code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = text, pattern __UpperCamelCase , __UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ ( self )-> list[int]: '''simple docstring''' __UpperCamelCase = [] for i in range(self.textLen - self.patLen + 1 ): __UpperCamelCase = self.mismatch_in_text(SCREAMING_SNAKE_CASE_ ) if mismatch_index == -1: positions.append(SCREAMING_SNAKE_CASE_ ) else: __UpperCamelCase = self.match_in_pattern(self.text[mismatch_index] ) __UpperCamelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowercase__ : int = "ABAABA" lowercase__ : int = "AB" lowercase__ : Optional[Any] = BoyerMooreSearch(text, pattern) lowercase__ : Optional[int] = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
328
def A_ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ : List[str] = generate_large_matrix() lowercase__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_ ( snake_case : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def A_ ( snake_case : list[int] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCamelCase = (left + right) // 2 __UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(grid[0] ) for i in range(len(snake_case ) ): __UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def A_ ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : int = BlenderbotSmallTokenizer UpperCamelCase : Union[str, Any] = False def __A ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCamelCase = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] lowerCamelCase = dict(zip(A , range(len(A ) ) ) ) lowerCamelCase = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] lowerCamelCase = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def __A ( self , **A ) -> Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **A ) def __A ( self , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = """adapt act apte""" lowerCamelCase = """adapt act apte""" return input_text, output_text def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase = """adapt act apte""" lowerCamelCase = ["""adapt""", """act""", """ap@@""", """te"""] lowerCamelCase = tokenizer.tokenize(A ) self.assertListEqual(A , A ) lowerCamelCase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowerCamelCase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [13_84] lowerCamelCase = """I am a small frog.""" lowerCamelCase = tok([src_text] , padding=A , truncation=A )["""input_ids"""] lowerCamelCase = tok.batch_decode(A , skip_special_tokens=A , clean_up_tokenization_spaces=A )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) lowerCamelCase = """I am a small frog .""" lowerCamelCase = """.""" lowerCamelCase = tok(A )["""input_ids"""] lowerCamelCase = tok(A )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
66
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Any = "altclip_text_model" def __init__( self , A=25_00_02 , A=10_24 , A=24 , A=16 , A=40_96 , A="gelu" , A=0.1 , A=0.1 , A=5_14 , A=1 , A=0.02 , A=0.02 , A=1e-0_5 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=7_68 , **A , ) -> int: '''simple docstring''' super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = hidden_act lowerCamelCase = intermediate_size lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = initializer_range lowerCamelCase = initializer_factor lowerCamelCase = layer_norm_eps lowerCamelCase = position_embedding_type lowerCamelCase = use_cache lowerCamelCase = project_dim class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Dict = "altclip_vision_model" def __init__( self , A=7_68 , A=30_72 , A=5_12 , A=12 , A=12 , A=3 , A=2_24 , A=32 , A="quick_gelu" , A=1e-5 , A=0.0 , A=0.02 , A=1.0 , **A , ) -> Dict: '''simple docstring''' super().__init__(**A ) lowerCamelCase = hidden_size lowerCamelCase = intermediate_size lowerCamelCase = projection_dim lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = num_channels lowerCamelCase = patch_size lowerCamelCase = image_size lowerCamelCase = initializer_range lowerCamelCase = initializer_factor lowerCamelCase = attention_dropout lowerCamelCase = layer_norm_eps lowerCamelCase = hidden_act @classmethod def __A ( cls , A , **A ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(A ) lowerCamelCase , lowerCamelCase = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": lowerCamelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Optional[Any] = "altclip" UpperCamelCase : Optional[Any] = True def __init__( self , A=None , A=None , A=7_68 , A=2.6592 , **A ) -> Dict: '''simple docstring''' lowerCamelCase = kwargs.pop("""text_config_dict""" , A ) lowerCamelCase = kwargs.pop("""vision_config_dict""" , A ) super().__init__(**A ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowerCamelCase = {} # This is the complete result when using `text_config_dict`. lowerCamelCase = AltCLIPTextConfig(**A ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowerCamelCase = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: lowerCamelCase = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(A ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowerCamelCase = {} # This is the complete result when using `vision_config_dict`. lowerCamelCase = AltCLIPVisionConfig(**A ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowerCamelCase = { str(A ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowerCamelCase = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: lowerCamelCase = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(A ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowerCamelCase = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: lowerCamelCase = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) lowerCamelCase = AltCLIPTextConfig(**A ) lowerCamelCase = AltCLIPVisionConfig(**A ) lowerCamelCase = projection_dim lowerCamelCase = logit_scale_init_value lowerCamelCase = 1.0 @classmethod def __A ( cls , A , A , **A ) -> Dict: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = copy.deepcopy(self.__dict__ ) lowerCamelCase = self.text_config.to_dict() lowerCamelCase = self.vision_config.to_dict() lowerCamelCase = self.__class__.model_type return output
66
1
from manim import * class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : List[str] ): """simple docstring""" __snake_case = Rectangle(height=0.5 , width=0.5 ) __snake_case = Rectangle(height=0.2_5 , width=0.2_5 ) __snake_case = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''CPU''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) __snake_case = [mem.copy() for i in range(4 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''GPU''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''Model''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) __snake_case = [] __snake_case = [] __snake_case = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) __snake_case = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) model_cpu_arr.append(a__ ) self.add(*a__ , *a__ , *a__ ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''Loaded Checkpoint''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(a__ ) __snake_case = [] __snake_case = [] for i, rect in enumerate(a__ ): __snake_case = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) ckpt_arr.append(a__ ) __snake_case = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(a__ ) self.add(*a__ , *a__ ) __snake_case = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __snake_case = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) __snake_case = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a__ ) __snake_case = MarkupText( f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) __snake_case = [meta_mem.copy() for i in range(6 )] __snake_case = [meta_mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''Disk''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(a__ , run_time=3 ) , Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) __snake_case = [] for i, rect in enumerate(a__ ): __snake_case = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(FadeOut(a__ ) ) __snake_case = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ , run_time=3 ) ) self.play( FadeOut(a__ , a__ , *a__ , *a__ ) , ) self.wait()
24
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __a : def __init__( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int]=13 , __magic_name__ : str=7 , __magic_name__ : Dict=True , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Tuple=99 , __magic_name__ : List[str]=32 , __magic_name__ : int=2 , __magic_name__ : List[str]=4 , __magic_name__ : Tuple=37 , __magic_name__ : Dict="gelu" , __magic_name__ : int=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Optional[int]=5_12 , __magic_name__ : Tuple=16 , __magic_name__ : Optional[int]=2 , __magic_name__ : Optional[int]=0.0_2 , __magic_name__ : Dict=3 , __magic_name__ : str=4 , __magic_name__ : Optional[Any]=None , __magic_name__ : Any=0 , ) -> Any: """simple docstring""" UpperCAmelCase_ : str = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : List[Any] = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Optional[Any] = use_input_mask UpperCAmelCase_ : Tuple = use_token_type_ids UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : List[str] = type_sequence_label_size UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : Tuple = num_choices UpperCAmelCase_ : Union[str, Any] = scope UpperCAmelCase_ : Union[str, Any] = projection_dim def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Dict = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py UpperCAmelCase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Optional[Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) UpperCAmelCase_ : List[str] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : str , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Any ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = TFDPRContextEncoder(config=__magic_name__ ) UpperCAmelCase_ : Tuple = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : int = model(__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Any = model(__magic_name__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : Tuple ) -> int: """simple docstring""" UpperCAmelCase_ : List[str] = TFDPRQuestionEncoder(config=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : List[Any] = model(__magic_name__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = TFDPRReader(config=__magic_name__ ) UpperCAmelCase_ : Tuple = model(__magic_name__ , attention_mask=__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Any = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Any = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __a : int = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} __a : str = False __a : str = False __a : Dict = False __a : Optional[Any] = False __a : Any = False def UpperCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[int] = TFDPRModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__magic_name__ ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__magic_name__ ) def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Union[str, Any] = TFDPRContextEncoder.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = TFDPRContextEncoder.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = TFDPRQuestionEncoder.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = TFDPRReader.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_tf class __a (unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase_ : Any = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) UpperCAmelCase_ : Optional[int] = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] UpperCAmelCase_ : List[Any] = model(__magic_name__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. UpperCAmelCase_ : List[str] = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
125
