67_45_23_01 A_ = 0XEF_CD_AB_89 A_ = 0X98_BA_DC_FE A_ = 0X10_32_54_76 A_ = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_UpperCamelCase ): A_ = aa A_ = ba A_ = ca A_ = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f A_ = d ^ (b & (c ^ d)) A_ = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f A_ = c ^ (d & (b ^ c)) A_ = (5 * i + 1) % 16 elif i <= 47: A_ = b ^ c ^ d A_ = (3 * i + 5) % 16 else: A_ = c ^ (b | not_aa(_UpperCamelCase )) A_ = (7 * i) % 16 A_ = (f + a + added_consts[i] + block_words[g]) % 2**32 A_ = d A_ = c A_ = b A_ = sum_aa(_UpperCamelCase, left_rotate_aa(_UpperCamelCase, shift_amounts[i] ) ) # Add hashed chunk to running total A_ = sum_aa(_UpperCamelCase, _UpperCamelCase ) A_ = sum_aa(_UpperCamelCase, _UpperCamelCase ) A_ = sum_aa(_UpperCamelCase, _UpperCamelCase ) A_ = sum_aa(_UpperCamelCase, _UpperCamelCase ) A_ = reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
162
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""note_seq"""] def __init__( self : List[Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ["""note_seq"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ["""note_seq"""] ) @classmethod def lowerCamelCase__ ( cls : List[str] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["""note_seq"""] )
115
0
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union _SCREAMING_SNAKE_CASE : Optional[int] = TypeVar("T") _SCREAMING_SNAKE_CASE : Tuple = Union[List[T], Tuple[T, ...]] _SCREAMING_SNAKE_CASE : List[Any] = Union[T, List[T], Dict[str, T]] _SCREAMING_SNAKE_CASE : Any = Union[str, bytes, os.PathLike]
92
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE : List[str] = {"facebook/bart-base": BartForConditionalGeneration} _SCREAMING_SNAKE_CASE : Union[str, Any] = {"facebook/bart-base": BartTokenizer} def UpperCamelCase_( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=snake_case , default=snake_case , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=snake_case , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=snake_case , default=snake_case , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=snake_case , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case , ) parser.add_argument( "--config_name" , type=snake_case , default=snake_case , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=snake_case , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=snake_case , default=snake_case , help="Where to store the final ONNX file." ) snake_case_ = parser.parse_args() return args def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[str]="cpu" ): '''simple docstring''' snake_case_ = model_dict[model_name].from_pretrained(snake_case ).to(snake_case ) snake_case_ = tokenizer_dict[model_name].from_pretrained(snake_case ) if model_name in ["facebook/bart-base"]: snake_case_ = 0 snake_case_ = None snake_case_ = 0 return huggingface_model, tokenizer def UpperCamelCase_( snake_case : int , snake_case : Tuple , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : Optional[Any] ): '''simple docstring''' model.eval() snake_case_ = None snake_case_ = torch.jit.script(BARTBeamSearchGenerator(snake_case ) ) with torch.no_grad(): snake_case_ = "My friends are cool but they eat too many carbs." snake_case_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="pt" ).to(model.device ) snake_case_ = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=snake_case , max_length=snake_case , early_stopping=snake_case , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( snake_case , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , snake_case , opset_version=1_4 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=snake_case , ) logger.info("Model exported to {}".format(snake_case ) ) snake_case_ = remove_dup_initializers(os.path.abspath(snake_case ) ) logger.info("Deduplicated and optimized model written to {}".format(snake_case ) ) snake_case_ = onnxruntime.InferenceSession(snake_case ) snake_case_ = ort_sess.run( snake_case , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(snake_case ), "max_length": np.array(snake_case ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = parse_args() snake_case_ = 5 snake_case_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case_ = torch.device(args.device ) snake_case_ , snake_case_ = load_model_tokenizer(args.model_name_or_path , snake_case ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(snake_case ) if args.max_length: snake_case_ = args.max_length if args.num_beams: snake_case_ = args.num_beams if args.output_file_path: snake_case_ = args.output_file_path else: snake_case_ = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(snake_case , snake_case , snake_case , snake_case , snake_case ) if __name__ == "__main__": main()
92
1
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _SCREAMING_SNAKE_CASE (A = 8 ) -> str: """simple docstring""" lowercase__ = ascii_letters + digits + punctuation return "".join(secrets.choice(A ) for _ in range(A ) ) def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" i -= len(A ) lowercase__ = i // 3 lowercase__ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowercase__ = ( chars_incl + random(A , quotient + remainder ) + random(A , A ) + random(A , A ) ) lowercase__ = list(A ) shuffle(A ) return "".join(A ) # random is a generalised function for letters, characters and numbers def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" return "".join(secrets.choice(A ) for _ in range(A ) ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[Any]: """simple docstring""" pass # Put your code here... def _SCREAMING_SNAKE_CASE (A , A ) -> Dict: """simple docstring""" pass # Put your code here... def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" pass # Put your code here... def _SCREAMING_SNAKE_CASE (A , A = 8 ) -> bool: """simple docstring""" if len(A ) < min_length: # Your Password must be at least 8 characters long return False lowercase__ = any(char in ascii_uppercase for char in password ) lowercase__ = any(char in ascii_lowercase for char in password ) lowercase__ = any(char in digits for char in password ) lowercase__ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _SCREAMING_SNAKE_CASE () -> Any: """simple docstring""" lowercase__ = int(input('''Please indicate the max length of your password: ''' ).strip() ) lowercase__ = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''' , password_generator(A ) ) print( '''Alternative Password generated:''' , alternative_password_generator(A , A ) , ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
2
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : str = Mapping[str, np.ndarray] lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Any = 0.0_1 @dataclasses.dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCAmelCase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCAmelCase__ : Optional[Sequence[int]] = None def _SCREAMING_SNAKE_CASE (A ) -> Protein: """simple docstring""" lowercase__ = R'''(\[[A-Z]+\]\n)''' lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowercase__ = '''X''' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowercase__ = np.array(A ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowercase__ = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(A )}" ) return pdb_headers def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = pdb_str.split('''\n''' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowercase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['''N/A''']] def make_parent_line(A ) -> str: return f"PARENT {' '.join(A )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" lowercase__ = residue_constants.restypes + ['''X'''] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(A ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = '''ATOM''' lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}" lowercase__ = '''''' lowercase__ = '''''' lowercase__ = 1.00 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '''''' lowercase__ = '''A''' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(A ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = '''TER''' lowercase__ = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
2
1
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] ): _UpperCAmelCase : Optional[int] = np.max(_outputs , axis=-1 , keepdims=UpperCamelCase__ ) _UpperCAmelCase : Any = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=UpperCamelCase__ ) class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''sigmoid''' a__ ='''softmax''' a__ ='''none''' @add_end_docstrings( a ,R''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' ,) class _UpperCAmelCase ( a ): '''simple docstring''' a__ =False a__ =ClassificationFunction.NONE def __init__( self , **A ) -> str: super().__init__(**A ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __lowerCAmelCase ( self , A=None , A=None , A="" , **A ) -> Dict: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" _UpperCAmelCase : Any = tokenizer_kwargs _UpperCAmelCase : Optional[Any] = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: _UpperCAmelCase : Optional[int] = self.model.config.return_all_scores if isinstance(A , A ) or top_k is None: _UpperCAmelCase : Any = top_k _UpperCAmelCase : List[Any] = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , A , ) if return_all_scores: _UpperCAmelCase : Dict = None else: _UpperCAmelCase : Tuple = 1 if isinstance(A , A ): _UpperCAmelCase : int = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _UpperCAmelCase : Union[str, Any] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *A , **A ) -> Dict: _UpperCAmelCase : Optional[int] = super().__call__(*A , **A ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _UpperCAmelCase : List[str] = '''top_k''' not in kwargs if isinstance(args[0] , A ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __lowerCAmelCase ( self , A , **A ) -> Dict[str, GenericTensor]: _UpperCAmelCase : Union[str, Any] = self.framework if isinstance(A , A ): return self.tokenizer(**A , return_tensors=A , **A ) elif isinstance(A , A ) and len(A ) == 1 and isinstance(inputs[0] , A ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=A , **A ) elif isinstance(A , A ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(A , return_tensors=A , **A ) def __lowerCAmelCase ( self , A ) -> List[Any]: return self.model(**A ) def __lowerCAmelCase ( self , A , A=None , A=1 , A=True ) -> Any: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _UpperCAmelCase : Any = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _UpperCAmelCase : int = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: _UpperCAmelCase : Optional[int] = self.model.config.function_to_apply else: _UpperCAmelCase : str = ClassificationFunction.NONE _UpperCAmelCase : int = model_outputs['''logits'''][0] _UpperCAmelCase : Optional[Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _UpperCAmelCase : List[Any] = sigmoid(A ) elif function_to_apply == ClassificationFunction.SOFTMAX: _UpperCAmelCase : List[Any] = softmax(A ) elif function_to_apply == ClassificationFunction.NONE: _UpperCAmelCase : Dict = outputs else: raise ValueError(f'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _UpperCAmelCase : Optional[int] = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(A ) ] if not _legacy: dict_scores.sort(key=lambda A : x["score"] , reverse=A ) if top_k is not None: _UpperCAmelCase : Tuple = dict_scores[:top_k] return dict_scores
68
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Dict: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _UpperCAmelCase : List[str] = [[1, 2, 4], [1, 2, 3, 4]] _UpperCAmelCase : List[str] = DisjunctiveConstraint(A ) self.assertTrue(isinstance(dc.token_ids , A ) ) with self.assertRaises(A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _UpperCAmelCase : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(A ): DisjunctiveConstraint(A ) # fails here def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Optional[Any] = [[1, 2, 3], [1, 2, 4]] _UpperCAmelCase : Optional[int] = DisjunctiveConstraint(A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = dc.update(1 ) _UpperCAmelCase : Dict = stepped is True and completed is False and reset is False self.assertTrue(A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(2 ) _UpperCAmelCase : Any = stepped is True and completed is False and reset is False self.assertTrue(A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = dc.update(3 ) _UpperCAmelCase : Optional[int] = stepped is True and completed is True and reset is False self.assertTrue(A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : Tuple = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _UpperCAmelCase : Any = DisjunctiveConstraint(A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
68
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available A_ = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
64
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _UpperCamelCase : Tuple = int(input('Enter number: ').strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
220
0
from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A ( SCREAMING_SNAKE_CASE__ ): __snake_case = 'dandelin/vilt-b32-finetuned-vqa' __snake_case = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) __snake_case = 'image_qa' __snake_case = AutoProcessor __snake_case = AutoModelForVisualQuestionAnswering __snake_case = ['image', 'text'] __snake_case = ['text'] def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(self, ['''vision'''] ) super().__init__(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" return self.pre_processor(UpperCamelCase__, UpperCamelCase__, return_tensors='''pt''' ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" with torch.no_grad(): return self.model(**UpperCamelCase__ ).logits def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
359
from abc import ABC, abstractmethod from argparse import ArgumentParser class A ( __UpperCAmelCase ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): """simple docstring""" raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" raise NotImplementedError()
167
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowerCAmelCase (): _UpperCAmelCase : Optional[Any] = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" _UpperCAmelCase : int = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert("RGB" ) return image def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = dct.pop(__lowerCAmelCase ) _UpperCAmelCase : List[str] = val def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _UpperCAmelCase : List[Any] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) _UpperCAmelCase : Tuple = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict _UpperCAmelCase : Dict = torch.cat((q_bias, torch.zeros_like(__lowerCAmelCase , requires_grad=__lowerCAmelCase ), v_bias) ) _UpperCAmelCase : int = qkv_bias def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Optional[int] = 364 if "coco" in model_name else 224 _UpperCAmelCase : Optional[Any] = InstructBlipVisionConfig(image_size=__lowerCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: _UpperCAmelCase : Dict = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _UpperCAmelCase : Union[str, Any] = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: _UpperCAmelCase : Union[str, Any] = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=32_001 ).to_dict() elif "vicuna-13b" in model_name: _UpperCAmelCase : List[str] = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=32_001 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 _UpperCAmelCase : str = InstructBlipQFormerConfig(vocab_size=30_523 ).to_dict() _UpperCAmelCase : Optional[int] = InstructBlipConfig(vision_config=__lowerCAmelCase , text_config=__lowerCAmelCase , qformer_config=__lowerCAmelCase ) return config, image_size @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=False ): _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: _UpperCAmelCase : Dict = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) _UpperCAmelCase : Dict = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) _UpperCAmelCase , _UpperCAmelCase : Tuple = get_blipa_config(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = InstructBlipForConditionalGeneration(__lowerCAmelCase ).eval() _UpperCAmelCase : List[str] = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } _UpperCAmelCase , _UpperCAmelCase : List[Any] = model_name_to_original[model_name] # load original model print("Loading original model..." ) _UpperCAmelCase : Tuple = "cuda:1" if torch.cuda.is_available() else "cpu" _UpperCAmelCase : List[Any] = "cuda:2" if torch.cuda.is_available() else "cpu" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = load_model_and_preprocess( name=__lowerCAmelCase , model_type=__lowerCAmelCase , is_eval=__lowerCAmelCase , device=__lowerCAmelCase ) original_model.eval() print("Done!" ) # update state dict keys _UpperCAmelCase : List[str] = original_model.state_dict() _UpperCAmelCase : int = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _UpperCAmelCase : Union[str, Any] = state_dict.pop(__lowerCAmelCase ) if key.startswith("Qformer.bert" ): _UpperCAmelCase : List[Any] = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: _UpperCAmelCase : Any = key.replace("self" , "attention" ) if "llm_proj" in key: _UpperCAmelCase : str = key.replace("llm_proj" , "language_projection" ) if "t5_proj" in key: _UpperCAmelCase : Dict = key.replace("t5_proj" , "language_projection" ) if key.startswith("llm_model" ): _UpperCAmelCase : int = key.replace("llm_model" , "language_model" ) if key.startswith("t5" ): _UpperCAmelCase : List[Any] = key.replace("t5" , "language" ) _UpperCAmelCase : List[str] = val # read in qv biases read_in_q_v_bias(__lowerCAmelCase , __lowerCAmelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) _UpperCAmelCase : Tuple = load_demo_image() _UpperCAmelCase : str = "What is unusual about this image?" # create processor _UpperCAmelCase : Optional[int] = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) _UpperCAmelCase : Any = InstructBlipProcessor( image_processor=__lowerCAmelCase , tokenizer=__lowerCAmelCase , qformer_tokenizer=__lowerCAmelCase , ) _UpperCAmelCase : Any = processor(images=__lowerCAmelCase , text=__lowerCAmelCase , return_tensors="pt" ).to(__lowerCAmelCase ) # make sure processor creates exact same pixel values _UpperCAmelCase : List[str] = vis_processors["eval"](__lowerCAmelCase ).unsqueeze(0 ).to(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __lowerCAmelCase ) original_model.to(__lowerCAmelCase ) hf_model.to(__lowerCAmelCase ) with torch.no_grad(): if "vicuna" in model_name: _UpperCAmelCase : Any = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits _UpperCAmelCase : Any = hf_model(**__lowerCAmelCase ).logits else: _UpperCAmelCase : List[str] = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits _UpperCAmelCase : Dict = tokenizer("\n" , return_tensors="pt" ).input_ids.to(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) _UpperCAmelCase : Optional[Any] = hf_model(**__lowerCAmelCase , labels=__lowerCAmelCase ).logits print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape _UpperCAmelCase : int = 1e-4 if "vicuna" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , __lowerCAmelCase , atol=__lowerCAmelCase ) print("Looks ok!" ) print("Generating with original model..." ) _UpperCAmelCase : Optional[int] = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) _UpperCAmelCase : Union[str, Any] = hf_model.generate( **__lowerCAmelCase , do_sample=__lowerCAmelCase , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? _UpperCAmelCase : str = 2 print("Original generation:" , __lowerCAmelCase ) _UpperCAmelCase : Dict = processor.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [text.strip() for text in output_text] print("HF generation:" , __lowerCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if push_to_hub: processor.push_to_hub(F"""Salesforce/{model_name}""" ) hf_model.push_to_hub(F"""Salesforce/{model_name}""" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() lowerCamelCase__ = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( '--model_name', default='instructblip-flan-t5-xl', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) lowerCamelCase__ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
234
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCAmelCase__ ) , "Tatoeba directory does not exist." ) class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' self.resolver.convert_models(["heb-eng"] ) @slow def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Tuple = self.resolver.write_model_card("opus-mt-he-en" , dry_run=lowerCamelCase__ ) assert mmeta["long_pair"] == "heb-eng"
234
1
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __magic_name__ = logging.getLogger() __magic_name__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase ( A__ ): '''simple docstring''' def snake_case_ ( self , _snake_case ) -> Optional[Any]: """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) UpperCAmelCase = {'''source''': '''What is love ?''', '''target''': '''life'''} UpperCAmelCase = {'''train''': 12, '''val''': 2, '''test''': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase = '''\n'''.join([contents[field]] * n_lines[split] ) with open(os.path.join(_snake_case , f"""{split}.{field}""" ) , '''w''' ) as f: f.write(_snake_case ) def snake_case_ ( self , _snake_case , _snake_case = "pytorch" ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = os.path.join(_snake_case , '''output''' ) UpperCAmelCase = os.path.join(_snake_case , '''data''' ) self._create_dummy_data(data_dir=_snake_case ) UpperCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('''--fp16''' ) else: testargs.append('''--gpus=0''' ) testargs.append('''--distributed_backend=ddp_cpu''' ) testargs.append('''--num_processes=2''' ) UpperCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_snake_case , env=self.get_env() ) UpperCAmelCase = os.path.join(_snake_case , '''metrics.json''' ) with open(_snake_case ) as f: UpperCAmelCase = json.load(_snake_case ) return result @require_torch_gpu def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_gpu @require_ray def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu @require_ray def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
371
def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] UpperCAmelCase = 6 UpperCAmelCase = 1 UpperCAmelCase = 1901 UpperCAmelCase = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 UpperCAmelCase = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 UpperCAmelCase = day - 29 else: if day > days_per_month[month - 1]: month += 1 UpperCAmelCase = day - days_per_month[month - 2] if month > 12: year += 1 UpperCAmelCase = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
152
0
from __future__ import annotations from math import pi def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
95
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
0
from PIL import Image def lowerCamelCase__ ( UpperCamelCase__ : Image , UpperCamelCase__ : float ) -> Image: '''simple docstring''' def brightness(UpperCamelCase__ : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(UpperCamelCase__ ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 UpperCAmelCase_ = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
352
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' _snake_case , _snake_case = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): _snake_case = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase_ = imread("""image_data/lena.jpg""", 1) # convert to its negative UpperCAmelCase_ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
295
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, ) -> Any: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=__lowercase, speech_processor=__lowercase, vae=__lowercase, text_encoder=__lowercase, tokenizer=__lowercase, unet=__lowercase, scheduler=__lowercase, feature_extractor=__lowercase, ) def UpperCamelCase__ ( self, __magic_name__ = "auto" ) -> Dict: """simple docstring""" if slice_size == "auto": UpperCamelCase__ : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowercase ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" self.enable_attention_slicing(__lowercase ) @torch.no_grad() def __call__( self, __magic_name__, __magic_name__=16000, __magic_name__ = 512, __magic_name__ = 512, __magic_name__ = 50, __magic_name__ = 7.5, __magic_name__ = None, __magic_name__ = 1, __magic_name__ = 0.0, __magic_name__ = None, __magic_name__ = None, __magic_name__ = "pil", __magic_name__ = True, __magic_name__ = None, __magic_name__ = 1, **__magic_name__, ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Tuple = self.speech_processor.feature_extractor( __lowercase, return_tensors='''pt''', sampling_rate=__lowercase ).input_features.to(self.device ) UpperCamelCase__ : Optional[int] = self.speech_model.generate(__lowercase, max_length=480000 ) UpperCamelCase__ : Optional[int] = self.speech_processor.tokenizer.batch_decode(__lowercase, skip_special_tokens=__lowercase, normalize=__lowercase )[ 0 ] if isinstance(__lowercase, __lowercase ): UpperCamelCase__ : str = 1 elif isinstance(__lowercase, __lowercase ): UpperCamelCase__ : Tuple = len(__lowercase ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(__lowercase )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowercase, __lowercase ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(__lowercase )}." ) # get prompt text embeddings UpperCamelCase__ : int = self.tokenizer( __lowercase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) UpperCamelCase__ : Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase__ : Union[str, Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCamelCase__ : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase__ : Dict = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Tuple = text_embeddings.shape UpperCamelCase__ : List[Any] = text_embeddings.repeat(1, __lowercase, 1 ) UpperCamelCase__ : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt, __lowercase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase__ : Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase__ : Dict = 42 if negative_prompt is None: UpperCamelCase__ : Optional[int] = [''''''] * batch_size elif type(__lowercase ) is not type(__lowercase ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(__lowercase )} !=" f" {type(__lowercase )}." ) elif isinstance(__lowercase, __lowercase ): UpperCamelCase__ : str = [negative_prompt] elif batch_size != len(__lowercase ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(__lowercase )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: UpperCamelCase__ : Tuple = negative_prompt UpperCamelCase__ : Dict = text_input_ids.shape[-1] UpperCamelCase__ : Optional[int] = self.tokenizer( __lowercase, padding='''max_length''', max_length=__lowercase, truncation=__lowercase, return_tensors='''pt''', ) UpperCamelCase__ : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ : int = uncond_embeddings.shape[1] UpperCamelCase__ : List[str] = uncond_embeddings.repeat(1, __lowercase, 1 ) UpperCamelCase__ : int = uncond_embeddings.view(batch_size * num_images_per_prompt, __lowercase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase__ : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase__ : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase__ : Optional[Any] = torch.randn(__lowercase, generator=__lowercase, device='''cpu''', dtype=__lowercase ).to( self.device ) else: UpperCamelCase__ : int = torch.randn(__lowercase, generator=__lowercase, device=self.device, dtype=__lowercase ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCamelCase__ : List[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__lowercase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase__ : int = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase__ : Optional[Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ : Dict = {} if accepts_eta: UpperCamelCase__ : List[Any] = eta for i, t in enumerate(self.progress_bar(__lowercase ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ : int = self.scheduler.scale_model_input(__lowercase, __lowercase ) # predict the noise residual UpperCamelCase__ : str = self.unet(__lowercase, __lowercase, encoder_hidden_states=__lowercase ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase__ ,UpperCamelCase__ : List[Any] = noise_pred.chunk(2 ) UpperCamelCase__ : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ : str = self.scheduler.step(__lowercase, __lowercase, __lowercase, **__lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowercase, __lowercase, __lowercase ) UpperCamelCase__ : str = 1 / 0.1_8215 * latents UpperCamelCase__ : Dict = self.vae.decode(__lowercase ).sample UpperCamelCase__ : Tuple = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase__ : Any = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": UpperCamelCase__ : Any = self.numpy_to_pil(__lowercase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__lowercase, nsfw_content_detected=__lowercase )