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} _lowerCAmelCase : str = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } _lowerCAmelCase : Union[str, Any] = { "abeja/gpt-neox-japanese-2.7b": 20_48, } def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> Any: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , "r" , encoding="utf-8" ) as f: _UpperCAmelCase : str = json.loads(f.read() ) _UpperCAmelCase : List[Any] = collections.OrderedDict() _UpperCAmelCase : Optional[Any] = collections.OrderedDict() _UpperCAmelCase : int = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE__ , "r" , encoding="utf-8" ) as f: _UpperCAmelCase : List[Any] = f.readlines() _UpperCAmelCase : str = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : Dict = b _UpperCAmelCase : Any = idx for wd in b: _UpperCAmelCase : List[Any] = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Tuple = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , A : Union[str, Any] , A : Any , A : Dict="<|endoftext|>" , A : Tuple="<|endoftext|>" , A : List[Any]="<|startoftext|>" , A : str="<|endoftext|>" , A : Optional[int]=False , **A : str , ): super().__init__( unk_token=A , pad_token=A , bos_token=A , eos_token=A , do_clean_text=A , **A , ) if not os.path.isfile(A ): raise ValueError( f'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(A ): raise ValueError( f'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) _UpperCAmelCase : List[str] = do_clean_text _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = load_vocab_and_emoji(A , A ) _UpperCAmelCase : Any = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def snake_case_ ( self : Any ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case_ ( self : Tuple ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def snake_case_ ( self : Union[str, Any] , A : int ): return self.subword_tokenizer.tokenize(A , clean=self.do_clean_text ) def snake_case_ ( self : Any , A : int ): return self.vocab.get(A , self.vocab.get(self.unk_token ) ) def snake_case_ ( self : Optional[Any] , A : Union[str, Any] ): return self.subword_tokenizer.convert_id_to_token(A ) def snake_case_ ( self : Any , A : List[Any] ): _UpperCAmelCase : List[Any] = "".join(A ).strip() return out_string def snake_case_ ( self : Dict , A : "Conversation" ): _UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A , add_special_tokens=A ) + [self.eos_token_id] ) if len(A ) > self.model_max_length: _UpperCAmelCase : Tuple = input_ids[-self.model_max_length :] return input_ids def snake_case_ ( self : List[Any] , A : str , A : Optional[str] = None ): _UpperCAmelCase : int = 0 if os.path.isdir(A ): _UpperCAmelCase : List[Any] = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : int = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: _UpperCAmelCase : Any = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : int = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(A , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' " Please check that the vocabulary is not corrupted!" ) _UpperCAmelCase : str = token_index writer.write(",".join(A ) + "\n" ) index += 1 with open(A , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , A ) return vocab_file, emoji_file class UpperCAmelCase_ ( _UpperCamelCase ): def __init__( self : Optional[int] , A : Tuple , A : Dict , A : Optional[Any] ): _UpperCAmelCase : Any = vocab # same as swe _UpperCAmelCase : Optional[int] = ids_to_tokens # same as bpe _UpperCAmelCase : Tuple = emoji _UpperCAmelCase : Dict = np.max([len(A ) for w in self.vocab.keys()] ) _UpperCAmelCase : int = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) _UpperCAmelCase : str = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) _UpperCAmelCase : Optional[int] = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) _UpperCAmelCase : Optional[int] = re.compile( R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) _UpperCAmelCase : Optional[int] = re.compile( R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) _UpperCAmelCase : Optional[int] = re.compile( R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) _UpperCAmelCase : Optional[int] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" _UpperCAmelCase : Union[str, Any] = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" _UpperCAmelCase : Dict = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self : Union[str, Any] ): return len(self.ids_to_tokens ) def snake_case_ ( self : Optional[Any] , A : Optional[Any] ): _UpperCAmelCase : List[Any] = self.content_repattera.sub("<URL>" , A ) _UpperCAmelCase : List[Any] = self.content_repattera.sub("<EMAIL>" , A ) _UpperCAmelCase : str = self.content_repattera.sub("<TEL>" , A ) _UpperCAmelCase : Optional[Any] = self.content_repattera.sub("<DATE>" , A ) _UpperCAmelCase : str = self.content_repattera.sub("<DATE>" , A ) _UpperCAmelCase : Optional[Any] = self.content_repattera.sub("<PRICE>" , A ) _UpperCAmelCase : int = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: _UpperCAmelCase : int = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def snake_case_ ( self : Optional[int] , A : Union[str, Any] , A : List[str]=False ): _UpperCAmelCase : Union[str, Any] = text.replace(" " , "<SP>" ) _UpperCAmelCase : Optional[Any] = text.replace(" " , "<SP>" ) _UpperCAmelCase : List[str] = text.replace("\r\n" , "<BR>" ) _UpperCAmelCase : Optional[Any] = text.replace("\n" , "<BR>" ) _UpperCAmelCase : int = text.replace("\r" , "<BR>" ) _UpperCAmelCase : int = text.replace("\t" , "<TAB>" ) _UpperCAmelCase : List[Any] = text.replace("—" , "ー" ) _UpperCAmelCase : Union[str, Any] = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: _UpperCAmelCase : Union[str, Any] = text.replace(A , A ) if clean: _UpperCAmelCase : Any = self.clean_text(A ) def check_simbol(A : Optional[int] ): _UpperCAmelCase : Optional[Any] = x.encode() if len(A ) == 1 and len(A ) == 2: _UpperCAmelCase : List[Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC_2A1 and c <= 0XC_2BF) or (c >= 0XC_780 and c <= 0XC_783) or (c >= 0XC_AB9 and c <= 0XC_BBF) or (c >= 0XC_C80 and c <= 0XC_DA2) ): return True return False def checkuae(A : List[str] ): _UpperCAmelCase : Union[str, Any] = x.encode() if len(A ) == 1 and len(A ) == 3: _UpperCAmelCase : str = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE28_080 and c <= 0XE2B_07F: return True return False _UpperCAmelCase : str = 0 _UpperCAmelCase : Optional[Any] = [] while pos < len(A ): _UpperCAmelCase : Any = min(len(A ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 _UpperCAmelCase : Dict = [] # (token_id, token, pos) for e in range(A , A , -1 ): _UpperCAmelCase : Tuple = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(A ) > 2: _UpperCAmelCase : int = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(A ) > 0: # the smallest token_id is adopted _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = sorted(A , key=lambda A : x[0] )[0] result.append(A ) _UpperCAmelCase : Optional[Any] = e else: _UpperCAmelCase : Union[str, Any] = pos + 1 _UpperCAmelCase : Dict = text[pos:end] if check_simbol(A ): result.append("<KIGOU>" ) elif checkuae(A ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) _UpperCAmelCase : str = end return result def snake_case_ ( self : str , A : Dict , A : Union[str, Any]="\n" ): _UpperCAmelCase : int = [] _UpperCAmelCase : int = [] _UpperCAmelCase : Optional[Any] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(A ) > 0: words.append(bytearray(A ).decode("utf-8" , errors="replace" ) ) _UpperCAmelCase : Any = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(A ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(A ) if len(A ) > 0: words.append(bytearray(A ).decode("utf-8" , errors="replace" ) ) _UpperCAmelCase : str = "".join(A ) return text
202
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase : Any = "\nHuman: <<task>>\n\nAssistant: " _lowerCAmelCase : str = "huggingface-tools/default-prompts" _lowerCAmelCase : Union[str, Any] = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int="run" ) -> int: '''simple docstring''' if prompt_or_repo_id is None: _UpperCAmelCase : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , SCREAMING_SNAKE_CASE__ ) is not None: return prompt_or_repo_id _UpperCAmelCase : Dict = cached_file( SCREAMING_SNAKE_CASE__ , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(SCREAMING_SNAKE_CASE__ , "r" , encoding="utf-8" ) as f: return f.read()
202
1
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ , lowercase__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative in a semiconductor' ) elif hole_conc < 0: raise ValueError('Hole concentration cannot be negative in a semiconductor' ) elif intrinsic_conc < 0: raise ValueError( 'Intrinsic concentration cannot be negative in a semiconductor' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
96
"""simple docstring""" import functools from typing import Any def _snake_case ( lowercase__ , lowercase__ ): # Validation if not isinstance(lowercase__ , lowercase__ ) or len(lowercase__ ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(lowercase__ , lowercase__ ) or not all( isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie _lowerCamelCase : dict[str, Any] = {} _lowerCamelCase : List[Any] = 'WORD_KEEPER' for word in words: _lowerCamelCase : Dict = trie for c in word: if c not in trie_node: _lowerCamelCase : Any = {} _lowerCamelCase : str = trie_node[c] _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Dict = len(lowercase__ ) # Dynamic programming method @functools.cache def is_breakable(lowercase__ ) -> bool: if index == len_string: return True _lowerCamelCase : List[Any] = trie for i in range(lowercase__ , lowercase__ ): _lowerCamelCase : Any = trie_node.get(string[i] , lowercase__ ) if trie_node is None: return False if trie_node.get(lowercase__ , lowercase__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
96
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = num_attention_heads lowercase_ = attention_head_dim lowercase_ = num_attention_heads * attention_head_dim lowercase_ = in_channels lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowercase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = batch_frames // num_frames lowercase_ = hidden_states lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ = self.norm(UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowercase_ = self.proj_out(UpperCAmelCase ) lowercase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
297
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ = get_bounds(__lowerCamelCase , __lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) ) plt.show()
297
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : str = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _UpperCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCamelCase: List[Any] = logging.getLogger(__name__) @dataclass class a__ : _lowerCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Whether tp freeze the encoder.'} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class a__ : _lowerCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) _lowerCamelCase = field( default='summarization', metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'}, ) _lowerCamelCase = field( default=1_024, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) _lowerCamelCase = field( default=128, metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) _lowerCamelCase = field( default=142, metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) }, ) _lowerCamelCase = field( default=142, metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) _lowerCamelCase = field(default=-1, metadata={'help': '# training examples. -1 means use all.'} ) _lowerCamelCase = field(default=-1, metadata={'help': '# validation examples. -1 means use all.'} ) _lowerCamelCase = field(default=-1, metadata={'help': '# test examples. -1 means use all.'} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Source language id for translation.'} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Target language id for translation.'} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': '# num_beams to use for evaluation.'} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'}, ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: '''simple docstring''' logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , f'''{split}_results.json''' ) ) def lowercase__ ( ) -> Optional[int]: '''simple docstring''' lowercase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase : int = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): assert hasattr(_UpperCAmelCase , _UpperCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_UpperCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase : Optional[int] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_UpperCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase : Optional[Any] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase : List[Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_UpperCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase : Dict = SeqaSeqDataset # Get datasets lowercase : int = ( dataset_class( _UpperCAmelCase , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) lowercase : str = ( dataset_class( _UpperCAmelCase , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase : Optional[Any] = ( dataset_class( _UpperCAmelCase , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase : List[Any] = ( build_compute_metrics_fn(data_args.task , _UpperCAmelCase ) if training_args.predict_with_generate else None ) lowercase : List[Any] = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , data_args=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , data_collator=SeqaSeqDataCollator( _UpperCAmelCase , _UpperCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) lowercase : List[Any] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) lowercase : Union[str, Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase : List[str] = train_result.metrics lowercase : Dict = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , _UpperCAmelCase , training_args.output_dir ) all_metrics.update(_UpperCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowercase : Tuple = trainer.evaluate(metric_key_prefix='val' ) lowercase : Dict = data_args.n_val lowercase : Tuple = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , _UpperCAmelCase , training_args.output_dir ) all_metrics.update(_UpperCAmelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) lowercase : List[Any] = trainer.predict(test_dataset=_UpperCAmelCase , metric_key_prefix='test' ) lowercase : str = test_output.metrics lowercase : Dict = data_args.n_test if trainer.is_world_process_zero(): lowercase : Tuple = round(metrics['test_loss'] , 4 ) handle_metrics('test' , _UpperCAmelCase , training_args.output_dir ) all_metrics.update(_UpperCAmelCase ) if training_args.predict_with_generate: lowercase : str = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) lowercase : Tuple = lmap(str.strip , _UpperCAmelCase ) write_txt_file(_UpperCAmelCase , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(_UpperCAmelCase , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def lowercase__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
255