201
'''simple docstring''' UpperCAmelCase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' UpperCAmelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] UpperCAmelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
141
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging __A = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[int]: if isinstance(UpperCAmelCase__ , np.ndarray ): return list(tensor.shape ) lowercase__: Tuple = tf.shape(UpperCAmelCase__ ) if tensor.shape == tf.TensorShape(UpperCAmelCase__ ): return dynamic lowercase__: Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-5 , __UpperCAmelCase=-1 ) -> List[str]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized lowercase__: List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase__: List[Any] = [1] * inputs.shape.rank lowercase__: List[str] = shape_list(UpperCAmelCase__ )[axis] lowercase__: List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase__: List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) # Compute layer normalization using the batch_normalization # function. lowercase__: str = tf.nn.batch_normalization( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , ) return outputs def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=-1 ) -> Dict: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase__: List[Any] = tf.shape(UpperCAmelCase__ ) lowercase__: Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase__: Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> tf.Tensor: if not isinstance(UpperCAmelCase__ , tf.Tensor ): lowercase__: List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase__: Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase__: List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase__: Optional[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = "input_ids" ) -> None: tf.debugging.assert_less( UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=( F"""The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding """ F"""layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: lowercase__: int = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase__: Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ F"""bytes: {bad_attributes}""" ) lowercase__: Any = np.asarray(UpperCAmelCase__ ) lowercase__: Union[str, Any] = 1 lowercase__: Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase__: Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ): lowercase__: Union[str, Any] = chunk_data else: lowercase__: Any = data def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: if name in group.attrs: lowercase__: Optional[Any] = [n.decode('''utf8''' ) if hasattr(UpperCAmelCase__ , '''decode''' ) else n for n in group.attrs[name]] else: lowercase__: int = [] lowercase__: Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(UpperCAmelCase__ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Any: def _expand_single_ad_tensor(__UpperCAmelCase ): if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
370
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "unispeech-sat" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Union[str, Any] = feat_extract_norm lowercase__: Any = feat_extract_activation lowercase__: List[Any] = list(_UpperCAmelCase ) lowercase__: Optional[int] = list(_UpperCAmelCase ) lowercase__: int = list(_UpperCAmelCase ) lowercase__: Any = conv_bias lowercase__: List[str] = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: int = len(self.conv_dim ) lowercase__: Dict = num_hidden_layers lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_attention_heads lowercase__: Union[str, Any] = hidden_dropout lowercase__: List[Any] = attention_dropout lowercase__: str = activation_dropout lowercase__: Optional[Any] = feat_proj_dropout lowercase__: Optional[int] = final_dropout lowercase__: Any = layerdrop lowercase__: int = layer_norm_eps lowercase__: Any = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = num_clusters lowercase__: Dict = do_stable_layer_norm lowercase__: List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: Dict = apply_spec_augment lowercase__: Union[str, Any] = mask_time_prob lowercase__: List[str] = mask_time_length lowercase__: Union[str, Any] = mask_time_min_masks lowercase__: str = mask_feature_prob lowercase__: Dict = mask_feature_length lowercase__: List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__: Tuple = num_codevectors_per_group lowercase__: Optional[Any] = num_codevector_groups lowercase__: int = contrastive_logits_temperature lowercase__: Any = feat_quantizer_dropout lowercase__: int = num_negatives lowercase__: Optional[Any] = codevector_dim lowercase__: int = proj_codevector_dim lowercase__: str = diversity_loss_weight # ctc loss lowercase__: int = ctc_loss_reduction lowercase__: Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = list(_UpperCAmelCase ) lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = xvector_output_dim @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
2
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = tempfile.mkdtemp() # fmt: off _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _lowerCAmelCase = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } _lowerCAmelCase = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_a , _a ) def _snake_case ( self , **_lowerCAmelCase ) -> int: return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def _snake_case ( self , **_lowerCAmelCase ) -> Optional[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def _snake_case ( self ) -> Any: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _lowerCAmelCase = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def _snake_case ( self ) -> str: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(_a , return_tensors="np" ) _lowerCAmelCase = processor(images=_a , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _lowerCAmelCase = "lower newer" _lowerCAmelCase = processor(text=_a ) _lowerCAmelCase = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _lowerCAmelCase = "lower newer" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase = processor.batch_decode(_a ) _lowerCAmelCase = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _lowerCAmelCase = "lower newer" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
158
"""simple docstring""" def a__ ( snake_case__ , snake_case__ = False ) -> str: if not isinstance(snake_case__ , snake_case__ ): lowerCamelCase = F'Expected string as input, found {type(snake_case__ )}' raise ValueError(snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): lowerCamelCase = F'Expected boolean as use_pascal parameter, found {type(snake_case__ )}' raise ValueError(snake_case__ ) lowerCamelCase = input_str.split("""_""" ) lowerCamelCase = 0 if use_pascal else 1 lowerCamelCase = words[start_index:] lowerCamelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] lowerCamelCase = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
291
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1_600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1_600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :Dict ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=_lowercase , ) assert hasattr(self , "env" ) def UpperCAmelCase ( self :str , _lowercase :List[Any] ): '''simple docstring''' lowercase__ = { "enabled": True, "processes_per_host": 8, } lowercase__ = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowercase__ = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowercase__ = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=_lowercase , instance_type=self.instance_type , debugger_hook_config=_lowercase , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_00, } , metric_definitions=self.env.metric_definitions , distribution=_lowercase , py_version="py36" , ) def UpperCAmelCase ( self :List[Any] , _lowercase :Union[str, Any] ): '''simple docstring''' TrainingJobAnalytics(_lowercase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def UpperCAmelCase ( self :Tuple , _lowercase :List[str] ): '''simple docstring''' lowercase__ = self.create_estimator(_lowercase ) # run training estimator.fit() # result dataframe lowercase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowercase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , _lowercase )
367
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _snake_case = logging.getLogger(__name__) @dataclass class lowerCAmelCase : __lowerCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'Whether tp freeze the encoder.'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class lowerCAmelCase : __lowerCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __lowerCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __lowerCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __lowerCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __lowerCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __lowerCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'Source language id for translation.'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'Target language id for translation.'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': '# num_beams to use for evaluation.'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(__magic_name__ , os.path.join(__magic_name__ , f'''{split}_results.json''' ) ) def _A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() check_output_dir(__magic_name__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , __magic_name__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(__magic_name__ , __magic_name__ , __magic_name__ ): assert hasattr(__magic_name__ , __magic_name__ ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(__magic_name__ , __magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) lowercase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=__magic_name__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__magic_name__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase__ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__magic_name__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__magic_name__ , __magic_name__ ): lowercase__ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase__ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__magic_name__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase__ = SeqaSeqDataset # Get datasets lowercase__ = ( dataset_class( __magic_name__ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) lowercase__ = ( dataset_class( __magic_name__ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase__ = ( dataset_class( __magic_name__ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase__ = ( build_compute_metrics_fn(data_args.task , __magic_name__ ) if training_args.predict_with_generate else None ) lowercase__ = SeqaSeqTrainer( model=__magic_name__ , args=__magic_name__ , data_args=__magic_name__ , train_dataset=__magic_name__ , eval_dataset=__magic_name__ , data_collator=SeqaSeqDataCollator( __magic_name__ , __magic_name__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__magic_name__ , tokenizer=__magic_name__ , ) lowercase__ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) lowercase__ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase__ = train_result.metrics lowercase__ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , __magic_name__ , training_args.output_dir ) all_metrics.update(__magic_name__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowercase__ = trainer.evaluate(metric_key_prefix="val" ) lowercase__ = data_args.n_val lowercase__ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , __magic_name__ , training_args.output_dir ) all_metrics.update(__magic_name__ ) if training_args.do_predict: logger.info("*** Predict ***" ) lowercase__ = trainer.predict(test_dataset=__magic_name__ , metric_key_prefix="test" ) lowercase__ = test_output.metrics lowercase__ = data_args.n_test if trainer.is_world_process_zero(): lowercase__ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , __magic_name__ , training_args.output_dir ) all_metrics.update(__magic_name__ ) if training_args.predict_with_generate: lowercase__ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) lowercase__ = lmap(str.strip , __magic_name__ ) write_txt_file(__magic_name__ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(__magic_name__ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def _A ( __magic_name__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
201
0
import sys import turtle def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(snake_case__ , get_mid(snake_case__ , snake_case__ ) , get_mid(snake_case__ , snake_case__ ) , depth - 1 ) triangle(snake_case__ , get_mid(snake_case__ , snake_case__ ) , get_mid(snake_case__ , snake_case__ ) , depth - 1 ) triangle(snake_case__ , get_mid(snake_case__ , snake_case__ ) , get_mid(snake_case__ , snake_case__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) lowercase__ : int = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') lowercase__ : Dict = [(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
338
from ...processing_utils import ProcessorMixin class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = ["""image_processor""", """feature_extractor"""] UpperCAmelCase_ : Optional[int] = """TvltImageProcessor""" UpperCAmelCase_ : Optional[int] = """TvltFeatureExtractor""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[int]: super().__init__(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = image_processor lowerCAmelCase = feature_extractor def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) ->List[Any]: if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) lowerCAmelCase = None if images is not None: lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , mask_pixel=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if images_mixed is not None: lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , is_mixed=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if audio is not None: lowerCAmelCase = self.feature_extractor( __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , mask_audio=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCAmelCase = {} if audio is not None: output_dict.update(__SCREAMING_SNAKE_CASE ) if images is not None: output_dict.update(__SCREAMING_SNAKE_CASE ) if images_mixed_dict is not None: output_dict.update(__SCREAMING_SNAKE_CASE ) return output_dict @property def SCREAMING_SNAKE_CASE_ ( self ) ->Any: lowerCAmelCase = self.image_processor.model_input_names lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
338
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """trocr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : str = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self , lowercase_=5_0265 , lowercase_=1024 , lowercase_=12 , lowercase_=16 , lowercase_=4096 , lowercase_="gelu" , lowercase_=512 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=2 , lowercase_=0.02 , lowercase_=0.0 , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_=1 , lowercase_=0 , lowercase_=2 , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Optional[Any] = d_model UpperCAmelCase_ : Optional[int] = decoder_layers UpperCAmelCase_ : Any = decoder_attention_heads UpperCAmelCase_ : Optional[int] = decoder_ffn_dim UpperCAmelCase_ : Any = activation_function UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = dropout UpperCAmelCase_ : List[Any] = attention_dropout UpperCAmelCase_ : List[Any] = activation_dropout UpperCAmelCase_ : List[str] = init_std UpperCAmelCase_ : Tuple = decoder_layerdrop UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : Union[str, Any] = scale_embedding UpperCAmelCase_ : Dict = use_learned_position_embeddings UpperCAmelCase_ : List[str] = layernorm_embedding super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , **lowercase_ , )
23
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ctrl""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase_=24_6534 , lowercase_=256 , lowercase_=1280 , lowercase_=8192 , lowercase_=48 , lowercase_=16 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=0.02 , lowercase_=True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : List[str] = n_embd UpperCAmelCase_ : Dict = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[str] = dff UpperCAmelCase_ : Tuple = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : List[str] = use_cache super().__init__(**lowercase_ )
23
1
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowercase ( _UpperCAmelCase ): def _snake_case ( self , lowercase ) -> List[str]: with open(lowercase , encoding="""utf-8""" ) as input_file: lowerCAmelCase = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) lowerCAmelCase = input_file.read() lowerCAmelCase = regexp.search(lowercase ) return match def _snake_case ( self , lowercase ) -> Union[str, Any]: with open(lowercase , encoding="""utf-8""" ) as input_file: lowerCAmelCase = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) lowerCAmelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` lowerCAmelCase = regexp.finditer(lowercase ) lowerCAmelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _snake_case ( self ) -> List[Any]: lowerCAmelCase = Path("""./datasets""" ) lowerCAmelCase = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowercase ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = Path("""./datasets""" ) lowerCAmelCase = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(lowercase ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
46
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return [ord(SCREAMING_SNAKE_CASE ) - 96 for elem in plain] def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , SCREAMING_SNAKE_CASE ) print("""Decoded:""" , decode(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main()
46
1
import argparse from collections import defaultdict import yaml UpperCamelCase__ : Tuple = """docs/source/en/_toctree.yml""" def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]: """simple docstring""" a = defaultdict(snake_case_ ) for doc in model_doc: counts[doc["local"]] += 1 a = [key for key, value in counts.items() if value > 1] a = [] for duplicate_key in duplicates: a = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(snake_case_ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(snake_case_, key=lambda snake_case_ : s["title"].lower() ) def SCREAMING_SNAKE_CASE__ ( snake_case_=False ) -> List[str]: """simple docstring""" with open(snake_case_, encoding='''utf-8''' ) as f: a = yaml.safe_load(f.read() ) # Get to the API doc a = 0 while content[api_idx]["title"] != "API": api_idx += 1 a = content[api_idx]['''sections'''] # Then to the model doc a = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 a = api_doc[model_idx]['''sections'''] a = [(idx, section) for idx, section in enumerate(snake_case_ ) if '''sections''' in section] a = False for idx, modality_doc in modalities_docs: a = modality_doc['''sections'''] a = clean_model_doc_toc(snake_case_ ) if old_modality_doc != new_modality_doc: a = True if overwrite: a = new_modality_doc if diff: if overwrite: a = model_doc a = api_doc with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(yaml.dump(snake_case_, allow_unicode=snake_case_ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": UpperCamelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCamelCase__ : int = parser.parse_args() check_model_doc(args.fix_and_overwrite)
330
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'yolos' def __init__( self : Union[str, Any] ,__lowerCamelCase : int=7_68 ,__lowerCamelCase : Dict=12 ,__lowerCamelCase : Union[str, Any]=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : int=0.0 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : Optional[Any]=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : Any=[5_12, 8_64] ,__lowerCamelCase : Tuple=16 ,__lowerCamelCase : int=3 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[int]=1_00 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : int=1 ,__lowerCamelCase : List[Any]=5 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : int=5 ,__lowerCamelCase : str=2 ,__lowerCamelCase : Tuple=0.1 ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = num_detection_tokens a = use_mid_position_embeddings a = auxiliary_loss # Hungarian matcher a = class_cost a = bbox_cost a = giou_cost # Loss coefficients a = bbox_loss_coefficient a = giou_loss_coefficient a = eos_coefficient class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return 12
330
1
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : torch.FloatTensor _SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict=0.9_9_9 , snake_case_ : List[Any]="cosine" , ) -> Optional[Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case_ : Optional[Any] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case_ : Any ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __lowerCAmelCase = [] for i in range(SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = i / num_diffusion_timesteps __lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) class _lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = 1 @register_to_config def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] = 10_00 , SCREAMING_SNAKE_CASE__ : Optional[int] = 0.0_0_0_1 , SCREAMING_SNAKE_CASE__ : Optional[Any] = 0.0_2 , SCREAMING_SNAKE_CASE__ : Optional[Any] = "linear" , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = True , SCREAMING_SNAKE_CASE__ : Union[str, Any] = True , SCREAMING_SNAKE_CASE__ : Tuple = 0 , SCREAMING_SNAKE_CASE__ : Optional[Any] = "epsilon" , SCREAMING_SNAKE_CASE__ : int = 1.0 , **SCREAMING_SNAKE_CASE__ : int , ) -> int: if kwargs.get("""set_alpha_to_one""" , SCREAMING_SNAKE_CASE__ ) is not None: __lowerCAmelCase = ( """The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.""" ) deprecate("""set_alpha_to_one""" , """1.0.0""" , SCREAMING_SNAKE_CASE__ , standard_warn=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = kwargs["""set_alpha_to_one"""] if trained_betas is not None: __lowerCAmelCase = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCAmelCase = torch.linspace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase = betas_for_alpha_bar(SCREAMING_SNAKE_CASE__ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __lowerCAmelCase = 1.0 - self.betas __lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __lowerCAmelCase = 1.0 # setable values __lowerCAmelCase = None __lowerCAmelCase = torch.from_numpy(np.arange(0 , SCREAMING_SNAKE_CASE__ ).copy().astype(np.intaa ) ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any = None ) -> Any: return sample def a ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple = None ) -> str: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" f""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" f""" maximal {self.config.num_train_timesteps} timesteps.""" ) __lowerCAmelCase = num_inference_steps __lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCAmelCase = (np.arange(0 , SCREAMING_SNAKE_CASE__ ) * step_ratio).round().copy().astype(np.intaa ) __lowerCAmelCase = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) self.timesteps += self.config.steps_offset def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict = 0.0 , SCREAMING_SNAKE_CASE__ : str = False , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : Dict = True , ) -> Any: __lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __lowerCAmelCase = self.alphas_cumprod[timestep] __lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __lowerCAmelCase = model_output elif self.config.prediction_type == "sample": __lowerCAmelCase = model_output __lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" """ `v_prediction`""" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE__ , pred_original_sample=SCREAMING_SNAKE_CASE__ ) def __len__( self : Tuple ) -> List[Any]: return self.config.num_train_timesteps
229