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _a ( lowerCamelCase: List[Any] ) -> Dict: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _a ( lowerCamelCase: Tuple ) -> Optional[Any]: '''simple docstring''' __A = create_tensor(lowerCamelCase ) __A = gather(lowerCamelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def _a ( lowerCamelCase: List[str] ) -> List[str]: '''simple docstring''' __A = [state.process_index] __A = gather_object(lowerCamelCase ) assert len(lowerCamelCase ) == state.num_processes, F"""{gathered_obj}, {len(lowerCamelCase )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}""" def _a ( lowerCamelCase: List[str] ) -> int: '''simple docstring''' __A = create_tensor(lowerCamelCase ) __A = broadcast(lowerCamelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def _a ( lowerCamelCase: Tuple ) -> int: '''simple docstring''' if state.is_main_process: __A = torch.arange(state.num_processes + 1 ).to(state.device ) else: __A = torch.arange(state.num_processes ).to(state.device ) __A = pad_across_processes(lowerCamelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def _a ( lowerCamelCase: Union[str, Any] ) -> Dict: '''simple docstring''' if state.num_processes != 2: return __A = create_tensor(lowerCamelCase ) __A = reduce(lowerCamelCase , '''sum''' ) __A = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowerCamelCase , lowerCamelCase ), F"""{reduced_tensor} != {truth_tensor}""" def _a ( lowerCamelCase: Tuple ) -> int: '''simple docstring''' if state.num_processes != 2: return __A = create_tensor(lowerCamelCase ) __A = reduce(lowerCamelCase , '''mean''' ) __A = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowerCamelCase , lowerCamelCase ), F"""{reduced_tensor} != {truth_tensor}""" def _a ( lowerCamelCase: str ) -> Dict: '''simple docstring''' main() def _a ( ) -> str: '''simple docstring''' __A = PartialState() state.print(F"""State: {state}""" ) state.print('''testing gather''' ) test_gather(lowerCamelCase ) state.print('''testing gather_object''' ) test_gather_object(lowerCamelCase ) state.print('''testing broadcast''' ) test_broadcast(lowerCamelCase ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(lowerCamelCase ) state.print('''testing reduce_sum''' ) test_reduce_sum(lowerCamelCase ) state.print('''testing reduce_mean''' ) test_reduce_mean(lowerCamelCase ) if __name__ == "__main__": main()
250
from __future__ import annotations snake_case__ : Dict = [True] * 1000001 snake_case__ : int = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): snake_case__ : str = False i += 1 def _a ( lowerCamelCase: int ) -> bool: '''simple docstring''' return seive[n] def _a ( lowerCamelCase: int ) -> bool: '''simple docstring''' return any(digit in '''02468''' for digit in str(lowerCamelCase ) ) def _a ( lowerCamelCase: int = 1_00_00_00 ) -> list[int]: '''simple docstring''' __A = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(lowerCamelCase ) and not contains_an_even_digit(lowerCamelCase ): __A = str(lowerCamelCase ) __A = [int(str_num[j:] + str_num[:j] ) for j in range(len(lowerCamelCase ) )] if all(is_prime(lowerCamelCase ) for i in list_nums ): result.append(lowerCamelCase ) return result def _a ( ) -> int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
250
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __a = logging.get_logger(__name__) class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def __init__( self: List[Any] , snake_case: int , snake_case: int , snake_case: float , **snake_case: Optional[int] ) -> Optional[Any]: snake_case_ :List[Any] = feature_size snake_case_ :Tuple = sampling_rate snake_case_ :Optional[int] = padding_value snake_case_ :Dict = kwargs.pop("""padding_side""" , """right""" ) snake_case_ :List[Any] = kwargs.pop("""return_attention_mask""" , snake_case ) super().__init__(**snake_case ) def lowerCAmelCase_ ( self: List[str] , snake_case: Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , snake_case: Union[bool, str, PaddingStrategy] = True , snake_case: Optional[int] = None , snake_case: bool = False , snake_case: Optional[int] = None , snake_case: Optional[bool] = None , snake_case: Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): snake_case_ :int = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f""" to this method that includes {self.model_input_names[0]}, but you provided""" f""" {list(processed_features.keys() )}""" ) snake_case_ :Union[str, Any] = processed_features[self.model_input_names[0]] snake_case_ :Optional[int] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(snake_case ) == 0: if return_attention_mask: snake_case_ :Optional[int] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch snake_case_ :Optional[Any] = required_input[0] if isinstance(snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. snake_case_ :Tuple = 0 while len(required_input[index] ) == 0: index += 1 if index < len(snake_case ): snake_case_ :Tuple = required_input[index][0] if return_tensors is None: if is_tf_tensor(snake_case ): snake_case_ :int = """tf""" elif is_torch_tensor(snake_case ): snake_case_ :Union[str, Any] = """pt""" elif isinstance(snake_case , (int, float, list, tuple, np.ndarray) ): snake_case_ :Optional[int] = """np""" else: raise ValueError( f"""type of {first_element} unknown: {type(snake_case )}. """ """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): snake_case_ :Optional[int] = to_numpy(snake_case ) else: snake_case_ :int = [to_numpy(snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy snake_case_ :Union[str, Any] = self._get_padding_strategies(padding=snake_case , max_length=snake_case ) snake_case_ :List[Any] = processed_features[self.model_input_names[0]] snake_case_ :Optional[Any] = len(snake_case ) if not all(len(snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) snake_case_ :Optional[Any] = [] for i in range(snake_case ): snake_case_ :List[Any] = {k: v[i] for k, v in processed_features.items()} # truncation snake_case_ :Union[str, Any] = self._truncate( snake_case , max_length=snake_case , pad_to_multiple_of=snake_case , truncation=snake_case , ) truncated_inputs.append(snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length snake_case_ :Optional[Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) snake_case_ :int = PaddingStrategy.MAX_LENGTH snake_case_ :List[Any] = {} for i in range(snake_case ): # padding snake_case_ :Any = self._pad( truncated_inputs[i] , max_length=snake_case , padding_strategy=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: snake_case_ :Optional[int] = [] if value.dtype is np.dtype(np.floataa ): snake_case_ :Tuple = value.astype(np.floataa ) batch_outputs[key].append(snake_case ) return BatchFeature(snake_case , tensor_type=snake_case ) def lowerCAmelCase_ ( self: Dict , snake_case: Union[Dict[str, np.ndarray], BatchFeature] , snake_case: Optional[int] = None , snake_case: PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case: Optional[int] = None , snake_case: Optional[bool] = None , ) -> dict: snake_case_ :Any = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: snake_case_ :Any = len(snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case_ :Optional[int] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case_ :Tuple = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: snake_case_ :Union[str, Any] = np.ones(len(snake_case ) , dtype=np.intaa ) if needs_to_be_padded: snake_case_ :Optional[int] = max_length - len(snake_case ) if self.padding_side == "right": if return_attention_mask: snake_case_ :Union[str, Any] = np.pad( processed_features["""attention_mask"""] , (0, difference) ) snake_case_ :Tuple = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) snake_case_ :int = np.pad( snake_case , snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: snake_case_ :Dict = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) snake_case_ :str = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) snake_case_ :Optional[Any] = np.pad( snake_case , snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def lowerCAmelCase_ ( self: Optional[Any] , snake_case: Union[Dict[str, np.ndarray], BatchFeature] , snake_case: Optional[int] = None , snake_case: Optional[int] = None , snake_case: Optional[bool] = None , ) -> List[Any]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) snake_case_ :Any = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case_ :str = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case_ :Optional[Any] = len(snake_case ) > max_length if needs_to_be_truncated: snake_case_ :Union[str, Any] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: snake_case_ :Union[str, Any] = processed_features["""attention_mask"""][:max_length] return processed_features def lowerCAmelCase_ ( self: List[Any] , snake_case: Tuple=False , snake_case: Union[str, Any]=None ) -> Union[str, Any]: # Get padding strategy if padding is not False: if padding is True: snake_case_ :Optional[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(snake_case , snake_case ): snake_case_ :Dict = PaddingStrategy(snake_case ) elif isinstance(snake_case , snake_case ): snake_case_ :Optional[Any] = padding else: snake_case_ :Optional[Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
66
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self: Optional[int] , snake_case: Any , snake_case: Optional[Any]=13 , snake_case: Tuple=32 , snake_case: Optional[int]=2 , snake_case: Tuple=3 , snake_case: Tuple=16 , snake_case: Optional[Any]=[1, 2, 1] , snake_case: Optional[int]=[2, 2, 4] , snake_case: Optional[int]=2 , snake_case: int=2.0 , snake_case: Union[str, Any]=True , snake_case: List[str]=0.0 , snake_case: List[Any]=0.0 , snake_case: Optional[Any]=0.1 , snake_case: List[Any]="gelu" , snake_case: Optional[int]=False , snake_case: Union[str, Any]=True , snake_case: Union[str, Any]=0.0_2 , snake_case: Optional[int]=1E-5 , snake_case: Optional[Any]=True , snake_case: List[Any]=None , snake_case: List[Any]=True , snake_case: Optional[Any]=10 , snake_case: str=8 , ) -> Tuple: snake_case_ :Dict = parent snake_case_ :Any = batch_size snake_case_ :List[Any] = image_size snake_case_ :List[Any] = patch_size snake_case_ :int = num_channels snake_case_ :Tuple = embed_dim snake_case_ :str = depths snake_case_ :str = num_heads snake_case_ :Optional[int] = window_size snake_case_ :Tuple = mlp_ratio snake_case_ :Any = qkv_bias snake_case_ :List[Any] = hidden_dropout_prob snake_case_ :Optional[Any] = attention_probs_dropout_prob snake_case_ :Union[str, Any] = drop_path_rate snake_case_ :Any = hidden_act snake_case_ :Optional[Any] = use_absolute_embeddings snake_case_ :Union[str, Any] = patch_norm snake_case_ :Dict = layer_norm_eps snake_case_ :str = initializer_range snake_case_ :Tuple = is_training snake_case_ :Tuple = scope snake_case_ :Union[str, Any] = use_labels snake_case_ :Optional[Any] = type_sequence_label_size snake_case_ :Dict = encoder_stride def lowerCAmelCase_ ( self: int ) -> int: snake_case_ :List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ :Any = None if self.use_labels: snake_case_ :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ :int = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase_ ( self: str , snake_case: Optional[int] , snake_case: Dict , snake_case: str ) -> List[Any]: snake_case_ :Union[str, Any] = SwinvaModel(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ :Optional[int] = model(snake_case ) snake_case_ :Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case_ :int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase_ ( self: int , snake_case: List[str] , snake_case: Tuple , snake_case: int ) -> Any: snake_case_ :Dict = SwinvaForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ :Tuple = model(snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ :List[Any] = 1 snake_case_ :int = SwinvaForMaskedImageModeling(snake_case ) model.to(snake_case ) model.eval() snake_case_ :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ :int = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self: List[Any] , snake_case: Any , snake_case: List[str] , snake_case: Union[str, Any] ) -> Tuple: snake_case_ :int = self.type_sequence_label_size snake_case_ :List[Any] = SwinvaForImageClassification(snake_case ) model.to(snake_case ) model.eval() snake_case_ :Dict = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self: int ) -> str: snake_case_ :Any = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_ :List[str] = config_and_inputs snake_case_ :List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _A : Any = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) _A : List[Any] = False _A : List[str] = False _A : Tuple = False _A : List[str] = False def lowerCAmelCase_ ( self: Dict ) -> List[Any]: snake_case_ :Optional[int] = SwinvaModelTester(self ) snake_case_ :List[str] = ConfigTester(self , config_class=snake_case , embed_dim=37 ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self: Union[str, Any] ) -> Tuple: snake_case_ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def lowerCAmelCase_ ( self: int ) -> Dict: pass def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]: snake_case_, snake_case_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :Optional[int] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ :List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def lowerCAmelCase_ ( self: Dict ) -> Optional[int]: snake_case_, snake_case_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :Optional[int] = model_class(snake_case ) snake_case_ :List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ :int = [*signature.parameters.keys()] snake_case_ :List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCAmelCase_ ( self: List[str] ) -> Optional[Any]: snake_case_, snake_case_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ :List[str] = True for model_class in self.all_model_classes: snake_case_ :List[Any] = True snake_case_ :Any = False snake_case_ :Optional[int] = True snake_case_ :Tuple = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): snake_case_ :Any = model(**self._prepare_for_class(snake_case , snake_case ) ) snake_case_ :str = outputs.attentions snake_case_ :Dict = len(self.model_tester.depths ) self.assertEqual(len(snake_case ) , snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ :Union[str, Any] = True snake_case_ :Tuple = config.window_size**2 snake_case_ :Any = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): snake_case_ :Union[str, Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) snake_case_ :int = outputs.attentions self.assertEqual(len(snake_case ) , snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) snake_case_ :Any = len(snake_case ) # Check attention is always last and order is fine snake_case_ :int = True snake_case_ :Dict = True snake_case_ :Optional[int] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): snake_case_ :Dict = model(**self._prepare_for_class(snake_case , snake_case ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): snake_case_ :Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states snake_case_ :int = 2 self.assertEqual(out_len + added_hidden_states , len(snake_case ) ) snake_case_ :str = outputs.attentions self.assertEqual(len(snake_case ) , snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowerCAmelCase_ ( self: int , snake_case: Dict , snake_case: Dict , snake_case: Optional[Any] , snake_case: Dict ) -> List[str]: snake_case_ :Dict = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): snake_case_ :Optional[int] = model(**self._prepare_for_class(snake_case , snake_case ) ) snake_case_ :str = outputs.hidden_states snake_case_ :List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(snake_case ) , snake_case ) # Swinv2 has a different seq_length snake_case_ :List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ :Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) snake_case_ :str = outputs.reshaped_hidden_states self.assertEqual(len(snake_case ) , snake_case ) snake_case_, snake_case_, snake_case_, snake_case_ :Any = reshaped_hidden_states[0].shape snake_case_ :int = ( reshaped_hidden_states[0].view(snake_case , snake_case , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase_ ( self: Any ) -> Any: snake_case_, snake_case_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case_ :Union[str, Any] = True self.check_hidden_states_output(snake_case , snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ :List[str] = True self.check_hidden_states_output(snake_case , snake_case , snake_case , snake_case ) def lowerCAmelCase_ ( self: Tuple ) -> Any: snake_case_, snake_case_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ :Optional[int] = 3 snake_case_ :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case_ :str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ :Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case_ :int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case_ :str = True self.check_hidden_states_output(snake_case , snake_case , snake_case , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ :Tuple = True self.check_hidden_states_output(snake_case , snake_case , snake_case , (padded_height, padded_width) ) def lowerCAmelCase_ ( self: Any ) -> Tuple: snake_case_ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case ) def lowerCAmelCase_ ( self: Optional[int] ) -> Dict: snake_case_ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def lowerCAmelCase_ ( self: List[Any] ) -> Dict: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ :List[str] = SwinvaModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]: snake_case_, snake_case_ :str = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ :Optional[int] = _config_zero_init(snake_case ) for model_class in self.all_model_classes: snake_case_ :Tuple = model_class(config=snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]: return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self: List[str] ) -> List[str]: snake_case_ :Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( snake_case ) snake_case_ :str = self.default_image_processor snake_case_ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) snake_case_ :str = image_processor(images=snake_case , return_tensors="""pt""" ).to(snake_case ) # forward pass with torch.no_grad(): snake_case_ :Tuple = model(**snake_case ) # verify the logits snake_case_ :Dict = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case ) snake_case_ :int = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
66
1
'''simple docstring''' from ... import PretrainedConfig __lowercase: Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP _lowerCamelCase : Union[str, Any] = 'nezha' def __init__( self : List[str], a_ : Any=2_1128, a_ : Any=768, a_ : Optional[int]=12, a_ : List[Any]=12, a_ : Union[str, Any]=3072, a_ : List[str]="gelu", a_ : List[Any]=0.1, a_ : Optional[Any]=0.1, a_ : Any=512, a_ : List[str]=64, a_ : Any=2, a_ : Tuple=0.02, a_ : int=1e-1_2, a_ : str=0.1, a_ : Any=0, a_ : Tuple=2, a_ : Any=3, a_ : Optional[int]=True, **a_ : List[str], ): """simple docstring""" super().__init__(pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = max_relative_position UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = classifier_dropout UpperCamelCase__ = use_cache
31
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowercase: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase__ = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase__ = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase__ = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase__ = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase__ = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase__ = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase__ = pt_tuple_key[-2] + "_v" if name is not None: UpperCamelCase__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_UpperCamelCase ) UpperCamelCase__ = {} UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' import torch # Load the index UpperCamelCase__ = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] UpperCamelCase__ = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class UpperCamelCase__ = getattr(_UpperCamelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , "rb" ) as state_f: try: UpperCamelCase__ = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCamelCase__ = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = pt_model.state_dict() UpperCamelCase__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCamelCase__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase__ = [] UpperCamelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCamelCase__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase__ = ".".join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase__ = key.split("." ) UpperCamelCase__ = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase__ = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase__ = key_components[-2] + "_v" if name is not None: UpperCamelCase__ = key_components[:-3] + [name] UpperCamelCase__ = ".".join(_UpperCamelCase ) UpperCamelCase__ = key if flax_key in special_pt_names: UpperCamelCase__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCamelCase__ = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase__ = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase__ = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCamelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' "If your task is similar to the task the model of the checkpoint was trained on, " F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
31
1
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging _A : List[Any] = logging.get_logger(__name__) class a__ ( a_ ): def __init__( self , _a=None , **_a ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , _a , ) super().__init__(args=_a , **_a )
202
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a__ ( unittest.TestCase ): def __magic_name__ ( self ): lowercase : Optional[int] = "laion/clap-htsat-unfused" lowercase : Optional[int] = tempfile.mkdtemp() def __magic_name__ ( self , **_a ): return RobertaTokenizer.from_pretrained(self.checkpoint , **_a ) def __magic_name__ ( self , **_a ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __magic_name__ ( self ): shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ): lowercase : Optional[int] = self.get_tokenizer() lowercase : List[Any] = self.get_feature_extractor() lowercase : Dict = ClapProcessor(tokenizer=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) lowercase : int = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _a ) def __magic_name__ ( self ): lowercase : Tuple = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowercase : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase : Optional[int] = self.get_feature_extractor(do_normalize=_a , padding_value=1.0 ) lowercase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _a ) def __magic_name__ ( self ): lowercase : List[Any] = self.get_feature_extractor() lowercase : List[str] = self.get_tokenizer() lowercase : int = ClapProcessor(tokenizer=_a , feature_extractor=_a ) lowercase : Dict = floats_list((3, 1_000) ) lowercase : str = feature_extractor(_a , return_tensors="np" ) lowercase : Dict = processor(audios=_a , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __magic_name__ ( self ): lowercase : Dict = self.get_feature_extractor() lowercase : int = self.get_tokenizer() lowercase : Dict = ClapProcessor(tokenizer=_a , feature_extractor=_a ) lowercase : Optional[Any] = "This is a test string" lowercase : Any = processor(text=_a ) lowercase : List[Any] = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self ): lowercase : Optional[int] = self.get_feature_extractor() lowercase : Any = self.get_tokenizer() lowercase : Union[str, Any] = ClapProcessor(tokenizer=_a , feature_extractor=_a ) lowercase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : str = processor.batch_decode(_a ) lowercase : Optional[int] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : List[Any] = self.get_feature_extractor() lowercase : Union[str, Any] = self.get_tokenizer() lowercase : Any = ClapProcessor(tokenizer=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
202
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ :Optional[Any] = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase_ :Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase_ :Any = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase_ :Union[str, Any] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase_ :Optional[int] = False @property def _UpperCamelCase ( self ): '''simple docstring''' return 3_2 @property def _UpperCamelCase ( self ): '''simple docstring''' return 3_2 @property def _UpperCamelCase ( self ): '''simple docstring''' return self.time_input_dim @property def _UpperCamelCase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def _UpperCamelCase ( self ): '''simple docstring''' return 1_0_0 @property def _UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } UpperCAmelCase_ : Dict = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE ) return model @property def _UpperCamelCase ( self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : str = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = self.dummy_unet UpperCAmelCase_ : Any = self.dummy_movq UpperCAmelCase_ : int = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } UpperCAmelCase_ : List[Any] = DDIMScheduler(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _UpperCamelCase ( self , snake_case_ , snake_case_=0 ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _SCREAMING_SNAKE_CASE ) # create init_image UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[Any] = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint UpperCAmelCase_ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : int = 'cpu' UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : Dict = pipe( **self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE , )[0] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase_ : Optional[Any] = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) UpperCAmelCase_ : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) UpperCAmelCase_ : Optional[Any] = init_image.resize((5_1_2, 5_1_2) ) UpperCAmelCase_ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) UpperCAmelCase_ : Optional[Any] = torch.from_numpy(np.array(_SCREAMING_SNAKE_CASE ) ).float() / 2_55.0 UpperCAmelCase_ : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase_ : Dict = 'A robot, 4k photo' UpperCAmelCase_ : Union[str, Any] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) UpperCAmelCase_ : int = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ : Any = pipe_prior( _SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , strength=0.85 , generator=_SCREAMING_SNAKE_CASE , negative_prompt='' , ).to_tuple() UpperCAmelCase_ : Dict = pipeline( image=_SCREAMING_SNAKE_CASE , image_embeds=_SCREAMING_SNAKE_CASE , negative_image_embeds=_SCREAMING_SNAKE_CASE , hint=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type='np' , ) UpperCAmelCase_ : str = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
368