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Optional[Any] = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __snake_case ( lowerCAmelCase ): _a : str= "gpt_neo" _a : Optional[int]= ["past_key_values"] _a : Dict= {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self ,snake_case=50257 ,snake_case=2048 ,snake_case=2048 ,snake_case=24 ,snake_case=[[["global", "local"], 12]] ,snake_case=16 ,snake_case=None ,snake_case=256 ,snake_case="gelu_new" ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.1 ,snake_case=1e-5 ,snake_case=0.02 ,snake_case=True ,snake_case=50256 ,snake_case=50256 ,**snake_case ,): '''simple docstring''' lowercase : int = vocab_size lowercase : Union[str, Any] = max_position_embeddings lowercase : Dict = hidden_size lowercase : Union[str, Any] = num_layers lowercase : Union[str, Any] = num_heads lowercase : Optional[int] = intermediate_size lowercase : List[str] = window_size lowercase : Optional[int] = activation_function lowercase : List[str] = resid_dropout lowercase : int = embed_dropout lowercase : Optional[int] = attention_dropout lowercase : Tuple = classifier_dropout lowercase : Optional[int] = layer_norm_epsilon lowercase : Dict = initializer_range lowercase : List[str] = use_cache lowercase : Optional[int] = bos_token_id lowercase : int = eos_token_id lowercase : Union[str, Any] = attention_types lowercase : Dict = self.expand_attention_types_params(snake_case ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' lowercase : List[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: import torch lowercase : Tuple = input.size() lowercase : int = len(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = shape[dimension] lowercase : int = torch.arange(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.div(sizedim - size , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) + 1 lowercase : Dict = torch.arange(SCREAMING_SNAKE_CASE__ ) + low_indices[:min_length][:, None] lowercase : Union[str, Any] = [slice(SCREAMING_SNAKE_CASE__ )] * rank lowercase : Optional[Any] = indices lowercase : List[str] = input[s] lowercase : Optional[int] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: import torch lowercase : Union[str, Any] = torch.arange(1 , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.remainder(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = remainders == 0 lowercase : Optional[int] = candidates[divisor_indices] lowercase : List[Any] = torch.max(SCREAMING_SNAKE_CASE__ ) return largest_divisor, torch.div(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) class __snake_case ( lowerCAmelCase ): @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(snake_case ,direction="""inputs""" ) lowercase : Dict = {0: """batch""", 1: """past_sequence + sequence"""} else: lowercase : List[str] = {0: """batch""", 1: """sequence"""} return common_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._config.num_heads def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = -1 ,snake_case = -1 ,snake_case = False ,snake_case = None ,): '''simple docstring''' lowercase : Any = super(snake_case ,self ).generate_dummy_inputs( snake_case ,batch_size=snake_case ,seq_length=snake_case ,is_pair=snake_case ,framework=snake_case ) # We need to order the input in the way they appears in the forward() lowercase : List[str] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase : List[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase : Optional[int] = seqlen + 2 lowercase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase : Optional[Any] = [ (torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(self.num_layers ) ] lowercase : Optional[Any] = common_inputs["""attention_mask"""] if self.use_past: lowercase : Any = ordered_inputs["""attention_mask"""].dtype lowercase : Union[str, Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(snake_case ,snake_case ,dtype=snake_case )] ,dim=1 ) return ordered_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 13
20
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: lowerCamelCase__ : int = AutoConfig.from_pretrained(_UpperCAmelCase ) lowerCamelCase__ : List[Any] = FlaxAutoModelForSeqaSeqLM.from_config(config=_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) lowerCamelCase__ : List[Any] = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": lowerCamelCase__ : Any = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": lowerCamelCase__ : List[str] = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : List[Any] = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): lowerCamelCase__ : Dict = F"""layers_{str(_UpperCAmelCase )}""" # Self-Attention lowerCamelCase__ : Union[str, Any] = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] lowerCamelCase__ : Optional[Any] = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] lowerCamelCase__ : List[str] = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] lowerCamelCase__ : Dict = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : List[Any] = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization lowerCamelCase__ : Tuple = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: lowerCamelCase__ : str = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] lowerCamelCase__ : List[str] = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: lowerCamelCase__ : List[str] = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] lowerCamelCase__ : int = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization lowerCamelCase__ : Any = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning lowerCamelCase__ : Optional[Any] = flax_model.params['encoder']['block'][str(_UpperCAmelCase )]['layer'] lowerCamelCase__ : Dict = tax_attention_key lowerCamelCase__ : Optional[Any] = tax_attention_out lowerCamelCase__ : List[Any] = tax_attention_query lowerCamelCase__ : Any = tax_attention_value lowerCamelCase__ : Tuple = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : Optional[Any] = tax_global_layer_norm if split_mlp_wi: lowerCamelCase__ : Optional[Any] = tax_mlp_wi_a lowerCamelCase__ : int = tax_mlp_wi_a else: lowerCamelCase__ : List[Any] = tax_mlp_wi lowerCamelCase__ : Dict = tax_mlp_wo lowerCamelCase__ : int = tax_mlp_layer_norm lowerCamelCase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowerCamelCase__ : Any = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T lowerCamelCase__ : Union[str, Any] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : List[Any] = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T lowerCamelCase__ : Optional[int] = tax_encoder_global_rel_embedding # Assigning lowerCamelCase__ : Any = tax_model['target']['encoder']['encoder_norm']['scale'] lowerCamelCase__ : Optional[int] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowerCamelCase__ : Optional[int] = F"""layers_{str(_UpperCAmelCase )}""" # Self-Attention lowerCamelCase__ : Tuple = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] lowerCamelCase__ : int = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] lowerCamelCase__ : Dict = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] lowerCamelCase__ : Any = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization lowerCamelCase__ : Optional[Any] = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention lowerCamelCase__ : List[str] = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] lowerCamelCase__ : Optional[int] = tax_enc_dec_attention_module['key']['kernel'] lowerCamelCase__ : List[str] = tax_enc_dec_attention_module['out']['kernel'] lowerCamelCase__ : Dict = tax_enc_dec_attention_module['query']['kernel'] lowerCamelCase__ : Dict = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization lowerCamelCase__ : Tuple = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: lowerCamelCase__ : List[Any] = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] lowerCamelCase__ : List[Any] = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: lowerCamelCase__ : int = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] lowerCamelCase__ : int = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization lowerCamelCase__ : Union[str, Any] = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning lowerCamelCase__ : Optional[Any] = flax_model.params['decoder']['block'][str(_UpperCAmelCase )]['layer'] lowerCamelCase__ : Union[str, Any] = tax_attention_key lowerCamelCase__ : List[Any] = tax_attention_out lowerCamelCase__ : Optional[int] = tax_attention_query lowerCamelCase__ : int = tax_attention_value lowerCamelCase__ : Dict = tax_pre_attention_layer_norm lowerCamelCase__ : str = tax_enc_dec_attention_key lowerCamelCase__ : List[Any] = tax_enc_dec_attention_out lowerCamelCase__ : List[str] = tax_enc_dec_attention_query lowerCamelCase__ : int = tax_enc_dec_attention_value lowerCamelCase__ : Optional[int] = tax_cross_layer_norm if split_mlp_wi: lowerCamelCase__ : Union[str, Any] = tax_mlp_wi_a lowerCamelCase__ : Any = tax_mlp_wi_a else: lowerCamelCase__ : Union[str, Any] = tax_mlp_wi lowerCamelCase__ : Union[str, Any] = tax_mlp_wo lowerCamelCase__ : Tuple = txa_mlp_layer_norm lowerCamelCase__ : Dict = flax_model_decoder_layer_block # Decoder Normalization lowerCamelCase__ : Optional[int] = tax_model['target']['decoder']['decoder_norm']['scale'] lowerCamelCase__ : List[str] = txa_decoder_norm # Only for layer 0: lowerCamelCase__ : List[Any] = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T lowerCamelCase__ : Tuple = tax_decoder_rel_embedding # Token Embeddings lowerCamelCase__ : Tuple = tax_model['target']['token_embedder']['embedding'] lowerCamelCase__ : List[str] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowerCamelCase__ : Dict = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(_UpperCAmelCase ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) _UpperCAmelCase : Dict = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
45
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowerCAmelCase ( pl.LightningModule ): def __init__( self : List[str] , UpperCAmelCase : Optional[Any] ) -> int: super().__init__() lowerCamelCase__ : List[str] = model lowerCamelCase__ : Dict = 2 lowerCamelCase__ : Dict = nn.Linear(self.model.config.hidden_size , self.num_labels ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: # load longformer model from model identifier lowerCamelCase__ : List[str] = LongformerModel.from_pretrained(_UpperCAmelCase ) lowerCamelCase__ : Dict = LightningModel(_UpperCAmelCase ) lowerCamelCase__ : List[Any] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model lowerCamelCase__ : Dict = LongformerForQuestionAnswering.from_pretrained(_UpperCAmelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_UpperCAmelCase ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": _UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCAmelCase : Any = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
45
1
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder a_ = 'base_with_context' def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"])) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"]) , requires_grad=_a) for lyr_num, lyr in enumerate(model.encoders): SCREAMING_SNAKE_CASE : List[Any] = weights[f"layers_{lyr_num}"] SCREAMING_SNAKE_CASE : Any = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"])) SCREAMING_SNAKE_CASE : Tuple = ly_weight["attention"] SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"])) return model def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T)) SCREAMING_SNAKE_CASE : Any = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"]) , requires_grad=_a) for lyr_num, lyr in enumerate(model.encoders): SCREAMING_SNAKE_CASE : Optional[Any] = weights[f"layers_{lyr_num}"] SCREAMING_SNAKE_CASE : Union[str, Any] = ly_weight["attention"] SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"])) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"])) return model def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T)) SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T)) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"]) , requires_grad=_a) SCREAMING_SNAKE_CASE : Dict = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T)) for lyr_num, lyr in enumerate(model.decoders): SCREAMING_SNAKE_CASE : Optional[int] = weights[f"layers_{lyr_num}"] SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"])) SCREAMING_SNAKE_CASE : Any = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T)) SCREAMING_SNAKE_CASE : Optional[int] = ly_weight["self_attention"] SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) SCREAMING_SNAKE_CASE : List[Any] = ly_weight["MultiHeadDotProductAttention_0"] SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) SCREAMING_SNAKE_CASE : Dict = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"])) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) SCREAMING_SNAKE_CASE : str = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T)) SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"])) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T)) return model def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Any = checkpoints.load_tax_checkpoint(args.checkpoint_path) SCREAMING_SNAKE_CASE : Optional[int] = jnp.tree_util.tree_map(onp.array , _a) SCREAMING_SNAKE_CASE : Dict = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] SCREAMING_SNAKE_CASE : int = os.path.join(args.checkpoint_path , ".." , "config.gin") SCREAMING_SNAKE_CASE : List[str] = inference.parse_training_gin_file(_a , _a) SCREAMING_SNAKE_CASE : str = inference.InferenceModel(args.checkpoint_path , _a) SCREAMING_SNAKE_CASE : Any = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large") SCREAMING_SNAKE_CASE : List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) SCREAMING_SNAKE_CASE : Dict = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) SCREAMING_SNAKE_CASE : Union[str, Any] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) SCREAMING_SNAKE_CASE : Optional[int] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , _a) SCREAMING_SNAKE_CASE : List[str] = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , _a) SCREAMING_SNAKE_CASE : Union[str, Any] = load_decoder(ta_checkpoint["target"]["decoder"] , _a) SCREAMING_SNAKE_CASE : Tuple = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder") SCREAMING_SNAKE_CASE : Dict = SpectrogramDiffusionPipeline( notes_encoder=_a , continuous_encoder=_a , decoder=_a , scheduler=_a , melgan=_a , ) if args.save: pipe.save_pretrained(args.output_path) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help='Path to the original jax model checkpoint.', ) a_ = parser.parse_args() main(args)
76
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a = logging.get_logger(__name__) _a = {"vocab_file": "spiece.model"} _a = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } _a = { "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase__ = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) lowerCamelCase__ = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCamelCase__ = '''<|endoftext|>''' if eos_token is None else eos_token lowerCamelCase__ = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCamelCase__ = unk_token if pad_token is None else pad_token lowerCamelCase__ = eos_token if bos_token is None else bos_token else: lowerCamelCase__ = '''<pad>''' if pad_token is None else pad_token lowerCamelCase__ = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) lowerCamelCase__ = do_lower_case lowerCamelCase__ = remove_space lowerCamelCase__ = keep_accents lowerCamelCase__ = vocab_file lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) # Used for whitespace normalization in input texts # fmt : off lowerCamelCase__ = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCamelCase__ = re.compile( F'[{"".join(map(__lowerCAmelCase , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self ): '''simple docstring''' lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.non_printing_characters_re.sub('''''' , __lowerCAmelCase ) # Normalize whitespaces lowerCamelCase__ = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization lowerCamelCase__ = unicodedata.normalize('''NFC''' , __lowerCAmelCase ) return text def __lowerCamelCase ( self , __lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.preprocess_text(__lowerCAmelCase ) return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.PieceToId(__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.IdToPiece(__lowerCAmelCase ) @staticmethod def __lowerCamelCase ( __lowerCAmelCase ): '''simple docstring''' return out_string def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = '''''' lowerCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCAmelCase ) + token lowerCamelCase__ = True lowerCamelCase__ = [] else: current_sub_tokens.append(__lowerCAmelCase ) lowerCamelCase__ = False out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__lowerCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = False ): '''simple docstring''' if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = self.preprocess_text(__lowerCAmelCase ) lowerCamelCase__ = self.sp_model.encode(__lowerCAmelCase ) else: lowerCamelCase__ = [self.preprocess_text(__lowerCAmelCase ) for t in text] lowerCamelCase__ = self.sp_model.encode(__lowerCAmelCase ) if return_tensors is True or return_tensors == "pt": lowerCamelCase__ = torch.tensor(__lowerCAmelCase ) return token_ids def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.decode(__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] lowerCamelCase__ = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(__lowerCAmelCase ) + F'{self.bos_token}Bot:' ) return self.encode(text=__lowerCAmelCase )
209
0
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() def __lowerCamelCase ( self ) -> Any: '''simple docstring''' __UpperCamelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __UpperCamelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __UpperCamelCase : str = "xvjiarui/stable-diffusion-2-inpainting" __UpperCamelCase : List[Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(__UpperCamelCase , safety_checker=__UpperCamelCase ) __UpperCamelCase : Tuple = "Face of a yellow cat, high resolution, sitting on a park bench" __UpperCamelCase : Tuple = jax.random.PRNGKey(0 ) __UpperCamelCase : List[str] = 50 __UpperCamelCase : int = jax.device_count() __UpperCamelCase : List[str] = num_samples * [prompt] __UpperCamelCase : Optional[Any] = num_samples * [init_image] __UpperCamelCase : Optional[Any] = num_samples * [mask_image] __UpperCamelCase : Optional[int] = pipeline.prepare_inputs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # shard inputs and rng __UpperCamelCase : Dict = replicate(__UpperCamelCase ) __UpperCamelCase : Optional[int] = jax.random.split(__UpperCamelCase , jax.device_count() ) __UpperCamelCase : Optional[int] = shard(__UpperCamelCase ) __UpperCamelCase : Dict = shard(__UpperCamelCase ) __UpperCamelCase : Tuple = shard(__UpperCamelCase ) __UpperCamelCase : int = pipeline( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , jit=__UpperCamelCase ) __UpperCamelCase : Tuple = output.images.reshape(__UpperCamelCase , 5_12 , 5_12 , 3 ) __UpperCamelCase : Any = images[0, 2_53:2_56, 2_53:2_56, -1] __UpperCamelCase : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __UpperCamelCase : List[Any] = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
357
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
171
0
from collections import deque class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> None: """simple docstring""" _lowercase : Optional[Any] = process_name # process name _lowercase : List[Any] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time _lowercase : Tuple = arrival_time _lowercase : Any = burst_time # remaining burst time _lowercase : Optional[int] = 0 # total time of the process wait in ready queue _lowercase : Union[str, Any] = 0 # time from arrival time to completion time class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> None: """simple docstring""" _lowercase : List[str] = number_of_queues # time slice of queues that round robin algorithm applied _lowercase : str = time_slices # unfinished process is in this ready_queue _lowercase : Optional[Any] = queue # current time _lowercase : Union[str, Any] = current_time # finished process is in this sequence queue _lowercase : deque[Process] = deque() def UpperCamelCase ( self) -> list[str]: """simple docstring""" _lowercase : List[Any] = [] for i in range(len(self.finish_queue)): sequence.append(self.finish_queue[i].process_name) return sequence def UpperCamelCase ( self, lowerCamelCase) -> list[int]: """simple docstring""" _lowercase : Optional[int] = [] for i in range(len(lowerCamelCase)): waiting_times.append(queue[i].waiting_time) return waiting_times def UpperCamelCase ( self, lowerCamelCase) -> list[int]: """simple docstring""" _lowercase : Tuple = [] for i in range(len(lowerCamelCase)): turnaround_times.append(queue[i].turnaround_time) return turnaround_times def UpperCamelCase ( self, lowerCamelCase) -> list[int]: """simple docstring""" _lowercase : Optional[int] = [] for i in range(len(lowerCamelCase)): completion_times.append(queue[i].stop_time) return completion_times def UpperCamelCase ( self, lowerCamelCase) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCamelCase ( self, lowerCamelCase) -> deque[Process]: """simple docstring""" _lowercase : deque[Process] = deque() # sequence deque of finished process while len(lowerCamelCase) != 0: _lowercase : List[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(lowerCamelCase) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 _lowercase : Optional[int] = 0 # set the process's turnaround time because it is finished _lowercase : str = self.current_time - cp.arrival_time # set the completion time _lowercase : Any = self.current_time # add the process to queue that has finished queue finished.append(lowerCamelCase) self.finish_queue.extend(lowerCamelCase) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> tuple[deque[Process], deque[Process]]: """simple docstring""" _lowercase : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(lowerCamelCase)): _lowercase : int = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(lowerCamelCase) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time _lowercase : str = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(lowerCamelCase) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished _lowercase : str = 0 # set the finish time _lowercase : Union[str, Any] = self.current_time # update the process' turnaround time because it is finished _lowercase : List[str] = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(lowerCamelCase) self.finish_queue.extend(lowerCamelCase) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCamelCase ( self) -> deque[Process]: """simple docstring""" for i in range(self.number_of_queues - 1): _lowercase , _lowercase : str = self.round_robin( self.ready_queue, self.time_slices[i]) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue) return self.finish_queue if __name__ == "__main__": import doctest SCREAMING_SNAKE_CASE : Union[str, Any] = Process("P1", 0, 53) SCREAMING_SNAKE_CASE : str = Process("P2", 0, 17) SCREAMING_SNAKE_CASE : Optional[Any] = Process("P3", 0, 68) SCREAMING_SNAKE_CASE : Optional[Any] = Process("P4", 0, 24) SCREAMING_SNAKE_CASE : Optional[int] = 3 SCREAMING_SNAKE_CASE : List[str] = [17, 25] SCREAMING_SNAKE_CASE : List[Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) SCREAMING_SNAKE_CASE : List[str] = Process("P1", 0, 53) SCREAMING_SNAKE_CASE : Optional[Any] = Process("P2", 0, 17) SCREAMING_SNAKE_CASE : List[str] = Process("P3", 0, 68) SCREAMING_SNAKE_CASE : Tuple = Process("P4", 0, 24) SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = [17, 25] SCREAMING_SNAKE_CASE : Optional[Any] = deque([Pa, Pa, Pa, Pa]) SCREAMING_SNAKE_CASE : str = MLFQ(number_of_queues, time_slices, queue, 0) SCREAMING_SNAKE_CASE : Union[str, Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( F"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( F"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
21
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Dict = ShapEImgaImgPipeline lowerCAmelCase__ : List[str] = ["""image"""] lowerCAmelCase__ : Any = ["""image"""] lowerCAmelCase__ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCAmelCase__ : Tuple = False @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : str ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase__ (self : int ): '''simple docstring''' return 8 @property def UpperCamelCase__ (self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase ) return model @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase__ (self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase ) return model @property def UpperCamelCase__ (self : int ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase ) return model def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase ) else: lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
2
0
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __A (_SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" return EnvironmentCommand() class _lowerCAmelCase ( a ): """simple docstring""" @staticmethod def snake_case ( __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = parser.add_parser('env' ) download_parser.set_defaults(func=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = huggingface_hub.__version__ lowerCAmelCase__ :str = 'not installed' lowerCAmelCase__ :Any = 'NA' if is_torch_available(): import torch lowerCAmelCase__ :Dict = torch.__version__ lowerCAmelCase__ :Dict = torch.cuda.is_available() lowerCAmelCase__ :Any = 'not installed' if is_transformers_available(): import transformers lowerCAmelCase__ :List[Any] = transformers.__version__ lowerCAmelCase__ :Optional[Any] = 'not installed' if is_accelerate_available(): import accelerate lowerCAmelCase__ :Tuple = accelerate.__version__ lowerCAmelCase__ :Optional[int] = 'not installed' if is_xformers_available(): import xformers lowerCAmelCase__ :Union[str, Any] = xformers.__version__ lowerCAmelCase__ :Optional[int] = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"{pt_version} ({pt_cuda_available})", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(__UpperCAmelCase ) ) return info @staticmethod def snake_case ( __UpperCAmelCase ): '''simple docstring''' return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
371
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :list[list[int]] = [[0 for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(m + 1 )] for i in range(m + 1 ): lowerCAmelCase__ :str = 1 for n in range(m + 1 ): for k in range(1 , _SCREAMING_SNAKE_CASE ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __A = int(input("""Enter a number: """).strip()) print(partition(n)) except ValueError: print("""Please enter a number.""") else: try: __A = int(sys.argv[1]) print(partition(n)) except ValueError: print("""Please pass a number.""")