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Optional[Any] = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :List[str] = '''autoformer''' lowerCamelCase_ :Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , snake_case_ = None , snake_case_ = None , snake_case_ = "student_t" , snake_case_ = "nll" , snake_case_ = 1 , snake_case_ = [1, 2, 3, 4, 5, 6, 7] , snake_case_ = True , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = 6_4 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 3_2 , snake_case_ = 3_2 , snake_case_ = "gelu" , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 1_0_0 , snake_case_ = 0.02 , snake_case_ = True , snake_case_=True , snake_case_ = 1_0 , snake_case_ = 2_5 , snake_case_ = 3 , **snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = prediction_length UpperCAmelCase_ : List[str] = context_length if context_length is not None else prediction_length UpperCAmelCase_ : Optional[int] = distribution_output UpperCAmelCase_ : Optional[int] = loss UpperCAmelCase_ : Union[str, Any] = input_size UpperCAmelCase_ : int = num_time_features UpperCAmelCase_ : List[str] = lags_sequence UpperCAmelCase_ : Any = scaling UpperCAmelCase_ : Any = num_dynamic_real_features UpperCAmelCase_ : int = num_static_real_features UpperCAmelCase_ : Optional[Any] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase_ : List[Any] = cardinality else: UpperCAmelCase_ : Optional[int] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase_ : List[str] = embedding_dimension else: UpperCAmelCase_ : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase_ : List[str] = num_parallel_samples # Transformer architecture configuration UpperCAmelCase_ : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase_ : str = d_model UpperCAmelCase_ : str = encoder_attention_heads UpperCAmelCase_ : str = decoder_attention_heads UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : str = decoder_ffn_dim UpperCAmelCase_ : str = encoder_layers UpperCAmelCase_ : str = decoder_layers UpperCAmelCase_ : str = dropout UpperCAmelCase_ : Optional[int] = attention_dropout UpperCAmelCase_ : Tuple = activation_dropout UpperCAmelCase_ : Any = encoder_layerdrop UpperCAmelCase_ : Tuple = decoder_layerdrop UpperCAmelCase_ : List[str] = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Union[str, Any] = use_cache # Autoformer UpperCAmelCase_ : Any = label_length UpperCAmelCase_ : Union[str, Any] = moving_average UpperCAmelCase_ : Tuple = autocorrelation_factor super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def _UpperCamelCase ( self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
274
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase: Optional[Any] = logging.get_logger(__name__) class a__( lowerCamelCase__ ): def __init__( self : Any , *__snake_case : List[str] , **__snake_case : Any ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
297
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a__: def __init__( self : Tuple ): a : Optional[int] = '' a : Optional[Any] = '' a : str = [] a : int = 0 a : str = 2_56 a : Union[str, Any] = 0 a : Any = 0 a : Optional[int] = 0 a : List[str] = 0 def lowercase_ ( self : str , __snake_case : str ): a : Any = cva.imread(__snake_case , 0 ) a : Optional[Any] = copy.deepcopy(self.img ) a , a , a : int = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) a : Optional[int] = np.sum(__snake_case ) for i in range(len(__snake_case ) ): a : Optional[Any] = x[i] / self.k self.sk += prk a : str = (self.L - 1) * self.sk if self.rem != 0: a : Optional[int] = int(last % last ) a : int = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__snake_case ) a : str = int(np.ma.count(self.img ) / self.img[1].size ) a : Optional[int] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): a : Any = self.img[j][i] if num != self.last_list[num]: a : str = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def lowercase_ ( self : Dict ): plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def lowercase_ ( self : List[Any] ): cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase: Optional[Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase: Tuple = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
297
1
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=99 , lowercase=13 , lowercase=16 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=2 , lowercase=32 , lowercase=4 , lowercase=4 , lowercase=30 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=None , ): _lowerCamelCase : int = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[Any] = decoder_seq_length # For common tests _lowerCamelCase : List[Any] = self.decoder_seq_length _lowerCamelCase : List[str] = is_training _lowerCamelCase : Optional[Any] = use_attention_mask _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : Union[str, Any] = vocab_size _lowerCamelCase : str = d_model _lowerCamelCase : List[str] = d_model _lowerCamelCase : Union[str, Any] = decoder_layers _lowerCamelCase : Dict = decoder_layers _lowerCamelCase : Optional[Any] = decoder_ffn_dim _lowerCamelCase : List[str] = decoder_attention_heads _lowerCamelCase : Any = decoder_attention_heads _lowerCamelCase : List[str] = eos_token_id _lowerCamelCase : Any = bos_token_id _lowerCamelCase : int = pad_token_id _lowerCamelCase : Any = decoder_start_token_id _lowerCamelCase : Optional[Any] = use_cache _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Dict = decoder_seq_length _lowerCamelCase : Optional[int] = 2 _lowerCamelCase : Optional[Any] = 1 def A_ ( self ): _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCamelCase : str = None if self.use_attention_mask: _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCamelCase : Union[str, Any] = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCamelCase : List[Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def A_ ( self , lowercase , lowercase , lowercase , lowercase , ): _lowerCamelCase : Dict = True _lowerCamelCase : List[Any] = TrOCRDecoder(config=lowercase ).to(lowercase ).eval() _lowerCamelCase : Union[str, Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCamelCase : Union[str, Any] = model(lowercase , use_cache=lowercase ) _lowerCamelCase : Optional[Any] = model(lowercase ) _lowerCamelCase : Dict = model(lowercase , use_cache=lowercase ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) + 1 ) _lowerCamelCase : str = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids _lowerCamelCase : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCamelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase : List[str] = model(lowercase )['last_hidden_state'] _lowerCamelCase : Union[str, Any] = model(lowercase , past_key_values=lowercase )['last_hidden_state'] # select random slice _lowerCamelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase : List[str] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCamelCase : Tuple = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowercase , lowercase , atol=1E-3 ) def A_ ( self ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = config_and_inputs _lowerCamelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowercase, lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase__ = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase__ = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase__ = True lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=lowercase ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): pass def A_ ( self ): pass def A_ ( self ): pass def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowercase ) def A_ ( self ): return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def A_ ( self ): pass
12
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
1
'''simple docstring''' def _A ( snake_case , snake_case ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.2_5) = }''') print(F'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
250
'''simple docstring''' from __future__ import annotations import requests def _A ( snake_case ) -> dict: _lowercase : Dict = F'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(snake_case ).json() def _A ( snake_case = 10 ) -> list[dict]: _lowercase : List[Any] = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" _lowercase : List[str] = requests.get(snake_case ).json()[:max_stories] return [get_hackernews_story(snake_case ) for story_id in story_ids] def _A ( snake_case = 10 ) -> str: _lowercase : Union[str, Any] = hackernews_top_stories(snake_case ) return "\n".join("* [{title}]({url})".format(**snake_case ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
250
1
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _a = logging.get_logger(__name__) _a = Dict[str, Any] _a = List[Prediction] @add_end_docstrings(lowercase__ ) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , "vision" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = {} if "threshold" in kwargs: UpperCAmelCase_ : Optional[int] = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self , *lowercase_ , **lowercase_ ): """simple docstring""" return super().__call__(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = load_image(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = torch.IntTensor([[image.height, image.width]] ) UpperCAmelCase_ : int = self.image_processor(images=[image] , return_tensors="pt" ) if self.tokenizer is not None: UpperCAmelCase_ : List[Any] = self.tokenizer(text=inputs["words"] , boxes=inputs["boxes"] , return_tensors="pt" ) UpperCAmelCase_ : int = target_size return inputs def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = model_inputs.pop("target_size" ) UpperCAmelCase_ : Dict = self.model(**_UpperCamelCase ) UpperCAmelCase_ : Dict = outputs.__class__({"target_size": target_size, **outputs} ) if self.tokenizer is not None: UpperCAmelCase_ : Optional[int] = model_inputs["""bbox"""] return model_outputs def UpperCamelCase__ ( self , lowercase_ , lowercase_=0.9 ): """simple docstring""" UpperCAmelCase_ : Any = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. UpperCAmelCase_ : Any = target_size[0].tolist() def unnormalize(lowercase_ ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) UpperCAmelCase_ : str = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) UpperCAmelCase_ : Union[str, Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] UpperCAmelCase_ : int = [unnormalize(_UpperCamelCase ) for bbox in model_outputs["""bbox"""].squeeze(0 )] UpperCAmelCase_ : List[Any] = ["""score""", """label""", """box"""] UpperCAmelCase_ : Optional[int] = [dict(zip(_UpperCamelCase , _UpperCamelCase ) ) for vals in zip(scores.tolist() , _UpperCamelCase , _UpperCamelCase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel UpperCAmelCase_ : int = self.image_processor.post_process_object_detection(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = raw_annotations[0] UpperCAmelCase_ : List[Any] = raw_annotation["""scores"""] UpperCAmelCase_ : Any = raw_annotation["""labels"""] UpperCAmelCase_ : Any = raw_annotation["""boxes"""] UpperCAmelCase_ : Any = scores.tolist() UpperCAmelCase_ : str = [self.model.config.idalabel[label.item()] for label in labels] UpperCAmelCase_ : int = [self._get_bounding_box(_UpperCamelCase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] UpperCAmelCase_ : Any = ["""score""", """label""", """box"""] UpperCAmelCase_ : str = [ dict(zip(_UpperCamelCase , _UpperCamelCase ) ) for vals in zip(raw_annotation["scores"] , raw_annotation["labels"] , raw_annotation["boxes"] ) ] return annotation def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch." ) UpperCAmelCase_ : Dict = box.int().tolist() UpperCAmelCase_ : Union[str, Any] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
358
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" ) UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[str] = required_input[0] if isinstance(lowercase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase_ ): UpperCAmelCase_ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase_ ): UpperCAmelCase_ : Dict = "tf" elif is_torch_tensor(lowercase_ ): UpperCAmelCase_ : Any = "pt" elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ ) else: UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] UpperCAmelCase_ : int = len(lowercase_ ) if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : int = [] for i in range(lowercase_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : List[str] = self._truncate( lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , ) truncated_inputs.append(lowercase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : List[str] = {} for i in range(lowercase_ ): # padding UpperCAmelCase_ : int = self._pad( truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Any = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowercase_ ) return BatchFeature(lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Tuple = len(lowercase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(lowercase_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[Any] = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : str = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = padding else: UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
23
0
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __SCREAMING_SNAKE_CASE : Optional[Any] = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def UpperCamelCase_ ( _UpperCAmelCase : Union[str, Any]=None ) -> Tuple: """simple docstring""" if subparsers is not None: _UpperCAmelCase : List[Any] = subparsers.add_parser("tpu-config" , description=_description ) else: _UpperCAmelCase : Any = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments _UpperCAmelCase : Optional[Any] = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=_UpperCAmelCase , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=_UpperCAmelCase , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) _UpperCAmelCase : Tuple = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=_UpperCAmelCase , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def UpperCamelCase_ ( _UpperCAmelCase : int ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_UpperCAmelCase ): _UpperCAmelCase : Optional[Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: _UpperCAmelCase : Tuple = defaults.commands if not args.tpu_name: _UpperCAmelCase : Union[str, Any] = defaults.tpu_name if not args.tpu_zone: _UpperCAmelCase : List[str] = defaults.tpu_zone if args.accelerate_version == "dev": _UpperCAmelCase : int = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": _UpperCAmelCase : List[Any] = "accelerate -U" elif isinstance(parse(args.accelerate_version ) , _UpperCAmelCase ): _UpperCAmelCase : int = F"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: _UpperCAmelCase : Tuple = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _UpperCAmelCase ): _UpperCAmelCase : Tuple = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _UpperCAmelCase : Any = ["cd /usr/share"] if args.install_accelerate: new_cmd += [F"""pip install {args.accelerate_version}"""] new_cmd += args.command _UpperCAmelCase : int = "; ".join(_UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _UpperCAmelCase : Tuple = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"""Running {' '.join(_UpperCAmelCase )}""" ) return subprocess.run(_UpperCAmelCase ) print("Successfully setup pod." ) def UpperCamelCase_ ( ) -> Any: """simple docstring""" _UpperCAmelCase : Any = tpu_command_parser() _UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(_UpperCAmelCase )
31
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def __init__( self : int , A : Dict , A : Optional[int]=7 , A : Tuple=3 , A : Optional[Any]=10 , A : int=18 , A : Dict=30 , A : List[str]=400 , A : int=True , A : Optional[Any]=None , A : Optional[Any]=True , A : List[Any]=[0.5, 0.5, 0.5] , A : List[str]=[0.5, 0.5, 0.5] , A : Optional[int]=None , ): _UpperCAmelCase : Dict = size if size is not None else {"shortest_edge": 18} _UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : Optional[int] = num_channels _UpperCAmelCase : Optional[Any] = num_frames _UpperCAmelCase : Any = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : Any = max_resolution _UpperCAmelCase : Optional[int] = do_resize _UpperCAmelCase : str = size _UpperCAmelCase : List[Any] = do_normalize _UpperCAmelCase : Any = image_mean _UpperCAmelCase : Tuple = image_std _UpperCAmelCase : Any = crop_size def _A ( self : List[Any] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCamelCase_ (snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Dict = VivitImageProcessor if is_vision_available() else None def _A ( self : int ): _UpperCAmelCase : Tuple = VivitImageProcessingTester(self ) @property def _A ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : Union[str, Any] ): _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , "image_mean" ) ) self.assertTrue(hasattr(A , "image_std" ) ) self.assertTrue(hasattr(A , "do_normalize" ) ) self.assertTrue(hasattr(A , "do_resize" ) ) self.assertTrue(hasattr(A , "do_center_crop" ) ) self.assertTrue(hasattr(A , "size" ) ) def _A ( self : List[Any] ): _UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) _UpperCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _A ( self : Tuple ): # Initialize image_processing _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _UpperCAmelCase : Any = prepare_video_inputs(self.image_processor_tester , equal_resolution=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _UpperCAmelCase : str = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : List[Any] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : List[Any] ): # Initialize image_processing _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _UpperCAmelCase : Tuple = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Optional[int] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : List[Any] ): # Initialize image_processing _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _UpperCAmelCase : Optional[Any] = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : List[Any] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
31
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Union[str, Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
72
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Union[str, Any] = get_logger(__name__) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Tuple: '''simple docstring''' os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): snake_case_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}" ) torch.save(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Saving model to {output_model_file}" ) torch.save(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = os.path.join(__UpperCAmelCase, F"{MODEL_NAME}_{model_index}" ) os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) logger.info(F"Saving model to {ckpt_dir}" ) snake_case_ = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=__UpperCAmelCase, storage_writer=dist_cp.FileSystemWriter(__UpperCAmelCase ), planner=DefaultSavePlanner(), ) logger.info(F"Model saved to {ckpt_dir}" ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> str: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return snake_case_ = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Loading model from {input_model_file}" ) snake_case_ = torch.load(__UpperCAmelCase ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Loading model from {input_model_file}" ) snake_case_ = torch.load(__UpperCAmelCase ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = ( os.path.join(__UpperCAmelCase, F"{MODEL_NAME}_{model_index}" ) if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}" ) snake_case_ = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=__UpperCAmelCase, storage_reader=dist_cp.FileSystemReader(__UpperCAmelCase ), planner=DefaultLoadPlanner(), ) snake_case_ = state_dict['''model'''] logger.info(F"Model loaded from {ckpt_dir}" ) model.load_state_dict(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Dict: '''simple docstring''' os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): snake_case_ = FSDP.optim_state_dict(__UpperCAmelCase, __UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Saving Optimizer state to {output_optimizer_file}" ) torch.save(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Optimizer state saved in {output_optimizer_file}" ) else: snake_case_ = os.path.join(__UpperCAmelCase, F"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) logger.info(F"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state}, storage_writer=dist_cp.FileSystemWriter(__UpperCAmelCase ), planner=DefaultSavePlanner(), ) logger.info(F"Optimizer state saved in {ckpt_dir}" ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Union[str, Any]: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Loading Optimizer state from {input_optimizer_file}" ) snake_case_ = torch.load(__UpperCAmelCase ) logger.info(F"Optimizer state loaded from {input_optimizer_file}" ) else: snake_case_ = ( os.path.join(__UpperCAmelCase, F"{OPTIMIZER_NAME}_{optimizer_index}" ) if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}" ) snake_case_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict(), optimizer_key='''optimizer''', storage_reader=dist_cp.FileSystemReader(__UpperCAmelCase ), ) snake_case_ = optim_state['''optimizer'''] logger.info(F"Optimizer loaded from {ckpt_dir}" ) snake_case_ = FSDP.optim_state_dict_to_load(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) optimizer.load_state_dict(__UpperCAmelCase )
72
1
from collections.abc import Callable import numpy as np def _UpperCAmelCase (UpperCamelCase__ : Callable , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ): _A : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _A : Tuple = np.zeros((n + 1,) ) _A : Union[str, Any] = ya _A : List[str] = xa for k in range(UpperCamelCase__ ): _A : Any = y[k] + step_size * ode_func(UpperCamelCase__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
11
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A : str = logging.get_logger(__name__) A : Union[str, Any] = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Optional[Any] = '''layoutlmv3''' def __init__( self : Tuple , __lowerCAmelCase : Optional[int]=5_02_65 , __lowerCAmelCase : Tuple=7_68 , __lowerCAmelCase : Union[str, Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : List[Any]=30_72 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Dict=5_12 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Dict=0.0_2 , __lowerCAmelCase : List[str]=1e-5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : int=0 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Tuple=10_24 , __lowerCAmelCase : List[str]=1_28 , __lowerCAmelCase : Optional[int]=1_28 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Any=1_28 , __lowerCAmelCase : str=64 , __lowerCAmelCase : Optional[int]=2_56 , __lowerCAmelCase : int=True , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : int=2_24 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Dict=None , **__lowerCAmelCase : Optional[Any] , ) -> Dict: """simple docstring""" super().__init__( vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) A__ = max_ad_position_embeddings A__ = coordinate_size A__ = shape_size A__ = has_relative_attention_bias A__ = rel_pos_bins A__ = max_rel_pos A__ = has_spatial_attention_bias A__ = rel_ad_pos_bins A__ = max_rel_ad_pos A__ = text_embed A__ = visual_embed A__ = input_size A__ = num_channels A__ = patch_size A__ = classifier_dropout class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : List[str] = version.parse('''1.12''' ) @property def a_ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def a_ ( self : Optional[int] ) -> float: """simple docstring""" return 1e-5 @property def a_ ( self : Tuple ) -> int: """simple docstring""" return 12 def a_ ( self : str , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , __lowerCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A__ = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) A__ = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A__ = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes A__ = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) A__ = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = dict( processor( __lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) ) return inputs
274
0
"""simple docstring""" from typing import Any class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = data lowerCamelCase__ : Optional[Any] = None def __repr__(self ): '''simple docstring''' return f'''Node({self.data})''' class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = None def __iter__(self ): '''simple docstring''' lowerCamelCase__ : str = self.head while node: yield node.data lowerCamelCase__ : List[Any] = node.next def __len__(self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__(self ): '''simple docstring''' return "->".join([str(lowerCamelCase_ ) for item in self] ) def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCamelCase__ : Union[str, Any] = self.head for _ in range(lowerCamelCase_ ): lowerCamelCase__ : Tuple = current.next lowerCamelCase__ : str = data def a__ (self, lowerCamelCase_ ): '''simple docstring''' self.insert_nth(len(self ), lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' self.insert_nth(0, lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCamelCase__ : Optional[Any] = Node(lowerCamelCase_ ) if self.head is None: lowerCamelCase__ : List[str] = new_node elif index == 0: lowerCamelCase__ : int = self.head # link new_node to head lowerCamelCase__ : List[Any] = new_node else: lowerCamelCase__ : Optional[int] = self.head for _ in range(index - 1 ): lowerCamelCase__ : Union[str, Any] = temp.next lowerCamelCase__ : List[str] = temp.next lowerCamelCase__ : str = new_node def a__ (self ): # print every node data '''simple docstring''' print(self ) def a__ (self ): '''simple docstring''' return self.delete_nth(0 ) def a__ (self ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def a__ (self, lowerCamelCase_ = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCamelCase__ : str = self.head # default first node if index == 0: lowerCamelCase__ : Any = self.head.next else: lowerCamelCase__ : str = self.head for _ in range(index - 1 ): lowerCamelCase__ : int = temp.next lowerCamelCase__ : List[Any] = temp.next lowerCamelCase__ : int = temp.next.next return delete_node.data def a__ (self ): '''simple docstring''' return self.head is None def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = None lowerCamelCase__ : Union[str, Any] = self.head while current: # Store the current node's next node. lowerCamelCase__ : int = current.next # Make the current node's next point backwards lowerCamelCase__ : Dict = prev # Make the previous node be the current node lowerCamelCase__ : Optional[Any] = current # Make the current node the next node (to progress iteration) lowerCamelCase__ : Dict = next_node # Return prev in order to put the head at the end lowerCamelCase__ : Optional[Any] = prev def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = LinkedList() assert