254
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''DeiTFeatureExtractor'''] lowerCAmelCase__ = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a : Tuple= logging.get_logger(__name__) _a : str= { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _a : Optional[int]= { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } _a : Tuple= {"facebook/blenderbot-3B": 128} class UpperCamelCase ( lowercase ): UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : List[Any] = ["""input_ids""", """attention_mask"""] UpperCAmelCase : Optional[int] = BlenderbotTokenizer def __init__(self : int , _A : Tuple=None , _A : str=None , _A : Union[str, Any]=None , _A : str="replace" , _A : List[Any]="<s>" , _A : List[Any]="</s>" , _A : Optional[int]="</s>" , _A : List[str]="<s>" , _A : Union[str, Any]="<unk>" , _A : Any="<pad>" , _A : str="<mask>" , _A : Union[str, Any]=False , _A : Optional[Any]=True , **_A : Optional[int] , ) -> int: super().__init__( _A , _A , tokenizer_file=_A , errors=_A , bos_token=_A , eos_token=_A , sep_token=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , trim_offsets=_A , **_A , ) __snake_case : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , _A) != add_prefix_space: __snake_case : Dict = getattr(_A , pre_tok_state.pop('type')) __snake_case : int = add_prefix_space __snake_case : Optional[int] = pre_tok_class(**_A) __snake_case : str = add_prefix_space __snake_case : Dict = 'post_processor' __snake_case : Optional[int] = getattr(self.backend_tokenizer , _A , _A) if tokenizer_component_instance: __snake_case : Any = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : int = tuple(state['sep']) if "cls" in state: __snake_case : int = tuple(state['cls']) __snake_case : Any = False if state.get('add_prefix_space' , _A) != add_prefix_space: __snake_case : int = add_prefix_space __snake_case : Dict = True if state.get('trim_offsets' , _A) != trim_offsets: __snake_case : int = trim_offsets __snake_case : Dict = True if changes_to_apply: __snake_case : List[str] = getattr(_A , state.pop('type')) __snake_case : Optional[int] = component_class(**_A) setattr(self.backend_tokenizer , _A , _A) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowercase (self : Optional[int]) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def _lowercase (self : Union[str, Any] , _A : List[Any]) -> List[Any]: __snake_case : List[str] = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else value __snake_case : Optional[int] = value def _lowercase (self : Tuple , *_A : int , **_A : Union[str, Any]) -> BatchEncoding: __snake_case : List[str] = kwargs.get('is_split_into_words' , _A) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_A , **_A) def _lowercase (self : Any , *_A : Union[str, Any] , **_A : Union[str, Any]) -> BatchEncoding: __snake_case : Tuple = kwargs.get('is_split_into_words' , _A) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_A , **_A) def _lowercase (self : Optional[Any] , _A : str , _A : Optional[str] = None) -> Tuple[str]: __snake_case : List[str] = self._tokenizer.model.save(_A , name=_A) return tuple(_A) def _lowercase (self : Any , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : List[str] = [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowercase (self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None) -> Tuple: return token_ids_a + [self.eos_token_id] def _lowercase (self : Optional[int] , _A : "Conversation") -> List[int]: __snake_case : str = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(_A) __snake_case : Union[str, Any] = ' '.join(_A) __snake_case : List[str] = self.encode(_A) if len(_A) > self.model_max_length: __snake_case : str = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens.") return input_ids
172
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( a__ ): """simple docstring""" @staticmethod @abstractmethod def __lowerCAmelCase ( _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError() @abstractmethod def __lowerCAmelCase ( self ) ->Optional[Any]: raise NotImplementedError()
19
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( __A ): __SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE = "LayoutLMv3ImageProcessor" __SCREAMING_SNAKE_CASE = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self,__lowerCamelCase=None,__lowerCamelCase=None,**__lowerCamelCase ): A__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''',lowercase_,) A__ = kwargs.pop('''feature_extractor''' ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase_,lowercase_ ) def __call__( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = True,__lowerCamelCase = False,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = 0,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = True,__lowerCamelCase = None,**__lowerCamelCase,): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor A__ = self.image_processor(images=lowercase_,return_tensors=lowercase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase_,lowercase_ ): A__ = [text] # add batch dimension (as the image processor always adds a batch dimension) A__ = features["words"] A__ = self.tokenizer( text=text if text is not None else features['''words'''],text_pair=text_pair if text_pair is not None else None,boxes=boxes if boxes is not None else features['''boxes'''],word_labels=lowercase_,add_special_tokens=lowercase_,padding=lowercase_,truncation=lowercase_,max_length=lowercase_,stride=lowercase_,pad_to_multiple_of=lowercase_,return_token_type_ids=lowercase_,return_attention_mask=lowercase_,return_overflowing_tokens=lowercase_,return_special_tokens_mask=lowercase_,return_offsets_mapping=lowercase_,return_length=lowercase_,verbose=lowercase_,return_tensors=lowercase_,**lowercase_,) # add pixel values A__ = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: A__ = self.get_overflowing_images(lowercase_,encoded_inputs['''overflow_to_sample_mapping'''] ) A__ = images return encoded_inputs def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image A__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f" {len(lowercase_ )} and {len(lowercase_ )}" ) return images_with_overflow def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.batch_decode(*lowercase_,**lowercase_ ) def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.decode(*lowercase_,**lowercase_ ) @property def UpperCamelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCamelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''',lowercase_,) return self.image_processor_class @property def UpperCamelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''',lowercase_,) return self.image_processor
193
import operator def lowercase_ ( _lowerCamelCase : list , _lowerCamelCase : bool = False , _lowerCamelCase : list | None = None): lowercase__ : int = operator.lt if reverse else operator.gt lowercase__ : str = solution or [] if not arr: return solution lowercase__ : List[str] = [arr.pop(0)] for i, item in enumerate(_lowerCamelCase): if _operator(_lowerCamelCase , sublist[-1]): sublist.append(_lowerCamelCase) arr.pop(_lowerCamelCase) # merging sublist into solution list if not solution: solution.extend(_lowerCamelCase) else: while sublist: lowercase__ : str = sublist.pop(0) for i, xx in enumerate(_lowerCamelCase): if not _operator(_lowerCamelCase , _lowerCamelCase): solution.insert(_lowerCamelCase , _lowerCamelCase) break else: solution.append(_lowerCamelCase) strand_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
87
0
'''simple docstring''' _SCREAMING_SNAKE_CASE = { "km/h": 1.0, "m/s": 3.6, "mph": 1.6_0_9_3_4_4, "knot": 1.8_5_2, } _SCREAMING_SNAKE_CASE = { "km/h": 1.0, "m/s": 0.2_7_7_7_7_7_7_7_8, "mph": 0.6_2_1_3_7_1_1_9_2, "knot": 0.5_3_9_9_5_6_8_0_3, } def _lowerCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : str , lowerCamelCase_ : str ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __lowercase = ( f"Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n" f"Valid values are: {', '.join(lowerCamelCase_ )}" ) raise ValueError(lowerCamelCase_ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
217
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _lowerCAmelCase ( ): print('''Making key files...''' ) make_key_files('''rsa''' , 1_0_2_4 ) print('''Key files generation successful.''' ) def _lowerCAmelCase ( lowerCamelCase_ : int ): print('''Generating prime p...''' ) __lowercase = rabinMiller.generate_large_prime(lowerCamelCase_ ) print('''Generating prime q...''' ) __lowercase = rabinMiller.generate_large_prime(lowerCamelCase_ ) __lowercase = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' ) while True: __lowercase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(lowerCamelCase_ , (p - 1) * (q - 1) ) == 1: break print('''Calculating d that is mod inverse of e...''' ) __lowercase = cryptoMath.find_mod_inverse(lowerCamelCase_ , (p - 1) * (q - 1) ) __lowercase = (n, e) __lowercase = (n, d) return (public_key, private_key) def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int ): if os.path.exists(f"{name}_pubkey.txt" ) or os.path.exists(f"{name}_privkey.txt" ): print('''\nWARNING:''' ) print( f"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() __lowercase , __lowercase = generate_key(lowerCamelCase_ ) print(f"\nWriting public key to file {name}_pubkey.txt..." ) with open(f"{name}_pubkey.txt" , '''w''' ) as out_file: out_file.write(f"{key_size},{public_key[0]},{public_key[1]}" ) print(f"Writing private key to file {name}_privkey.txt..." ) with open(f"{name}_privkey.txt" , '''w''' ) as out_file: out_file.write(f"{key_size},{private_key[0]},{private_key[1]}" ) if __name__ == "__main__": main()
217
1
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Any = CLIPTokenizer lowerCAmelCase : Union[str, Any] = CLIPTokenizerFast lowerCAmelCase : List[Any] = True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : str = False def UpperCAmelCase ( self : List[Any] ) -> str: """simple docstring""" super().setUp() # fmt: off lowercase__ : Dict = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowercase__ : Union[str, Any] = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) lowercase__ : Union[str, Any] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] lowercase__ : List[str] = {'''unk_token''': '''<unk>'''} lowercase__ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_snake_case ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) def UpperCAmelCase ( self : Any ,**_snake_case : Any ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,**_snake_case : List[str] ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = '''lower newer''' lowercase__ : Optional[Any] = '''lower newer''' return input_text, output_text def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowercase__ : Dict = '''lower newer''' lowercase__ : Union[str, Any] = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] lowercase__ : Tuple = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) lowercase__ : List[str] = tokens + [tokenizer.unk_token] lowercase__ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) ,_snake_case ) @require_ftfy def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : List[str] = self.tokenizer_class.from_pretrained(_snake_case ,**_snake_case ) lowercase__ : Dict = self.rust_tokenizer_class.from_pretrained(_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' lowercase__ : str = tokenizer_s.tokenize(_snake_case ) lowercase__ : Optional[Any] = tokenizer_r.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowercase__ : Optional[Any] = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' lowercase__ : int = tokenizer_s.tokenize(_snake_case ) lowercase__ : Union[str, Any] = tokenizer_r.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) # Test that the tokenization is identical on unicode of space type lowercase__ : Optional[int] = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowercase__ : Tuple = tokenizer_s.tokenize(_snake_case ) lowercase__ : Optional[int] = tokenizer_r.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) # Test that the tokenization is identical on unicode of line break type lowercase__ : Tuple = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowercase__ : Dict = tokenizer_s.tokenize(_snake_case ) lowercase__ : Tuple = tokenizer_r.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Union[str, Any] = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowercase__ : List[Any] = f"""{text_of_1_token} {text_of_1_token}""" lowercase__ : Dict = self.rust_tokenizer_class.from_pretrained( _snake_case ,use_fast=_snake_case ,) lowercase__ : Optional[int] = tokenizer_r(_snake_case ,return_offsets_mapping=_snake_case ,add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(_snake_case ) + 1, len(_snake_case ) + 1 + len(_snake_case )) ,) lowercase__ : Tuple = f""" {text}""" lowercase__ : Any = self.rust_tokenizer_class.from_pretrained( _snake_case ,use_fast=_snake_case ,) lowercase__ : Dict = tokenizer_r(_snake_case ,return_offsets_mapping=_snake_case ,add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(_snake_case ) + 1, 1 + len(_snake_case ) + 1 + len(_snake_case )) ,) def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" with self.assertRaises(_snake_case ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" super().test_tokenization_python_rust_equals() def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" pass
16
from math import pi, sqrt, tan def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __lowerCamelCase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(UpperCamelCase__ , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __lowerCamelCase = (sidea + sidea + sidea) / 2 __lowerCamelCase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : float ) -> float: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print("\nSurface Areas of various geometric shapes: \n") print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
90
0
UpperCAmelCase__ = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" UpperCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] UpperCAmelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
26
from __future__ import annotations def _a ( a :dict , a :str ) -> set[str]: a , a = set(a ), [start] while stack: a = stack.pop() explored.add(a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a ) return explored UpperCAmelCase__ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
26
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Tuple = logging.get_logger(__name__) _A : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class _lowercase ( A__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = """mra""" def __init__( self : int , SCREAMING_SNAKE_CASE__ : Tuple=5_02_65 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=12 , SCREAMING_SNAKE_CASE__ : Tuple=30_72 , SCREAMING_SNAKE_CASE__ : str="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_12 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : Dict=0.0_2 , SCREAMING_SNAKE_CASE__ : int=1e-5 , SCREAMING_SNAKE_CASE__ : str="absolute" , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : List[str]="full" , SCREAMING_SNAKE_CASE__ : Any=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE__ : Any=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , **SCREAMING_SNAKE_CASE__ : int , ) -> str: super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = type_vocab_size __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = block_per_row __lowerCAmelCase = approx_mode __lowerCAmelCase = initial_prior_first_n_blocks __lowerCAmelCase = initial_prior_diagonal_n_blocks
229
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__: str = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Union[str, Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __A = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = 'A painting of a squirrel eating a burger ' lowerCAmelCase__ :Tuple = torch.manual_seed(0 ) lowerCAmelCase__ :List[Any] = pipe( prompt=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Dict = VersatileDiffusionTextToImagePipeline.from_pretrained(__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = generator.manual_seed(0 ) lowerCAmelCase__ :Optional[int] = pipe( prompt=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = 'A painting of a squirrel eating a burger ' lowerCAmelCase__ :Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ :Union[str, Any] = pipe( prompt=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images lowerCAmelCase__ :Dict = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase__ :int = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
254
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) ->str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path lowerCAmelCase__ :Optional[int] = quote(_SCREAMING_SNAKE_CASE ) return hfh.hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' , revision=_SCREAMING_SNAKE_CASE )
254
1
from __future__ import annotations def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : list[list[int]] = [] SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Any = sum(_lowercase ) create_state_space_tree(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) return result def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ): if sum(_lowercase ) > max_sum or (remaining_nums_sum + sum(_lowercase )) < max_sum: return if sum(_lowercase ) == max_sum: result.append(_lowercase ) return for index in range(_lowercase , len(_lowercase ) ): create_state_space_tree( _lowercase , _lowercase , index + 1 , [*path, nums[index]] , _lowercase , remaining_nums_sum - nums[index] , ) __UpperCamelCase : Optional[Any] = [3, 34, 4, 12, 5, 2] __UpperCamelCase : str = 9 __UpperCamelCase : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
182
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('''RGB''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) SCREAMING_SNAKE_CASE : Tuple = transform(_lowercase ).unsqueeze(0 ).to(_lowercase ) return image def A ( _lowercase ): if "visual_encoder" in key: SCREAMING_SNAKE_CASE : Optional[int] = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , _lowercase ) if "blocks" in key: SCREAMING_SNAKE_CASE : str = re.sub(R'''blocks''' , '''layers''' , _lowercase ) if "attn" in key: SCREAMING_SNAKE_CASE : List[Any] = re.sub(R'''attn''' , '''self_attn''' , _lowercase ) if "norm1" in key: SCREAMING_SNAKE_CASE : List[str] = re.sub(R'''norm1''' , '''layer_norm1''' , _lowercase ) if "norm2" in key: SCREAMING_SNAKE_CASE : str = re.sub(R'''norm2''' , '''layer_norm2''' , _lowercase ) if "encoder.norm" in key: SCREAMING_SNAKE_CASE : Optional[int] = re.sub(R'''encoder.norm''' , '''post_layernorm''' , _lowercase ) if "encoder.patch_embed.proj" in key: SCREAMING_SNAKE_CASE : Dict = re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , _lowercase ) if "encoder.pos_embed" in key: SCREAMING_SNAKE_CASE : int = re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , _lowercase ) if "encoder.cls_token" in key: SCREAMING_SNAKE_CASE : List[str] = re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , _lowercase ) if "self_attn" in key: SCREAMING_SNAKE_CASE : int = re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , _lowercase ) return key @torch.no_grad() def A ( _lowercase , _lowercase=None ): if config_path is not None: SCREAMING_SNAKE_CASE : Any = BlipConfig.from_pretrained(_lowercase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) SCREAMING_SNAKE_CASE : str = BlipForConditionalGeneration(_lowercase ).eval() SCREAMING_SNAKE_CASE : List[Any] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' SCREAMING_SNAKE_CASE : Tuple = blip_decoder(pretrained=_lowercase , image_size=384 , vit='''base''' ) SCREAMING_SNAKE_CASE : Any = pt_model.eval() SCREAMING_SNAKE_CASE : Dict = pt_model.state_dict() for key in modified_state_dict.copy(): SCREAMING_SNAKE_CASE : Tuple = modified_state_dict.pop(_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = rename_key(_lowercase ) SCREAMING_SNAKE_CASE : Any = value hf_model.load_state_dict(_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = 384 SCREAMING_SNAKE_CASE : Tuple = load_demo_image(image_size=_lowercase , device='''cpu''' ) SCREAMING_SNAKE_CASE : List[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) SCREAMING_SNAKE_CASE : int = tokenizer(['''a picture of'''] ).input_ids SCREAMING_SNAKE_CASE : Optional[int] = hf_model.generate(_lowercase , _lowercase ) assert out[0].tolist() == [30_522, 1_037, 3_861, 1_997, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] SCREAMING_SNAKE_CASE : Union[str, Any] = hf_model.generate(_lowercase ) assert out[0].tolist() == [30_522, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_lowercase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' SCREAMING_SNAKE_CASE : str = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) SCREAMING_SNAKE_CASE : Tuple = blip_vqa(pretrained=_lowercase , image_size=_lowercase , vit='''base''' ) vqa_model.eval() SCREAMING_SNAKE_CASE : List[str] = vqa_model.state_dict() for key in modified_state_dict.copy(): SCREAMING_SNAKE_CASE : Optional[int] = modified_state_dict.pop(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = rename_key(_lowercase ) SCREAMING_SNAKE_CASE : str = value SCREAMING_SNAKE_CASE : Dict = BlipForQuestionAnswering(_lowercase ) hf_vqa_model.load_state_dict(_lowercase ) SCREAMING_SNAKE_CASE : Dict = ['''How many dogs are in this image?'''] SCREAMING_SNAKE_CASE : Tuple = tokenizer(_lowercase , return_tensors='''pt''' ).input_ids SCREAMING_SNAKE_CASE : Dict = hf_vqa_model.generate(_lowercase , _lowercase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) SCREAMING_SNAKE_CASE : Any = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' SCREAMING_SNAKE_CASE : int = blip_itm(pretrained=_lowercase , image_size=_lowercase , vit='''base''' ) itm_model.eval() SCREAMING_SNAKE_CASE : List[Any] = itm_model.state_dict() for key in modified_state_dict.copy(): SCREAMING_SNAKE_CASE : int = modified_state_dict.pop(_lowercase ) SCREAMING_SNAKE_CASE : Dict = rename_key(_lowercase ) SCREAMING_SNAKE_CASE : List[Any] = value SCREAMING_SNAKE_CASE : int = BlipForImageTextRetrieval(_lowercase ) SCREAMING_SNAKE_CASE : Tuple = ['''A picture of a woman with a dog sitting in a beach'''] SCREAMING_SNAKE_CASE : str = tokenizer( _lowercase , return_tensors='''pt''' , padding='''max_length''' , truncation=_lowercase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(_lowercase ) hf_itm_model.eval() SCREAMING_SNAKE_CASE : int = hf_itm_model(_lowercase , _lowercase , use_itm_head=_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = hf_itm_model(_lowercase , _lowercase , use_itm_head=_lowercase ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __UpperCamelCase : int = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
182
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva __UpperCamelCase = '''''' __UpperCamelCase = '''''' __UpperCamelCase = '''''' __UpperCamelCase = 1 # (0 is vertical, 1 is horizontal) def lowercase () -> None: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print('Processing...' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = update_image_and_anno(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for index, image in enumerate(SCREAMING_SNAKE_CASE_ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' SCREAMING_SNAKE_CASE = random_chars(32 ) SCREAMING_SNAKE_CASE = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] SCREAMING_SNAKE_CASE = F'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(F'/{file_root}.jpg' , SCREAMING_SNAKE_CASE_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'Success {index+1}/{len(SCREAMING_SNAKE_CASE_ )} with {file_name}' ) SCREAMING_SNAKE_CASE = [] for anno in new_annos[index]: SCREAMING_SNAKE_CASE = F'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(SCREAMING_SNAKE_CASE_ ) with open(F'/{file_root}.txt' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> tuple[list, list]: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE_ , '*.txt' ) ): SCREAMING_SNAKE_CASE = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(SCREAMING_SNAKE_CASE_ ) as in_file: SCREAMING_SNAKE_CASE = in_file.readlines() SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , F'{label_name}.jpg' ) SCREAMING_SNAKE_CASE = [] for obj_list in obj_lists: SCREAMING_SNAKE_CASE = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE_ ) labels.append(SCREAMING_SNAKE_CASE_ ) return img_paths, labels def lowercase (SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int = 1 ) -> tuple[list, list, list]: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = img_list[idx] path_list.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = anno_list[idx] SCREAMING_SNAKE_CASE = cva.imread(SCREAMING_SNAKE_CASE_ ) if flip_type == 1: SCREAMING_SNAKE_CASE = cva.flip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for bbox in img_annos: SCREAMING_SNAKE_CASE = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: SCREAMING_SNAKE_CASE = cva.flip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for bbox in img_annos: SCREAMING_SNAKE_CASE = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(SCREAMING_SNAKE_CASE_ ) new_imgs_list.append(SCREAMING_SNAKE_CASE_ ) return new_imgs_list, new_annos_lists, path_list def lowercase (SCREAMING_SNAKE_CASE_ : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" SCREAMING_SNAKE_CASE = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
363
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = ShapEImgaImgPipeline SCREAMING_SNAKE_CASE_ : Any = ["""image"""] SCREAMING_SNAKE_CASE_ : Optional[int] = ["""image"""] SCREAMING_SNAKE_CASE_ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] SCREAMING_SNAKE_CASE_ : Any = False @property def __A ( self ) -> Tuple: return 32 @property def __A ( self ) -> Optional[int]: return 32 @property def __A ( self ) -> List[str]: return self.time_input_dim * 4 @property def __A ( self ) -> Union[str, Any]: return 8 @property def __A ( self ) -> Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE = CLIPVisionModel(lowerCAmelCase__ ) return model @property def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = CLIPImageProcessor( crop_size=224 , do_center_crop=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def __A ( self ) -> str: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } SCREAMING_SNAKE_CASE = PriorTransformer(**lowerCAmelCase__ ) return model @property def __A ( self ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE = ShapERenderer(**lowerCAmelCase__ ) return model def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = self.dummy_prior SCREAMING_SNAKE_CASE = self.dummy_image_encoder SCREAMING_SNAKE_CASE = self.dummy_image_processor SCREAMING_SNAKE_CASE = self.dummy_renderer SCREAMING_SNAKE_CASE = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> List[str]: SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = output.images[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Union[str, Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = torch_device == 'cpu' SCREAMING_SNAKE_CASE = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) SCREAMING_SNAKE_CASE = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
38
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : List[str] = logging.get_logger(__name__) __lowercase : Dict = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "distilbert" A_ = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , __a=3_0522 , __a=512 , __a=False , __a=6 , __a=12 , __a=768 , __a=4 * 768 , __a=0.1 , __a=0.1 , __a="gelu" , __a=0.02 , __a=0.1 , __a=0.2 , __a=0 , **__a , ): '''simple docstring''' __a : Any = vocab_size __a : List[str] = max_position_embeddings __a : Optional[Any] = sinusoidal_pos_embds __a : int = n_layers __a : Optional[Any] = n_heads __a : Optional[int] = dim __a : Optional[int] = hidden_dim __a : Optional[Any] = dropout __a : Tuple = attention_dropout __a : Dict = activation __a : List[str] = initializer_range __a : Optional[Any] = qa_dropout __a : Optional[int] = seq_classif_dropout super().__init__(**__a , pad_token_id=__a ) class __UpperCamelCase ( lowerCAmelCase_ ): @property def __UpperCAmelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": __a : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __a : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
27
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__a , ) __a : str = PNDMScheduler(skip_prk_steps=__a ) torch.manual_seed(0 ) __a : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __a : Dict = CLIPTextModel(__a ) __a : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCAmelCase ( self , __a , __a=0 ): '''simple docstring''' __a : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) __a : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a : Tuple = Image.fromarray(np.uinta(__a ) ).convert('RGB' ).resize((64, 64) ) __a : Tuple = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(__a ).startswith('mps' ): __a : Any = torch.manual_seed(__a ) else: __a : str = torch.Generator(device=__a ).manual_seed(__a ) __a : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator __a : str = self.get_dummy_components() __a : Union[str, Any] = StableDiffusionInpaintPipeline(**__a ) __a : List[Any] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __a : List[Any] = self.get_dummy_inputs(__a ) __a : Dict = sd_pipe(**__a ).images __a : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a : List[Any] = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) __a : Optional[int] = 'stabilityai/stable-diffusion-2-inpainting' __a : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained(__a , safety_checker=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __a : Dict = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : Tuple = torch.manual_seed(0 ) __a : int = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , output_type='np' , ) __a : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) __a : str = 'stabilityai/stable-diffusion-2-inpainting' __a : List[str] = StableDiffusionInpaintPipeline.from_pretrained( __a , torch_dtype=torch.floataa , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __a : Union[str, Any] = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : int = torch.manual_seed(0 ) __a : Optional[Any] = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , output_type='np' , ) __a : int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : str = 'stabilityai/stable-diffusion-2-inpainting' __a : Any = PNDMScheduler.from_pretrained(__a , subfolder='scheduler' ) __a : str = StableDiffusionInpaintPipeline.from_pretrained( __a , safety_checker=__a , scheduler=__a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : Tuple = torch.manual_seed(0 ) __a : str = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , num_inference_steps=2 , output_type='np' , ) __a : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
27
1
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _a( UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : List[str], UpperCamelCase__ : Dict, UpperCamelCase__ : Dict=True, UpperCamelCase__ : str="pt" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple ={'''add_prefix_space''': True} if isinstance(UpperCamelCase__, UpperCamelCase__ ) and not line.startswith(''' ''' ) else {} SCREAMING_SNAKE_CASE__ : Any =padding_side return tokenizer( [line], max_length=UpperCamelCase__, padding='''max_length''' if pad_to_max_length else None, truncation=UpperCamelCase__, return_tensors=UpperCamelCase__, add_special_tokens=UpperCamelCase__, **UpperCamelCase__, ) def _a( UpperCamelCase__ : Dict, UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[int]=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =input_ids.ne(UpperCamelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : Any , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : List[str] , __lowercase : int , __lowercase : Tuple="train" , __lowercase : Tuple=None , __lowercase : Union[str, Any]=None , __lowercase : List[str]=None , __lowercase : int="" , ) -> Tuple: super().__init__() SCREAMING_SNAKE_CASE__ : Optional[int] =Path(__lowercase ).joinpath(type_path + '''.source''' ) SCREAMING_SNAKE_CASE__ : int =Path(__lowercase ).joinpath(type_path + '''.target''' ) SCREAMING_SNAKE_CASE__ : Dict =self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE__ : str =max_source_length SCREAMING_SNAKE_CASE__ : Any =max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer SCREAMING_SNAKE_CASE__ : List[Any] =prefix if n_obs is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.src_lens[:n_obs] SCREAMING_SNAKE_CASE__ : List[str] =src_lang SCREAMING_SNAKE_CASE__ : int =tgt_lang def __len__( self : Any ) -> Optional[Any]: return len(self.src_lens ) def __getitem__( self : Tuple , __lowercase : Dict ) -> Dict[str, torch.Tensor]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.prefix + linecache.getline(str(self.src_file ) , __lowercase ).rstrip('''\n''' ) SCREAMING_SNAKE_CASE__ : str =linecache.getline(str(self.tgt_file ) , __lowercase ).rstrip('''\n''' ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE__ : Tuple =( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowercase ) else self.tokenizer ) SCREAMING_SNAKE_CASE__ : Tuple =self.tokenizer.generator if isinstance(self.tokenizer , __lowercase ) else self.tokenizer SCREAMING_SNAKE_CASE__ : Any =encode_line(__lowercase , __lowercase , self.max_source_length , '''right''' ) SCREAMING_SNAKE_CASE__ : Dict =encode_line(__lowercase , __lowercase , self.max_target_length , '''right''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =source_inputs['''input_ids'''].squeeze() SCREAMING_SNAKE_CASE__ : Optional[Any] =target_inputs['''input_ids'''].squeeze() SCREAMING_SNAKE_CASE__ : Dict =source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __magic_name__ ( __lowercase : Dict ) -> Optional[int]: return [len(__lowercase ) for x in Path(__lowercase ).open().readlines()] def __magic_name__ ( self : List[str] , __lowercase : Tuple ) -> Dict[str, torch.Tensor]: SCREAMING_SNAKE_CASE__ : str =torch.stack([x['''input_ids'''] for x in batch] ) SCREAMING_SNAKE_CASE__ : List[Any] =torch.stack([x['''attention_mask'''] for x in batch] ) SCREAMING_SNAKE_CASE__ : List[Any] =torch.stack([x['''decoder_input_ids'''] for x in batch] ) SCREAMING_SNAKE_CASE__ : List[str] =( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE__ : Dict =( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE__ : str =trim_batch(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =trim_batch(__lowercase , __lowercase , attention_mask=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] ={ '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch a_ = getLogger(__name__) def _a( UpperCamelCase__ : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(UpperCamelCase__ ) ) def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =get_git_info() save_json(UpperCamelCase__, os.path.join(UpperCamelCase__, '''git_log.json''' ) ) def _a( UpperCamelCase__ : Tuple, UpperCamelCase__ : int, UpperCamelCase__ : List[Any]=4, **UpperCamelCase__ : Tuple ): '''simple docstring''' with open(UpperCamelCase__, '''w''' ) as f: json.dump(UpperCamelCase__, UpperCamelCase__, indent=UpperCamelCase__, **UpperCamelCase__ ) def _a( UpperCamelCase__ : Optional[int] ): '''simple docstring''' with open(UpperCamelCase__ ) as f: return json.load(UpperCamelCase__ ) def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =git.Repo(search_parent_directories=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] ={ '''repo_id''': str(UpperCamelCase__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def _a( UpperCamelCase__ : Callable, UpperCamelCase__ : Iterable ): '''simple docstring''' return list(map(UpperCamelCase__, UpperCamelCase__ ) ) def _a( UpperCamelCase__ : List[Any], UpperCamelCase__ : str ): '''simple docstring''' with open(UpperCamelCase__, '''wb''' ) as f: return pickle.dump(UpperCamelCase__, UpperCamelCase__ ) def _a( UpperCamelCase__ : int ): '''simple docstring''' def remove_articles(UpperCamelCase__ : Tuple ): return re.sub(R'''\b(a|an|the)\b''', ''' ''', UpperCamelCase__ ) def white_space_fix(UpperCamelCase__ : Tuple ): return " ".join(text.split() ) def remove_punc(UpperCamelCase__ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[Any] =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase__ : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase__ ) ) ) ) def _a( UpperCamelCase__ : List[Any], UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =normalize_answer(UpperCamelCase__ ).split() SCREAMING_SNAKE_CASE__ : int =normalize_answer(UpperCamelCase__ ).split() SCREAMING_SNAKE_CASE__ : Optional[Any] =Counter(UpperCamelCase__ ) & Counter(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE__ : Tuple =1.0 * num_same / len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =1.0 * num_same / len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Dict =(2 * precision * recall) / (precision + recall) return fa def _a( UpperCamelCase__ : str, UpperCamelCase__ : str ): '''simple docstring''' return normalize_answer(UpperCamelCase__ ) == normalize_answer(UpperCamelCase__ ) def _a( UpperCamelCase__ : List[str], UpperCamelCase__ : List[str] ): '''simple docstring''' assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] =0 for hypo, pred in zip(UpperCamelCase__, UpperCamelCase__ ): em += exact_match_score(UpperCamelCase__, UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: em /= len(UpperCamelCase__ ) return {"em": em} def _a( UpperCamelCase__ : Dict ): '''simple docstring''' return model_prefix.startswith('''rag''' ) def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] ={p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE__ : Optional[Any] ='''dropout_rate''' for p in extra_params: if getattr(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): if not hasattr(UpperCamelCase__, UpperCamelCase__ ) and not hasattr(UpperCamelCase__, equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(UpperCamelCase__ ) ) delattr(UpperCamelCase__, UpperCamelCase__ ) continue SCREAMING_SNAKE_CASE__ : Optional[int] =p if hasattr(UpperCamelCase__, UpperCamelCase__ ) else equivalent_param[p] setattr(UpperCamelCase__, UpperCamelCase__, getattr(UpperCamelCase__, UpperCamelCase__ ) ) delattr(UpperCamelCase__, UpperCamelCase__ ) return hparams, config
222
'''simple docstring''' from __future__ import annotations def _a( UpperCamelCase__ : List[str], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : int, UpperCamelCase__ : List[str] ): # noqa: E741 '''simple docstring''' while r - l > 1: SCREAMING_SNAKE_CASE__ : List[str] =(l + r) // 2 if v[m] >= key: SCREAMING_SNAKE_CASE__ : Dict =m else: SCREAMING_SNAKE_CASE__ : Any =m # noqa: E741 return r def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' if len(UpperCamelCase__ ) == 0: return 0 SCREAMING_SNAKE_CASE__ : List[Any] =[0] * len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Dict =1 SCREAMING_SNAKE_CASE__ : Union[str, Any] =v[0] for i in range(1, len(UpperCamelCase__ ) ): if v[i] < tail[0]: SCREAMING_SNAKE_CASE__ : List[Any] =v[i] elif v[i] > tail[length - 1]: SCREAMING_SNAKE_CASE__ : int =v[i] length += 1 else: SCREAMING_SNAKE_CASE__ : Union[str, Any] =v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
222
1
"""simple docstring""" from __future__ import annotations class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = order # a_{0} ... a_{k} UpperCAmelCase__ : Any = [1.0] + [0.0] * order # b_{0} ... b_{k} UpperCAmelCase__ : List[str] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] UpperCAmelCase__ : Any = [0.0] * self.order # y[n-1] ... y[n-k] UpperCAmelCase__ : Any = [0.0] * self.order def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if len(_lowerCamelCase ) < self.order: UpperCAmelCase__ : Tuple = [1.0, *a_coeffs] if len(_lowerCamelCase ) != self.order + 1: UpperCAmelCase__ : Tuple = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(_lowerCamelCase )}""" ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != self.order + 1: UpperCAmelCase__ : List[str] = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(_lowerCamelCase )}""" ) raise ValueError(_lowerCamelCase ) UpperCAmelCase__ : Any = a_coeffs UpperCAmelCase__ : List[Any] = b_coeffs def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[str] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) UpperCAmelCase__ : Optional[Any] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] UpperCAmelCase__ : Optional[Any] = self.input_history[:-1] UpperCAmelCase__ : List[Any] = self.output_history[:-1] UpperCAmelCase__ : Union[str, Any] = sample UpperCAmelCase__ : List[Any] = result return result
171
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ) -> None: if start is None: UpperCAmelCase__ : Dict = 0 if end is None: UpperCAmelCase__ : List[str] = len(lowerCAmelCase ) - 1 if start >= end: return UpperCAmelCase__ : int = (start + end) // 2 slowsort(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) slowsort(lowerCAmelCase , mid + 1 , lowerCAmelCase ) if sequence[end] < sequence[mid]: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = sequence[mid], sequence[end] slowsort(lowerCAmelCase , lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
171
1
'''simple docstring''' def UpperCamelCase_ ( A__ : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' lowerCAmelCase_ : List[Any] = set() # Replace all the whitespace in our sentence lowerCAmelCase_ : int = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(A__ ) == 26 def UpperCamelCase_ ( A__ : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' lowerCAmelCase_ : Dict = [False] * 26 for char in input_str: if char.islower(): lowerCAmelCase_ : Optional[int] = True elif char.isupper(): lowerCAmelCase_ : Optional[Any] = True return all(A__ ) def UpperCamelCase_ ( A__ : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCamelCase_ ( ): '''simple docstring''' from timeit import timeit lowerCAmelCase_ : Tuple = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=A__ ) ) print(timeit("""is_pangram_faster()""" , setup=A__ ) ) print(timeit("""is_pangram_fastest()""" , setup=A__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
89
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A : List[str] = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["OwlViTFeatureExtractor"] __A : str = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
1
"""simple docstring""" from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __magic_name__ = logging.get_logger(__name__) # pylint: disable=invalid-name __magic_name__ = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=8 ): __SCREAMING_SNAKE_CASE = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __SCREAMING_SNAKE_CASE = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): super().__init__() self.register_modules( text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , movq=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels) - 1) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): if latents is None: __SCREAMING_SNAKE_CASE = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") __SCREAMING_SNAKE_CASE = latents.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = latents * scheduler.init_noise_sigma return latents def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , ): __SCREAMING_SNAKE_CASE = len(lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else 1 # get prompt text embeddings __SCREAMING_SNAKE_CASE = self.tokenizer( lowerCAmelCase__ , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=7_7 , return_attention_mask=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors="""pt""" , ) __SCREAMING_SNAKE_CASE = text_inputs.input_ids __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f" {self.tokenizer.model_max_length} tokens: {removed_text}") __SCREAMING_SNAKE_CASE = text_input_ids.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = text_inputs.attention_mask.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.text_encoder( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = prompt_embeds.repeat_interleave(lowerCAmelCase__ , dim=0) __SCREAMING_SNAKE_CASE = text_encoder_hidden_states.repeat_interleave(lowerCAmelCase__ , dim=0) __SCREAMING_SNAKE_CASE = text_mask.repeat_interleave(lowerCAmelCase__ , dim=0) if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE = 42 if negative_prompt is None: __SCREAMING_SNAKE_CASE = [""""""] * batch_size elif type(lowerCAmelCase__) is not type(lowerCAmelCase__): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase__)} !=" f" {type(lowerCAmelCase__)}.") elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [negative_prompt] elif batch_size != len(lowerCAmelCase__): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase__)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" """ the batch size of `prompt`.""") else: __SCREAMING_SNAKE_CASE = negative_prompt __SCREAMING_SNAKE_CASE = self.tokenizer( lowerCAmelCase__ , padding="""max_length""" , max_length=7_7 , truncation=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors="""pt""" , ) __SCREAMING_SNAKE_CASE = uncond_input.input_ids.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = uncond_input.attention_mask.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.text_encoder( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE = negative_prompt_embeds.shape[1] __SCREAMING_SNAKE_CASE = negative_prompt_embeds.repeat(1 , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = uncond_text_encoder_hidden_states.shape[1] __SCREAMING_SNAKE_CASE = uncond_text_encoder_hidden_states.repeat(1 , lowerCAmelCase__ , 1) __SCREAMING_SNAKE_CASE = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , lowerCAmelCase__ , -1) __SCREAMING_SNAKE_CASE = uncond_text_mask.repeat_interleave(lowerCAmelCase__ , dim=0) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __SCREAMING_SNAKE_CASE = torch.cat([negative_prompt_embeds, prompt_embeds]) __SCREAMING_SNAKE_CASE = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) __SCREAMING_SNAKE_CASE = torch.cat([uncond_text_mask, text_mask]) return prompt_embeds, text_encoder_hidden_states, text_mask def snake_case_ ( self , lowerCAmelCase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""") __SCREAMING_SNAKE_CASE = torch.device(f"cuda:{gpu_id}") __SCREAMING_SNAKE_CASE = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__=0): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0"""): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""") __SCREAMING_SNAKE_CASE = torch.device(f"cuda:{gpu_id}") if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowerCAmelCase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cpu_offload_with_hook(lowerCAmelCase__ , lowerCAmelCase__ , prev_module_hook=lowerCAmelCase__) if self.safety_checker is not None: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cpu_offload_with_hook(self.safety_checker , lowerCAmelCase__ , prev_module_hook=lowerCAmelCase__) # We'll offload the last model manually. __SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case_ ( self): if not hasattr(self.unet , """_hf_hook"""): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase__ , """_hf_hook""") and hasattr(module._hf_hook , """execution_device""") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase__) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = 5_1_2 , lowerCAmelCase__ = 5_1_2 , lowerCAmelCase__ = 1_0_0 , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = 1 elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = len(lowerCAmelCase__) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__)}") __SCREAMING_SNAKE_CASE = self._execution_device __SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt __SCREAMING_SNAKE_CASE = guidance_scale > 1.0 __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self._encode_prompt( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = torch.cat(lowerCAmelCase__ , dim=0) if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = torch.cat(lowerCAmelCase__ , dim=0) if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0) __SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0) __SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0).to( dtype=prompt_embeds.dtype , device=lowerCAmelCase__) self.scheduler.set_timesteps(lowerCAmelCase__ , device=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.scheduler.timesteps __SCREAMING_SNAKE_CASE = self.unet.config.in_channels __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = get_new_h_w(lowerCAmelCase__ , lowerCAmelCase__ , self.movq_scale_factor) # create initial latent __SCREAMING_SNAKE_CASE = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCAmelCase__)): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} __SCREAMING_SNAKE_CASE = self.unet( sample=lowerCAmelCase__ , timestep=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , added_cond_kwargs=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = noise_pred.chunk(2) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = variance_pred.chunk(2) __SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , """variance_type""") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE = self.scheduler.step( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ , ).prev_sample # post-processing __SCREAMING_SNAKE_CASE = self.movq.decode(lowerCAmelCase__ , force_not_quantize=lowerCAmelCase__)["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 __SCREAMING_SNAKE_CASE = image.clamp(0 , 1) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(lowerCAmelCase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__)
100
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""OwlViTFeatureExtractor"""] __A = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
293
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : List[Any]=3_2 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : str=[1_0, 2_0, 3_0, 4_0] , SCREAMING_SNAKE_CASE__ : Dict=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]="relu" , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : List[str]=None , ) -> Dict: a_ : Dict = parent a_ : List[Any] = batch_size a_ : Dict = image_size a_ : Dict = num_channels a_ : Any = embeddings_size a_ : Dict = hidden_sizes a_ : Tuple = depths a_ : List[Any] = is_training a_ : Any = use_labels a_ : int = hidden_act a_ : int = num_labels a_ : str = scope a_ : List[Any] = len(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: a_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : Optional[int] = None if self.use_labels: a_ : Any = ids_tensor([self.batch_size] , self.num_labels ) a_ : List[Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: a_ : int = TFResNetModel(config=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = model(SCREAMING_SNAKE_CASE__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: a_ : List[Any] = self.num_labels a_ : Optional[int] = TFResNetForImageClassification(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: a_ : Union[str, Any] = self.prepare_config_and_inputs() a_ , a_ , a_ : Optional[Any] = config_and_inputs a_ : int = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : List[str] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () snake_case__ : Any = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) snake_case__ : Optional[int] = False snake_case__ : str = False snake_case__ : Optional[int] = False snake_case__ : Optional[int] = False snake_case__ : Optional[int] = False def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: a_ : Tuple = TFResNetModelTester(self ) a_ : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : str ) -> Any: return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: pass def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: a_ , a_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Tuple = model_class(SCREAMING_SNAKE_CASE__ ) a_ : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Union[str, Any] = [*signature.parameters.keys()] a_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: a_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ): a_ : int = model_class(SCREAMING_SNAKE_CASE__ ) a_ : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) a_ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a_ : Tuple = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a_ , a_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() a_ : Tuple = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: a_ : str = layer_type a_ : int = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : int = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: a_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[Any] = TFResNetModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: """simple docstring""" a_ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: a_ : Optional[int] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) a_ : str = self.default_image_processor a_ : Optional[Any] = prepare_img() a_ : str = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) # forward pass a_ : List[str] = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits a_ : Optional[int] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
120
def SCREAMING_SNAKE_CASE_ ( __A : list ) -> bool: """simple docstring""" if not isinstance(__A , __A ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(__A ) == 0: raise ValueError('Input list must be a non empty list' ) if len(__A ) == 1: return True a_ : Tuple = series[1] - series[0] for index in range(len(__A ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE_ ( __A : list ) -> float: """simple docstring""" if not isinstance(__A , __A ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(__A ) == 0: raise ValueError('Input list must be a non empty list' ) a_ : str = 0 for val in series: answer += val return answer / len(__A ) if __name__ == "__main__": import doctest doctest.testmod()
120
1
from pathlib import Path import fire from tqdm import tqdm def lowerCamelCase__ ( A__ : str="ro" , A__ : List[Any]="en" , A__ : Any="wmt16" , A__ : int=None ): '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __lowerCamelCase = f'{src_lang}-{tgt_lang}' print(f'Converting {dataset}-{pair}' ) __lowerCamelCase = datasets.load_dataset(A__ , A__ ) if save_dir is None: __lowerCamelCase = f'{dataset}-{pair}' __lowerCamelCase = Path(A__ ) save_dir.mkdir(exist_ok=A__ ) for split in ds.keys(): print(f'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets __lowerCamelCase = """val""" if split == """validation""" else split __lowerCamelCase = save_dir.joinpath(f'{fn}.source' ) __lowerCamelCase = save_dir.joinpath(f'{fn}.target' ) __lowerCamelCase = src_path.open("""w+""" ) __lowerCamelCase = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __lowerCamelCase = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(f'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
12