linked_list.is_empty() is True assert str(_lowerCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowerCamelCase ) == i linked_list.insert_nth(_lowerCamelCase , i + 1 ) assert str(_lowerCamelCase ) == "->".join(str(_lowerCamelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowerCamelCase ) == "->".join(str(_lowerCamelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowerCamelCase ) == 9 assert str(_lowerCamelCase ) == "->".join(str(_lowerCamelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCamelCase__ : Union[str, Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowerCamelCase ) == "->".join(str(_lowerCamelCase ) for i in range(-8 , 1 ) ) def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[int] = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.55_555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCamelCase__ : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(_lowerCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowerCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCamelCase__ : Optional[int] = linked_list.delete_head() assert result == -9 assert ( str(_lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCamelCase__ : List[Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(_lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCamelCase__ : str = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_lowerCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowerCamelCase ) assert ( str(_lowerCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowerCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCamelCase_ ( ): from doctest import testmod testmod() lowerCamelCase__ : int = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_lowerCamelCase ) print('\nReading/changing Node data using indexing:' ) print(f'''Element at Position 1: {linked_list[1]}''' ) lowerCamelCase__ : Optional[Any] = input('Enter New Value: ' ).strip() print('New list:' ) print(_lowerCamelCase ) print(f'''length of linked_list is : {len(_lowerCamelCase )}''' ) if __name__ == "__main__": main()
358
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any]=99 , UpperCamelCase_: List[str]=13 , UpperCamelCase_: int=16 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: List[str]=True , UpperCamelCase_: List[str]=True , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Dict=False , UpperCamelCase_: str=True , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Union[str, Any]=32 , UpperCamelCase_: Any=4 , UpperCamelCase_: Dict=4 , UpperCamelCase_: str=30 , UpperCamelCase_: List[str]=0 , UpperCamelCase_: Dict=1 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: Dict=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = d_model __lowerCamelCase = d_model __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_attention_heads __lowerCamelCase = eos_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = use_cache __lowerCamelCase = max_position_embeddings __lowerCamelCase = None __lowerCamelCase = decoder_seq_length __lowerCamelCase = 2 __lowerCamelCase = 1 def lowerCAmelCase__ ( self: int ): __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCamelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Dict , ): __lowerCamelCase = True __lowerCamelCase = TrOCRDecoder(config=UpperCamelCase_ ).to(UpperCamelCase_ ).eval() __lowerCamelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __lowerCamelCase = model(UpperCamelCase_ , use_cache=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ , use_cache=UpperCamelCase_ ) self.parent.assertTrue(len(UpperCamelCase_ ) == len(UpperCamelCase_ ) ) self.parent.assertTrue(len(UpperCamelCase_ ) == len(UpperCamelCase_ ) + 1 ) __lowerCamelCase = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(UpperCamelCase_ )["""last_hidden_state"""] __lowerCamelCase = model(UpperCamelCase_ , past_key_values=UpperCamelCase_ )["""last_hidden_state"""] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () UpperCAmelCase__ : Dict = (TrOCRForCausalLM,) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Dict = False def lowerCAmelCase__ ( self: str ): __lowerCamelCase = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase_ ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): pass def lowerCAmelCase__ ( self: List[str] ): pass def lowerCAmelCase__ ( self: Union[str, Any] ): pass def lowerCAmelCase__ ( self: List[str] ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def lowerCAmelCase__ ( self: Union[str, Any] ): pass
12
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline UpperCAmelCase__ : Optional[Any] = ['image'] UpperCAmelCase__ : int = ['image'] UpperCAmelCase__ : Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCAmelCase__ : int = False @property def lowerCAmelCase__ ( self: int ): return 32 @property def lowerCAmelCase__ ( self: List[str] ): return 32 @property def lowerCAmelCase__ ( self: Any ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: Dict ): return 8 @property def lowerCAmelCase__ ( self: int ): torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , ) return image_processor @property def lowerCAmelCase__ ( self: Tuple ): torch.manual_seed(0 ) __lowerCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowerCamelCase = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: List[Any] ): torch.manual_seed(0 ) __lowerCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**UpperCamelCase_ ) return model def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __lowerCamelCase = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ): __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: List[str] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = torch_device == """cpu""" __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
12
1
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = CTRLTokenizer __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] __a = dict(zip(_a , range(len(_a ) ) ) ) __a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] __a = {'''unk_token''': '''<unk>'''} __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) def __UpperCAmelCase ( self , **_a ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCAmelCase ( self , _a ): __a = '''adapt react readapt apt''' __a = '''adapt react readapt apt''' return input_text, output_text def __UpperCAmelCase ( self ): __a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a = '''adapt react readapt apt''' __a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() __a = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokens + [tokenizer.unk_token] __a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a )
11
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: __a = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = 1 __a = FrozenDict(_a ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: __a = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = True __a = FrozenDict(_a ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , ) def __UpperCAmelCase ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __UpperCAmelCase ( self ): self.enable_attention_slicing(_a ) def __UpperCAmelCase ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __a = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ): if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): __a = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) __a = self.segmentation_model(**_a ) __a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __a = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
11
1
from maths.prime_factors import prime_factors def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = f'Input value of [number={number}] must be an integer' raise TypeError(SCREAMING_SNAKE_CASE__ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(SCREAMING_SNAKE_CASE__ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
7
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @classmethod def A ( cls : Union[str, Any] ) -> int: UpperCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(__snake_case ) @classmethod def A ( cls : List[str] ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : int ) -> Tuple: UpperCAmelCase : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]: UpperCAmelCase : str = True UpperCAmelCase : int = flatten_dict(modela.params ) UpperCAmelCase : Dict = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase : Dict = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : int = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) ) with self.assertRaises(__snake_case ): UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : Optional[int] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(__snake_case ): UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : Optional[int] ) -> str: UpperCAmelCase : Dict = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case ) def A ( self : Dict ) -> List[Any]: UpperCAmelCase : Optional[int] = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case )
23
0
'''simple docstring''' import numpy as np from transformers import Pipeline def UpperCAmelCase_ ( __lowerCamelCase : Any ): lowercase_ :List[str] = np.max(__lowerCamelCase ,axis=-1 ,keepdims=__lowerCamelCase ) lowercase_ :Tuple = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 ,keepdims=__lowerCamelCase ) class a_ ( _lowerCAmelCase ): def lowercase__ ( self : Dict , **lowercase : Dict ): """simple docstring""" lowercase_ :Any = {} if "second_text" in kwargs: lowercase_ :List[str] = kwargs["second_text"] return preprocess_kwargs, {}, {} def lowercase__ ( self : Optional[Any] , lowercase : int , lowercase : Optional[int]=None ): """simple docstring""" return self.tokenizer(lowercase , text_pair=lowercase , return_tensors=self.framework ) def lowercase__ ( self : Union[str, Any] , lowercase : List[str] ): """simple docstring""" return self.model(**lowercase ) def lowercase__ ( self : Optional[int] , lowercase : Union[str, Any] ): """simple docstring""" lowercase_ :Optional[int] = model_outputs.logits[0].numpy() lowercase_ :Optional[Any] = softmax(lowercase ) lowercase_ :Tuple = np.argmax(lowercase ) lowercase_ :str = self.model.config.idalabel[best_class] lowercase_ :Union[str, Any] = probabilities[best_class].item() lowercase_ :Dict = logits.tolist() return {"label": label, "score": score, "logits": logits}
147
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase : Any ={ '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase : int =logging.get_logger(__name__) class a_ ( _lowerCAmelCase ): __A = "maskformer" __A = {"hidden_size": "mask_feature_size"} __A = ["resnet", "swin"] __A = ["detr"] def __init__( self : List[Any] , lowercase : int = 256 , lowercase : int = 256 , lowercase : float = 0.1 , lowercase : bool = False , lowercase : Optional[Dict] = None , lowercase : Optional[Dict] = None , lowercase : float = 0.02 , lowercase : float = 1.0 , lowercase : float = 1.0 , lowercase : float = 1.0 , lowercase : float = 20.0 , lowercase : Optional[bool] = None , **lowercase : Any , ): """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase_ :Any = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(lowercase , lowercase ): lowercase_ :Optional[int] = backbone_config.pop("model_type" ) lowercase_ :Optional[int] = CONFIG_MAPPING[backbone_model_type] lowercase_ :int = config_class.from_dict(lowercase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase_ :Optional[Any] = DetrConfig() else: # verify that the decoder is supported lowercase_ :Tuple = ( decoder_config.pop("model_type" ) if isinstance(lowercase , lowercase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(lowercase , lowercase ): lowercase_ :str = CONFIG_MAPPING[decoder_type] lowercase_ :List[str] = config_class.from_dict(lowercase ) lowercase_ :str = backbone_config lowercase_ :Union[str, Any] = decoder_config # main feature dimension for the model lowercase_ :Any = fpn_feature_size lowercase_ :Optional[int] = mask_feature_size # initializer lowercase_ :List[Any] = init_std lowercase_ :Union[str, Any] = init_xavier_std # Hungarian matcher && loss lowercase_ :List[str] = cross_entropy_weight lowercase_ :int = dice_weight lowercase_ :List[str] = mask_weight lowercase_ :Optional[Any] = use_auxiliary_loss lowercase_ :str = no_object_weight lowercase_ :int = output_auxiliary_logits lowercase_ :Optional[Any] = self.decoder_config.encoder_attention_heads lowercase_ :int = self.decoder_config.num_hidden_layers super().__init__(**lowercase ) @classmethod def lowercase__ ( cls : Tuple , lowercase : PretrainedConfig , lowercase : PretrainedConfig , **lowercase : Union[str, Any] ): """simple docstring""" return cls( backbone_config=lowercase , decoder_config=lowercase , **lowercase , ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :str = copy.deepcopy(self.__dict__ ) lowercase_ :int = self.backbone_config.to_dict() lowercase_ :List[Any] = self.decoder_config.to_dict() lowercase_ :Optional[Any] = self.__class__.model_type return output
147
1