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ = 16 UpperCAmelCase_ = 32 def lowerCamelCase__ ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ): '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained(A__ ) __lowerCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(A__ : int ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCamelCase = datasets.map( A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(A__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) __lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any] ): '''simple docstring''' model.eval() __lowerCamelCase = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowerCamelCase, __lowerCamelCase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: __lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) __lowerCamelCase = metric.compute() return eval_metric["accuracy"] def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config["""lr"""] __lowerCamelCase = int(config["""num_epochs"""] ) __lowerCamelCase = int(config["""seed"""] ) __lowerCamelCase = int(config["""batch_size"""] ) __lowerCamelCase = args.model_name_or_path set_seed(A__ ) __lowerCamelCase, __lowerCamelCase = get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer __lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCamelCase = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: __lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCamelCase = 1 __lowerCamelCase = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: __lowerCamelCase = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over __lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCamelCase = 0 __lowerCamelCase = evaluate.load("""glue""" , """mrpc""" ) __lowerCamelCase = num_epochs if args.partial_train_epoch is not None: __lowerCamelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowerCamelCase = args.resume_from_checkpoint.split("""epoch_""" )[1] __lowerCamelCase = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowerCamelCase = int(A__ ) + 1 __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) accelerator.print("""resumed checkpoint performance:""" , A__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f: __lowerCamelCase = json.load(A__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowerCamelCase = {} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.loss __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowerCamelCase = f'epoch_{epoch}' __lowerCamelCase = os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) __lowerCamelCase = accuracy __lowerCamelCase = lr_scheduler.get_lr()[0] __lowerCamelCase = optimizer.param_groups[0]["""lr"""] __lowerCamelCase = epoch __lowerCamelCase = overall_step accelerator.print(f'epoch {epoch}:' , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f: json.dump(A__ , A__ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=A__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=A__ , ) parser.add_argument( """--output_dir""" , type=A__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=A__ , default=A__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=A__ , default=A__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=A__ , default=2 , help="""Number of train epochs.""" , ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
12
1
def snake_case( __magic_name__ ) -> str: '''simple docstring''' lowercase : List[str] = int(__magic_name__ ) if decimal in (0, 1): # Exit cases for the recursion return str(__magic_name__ ) lowercase , lowercase : Union[str, Any] = divmod(__magic_name__ , 2 ) return binary_recursive(__magic_name__ ) + str(__magic_name__ ) def snake_case( __magic_name__ ) -> str: '''simple docstring''' lowercase : Optional[int] = str(__magic_name__ ).strip() if not number: raise ValueError('''No input value was provided''' ) lowercase : Dict = '''-''' if number.startswith('''-''' ) else '''''' lowercase : str = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return F"""{negative}0b{binary_recursive(int(__magic_name__ ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
116
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class _A ( _lowerCamelCase ): _UpperCamelCase : Tuple = '''xmod''' def __init__( self : Optional[Any] , _A : Union[str, Any]=30_522 , _A : List[Any]=768 , _A : Optional[Any]=12 , _A : Any=12 , _A : Tuple=3_072 , _A : Optional[int]="gelu" , _A : List[Any]=0.1 , _A : str=0.1 , _A : List[Any]=512 , _A : List[str]=2 , _A : str=0.02 , _A : Any=1E-12 , _A : Union[str, Any]=1 , _A : List[Any]=0 , _A : Dict=2 , _A : int="absolute" , _A : Dict=True , _A : int=None , _A : List[str]=False , _A : Dict=2 , _A : int=False , _A : Optional[int]=True , _A : Any=True , _A : Optional[int]=("en_XX",) , _A : Any=None , **_A : Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) lowercase : Optional[Any] = vocab_size lowercase : Union[str, Any] = hidden_size lowercase : Optional[Any] = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : Union[str, Any] = hidden_act lowercase : Tuple = intermediate_size lowercase : List[str] = hidden_dropout_prob lowercase : Union[str, Any] = attention_probs_dropout_prob lowercase : Dict = max_position_embeddings lowercase : Any = type_vocab_size lowercase : Optional[Any] = initializer_range lowercase : str = layer_norm_eps lowercase : Tuple = position_embedding_type lowercase : Optional[Any] = use_cache lowercase : int = classifier_dropout lowercase : Optional[int] = pre_norm lowercase : Any = adapter_reduction_factor lowercase : Union[str, Any] = adapter_layer_norm lowercase : Optional[int] = adapter_reuse_layer_norm lowercase : Optional[Any] = ln_before_adapter lowercase : Union[str, Any] = list(_A ) lowercase : List[Any] = default_language class _A ( _lowerCamelCase ): @property def __a ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
116
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : Dict = logging.get_logger(__name__) a__ : Union[str, Any] = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class lowercase_ ( __A ): __UpperCAmelCase = 'conditional_detr' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , a=True , a=None , a=3 , a=3_00 , a=6 , a=20_48 , a=8 , a=6 , a=20_48 , a=8 , a=0.0 , a=0.0 , a=True , a="relu" , a=2_56 , a=0.1 , a=0.0 , a=0.0 , a=0.02 , a=1.0 , a=False , a="sine" , a="resnet50" , a=True , a=False , a=2 , a=5 , a=2 , a=1 , a=1 , a=2 , a=5 , a=2 , a=0.25 , **a , ): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCamelCase__ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(a , a ): UpperCamelCase__ = backbone_config.get("model_type" ) UpperCamelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ = config_class.from_dict(a ) UpperCamelCase__ = use_timm_backbone UpperCamelCase__ = backbone_config UpperCamelCase__ = num_channels UpperCamelCase__ = num_queries UpperCamelCase__ = d_model UpperCamelCase__ = encoder_ffn_dim UpperCamelCase__ = encoder_layers UpperCamelCase__ = encoder_attention_heads UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = activation_function UpperCamelCase__ = init_std UpperCamelCase__ = init_xavier_std UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = encoder_layers UpperCamelCase__ = auxiliary_loss UpperCamelCase__ = position_embedding_type UpperCamelCase__ = backbone UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = dilation # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = mask_loss_coefficient UpperCamelCase__ = dice_loss_coefficient UpperCamelCase__ = cls_loss_coefficient UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = focal_alpha super().__init__(is_encoder_decoder=a , **a ) @property def __a ( self ): return self.encoder_attention_heads @property def __a ( self ): return self.d_model def __a ( self ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase__ = self.backbone_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output class lowercase_ ( __A ): __UpperCAmelCase = version.parse('1.11' ) @property def __a ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __a ( self ): return 1e-5 @property def __a ( self ): return 12
80
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a_ = get_logger(__name__) class _UpperCamelCase ( enum.Enum ): '''simple docstring''' lowerCamelCase__ ='all_checks' lowerCamelCase__ ='basic_checks' lowerCamelCase__ ='no_checks' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' def lowerCamelCase__ ( _a , _a , _a=None): if expected_checksums is None: logger.info("Unable to verify checksums.") return if len(set(_a) - set(_a)) > 0: raise ExpectedMoreDownloadedFiles(str(set(_a) - set(_a))) if len(set(_a) - set(_a)) > 0: raise UnexpectedDownloadedFile(str(set(_a) - set(_a))) SCREAMING_SNAKE_CASE : str = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] SCREAMING_SNAKE_CASE : Tuple = " for " + verification_name if verification_name is not None else "" if len(_a) > 0: raise NonMatchingChecksumError( f"Checksums didn't match{for_verification_name}:\n" f"{bad_urls}\n" "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error") logger.info("All the checksums matched successfully" + for_verification_name) class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' class _UpperCamelCase ( __A ): '''simple docstring''' def lowerCamelCase__ ( _a , _a): if expected_splits is None: logger.info("Unable to verify splits sizes.") return if len(set(_a) - set(_a)) > 0: raise ExpectedMoreSplits(str(set(_a) - set(_a))) if len(set(_a) - set(_a)) > 0: raise UnexpectedSplits(str(set(_a) - set(_a))) SCREAMING_SNAKE_CASE : List[str] = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_a) > 0: raise NonMatchingSplitsSizesError(str(_a)) logger.info("All the splits matched successfully.") def lowerCamelCase__ ( _a , _a = True): if record_checksum: SCREAMING_SNAKE_CASE : List[str] = shaaaa() with open(_a , "rb") as f: for chunk in iter(lambda: f.read(1 << 20) , b""): m.update(_a) SCREAMING_SNAKE_CASE : Optional[int] = m.hexdigest() else: SCREAMING_SNAKE_CASE : List[str] = None return {"num_bytes": os.path.getsize(_a), "checksum": checksum} def lowerCamelCase__ ( _a): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
76
0
from graphs.minimum_spanning_tree_kruskal import kruskal def __A ( ) -> Union[str, Any]: a = 9 a = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] a = kruskal(_lowerCamelCase , _lowerCamelCase ) a = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_lowerCamelCase ) == sorted(_lowerCamelCase )
370
__UpperCamelCase : Dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def __A ( ) -> None: a = input("""Enter message: """ ) a = input("""Enter key [alphanumeric]: """ ) a = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): a = """encrypt""" a = encrypt_message(__lowerCamelCase , __lowerCamelCase ) elif mode.lower().startswith("""d""" ): a = """decrypt""" a = decrypt_message(__lowerCamelCase , __lowerCamelCase ) print(f'\n{mode.title()}ed message:' ) print(__lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: return translate_message(__lowerCamelCase , __lowerCamelCase , """encrypt""" ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: return translate_message(__lowerCamelCase , __lowerCamelCase , """decrypt""" ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: a = [] a = 0 a = key.upper() for symbol in message: a = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__lowerCamelCase ): a = 0 else: translated.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) if __name__ == "__main__": main()
347
0
'''simple docstring''' import cmath import math def _A (lowerCAmelCase__ :float , lowerCAmelCase__ :float , lowerCAmelCase__ :float , lowerCAmelCase__ :float ) -> complex: '''simple docstring''' _a = math.radians(lowerCAmelCase__ ) _a = math.radians(lowerCAmelCase__ ) # Convert voltage and current to rectangular form _a = cmath.rect(lowerCAmelCase__ , lowerCAmelCase__ ) _a = cmath.rect(lowerCAmelCase__ , lowerCAmelCase__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
168
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a_ : Dict = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart a_ : int = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } a_ : int = { "facebook/bart-base": 1_0_2_4, "facebook/bart-large": 1_0_2_4, "facebook/bart-large-mnli": 1_0_2_4, "facebook/bart-large-cnn": 1_0_2_4, "facebook/bart-large-xsum": 1_0_2_4, "yjernite/bart_eli5": 1_0_2_4, } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["""input_ids""", """attention_mask"""] _lowerCAmelCase = BartTokenizer def __init__( self , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__="replace" , __magic_name__="<s>" , __magic_name__="</s>" , __magic_name__="</s>" , __magic_name__="<s>" , __magic_name__="<unk>" , __magic_name__="<pad>" , __magic_name__="<mask>" , __magic_name__=False , __magic_name__=True , **__magic_name__ , ) -> List[Any]: super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __magic_name__ ) != add_prefix_space: _a = getattr(__magic_name__ , pre_tok_state.pop('type' ) ) _a = add_prefix_space _a = pre_tok_class(**__magic_name__ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = 'post_processor' _a = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state['sep'] ) if "cls" in state: _a = tuple(state['cls'] ) _a = False if state.get('add_prefix_space' , __magic_name__ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get('trim_offsets' , __magic_name__ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(__magic_name__ , state.pop('type' ) ) _a = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def __UpperCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self , __magic_name__ ) -> Union[str, Any]: _a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value _a = value def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> BatchEncoding: _a = kwargs.get('is_split_into_words' , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> BatchEncoding: _a = kwargs.get('is_split_into_words' , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=None ) -> Any: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
168
1
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _A ( ): """simple docstring""" a =ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) a =parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go a =parser.parse_args() if not hasattr(lowercase , '''func''' ): parser.print_help() exit(1 ) # Run a =args.func(lowercase ) service.run() if __name__ == "__main__": main()
215
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : """simple docstring""" def __init__( self , __A , __A=13 , __A=[30, 30] , __A=2 , __A=3 , __A=True , __A=True , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=10 , __A=0.02 , __A=3 , __A=None , __A=8 , __A=10 , ) -> List[Any]: a =parent a =batch_size a =image_size a =patch_size a =num_channels a =is_training a =use_labels a =hidden_size a =num_hidden_layers a =num_attention_heads a =intermediate_size a =hidden_act a =hidden_dropout_prob a =attention_probs_dropout_prob a =type_sequence_label_size a =initializer_range a =num_labels a =scope a =n_targets a =num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens a =(image_size[1] // patch_size) * (image_size[0] // patch_size) a =num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) a =None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) a =[] for i in range(self.batch_size ): a ={} a =torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__A ) a =torch.rand(self.n_targets , 4 , device=__A ) labels.append(__A ) a =self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ) -> int: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> List[Any]: a =YolosModel(config=__A ) model.to(__A ) model.eval() a =model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Dict: a =YolosForObjectDetection(__A ) model.to(__A ) model.eval() a =model(pixel_values=__A ) a =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) a =model(pixel_values=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.prepare_config_and_inputs() a , a , a =config_and_inputs a ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=False ) -> Any: a =super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": a =[] for i in range(self.model_tester.batch_size ): a ={} a =torch.ones( size=(self.model_tester.n_targets,) , device=__A , dtype=torch.long ) a =torch.ones( self.model_tester.n_targets , 4 , device=__A , dtype=torch.float ) labels.append(__A ) a =labels return inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =YolosModelTester(self ) a =ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # YOLOS does not use inputs_embeds pass def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__A ) a =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a =[*signature.parameters.keys()] a =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a , a =self.model_tester.prepare_config_and_inputs_for_common() a =True # in YOLOS, the seq_len is different a =self.model_tester.expected_seq_len for model_class in self.all_model_classes: a =True a =False a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) a =len(__A ) # Check attention is always last and order is fine a =True a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =1 self.assertEqual(out_len + added_hidden_states , len(__A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self ) -> str: def check_hidden_states_output(__A , __A , __A ): a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.hidden_states a =getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__A ) , __A ) # YOLOS has a different seq_length a =self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a =True check_hidden_states_output(__A , __A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =YolosModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def _A ( ): """simple docstring""" a =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Dict: return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__A ) a =self.default_image_processor a =prepare_img() a =image_processor(images=__A , return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): a =model(inputs.pixel_values ) # verify outputs a =torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __A ) a =torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=__A , ) a =torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __A , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __A , atol=1E-4 ) ) # verify postprocessing a =image_processor.post_process_object_detection( __A , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] a =torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(__A ) a =[75, 75, 17, 63, 17] a =torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(__A ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __A , atol=1E-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __A ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __A ) )
215
1
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : str ) -> Optional[int]: with open(UpperCAmelCase__ , encoding="utf-8" ) as input_file: __SCREAMING_SNAKE_CASE = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) __SCREAMING_SNAKE_CASE = input_file.read() __SCREAMING_SNAKE_CASE = regexp.search(UpperCAmelCase__ ) return match def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : str ) -> Union[str, Any]: with open(UpperCAmelCase__ , encoding="utf-8" ) as input_file: __SCREAMING_SNAKE_CASE = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) __SCREAMING_SNAKE_CASE = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __SCREAMING_SNAKE_CASE = regexp.finditer(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCAmelCase_ ( self : Dict ) -> Dict: __SCREAMING_SNAKE_CASE = Path("./datasets" ) __SCREAMING_SNAKE_CASE = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCAmelCase__ ) ): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" ) def UpperCAmelCase_ ( self : str ) -> int: __SCREAMING_SNAKE_CASE = Path("./datasets" ) __SCREAMING_SNAKE_CASE = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCAmelCase__ ) ): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
54
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A__ = TypeVar("""T""") A__ = TypeVar("""U""") class __lowerCAmelCase ( Generic[T, U] ): def __init__( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = key _lowerCAmelCase = val _lowerCAmelCase = None _lowerCAmelCase = None def __repr__( self ): """simple docstring""" return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __lowerCAmelCase ( Generic[T, U] ): def __init__( self ): """simple docstring""" _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) _lowerCAmelCase , _lowerCAmelCase = self.rear, self.head def __repr__( self ): """simple docstring""" _lowerCAmelCase = ["""DoubleLinkedList"""] _lowerCAmelCase = self.head while node.next is not None: rep.append(str(_snake_case ) ) _lowerCAmelCase = node.next rep.append(str(self.rear ) ) return ",\n ".join(_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _lowerCAmelCase = node _lowerCAmelCase = previous _lowerCAmelCase = node _lowerCAmelCase = self.rear def snake_case ( self , _snake_case ): """simple docstring""" if node.prev is None or node.next is None: return None _lowerCAmelCase = node.next _lowerCAmelCase = node.prev _lowerCAmelCase = None _lowerCAmelCase = None return node class __lowerCAmelCase ( Generic[T, U] ): __lowerCamelCase = {} def __init__( self , _snake_case ): """simple docstring""" _lowerCAmelCase = DoubleLinkedList() _lowerCAmelCase = capacity _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = {} def __repr__( self ): """simple docstring""" return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self , _snake_case ): """simple docstring""" return key in self.cache def snake_case ( self , _snake_case ): """simple docstring""" if key in self.cache: self.hits += 1 _lowerCAmelCase = self.cache[key] _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_snake_case ) return node.val self.miss += 1 return None def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _lowerCAmelCase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_snake_case ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _lowerCAmelCase = value self.list.add(_snake_case ) @classmethod def snake_case ( cls , _snake_case = 128 ): """simple docstring""" def cache_decorator_inner(_snake_case ) -> Callable[..., U]: def cache_decorator_wrapper(*_snake_case ) -> U: if func not in cls.decorator_function_to_instance_map: _lowerCAmelCase = LRUCache(_snake_case ) _lowerCAmelCase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _lowerCAmelCase = func(*_snake_case ) cls.decorator_function_to_instance_map[func].put(args[0] , _snake_case ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_snake_case , """cache_info""" , _snake_case ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
82
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
1
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _UpperCamelCase : Optional[int] = logging.get_logger(__name__) _UpperCamelCase : Any = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase : Union[str, Any] = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase : Optional[int] = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase : Optional[Any] = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase : Any = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_12, '''facebook/dpr-ctx_encoder-multiset-base''': 5_12, } _UpperCamelCase : Optional[Any] = { '''facebook/dpr-question_encoder-single-nq-base''': 5_12, '''facebook/dpr-question_encoder-multiset-base''': 5_12, } _UpperCamelCase : Dict = { '''facebook/dpr-reader-single-nq-base''': 5_12, '''facebook/dpr-reader-multiset-base''': 5_12, } _UpperCamelCase : Optional[int] = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } _UpperCamelCase : Optional[Any] = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } _UpperCamelCase : Any = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class UpperCAmelCase_ ( lowerCamelCase__): lowerCamelCase__ : str = VOCAB_FILES_NAMES lowerCamelCase__ : str = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Any = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : Any = DPRContextEncoderTokenizer class UpperCAmelCase_ ( lowerCamelCase__): lowerCamelCase__ : Dict = VOCAB_FILES_NAMES lowerCamelCase__ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Tuple = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : Dict = DPRQuestionEncoderTokenizer _UpperCamelCase : str = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _UpperCamelCase : List[Any] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _UpperCamelCase : Any = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(lowerCamelCase__) class UpperCAmelCase_ : def __call__( self , a , a = None , a = None , a = False , a = False , a = None , a = None , a = None , **a , ) -> str: if titles is None and texts is None: return super().__call__( lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) elif titles is None or texts is None: lowercase__ : List[Any] = titles if texts is None else texts return super().__call__( lowerCAmelCase__ , lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase__ : Dict = titles if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [titles] lowercase__ : Tuple = texts if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [texts] lowercase__ : Optional[Any] = len(lowerCAmelCase__ ) lowercase__ : Tuple = questions if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [questions] * n_passages assert len(lowerCAmelCase__ ) == len( lowerCAmelCase__ ), f"""There should be as many titles than texts but got {len(lowerCAmelCase__ )} titles and {len(lowerCAmelCase__ )} texts.""" lowercase__ : int = super().__call__(lowerCAmelCase__ , lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )["""input_ids"""] lowercase__ : str = super().__call__(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )["""input_ids"""] lowercase__ : Optional[Any] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] } if return_attention_mask is not False: lowercase__ : int = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ : int = attention_mask return self.pad(lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) def _UpperCAmelCase ( self , a , a , a = 1_6 , a = 6_4 , a = 4 , ) -> str: lowercase__ : List[str] = reader_input["""input_ids"""] lowercase__ : str = reader_output[:3] lowercase__ : Tuple = len(lowerCAmelCase__ ) lowercase__ : Dict = sorted(range(lowerCAmelCase__ ) , reverse=lowerCAmelCase__ , key=relevance_logits.__getitem__ ) lowercase__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: lowercase__ : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ : List[Any] = sequence_ids.index(self.pad_token_id ) else: lowercase__ : Any = len(lowerCAmelCase__ ) lowercase__ : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase__ , top_spans=lowerCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase__ , start_index=lowerCAmelCase__ , end_index=lowerCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCAmelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _UpperCAmelCase ( self , a , a , a , a , ) -> Union[str, Any]: lowercase__ : Optional[Any] = [] for start_index, start_score in enumerate(lowerCAmelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ : Optional[Any] = sorted(lowerCAmelCase__ , key=lambda a : x[1] , reverse=lowerCAmelCase__ ) lowercase__ : Optional[int] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" lowercase__ : Optional[Any] = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__) class UpperCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__): lowerCamelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase__ : int = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : str = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : Dict = ['''input_ids''', '''attention_mask'''] lowerCamelCase__ : Tuple = DPRReaderTokenizer
77
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( _lowerCamelCase: list[int] , _lowerCamelCase: list[int] , _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : List[Any] = list(range(len(_lowerCamelCase ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = [v / w for v, w in zip(_lowerCamelCase , _lowerCamelCase )] index.sort(key=lambda _lowerCamelCase : ratio[i] , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : list[float] = [0] * len(_lowerCamelCase ) for i in index: if weight[i] <= capacity: __SCREAMING_SNAKE_CASE : str = 1 max_value += value[i] capacity -= weight[i] else: __SCREAMING_SNAKE_CASE : int = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
112
0
from collections import namedtuple lowerCamelCase_ = namedtuple("""from_to""", """from_ to""") lowerCamelCase_ = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1_0_0_0), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00454, 264.172), """cubicyard""": from_to(0.76455, 1.30795), """cubicfoot""": from_to(0.028, 35.3147), """cup""": from_to(0.000236588, 4226.75), } def lowerCamelCase ( a_ , a_ , a_ ): if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ', '.join(a_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ', '.join(a_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
357
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_=False ) -> Tuple: lowerCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): lowerCAmelCase_ = 'segformer.encoder.' + key if key.startswith('backbone' ): lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' ) if "norm" in key: lowerCAmelCase_ = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' ) if "layer_norm1" in key: lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ = key[key.find('block' ) + len('block' )] lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' ) if "attn.q" in key: lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase_ = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase_ = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase_ = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' ) if key.startswith('head' ): lowerCAmelCase_ = key.replace('head' , 'classifier' ) lowerCAmelCase_ = value return new_state_dict def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase ( ) -> Optional[int]: lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def lowerCamelCase ( a_ , a_ , a_ ) -> int: lowerCAmelCase_ = SegformerConfig() lowerCAmelCase_ = False # set attributes based on model_name lowerCAmelCase_ = 'huggingface/label-files' if "segformer" in model_name: lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: lowerCAmelCase_ = 150 lowerCAmelCase_ = 'ade20k-id2label.json' lowerCAmelCase_ = (1, 150, 128, 128) elif "city" in model_name: lowerCAmelCase_ = 19 lowerCAmelCase_ = 'cityscapes-id2label.json' lowerCAmelCase_ = (1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: lowerCAmelCase_ = True lowerCAmelCase_ = model_name[4:6] lowerCAmelCase_ = 1_000 lowerCAmelCase_ = 'imagenet-1k-id2label.json' lowerCAmelCase_ = (1, 1_000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 256 elif size == "b2": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) lowerCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) # prepare image lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) ) else: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase_ = False lowerCAmelCase_ = SegformerForImageClassification(a_ ) else: lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCAmelCase_ = model(a_ ) lowerCAmelCase_ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase_ = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: lowerCAmelCase_ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCamelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
14
0
"""simple docstring""" def lowercase_ ( _snake_case = 50 ): SCREAMING_SNAKE_CASE__ : Tuple = [1] * (length + 1) for row_length in range(3 ,length + 1 ): for block_length in range(3 ,row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
25
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __a :Any = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = "huggingface/label-files" A_ = "imagenet-1k-id2label.json" A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = {v: k for k, v in idalabel.items()} A_ = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" A_ = BitConfig( conv_layer=__UpperCamelCase ,num_labels=1000 ,idalabel=__UpperCamelCase ,labelaid=__UpperCamelCase ,) return config def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if "stem.conv" in name: A_ = name.replace("stem.conv" ,"bit.embedder.convolution" ) if "blocks" in name: A_ = name.replace("blocks" ,"layers" ) if "head.fc" in name: A_ = name.replace("head.fc" ,"classifier.1" ) if name.startswith("norm" ): A_ = "bit." + name if "bit" not in name and "classifier" not in name: A_ = "bit.encoder." + name return name def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Tuple=False ): """simple docstring""" A_ = get_config(__UpperCamelCase ) # load original model from timm A_ = create_model(__UpperCamelCase ,pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model A_ = timm_model.state_dict() for key in state_dict.copy().keys(): A_ = state_dict.pop(__UpperCamelCase ) A_ = val.squeeze() if "head" in key else val # load HuggingFace model A_ = BitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # create image processor A_ = create_transform(**resolve_data_config({} ,model=__UpperCamelCase ) ) A_ = transform.transforms A_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } A_ = BitImageProcessor( do_resize=__UpperCamelCase ,size={"shortest_edge": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=__UpperCamelCase ,crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} ,do_normalize=__UpperCamelCase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) A_ = prepare_img() A_ = transform(__UpperCamelCase ).unsqueeze(0 ) A_ = processor(__UpperCamelCase ,return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ) # verify logits with torch.no_grad(): A_ = model(__UpperCamelCase ) A_ = outputs.logits print("Logits:" ,logits[0, :3] ) print("Predicted class:" ,model.config.idalabel[logits.argmax(-1 ).item()] ) A_ = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase ,outputs.logits ,atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __a :str = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
312
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset snake_case : Dict = "bert-base-cased" snake_case : int = "google/pegasus-xsum" snake_case : Any = [" Sam ate lunch today.", "Sams lunch ingredients."] snake_case : Union[str, Any] = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] snake_case : int = "patrickvonplaten/t5-tiny-random" snake_case : List[str] = "sshleifer/bart-tiny-random" snake_case : Optional[Any] = "sshleifer/tiny-mbart" snake_case : Dict = "sshleifer/tiny-marian-en-de" def lowerCAmelCase_ ( _snake_case : Path , _snake_case : list ) -> List[str]: '''simple docstring''' __magic_name__ : List[Any] = "\n".join(_snake_case ) Path(_snake_case ).open("w" ).writelines(_snake_case ) def lowerCAmelCase_ ( _snake_case : str ) -> Tuple: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(_snake_case , F'''{split}.source''' ) , _snake_case ) _dump_articles(os.path.join(_snake_case , F'''{split}.target''' ) , _snake_case ) return tmp_dir class _snake_case ( snake_case ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Dict = AutoTokenizer.from_pretrained(_a ) __magic_name__ : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __magic_name__ : List[Any] = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) __magic_name__ : Optional[int] = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) __magic_name__ : Any = 4 __magic_name__ : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __magic_name__ , __magic_name__ : List[Any] = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. __magic_name__ : Optional[int] = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , ) __magic_name__ : List[Any] = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a , _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __magic_name__ : Optional[int] = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Optional[Any] = AutoTokenizer.from_pretrained(_a ) __magic_name__ : Tuple = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __magic_name__ : Optional[Any] = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) __magic_name__ : Optional[Any] = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) __magic_name__ : Any = 4 __magic_name__ : List[Any] = LegacySeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=20 , max_target_length=_a , ) __magic_name__ : Union[str, Any] = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) __magic_name__ : Any = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __magic_name__ : List[str] = tmp_dir.joinpath("train.source" ).open().readlines() __magic_name__ : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a , _a , 128 , _a ) __magic_name__ : Union[str, Any] = {x.name for x in tmp_dir.iterdir()} __magic_name__ : Union[str, Any] = {x.name for x in save_dir.iterdir()} __magic_name__ : Optional[int] = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def SCREAMING_SNAKE_CASE ( self ): if not FAIRSEQ_AVAILABLE: return __magic_name__ , __magic_name__ , __magic_name__ : Tuple = self._get_dataset(max_len=64 ) __magic_name__ : Tuple = 64 __magic_name__ : Union[str, Any] = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a ) __magic_name__ : List[Any] = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples __magic_name__ : Optional[int] = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 ) __magic_name__ : int = [] __magic_name__ : List[str] = [] for batch in data_loader: __magic_name__ : str = batch["input_ids"].shape __magic_name__ : int = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __magic_name__ : Dict = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f'''too many tokens in {len(_a )} batches''' ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = self._get_dataset(max_len=512 ) __magic_name__ : Optional[Any] = 2 __magic_name__ : Optional[int] = ds.make_sortish_sampler(_a , shuffle=_a ) __magic_name__ : Tuple = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 ) __magic_name__ : Any = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a ) __magic_name__ : Optional[int] = tokenizer.pad_token_id def count_pad_tokens(_a , _a="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a , k="labels" ) ) < sum(count_pad_tokens(_a , k="labels" ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def SCREAMING_SNAKE_CASE ( self , _a=1_000 , _a=128 ): if os.getenv("USE_REAL_DATA" , _a ): __magic_name__ : Optional[Any] = "examples/seq2seq/wmt_en_ro" __magic_name__ : int = max_len * 2 * 64 if not Path(_a ).joinpath("train.len" ).exists(): save_len_file(_a , _a ) else: __magic_name__ : Dict = "examples/seq2seq/test_data/wmt_en_ro" __magic_name__ : Tuple = max_len * 4 save_len_file(_a , _a ) __magic_name__ : str = AutoTokenizer.from_pretrained(_a ) __magic_name__ : List[Any] = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , n_obs=_a , ) return ds, max_tokens, tokenizer def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ , __magic_name__ : str = self._get_dataset() __magic_name__ : int = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) ) __magic_name__ : Union[str, Any] = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Optional[Any] = AutoTokenizer.from_pretrained(_a , use_fast=_a ) if tok_name == MBART_TINY: __magic_name__ : int = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) __magic_name__ : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __magic_name__ : Any = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) __magic_name__ : Dict = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
41
from scipy.stats import pearsonr import datasets snake_case : Tuple = "\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n" snake_case : Dict = "\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n" snake_case : int = "\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a=False ): if return_pvalue: __magic_name__ : Union[str, Any] = pearsonr(_a , _a ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_a , _a )[0] )}
41
1
from __future__ import annotations def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): if len(lowerCamelCase ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(lowerCamelCase ) or left < -len(lowerCamelCase ) or right >= len(lowerCamelCase ) or right < -len(lowerCamelCase ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] lowerCamelCase : List[Any] = (left + right) >> 1 # the middle lowerCamelCase : int = find_max(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # find max in range[left, mid] lowerCamelCase : int = find_max(lowerCamelCase, mid + 1, lowerCamelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
287
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Dict = """segformer""" def __init__( self , __magic_name__=3 , __magic_name__=4 , __magic_name__=[2, 2, 2, 2] , __magic_name__=[8, 4, 2, 1] , __magic_name__=[3_2, 6_4, 1_6_0, 2_5_6] , __magic_name__=[7, 3, 3, 3] , __magic_name__=[4, 2, 2, 2] , __magic_name__=[1, 2, 5, 8] , __magic_name__=[4, 4, 4, 4] , __magic_name__="gelu" , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.1 , __magic_name__=0.02 , __magic_name__=0.1 , __magic_name__=1e-6 , __magic_name__=2_5_6 , __magic_name__=2_5_5 , **__magic_name__ , ): super().__init__(**__magic_name__ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __magic_name__ , ) lowerCamelCase : Optional[Any] = num_channels lowerCamelCase : str = num_encoder_blocks lowerCamelCase : Any = depths lowerCamelCase : List[Any] = sr_ratios lowerCamelCase : int = hidden_sizes lowerCamelCase : Union[str, Any] = patch_sizes lowerCamelCase : Optional[Any] = strides lowerCamelCase : Dict = mlp_ratios lowerCamelCase : str = num_attention_heads lowerCamelCase : Any = hidden_act lowerCamelCase : Tuple = hidden_dropout_prob lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase : Dict = classifier_dropout_prob lowerCamelCase : Tuple = initializer_range lowerCamelCase : Dict = drop_path_rate lowerCamelCase : List[str] = layer_norm_eps lowerCamelCase : Any = decoder_hidden_size lowerCamelCase : str = kwargs.get("""reshape_last_stage""" , __magic_name__ ) lowerCamelCase : Dict = semantic_loss_ignore_index class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : str = version.parse("""1.11""") @property def UpperCamelCase__ ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase__ ( self ): return 1e-4 @property def UpperCamelCase__ ( self ): return 1_2
287
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float = 1 / sqrt(2 ) ): '''simple docstring''' UpperCAmelCase__ = tau * frequency / samplerate UpperCAmelCase__ = sin(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = cos(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = _sin / (2 * q_factor) UpperCAmelCase__ = (1 - _cos) / 2 UpperCAmelCase__ = 1 - _cos UpperCAmelCase__ = 1 + alpha UpperCAmelCase__ = -2 * _cos UpperCAmelCase__ = 1 - alpha UpperCAmelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float = 1 / sqrt(2 ) ): '''simple docstring''' UpperCAmelCase__ = tau * frequency / samplerate UpperCAmelCase__ = sin(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = cos(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = _sin / (2 * q_factor) UpperCAmelCase__ = (1 + _cos) / 2 UpperCAmelCase__ = -1 - _cos UpperCAmelCase__ = 1 + alpha UpperCAmelCase__ = -2 * _cos UpperCAmelCase__ = 1 - alpha UpperCAmelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float = 1 / sqrt(2 ) ): '''simple docstring''' UpperCAmelCase__ = tau * frequency / samplerate UpperCAmelCase__ = sin(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = cos(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = _sin / (2 * q_factor) UpperCAmelCase__ = _sin / 2 UpperCAmelCase__ = 0 UpperCAmelCase__ = -ba UpperCAmelCase__ = 1 + alpha UpperCAmelCase__ = -2 * _cos UpperCAmelCase__ = 1 - alpha UpperCAmelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float = 1 / sqrt(2 ) ): '''simple docstring''' UpperCAmelCase__ = tau * frequency / samplerate UpperCAmelCase__ = sin(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = cos(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = _sin / (2 * q_factor) UpperCAmelCase__ = 1 - alpha UpperCAmelCase__ = -2 * _cos UpperCAmelCase__ = 1 + alpha UpperCAmelCase__ = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float = 1 / sqrt(2 ) , ): '''simple docstring''' UpperCAmelCase__ = tau * frequency / samplerate UpperCAmelCase__ = sin(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = cos(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = _sin / (2 * q_factor) UpperCAmelCase__ = 10 ** (gain_db / 40) UpperCAmelCase__ = 1 + alpha * big_a UpperCAmelCase__ = -2 * _cos UpperCAmelCase__ = 1 - alpha * big_a UpperCAmelCase__ = 1 + alpha / big_a UpperCAmelCase__ = -2 * _cos UpperCAmelCase__ = 1 - alpha / big_a UpperCAmelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float = 1 / sqrt(2 ) , ): '''simple docstring''' UpperCAmelCase__ = tau * frequency / samplerate UpperCAmelCase__ = sin(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = cos(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = _sin / (2 * q_factor) UpperCAmelCase__ = 10 ** (gain_db / 40) UpperCAmelCase__ = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase__ = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase__ = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase__ = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase__ = 2 * sqrt(SCREAMING_SNAKE_CASE__ ) * alpha UpperCAmelCase__ = big_a * (pmc + aaa) UpperCAmelCase__ = 2 * big_a * mpc UpperCAmelCase__ = big_a * (pmc - aaa) UpperCAmelCase__ = ppmc + aaa UpperCAmelCase__ = -2 * pmpc UpperCAmelCase__ = ppmc - aaa UpperCAmelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float = 1 / sqrt(2 ) , ): '''simple docstring''' UpperCAmelCase__ = tau * frequency / samplerate UpperCAmelCase__ = sin(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = cos(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = _sin / (2 * q_factor) UpperCAmelCase__ = 10 ** (gain_db / 40) UpperCAmelCase__ = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase__ = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase__ = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase__ = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase__ = 2 * sqrt(SCREAMING_SNAKE_CASE__ ) * alpha UpperCAmelCase__ = big_a * (ppmc + aaa) UpperCAmelCase__ = -2 * big_a * pmpc UpperCAmelCase__ = big_a * (ppmc - aaa) UpperCAmelCase__ = pmc + aaa UpperCAmelCase__ = 2 * mpc UpperCAmelCase__ = pmc - aaa UpperCAmelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
61
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = BlipImageProcessor() UpperCAmelCase__ = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCAmelCase__ = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) UpperCAmelCase__ = InstructBlipProcessor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **_UpperCAmelCase : Tuple ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).tokenizer def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : List[str] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **_UpperCAmelCase : Dict ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).qformer_tokenizer def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCAmelCase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) UpperCAmelCase__ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) UpperCAmelCase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = processor(text=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer(_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) UpperCAmelCase__ = qformer_tokenizer(_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ = processor.batch_decode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
61
1
"""simple docstring""" import requests def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: snake_case_ = {"""Content-Type""": """application/json"""} snake_case_ = requests.post(_SCREAMING_SNAKE_CASE , json={"""text""": message_body} , headers=_SCREAMING_SNAKE_CASE ) if response.status_code != 200: snake_case_ = ( """Request to slack returned an error """ f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
347
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) class __A (snake_case__): '''simple docstring''' def __init__( self : str , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ) ->None: """simple docstring""" warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
347
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Any = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
371
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "xmod" def __init__( self : List[str] , __A : List[str]=3_0_5_2_2 , __A : Tuple=7_6_8 , __A : str=1_2 , __A : List[Any]=1_2 , __A : List[str]=3_0_7_2 , __A : List[str]="gelu" , __A : List[Any]=0.1 , __A : Tuple=0.1 , __A : str=5_1_2 , __A : Union[str, Any]=2 , __A : List[Any]=0.0_2 , __A : List[str]=1e-1_2 , __A : Tuple=1 , __A : List[Any]=0 , __A : Optional[Any]=2 , __A : Optional[int]="absolute" , __A : Optional[int]=True , __A : Dict=None , __A : Optional[int]=False , __A : Dict=2 , __A : List[str]=False , __A : Dict=True , __A : Union[str, Any]=True , __A : Tuple=("en_XX",) , __A : Optional[Any]=None , **__A : Tuple , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) snake_case__ : Tuple = vocab_size snake_case__ : Union[str, Any] = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : Tuple = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Union[str, Any] = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : List[str] = use_cache snake_case__ : Tuple = classifier_dropout snake_case__ : Any = pre_norm snake_case__ : List[str] = adapter_reduction_factor snake_case__ : List[Any] = adapter_layer_norm snake_case__ : str = adapter_reuse_layer_norm snake_case__ : Union[str, Any] = ln_before_adapter snake_case__ : Tuple = list(__A ) snake_case__ : int = default_language class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" @property def _lowercase ( self : int ): if self.task == "multiple-choice": snake_case__ : Any = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
286
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __lowerCamelCase ( ) -> str: """simple docstring""" UpperCamelCase = HfArgumentParser(A__ ) UpperCamelCase = parser.parse_args_into_dataclasses()[0] UpperCamelCase = TensorFlowBenchmark(args=A__ ) try: UpperCamelCase = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCamelCase = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' UpperCamelCase = ' '.join(str(A__ ).split(' ' )[:-1] ) UpperCamelCase = '' UpperCamelCase = eval(str(A__ ).split(' ' )[-1] ) UpperCamelCase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(A__ ) if len(A__ ) > 0: UpperCamelCase = full_error_msg + begin_error_msg + str(A__ ) raise ValueError(A__ ) benchmark.run() if __name__ == "__main__": main()
28
# using dfs for finding eulerian path traversal def a_ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int]=None ): '''simple docstring''' _lowerCamelCase : Optional[Any] =(path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _lowerCamelCase , _lowerCamelCase : Dict =True, True _lowerCamelCase : Optional[Any] =dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return path def a_ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =0 _lowerCamelCase : Union[str, Any] =-1 for i in range(SCREAMING_SNAKE_CASE__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _lowerCamelCase : Tuple =i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' _lowerCamelCase : Tuple =[[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _lowerCamelCase , _lowerCamelCase : Optional[int] =check_circuit_or_path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return _lowerCamelCase : Any =1 if check == 2: _lowerCamelCase : Tuple =odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) _lowerCamelCase : int =dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) def a_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] ={1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _lowerCamelCase : str ={1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _lowerCamelCase : List[Any] ={1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _lowerCamelCase : Any ={1: [2, 3], 2: [1, 3], 3: [1, 2]} _lowerCamelCase : Dict ={ 1: [], 2: [] # all degree is zero } _lowerCamelCase : str =10 check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
199
0
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=2, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=3_6, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=6, lowerCamelCase_=6, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, lowerCamelCase_=1_0_0_0, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Optional[int] = batch_size lowerCamelCase__ : Dict = num_channels lowerCamelCase__ : int = image_size lowerCamelCase__ : Dict = patch_size lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : Any = use_input_mask lowerCamelCase__ : Dict = use_token_type_ids lowerCamelCase__ : List[str] = use_labels lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : List[Any] = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : int = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = type_vocab_size lowerCamelCase__ : Optional[int] = type_sequence_label_size lowerCamelCase__ : str = initializer_range lowerCamelCase__ : str = coordinate_size lowerCamelCase__ : Optional[Any] = shape_size lowerCamelCase__ : Union[str, Any] = num_labels lowerCamelCase__ : Optional[Any] = num_choices lowerCamelCase__ : Dict = scope lowerCamelCase__ : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase__ : List[Any] = text_seq_length lowerCamelCase__ : Optional[Any] = (image_size // patch_size) ** 2 + 1 lowerCamelCase__ : Optional[int] = self.text_seq_length + self.image_seq_length def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox ) lowerCamelCase__ : int = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase__ : List[str] = bbox[i, j, 3] lowerCamelCase__ : List[Any] = bbox[i, j, 1] lowerCamelCase__ : int = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase__ : Tuple = bbox[i, j, 2] lowerCamelCase__ : Optional[int] = bbox[i, j, 0] lowerCamelCase__ : Tuple = tmp_coordinate lowerCamelCase__ : Tuple = tf.constant(lowerCamelCase_ ) lowerCamelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : int = None if self.use_input_mask: lowerCamelCase__ : List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCamelCase__ : Dict = None if self.use_token_type_ids: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size ) lowerCamelCase__ : int = None lowerCamelCase__ : Optional[int] = None if self.use_labels: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels ) lowerCamelCase__ : Dict = LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFLayoutLMvaModel(config=lowerCamelCase_ ) # text + image lowerCamelCase__ : Dict = model(lowerCamelCase_, pixel_values=lowerCamelCase_, training=lowerCamelCase_ ) lowerCamelCase__ : Any = model( lowerCamelCase_, bbox=lowerCamelCase_, pixel_values=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, training=lowerCamelCase_, ) lowerCamelCase__ : int = model(lowerCamelCase_, bbox=lowerCamelCase_, pixel_values=lowerCamelCase_, training=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCamelCase__ : str = model(lowerCamelCase_, training=lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCamelCase__ : Tuple = model({'pixel_values': pixel_values}, training=lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.num_labels lowerCamelCase__ : Union[str, Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = model( lowerCamelCase_, bbox=lowerCamelCase_, pixel_values=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, training=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : Optional[int] = TFLayoutLMvaForTokenClassification(config=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model( lowerCamelCase_, bbox=lowerCamelCase_, pixel_values=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, training=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = 2 lowerCamelCase__ : List[Any] = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, bbox=lowerCamelCase_, pixel_values=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, training=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : Optional[Any] = config_and_inputs lowerCamelCase__ : Dict = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__ : Optional[Any] = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : str = False lowerCamelCase__ : Any = False def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Tuple = copy.deepcopy(lowerCamelCase_ ) if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : List[str] = { k: tf.tile(tf.expand_dims(lowerCamelCase_, 1 ), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase_, tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : Dict = tf.ones(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : str = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) lowerCamelCase__ : Any = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : Any = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : Dict = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=tf.intaa ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = TFLayoutLMvaModelTester(self ) lowerCamelCase__ : Optional[int] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Any = model_class(lowerCamelCase_ ) if getattr(lowerCamelCase_, 'hf_compute_loss', lowerCamelCase_ ): # The number of elements in the loss should be the same as the number of elements in the label lowerCamelCase__ : Dict = self._prepare_for_class(inputs_dict.copy(), lowerCamelCase_, return_labels=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=lowerCamelCase_ )[0] ] lowerCamelCase__ : Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs lowerCamelCase__ : int = self._prepare_for_class(inputs_dict.copy(), lowerCamelCase_, return_labels=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = prepared_for_class.pop('input_ids' ) lowerCamelCase__ : str = model(lowerCamelCase_, **lowerCamelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions lowerCamelCase__ : Union[str, Any] = self._prepare_for_class(inputs_dict.copy(), lowerCamelCase_, return_labels=lowerCamelCase_ ) lowerCamelCase__ : Dict = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: lowerCamelCase__ : List[str] = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: lowerCamelCase__ : int = -1_0_0 lowerCamelCase__ : str = tf.convert_to_tensor(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, **lowerCamelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict lowerCamelCase__ : Dict = self._prepare_for_class(inputs_dict.copy(), lowerCamelCase_, return_labels=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple lowerCamelCase__ : Optional[Any] = self._prepare_for_class(inputs_dict.copy(), lowerCamelCase_, return_labels=lowerCamelCase_ ) # Get keys that were added with the _prepare_for_class function lowerCamelCase__ : Any = prepared_for_class.keys() - inputs_dict.keys() lowerCamelCase__ : Union[str, Any] = inspect.signature(model.call ).parameters lowerCamelCase__ : str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple lowerCamelCase__ : Optional[Any] = {0: 'input_ids'} for label_key in label_keys: lowerCamelCase__ : Optional[Any] = signature_names.index(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = label_key lowerCamelCase__ : Dict = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple lowerCamelCase__ : int = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: lowerCamelCase__ : str = prepared_for_class[value] lowerCamelCase__ : str = tuple(lowerCamelCase_ ) # Send to model lowerCamelCase__ : Tuple = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def a__ (self ): '''simple docstring''' ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Optional[int] = type self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Union[str, Any] = TFLayoutLMvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase_ ) if is_vision_available() else None @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) lowerCamelCase__ : str = self.default_image_processor lowerCamelCase__ : Tuple = prepare_img() lowerCamelCase__ : Dict = image_processor(images=lowerCamelCase_, return_tensors='tf' ).pixel_values lowerCamelCase__ : List[str] = tf.constant([[1, 2]] ) lowerCamelCase__ : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ), axis=0 ) # forward pass lowerCamelCase__ : List[str] = model(input_ids=lowerCamelCase_, bbox=lowerCamelCase_, pixel_values=lowerCamelCase_, training=lowerCamelCase_ ) # verify the logits lowerCamelCase__ : Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape, lowerCamelCase_ ) lowerCamelCase__ : List[Any] = tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], lowerCamelCase_, atol=1e-4 ) )
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
from ...configuration_utils import PretrainedConfig lowercase_ = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'tapas' def __init__( self : Optional[Any],lowercase_ : Union[str, Any]=3_0_5_2_2,lowercase_ : List[str]=7_6_8,lowercase_ : int=1_2,lowercase_ : Optional[Any]=1_2,lowercase_ : str=3_0_7_2,lowercase_ : Optional[Any]="gelu",lowercase_ : Union[str, Any]=0.1,lowercase_ : str=0.1,lowercase_ : Optional[int]=1_0_2_4,lowercase_ : int=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0],lowercase_ : Any=0.02,lowercase_ : int=1E-12,lowercase_ : Union[str, Any]=0,lowercase_ : Dict=10.0,lowercase_ : Any=0,lowercase_ : Any=1.0,lowercase_ : Any=None,lowercase_ : Optional[Any]=1.0,lowercase_ : Tuple=False,lowercase_ : Any=None,lowercase_ : Optional[int]=1.0,lowercase_ : Dict=1.0,lowercase_ : Any=False,lowercase_ : Optional[int]=False,lowercase_ : Union[str, Any]="ratio",lowercase_ : Tuple=None,lowercase_ : Tuple=None,lowercase_ : Tuple=6_4,lowercase_ : Optional[int]=3_2,lowercase_ : Dict=False,lowercase_ : List[Any]=True,lowercase_ : Optional[int]=False,lowercase_ : Optional[Any]=False,lowercase_ : List[Any]=True,lowercase_ : List[Any]=False,lowercase_ : int=None,lowercase_ : Optional[int]=None,**lowercase_ : int,)-> str: '''simple docstring''' super().__init__(pad_token_id=lowercase_,**lowercase_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_sizes A__ = initializer_range A__ = layer_norm_eps # Fine-tuning task hyperparameters A__ = positive_label_weight A__ = num_aggregation_labels A__ = aggregation_loss_weight A__ = use_answer_as_supervision A__ = answer_loss_importance A__ = use_normalized_answer_loss A__ = huber_loss_delta A__ = temperature A__ = aggregation_temperature A__ = use_gumbel_for_cells A__ = use_gumbel_for_aggregation A__ = average_approximation_function A__ = cell_selection_preference A__ = answer_loss_cutoff A__ = max_num_rows A__ = max_num_columns A__ = average_logits_per_cell A__ = select_one_column A__ = allow_empty_column_selection A__ = init_cell_selection_weights_to_zero A__ = reset_position_index_per_cell A__ = disable_per_token_loss # Aggregation hyperparameters A__ = aggregation_labels A__ = no_aggregation_label_index if isinstance(self.aggregation_labels,lowercase_ ): A__ = {int(lowercase_ ): v for k, v in aggregation_labels.items()}
7
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = XLMRobertaTokenizer _SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Any = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Any = '<pad>' lowerCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1_0_0_2 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : int = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase_ : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase_ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def SCREAMING_SNAKE_CASE__ ( self : int ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase_ : List[str] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = tempfile.mkdtemp() lowerCAmelCase_ : int = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCAmelCase_ : Optional[Any] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCAmelCase_ : int = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase_ : str = tempfile.mkdtemp() lowerCAmelCase_ : List[str] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCAmelCase_ : str = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase_ : int = tempfile.mkdtemp() lowerCAmelCase_ : Optional[Any] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase_ : List[str] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def SCREAMING_SNAKE_CASE__ ( self : int ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SCREAMING_SNAKE_CASE_ , f.name ) lowerCAmelCase_ : Tuple = XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = pickle.dumps(SCREAMING_SNAKE_CASE_ ) pickle.loads(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): if not self.test_rust_tokenizer: return lowerCAmelCase_ : Union[str, Any] = self.get_tokenizer() lowerCAmelCase_ : Dict = self.get_rust_tokenizer() lowerCAmelCase_ : Tuple = 'I was born in 92000, and this is falsé.' lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = self.get_rust_tokenizer() lowerCAmelCase_ : Any = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : Any = 'Hello World!' lowerCAmelCase_ : Union[str, Any] = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCAmelCase_ : int = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): # fmt: off lowerCAmelCase_ : List[str] = {'input_ids': [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
224
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __UpperCamelCase : Optional[Any] = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def UpperCAmelCase__ ( cls : Dict ) -> int: '''simple docstring''' UpperCamelCase__ : str = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def UpperCAmelCase__ ( cls : List[str] ) -> str: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase__ : Union[str, Any] = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCamelCase__ : int = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCamelCase__ : int = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1E-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ , repo_id='''test-model-flax''' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCamelCase__ : Dict = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCamelCase__ : Optional[int] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1E-3 , msg=F"{key} not identical" ) def UpperCAmelCase__ ( self : Dict ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase__ : Tuple = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCamelCase__ : Any = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCamelCase__ : Union[str, Any] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ : Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1E-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCamelCase__ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCamelCase__ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCamelCase__ : Tuple = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ : List[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1E-3 , msg=F"{key} not identical" ) def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" UpperCamelCase__ : Dict = True UpperCamelCase__ : Optional[int] = flatten_dict(modela.params ) UpperCamelCase__ : List[str] = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCamelCase__ : Optional[int] = False return models_are_equal @require_flax class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCamelCase__ : str = FlaxBertModel(lowerCamelCase__ ) UpperCamelCase__ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) ) with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ : int = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__ , lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCamelCase__ : Dict = FlaxBertModel(lowerCamelCase__ ) UpperCamelCase__ : List[str] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , max_shard_size='''10KB''' ) with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ : List[Any] = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Dict = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__ , lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCamelCase__ : str = '''bert''' UpperCamelCase__ : Union[str, Any] = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ : Dict = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ : List[Any] = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = '''bert''' UpperCamelCase__ : Union[str, Any] = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ : Optional[Any] = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
352
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : Dict = image.size UpperCamelCase__ , UpperCamelCase__ : List[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase__ : Any = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) UpperCamelCase__ : Union[str, Any] = np.array(SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0 UpperCamelCase__ : Optional[int] = image[None].transpose(0 , 3 , 1 , 2 ) UpperCamelCase__ : int = torch.from_numpy(SCREAMING_SNAKE_CASE ) return 2.0 * image - 1.0 class __magic_name__ ( __lowerCAmelCase): def __init__( self : Dict , lowerCamelCase__ : VQModel , lowerCamelCase__ : UNetaDModel , lowerCamelCase__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(vqvae=lowerCamelCase__ , unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self : int , lowerCamelCase__ : Union[torch.Tensor, PIL.Image.Image] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : Optional[int] = 100 , lowerCamelCase__ : Optional[float] = 0.0 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(lowerCamelCase__ , PIL.Image.Image ): UpperCamelCase__ : int = 1 elif isinstance(lowerCamelCase__ , torch.Tensor ): UpperCamelCase__ : Dict = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCamelCase__ )}" ) if isinstance(lowerCamelCase__ , PIL.Image.Image ): UpperCamelCase__ : Any = preprocess(lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ : Tuple = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCamelCase__ : Any = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCamelCase__ : Union[str, Any] = next(self.unet.parameters() ).dtype UpperCamelCase__ : Any = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device , dtype=lowerCamelCase__ ) UpperCamelCase__ : Any = image.to(device=self.device , dtype=lowerCamelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) UpperCamelCase__ : str = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ : int = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase__ : Dict = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ : Optional[int] = {} if accepts_eta: UpperCamelCase__ : Union[str, Any] = eta for t in self.progress_bar(lowerCamelCase__ ): # concat latents and low resolution image in the channel dimension. UpperCamelCase__ : Any = torch.cat([latents, image] , dim=1 ) UpperCamelCase__ : List[str] = self.scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) # predict the noise residual UpperCamelCase__ : Dict = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ : Tuple = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample # decode the image latents with the VQVAE UpperCamelCase__ : Tuple = self.vqvae.decode(lowerCamelCase__ ).sample UpperCamelCase__ : Tuple = torch.clamp(lowerCamelCase__ , -1.0 , 1.0 ) UpperCamelCase__ : Any = image / 2 + 0.5 UpperCamelCase__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ : List[str] = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase__ )
51
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = TransfoXLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" super().setUp() _UpperCAmelCase = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = '<unk> UNwanted , running' _UpperCAmelCase = '<unk> unwanted, running' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(UpperCAmelCase , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [0, 4, 8, 7] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) _UpperCAmelCase = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' _UpperCAmelCase = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = len(UpperCAmelCase ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(UpperCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
39
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __A ( )-> tuple[list[int], int]: """simple docstring""" _UpperCAmelCase = [randint(-1_000 , 1_000 ) for i in range(10 )] _UpperCAmelCase = randint(-5_000 , 5_000 ) return (arr, r) _a = make_dataset() def __A ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, ...]: """simple docstring""" for triplet in permutations(__lowerCAmelCase , 3 ): if sum(__lowerCAmelCase ) == target: return tuple(sorted(__lowerCAmelCase ) ) return (0, 0, 0) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, int, int]: """simple docstring""" arr.sort() _UpperCAmelCase = len(__lowerCAmelCase ) for i in range(n - 1 ): _UpperCAmelCase , _UpperCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __A ( )-> tuple[float, float]: """simple docstring""" _UpperCAmelCase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' _UpperCAmelCase = '\ntriplet_sum1(*dataset)\n' _UpperCAmelCase = '\ntriplet_sum2(*dataset)\n' _UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=10_000 ) _UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=10_000 ) return (min(__lowerCAmelCase ), min(__lowerCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _a = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
39
1
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Optional[Any] = None @experimental def a_ ( __lowercase : int , __lowercase : int , __lowercase : Tuple , __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : List[Any] , __lowercase : Optional[int] ) -> Union[str, Any]: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) return _map_with_joblib(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) def a_ ( __lowercase : int , __lowercase : int , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : Any , __lowercase : Union[str, Any] ) -> Tuple: _snake_case = num_proc if num_proc <= len(__lowercase ) else len(__lowercase ) _snake_case = [] # We organize the splits ourselve (contiguous splits) for index in range(__lowercase ): _snake_case = len(__lowercase ) // num_proc _snake_case = len(__lowercase ) % num_proc _snake_case = div * index + min(__lowercase , __lowercase ) _snake_case = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(__lowercase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f'''Error dividing inputs iterable among processes. ''' f'''Total number of objects {len(__lowercase )}, ''' f'''length: {sum(len(i[1] ) for i in split_kwds )}''' ) logger.info( f'''Spawning {num_proc} processes for {len(__lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}''' ) _snake_case , _snake_case = None, None if not disable_tqdm: _snake_case , _snake_case = (RLock(),), tqdm.set_lock with Pool(__lowercase , initargs=__lowercase , initializer=__lowercase ) as pool: _snake_case = pool.map(__lowercase , __lowercase ) logger.info(f'''Finished {num_proc} processes''' ) _snake_case = [obj for proc_res in mapped for obj in proc_res] logger.info(f'''Unpacked {len(__lowercase )} objects''' ) return mapped def a_ ( __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : Optional[int] , __lowercase : Any , __lowercase : List[Any] , __lowercase : str ) -> List[Any]: # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=__lowercase ): return joblib.Parallel()( joblib.delayed(__lowercase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def a_ ( __lowercase : str ) -> int: _snake_case = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _snake_case = None
130
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "canine" def __init__( self : int , lowercase : Optional[int]=768 , lowercase : Tuple=12 , lowercase : Union[str, Any]=12 , lowercase : Optional[int]=3_072 , lowercase : Tuple="gelu" , lowercase : Optional[Any]=0.1 , lowercase : Tuple=0.1 , lowercase : int=16_384 , lowercase : Optional[int]=16 , lowercase : Optional[int]=0.02 , lowercase : Optional[Any]=1E-12 , lowercase : Optional[Any]=0 , lowercase : Dict=0xE000 , lowercase : Optional[Any]=0xE001 , lowercase : Union[str, Any]=4 , lowercase : str=4 , lowercase : Optional[int]=8 , lowercase : List[str]=16_384 , lowercase : Union[str, Any]=128 , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = type_vocab_size _snake_case = layer_norm_eps # Character config: _snake_case = downsampling_rate _snake_case = upsampling_kernel_size _snake_case = num_hash_functions _snake_case = num_hash_buckets _snake_case = local_transformer_stride
130
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case =logging.get_logger(__name__) __snake_case ={ """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Optional[int] = '''table-transformer''' lowerCamelCase : List[str] = ['''past_key_values'''] lowerCamelCase : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[str] , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : Tuple=1_0_0 , UpperCAmelCase__ : Any=6 , UpperCAmelCase__ : int=2_0_4_8 , UpperCAmelCase__ : List[str]=8 , UpperCAmelCase__ : Union[str, Any]=6 , UpperCAmelCase__ : Tuple=2_0_4_8 , UpperCAmelCase__ : int=8 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : List[Any]="relu" , UpperCAmelCase__ : Dict=2_5_6 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Optional[Any]=0.02 , UpperCAmelCase__ : Union[str, Any]=1.0 , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : List[Any]="sine" , UpperCAmelCase__ : Optional[int]="resnet50" , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=1 , UpperCAmelCase__ : Dict=5 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : List[Any]=1 , UpperCAmelCase__ : Optional[int]=1 , UpperCAmelCase__ : Dict=5 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : List[Any]=0.1 , **UpperCAmelCase__ : Union[str, Any] , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = backbone_config.get('model_type' ) lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase = config_class.from_dict(UpperCAmelCase__ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None, None, None lowerCAmelCase = use_timm_backbone lowerCAmelCase = backbone_config lowerCAmelCase = num_channels lowerCAmelCase = num_queries lowerCAmelCase = d_model lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = init_xavier_std lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = encoder_layers lowerCAmelCase = auxiliary_loss lowerCAmelCase = position_embedding_type lowerCAmelCase = backbone lowerCAmelCase = use_pretrained_backbone lowerCAmelCase = dilation # Hungarian matcher lowerCAmelCase = class_cost lowerCAmelCase = bbox_cost lowerCAmelCase = giou_cost # Loss coefficients lowerCAmelCase = mask_loss_coefficient lowerCAmelCase = dice_loss_coefficient lowerCAmelCase = bbox_loss_coefficient lowerCAmelCase = giou_loss_coefficient lowerCAmelCase = eos_coefficient super().__init__(is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def __UpperCAmelCase ( self : int ) -> int: return self.encoder_attention_heads @property def __UpperCAmelCase ( self : Optional[Any] ) -> int: return self.d_model class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Dict = version.parse('''1.11''' ) @property def __UpperCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def __UpperCAmelCase ( self : Optional[int] ) -> float: return 1E-5 @property def __UpperCAmelCase ( self : Optional[int] ) -> int: return 1_2
4
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[10, 20, 30, 40] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , ): _SCREAMING_SNAKE_CASE : Union[str, Any] = parent _SCREAMING_SNAKE_CASE : Dict = batch_size _SCREAMING_SNAKE_CASE : int = image_size _SCREAMING_SNAKE_CASE : Any = num_channels _SCREAMING_SNAKE_CASE : Optional[int] = embeddings_size _SCREAMING_SNAKE_CASE : Tuple = hidden_sizes _SCREAMING_SNAKE_CASE : str = depths _SCREAMING_SNAKE_CASE : str = is_training _SCREAMING_SNAKE_CASE : Any = use_labels _SCREAMING_SNAKE_CASE : Dict = hidden_act _SCREAMING_SNAKE_CASE : int = num_labels _SCREAMING_SNAKE_CASE : str = scope _SCREAMING_SNAKE_CASE : Any = len(__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values def UpperCAmelCase_ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : List[str] = FlaxRegNetModel(config=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = model(__snake_case ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = self.num_labels _SCREAMING_SNAKE_CASE : List[Any] = FlaxRegNetForImageClassification(config=__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowercase__ ( _snake_case , unittest.TestCase ): '''simple docstring''' A_ : Dict = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () A_ : Union[str, Any] = False A_ : List[str] = False A_ : str = False def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = FlaxRegNetModelTester(self ) _SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def UpperCAmelCase_ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self ): return def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : List[Any] = model_class(__snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def UpperCAmelCase_ ( self ): def check_hidden_states_output(__snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Any = model_class(__snake_case ) _SCREAMING_SNAKE_CASE : int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _SCREAMING_SNAKE_CASE : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__snake_case ) , expected_num_stages + 1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : str = model_class(__snake_case ) @jax.jit def model_jitted(__snake_case , **__snake_case ): return model(pixel_values=__snake_case , **__snake_case ) with self.subTest("""JIT Enabled""" ): _SCREAMING_SNAKE_CASE : Any = model_jitted(**__snake_case ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE : Optional[int] = model_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self ): return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) _SCREAMING_SNAKE_CASE : List[Any] = self.default_image_processor _SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() _SCREAMING_SNAKE_CASE : Tuple = image_processor(images=__snake_case , return_tensors="""np""" ) _SCREAMING_SNAKE_CASE : str = model(**__snake_case ) # verify the logits _SCREAMING_SNAKE_CASE : Tuple = (1, 1000) self.assertEqual(outputs.logits.shape , __snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) )
200
0
'''simple docstring''' from importlib import import_module from .logging import get_logger UpperCamelCase : Optional[int] = get_logger(__name__) class UpperCamelCase : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict=None): """simple docstring""" a : Dict = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__'): setattr(self , UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) a : str = module._original_module if isinstance(UpperCAmelCase_ , _PatchedModuleObj) else module class UpperCamelCase : """simple docstring""" A : List[str] = [] def __init__( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple=None): """simple docstring""" a : Union[str, Any] = obj a : Dict = target a : List[Any] = new a : List[Any] = target.split('.')[0] a : Dict = {} a : Union[str, Any] = attrs or [] def __enter__( self : str): """simple docstring""" *a , a : Optional[int] = self.target.split('.') # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(UpperCAmelCase_)): try: a : List[Any] = import_module('.'.join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a : int = getattr(self.obj , UpperCAmelCase_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(UpperCAmelCase_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): a : List[str] = obj_attr # patch at top level setattr(self.obj , UpperCAmelCase_ , _PatchedModuleObj(UpperCAmelCase_ , attrs=self.attrs)) a : Union[str, Any] = getattr(self.obj , UpperCAmelCase_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(UpperCAmelCase_ , UpperCAmelCase_ , _PatchedModuleObj(getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) , attrs=self.attrs)) a : Optional[int] = getattr(UpperCAmelCase_ , UpperCAmelCase_) # finally set the target attribute setattr(UpperCAmelCase_ , UpperCAmelCase_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a : Tuple = getattr(import_module('.'.join(UpperCAmelCase_)) , UpperCAmelCase_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , UpperCAmelCase_) is attr_value: a : List[Any] = getattr(self.obj , UpperCAmelCase_) setattr(self.obj , UpperCAmelCase_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a : Any = globals()['__builtins__'][target_attr] setattr(self.obj , UpperCAmelCase_ , self.new) else: raise RuntimeError(f"""Tried to patch attribute {target_attr} instead of a submodule.""") def __exit__( self : Optional[int] , *UpperCAmelCase_ : List[str]): """simple docstring""" for attr in list(self.original): setattr(self.obj , UpperCAmelCase_ , self.original.pop(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" self.__enter__() self._active_patches.append(self) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
345
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : float | Decimal , snake_case : float = 10**-10 ) -> float: """simple docstring""" a : Dict = a while True: a : Any = Decimal(snake_case ) - ( Decimal(eval(snake_case ) ) / Decimal(eval(str(diff(snake_case ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case ) ) < precision: # noqa: S307 return float(snake_case ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
345
1