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def snake_case_ ( A_ : list, A_ : list, A_ : list, A_ : list, A_ : list ): '''simple docstring''' _lowerCamelCase : Any = np.array([[1, item, train_mtch[i]] for i, item in enumerate(A_ )] ) _lowerCamelCase : Optional[int] = np.array(A_ ) _lowerCamelCase : List[str] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose(), A_ ) ), x.transpose() ), A_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def snake_case_ ( A_ : list, A_ : list, A_ : list ): '''simple docstring''' _lowerCamelCase : List[str] = (1, 2, 1) _lowerCamelCase : Any = (1, 1, 0, 7) _lowerCamelCase : int = SARIMAX( A_, exog=A_, order=A_, seasonal_order=A_ ) _lowerCamelCase : Optional[int] = model.fit(disp=A_, maxiter=6_00, method='''nm''' ) _lowerCamelCase : Any = model_fit.predict(1, len(A_ ), exog=[test_match] ) return result[0] def snake_case_ ( A_ : list, A_ : list, A_ : list ): '''simple docstring''' _lowerCamelCase : Any = SVR(kernel='''rbf''', C=1, gamma=0.1, epsilon=0.1 ) regressor.fit(A_, A_ ) _lowerCamelCase : Optional[Any] = regressor.predict(A_ ) return y_pred[0] def snake_case_ ( A_ : list ): '''simple docstring''' train_user.sort() _lowerCamelCase : Dict = np.percentile(A_, 25 ) _lowerCamelCase : Optional[int] = np.percentile(A_, 75 ) _lowerCamelCase : Dict = qa - qa _lowerCamelCase : Tuple = qa - (iqr * 0.1) return low_lim def snake_case_ ( A_ : list, A_ : float ): '''simple docstring''' _lowerCamelCase : Any = 0 _lowerCamelCase : Dict = 0 for i in list_vote: if i > actual_result: _lowerCamelCase : Optional[Any] = not_safe + 1 else: if abs(abs(A_ ) - abs(A_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowerCAmelCase__ = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] lowerCAmelCase__ = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) lowerCAmelCase__ = Normalizer().fit_transform(data_input_df.values) # split data lowerCAmelCase__ = normalize_df[:, 2].tolist() lowerCAmelCase__ = normalize_df[:, 0].tolist() lowerCAmelCase__ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowerCAmelCase__ = normalize_df[:, [1, 2]].tolist() lowerCAmelCase__ = x[: len(x) - 1] lowerCAmelCase__ = x[len(x) - 1 :] # for linear regression & sarimax lowerCAmelCase__ = total_date[: len(total_date) - 1] lowerCAmelCase__ = total_user[: len(total_user) - 1] lowerCAmelCase__ = total_match[: len(total_match) - 1] lowerCAmelCase__ = total_date[len(total_date) - 1 :] lowerCAmelCase__ = total_user[len(total_user) - 1 :] lowerCAmelCase__ = total_match[len(total_match) - 1 :] # voting system with forecasting lowerCAmelCase__ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowerCAmelCase__ = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
72
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( A_ : Tuple, A_ : int, A_ : Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = LxmertConfig.from_json_file(A_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowerCamelCase : List[str] = LxmertForPreTraining(A_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(A_, A_, A_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
72
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : str = logging.get_logger(__name__) lowercase : List[Any] = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class A__ ( a__ ): """simple docstring""" __A : Optional[Any] = '''efficientnet''' def __init__( self , lowercase = 3 , lowercase = 600 , lowercase = 2.0 , lowercase = 3.1 , lowercase = 8 , lowercase = [3, 3, 5, 3, 5, 5, 3] , lowercase = [32, 16, 24, 40, 80, 112, 192] , lowercase = [16, 24, 40, 80, 112, 192, 320] , lowercase = [] , lowercase = [1, 2, 2, 2, 1, 2, 1] , lowercase = [1, 2, 2, 3, 3, 4, 1] , lowercase = [1, 6, 6, 6, 6, 6, 6] , lowercase = 0.25 , lowercase = "swish" , lowercase = 2560 , lowercase = "mean" , lowercase = 0.02 , lowercase = 0.0_01 , lowercase = 0.99 , lowercase = 0.5 , lowercase = 0.2 , **lowercase , ) -> Tuple: '''simple docstring''' super().__init__(**lowercase) a__ : Dict = num_channels a__ : str = image_size a__ : Any = width_coefficient a__ : Any = depth_coefficient a__ : Any = depth_divisor a__ : Optional[Any] = kernel_sizes a__ : Union[str, Any] = in_channels a__ : List[Any] = out_channels a__ : Optional[Any] = depthwise_padding a__ : int = strides a__ : int = num_block_repeats a__ : Optional[Any] = expand_ratios a__ : int = squeeze_expansion_ratio a__ : Any = hidden_act a__ : Optional[Any] = hidden_dim a__ : Union[str, Any] = pooling_type a__ : Optional[Any] = initializer_range a__ : Tuple = batch_norm_eps a__ : Optional[int] = batch_norm_momentum a__ : Any = dropout_rate a__ : List[Any] = drop_connect_rate a__ : int = sum(lowercase) * 4 class A__ ( a__ ): """simple docstring""" __A : Optional[Any] = version.parse('''1.11''' ) @property def __lowercase ( self) -> Tuple: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __lowercase ( self) -> int: '''simple docstring''' return 1e-5
370
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A_ ( A__ ) -> str: a__ : Any = 384 if "tiny" in model_name: a__ : List[Any] = [3, 3, 9, 3] a__ : Optional[Any] = [96, 192, 384, 768] if "small" in model_name: a__ : Union[str, Any] = [3, 3, 27, 3] a__ : List[Any] = [96, 192, 384, 768] if "base" in model_name: a__ : int = [3, 3, 27, 3] a__ : List[str] = [128, 256, 512, 1024] a__ : Optional[int] = 512 if "large" in model_name: a__ : Optional[int] = [3, 3, 27, 3] a__ : Any = [192, 384, 768, 1536] a__ : int = 768 if "xlarge" in model_name: a__ : str = [3, 3, 27, 3] a__ : int = [256, 512, 1024, 2048] a__ : List[str] = 1024 # set label information a__ : int = 150 a__ : List[Any] = 'huggingface/label-files' a__ : str = 'ade20k-id2label.json' a__ : Optional[int] = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) a__ : List[str] = {int(A__ ): v for k, v in idalabel.items()} a__ : Union[str, Any] = {v: k for k, v in idalabel.items()} a__ : List[Any] = ConvNextConfig( depths=A__ , hidden_sizes=A__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) a__ : Optional[int] = UperNetConfig( backbone_config=A__ , auxiliary_in_channels=A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ , ) return config def A_ ( A__ ) -> Tuple: a__ : Optional[int] = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def A_ ( A__ , A__ , A__ ) -> str: a__ : List[str] = dct.pop(A__ ) a__ : int = val def A_ ( A__ , A__ , A__ ) -> str: a__ : Tuple = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } a__ : Dict = model_name_to_url[model_name] a__ : Optional[int] = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' )['state_dict'] a__ : List[Any] = get_upernet_config(A__ ) a__ : Dict = UperNetForSemanticSegmentation(A__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a__ : Dict = state_dict.pop(A__ ) if "bn" in key: a__ : Optional[int] = key.replace('bn' , 'batch_norm' ) a__ : List[Any] = val # rename keys a__ : Union[str, Any] = create_rename_keys(A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) model.load_state_dict(A__ ) # verify on image a__ : str = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' a__ : int = Image.open(requests.get(A__ , stream=A__ ).raw ).convert('RGB' ) a__ : Union[str, Any] = SegformerImageProcessor() a__ : Union[str, Any] = processor(A__ , return_tensors='pt' ).pixel_values with torch.no_grad(): a__ : Optional[Any] = model(A__ ) if model_name == "upernet-convnext-tiny": a__ : Union[str, Any] = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": a__ : int = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": a__ : int = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": a__ : Optional[Any] = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": a__ : Optional[int] = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(A__ ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase : str = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
225
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __A = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off __A = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = VOCAB_FILES_NAMES _UpperCAmelCase :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :int = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Tuple = ["input_ids", "attention_mask"] _UpperCAmelCase :Dict = MBartTokenizer _UpperCAmelCase :Union[str, Any] = [] _UpperCAmelCase :Dict = [] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): lowercase__: Dict = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) lowercase__: int = vocab_file lowercase__: Tuple = False if not self.vocab_file else True lowercase__: Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) lowercase__: List[str] = { lang_code: self.convert_tokens_to_ids(__UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase__: int = src_lang if src_lang is not None else '''en_XX''' lowercase__: int = self.convert_tokens_to_ids(self._src_lang ) lowercase__: int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _snake_case ( self ): return self._src_lang @src_lang.setter def _snake_case ( self , _UpperCAmelCase ): lowercase__: Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Dict = [self.sep_token_id] lowercase__: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase__: Union[str, Any] = src_lang lowercase__: str = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) lowercase__: Dict = self.convert_tokens_to_ids(__UpperCAmelCase ) lowercase__: int = tgt_lang_id return inputs def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = "en_XX" , _UpperCAmelCase = None , _UpperCAmelCase = "ro_RO" , **_UpperCAmelCase , ): lowercase__: int = src_lang lowercase__: Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def _snake_case ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[Any] = self.convert_tokens_to_ids(__UpperCAmelCase ) lowercase__: List[Any] = [] lowercase__: Any = [self.eos_token_id, self.cur_lang_code] lowercase__: Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase__: Any = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase__: List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Union[str, Any] = self.convert_tokens_to_ids(__UpperCAmelCase ) lowercase__: Any = [] lowercase__: List[Any] = [self.eos_token_id, self.cur_lang_code] lowercase__: Dict = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase__: int = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase__: str = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowercase__: List[str] = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
177
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
0
from __future__ import annotations def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> list[list[int]]: UpperCamelCase : list[list[int]] = [] UpperCamelCase : list[int] = [] UpperCamelCase : List[Any] = 0 UpperCamelCase : str = sum(_lowerCAmelCase ) create_state_space_tree(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return result def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> None: if sum(_lowerCAmelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCAmelCase )) < max_sum: return if sum(_lowerCAmelCase ) == max_sum: result.append(_lowerCAmelCase ) return for index in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): create_state_space_tree( _lowerCAmelCase , _lowerCAmelCase , index + 1 , [*path, nums[index]] , _lowerCAmelCase , remaining_nums_sum - nums[index] , ) __lowerCamelCase : Dict = [3, 34, 4, 12, 5, 2] __lowerCamelCase : int = 9 __lowerCamelCase : Any = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
140
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Tuple = logging.get_logger(__name__) class A__ ( __snake_case ): _UpperCAmelCase :List[Any] = 'timm_backbone' def __init__( self , A_=None , A_=3 , A_=True , A_=True , A_=None , **A_ , ): '''simple docstring''' super().__init__(**A_ ) UpperCamelCase : Tuple = backbone UpperCamelCase : Dict = num_channels UpperCamelCase : Tuple = features_only UpperCamelCase : Optional[int] = use_pretrained_backbone UpperCamelCase : Dict = True UpperCamelCase : List[str] = out_indices if out_indices is not None else (-1,)
140
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = CTRLTokenizer __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _A : Optional[int] = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] _A : Dict = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase)))) _A : str = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] _A : str = {"unk_token": "<unk>"} _A : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) _A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__lowerCamelCase) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(__lowerCamelCase)) def _lowerCamelCase ( self , **__lowerCamelCase) -> Dict: kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: _A : List[Any] = "adapt react readapt apt" _A : Any = "adapt react readapt apt" return input_text, output_text def _lowerCamelCase ( self) -> Optional[int]: _A : Optional[Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) _A : str = "adapt react readapt apt" _A : List[Any] = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() _A : List[str] = tokenizer.tokenize(__lowerCamelCase) self.assertListEqual(__lowerCamelCase , __lowerCamelCase) _A : List[Any] = tokens + [tokenizer.unk_token] _A : List[Any] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase) , __lowerCamelCase)
11
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE = "OwlViTImageProcessor" __SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]: _A : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) _A : List[Any] = kwargs.pop("feature_extractor") _A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__lowerCamelCase , __lowerCamelCase) def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none.") if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)): _A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)] elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase): _A : Optional[Any] = [] # Maximum number of queries across batch _A : str = max([len(__lowerCamelCase) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase) != max_num_queries: _A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase)) _A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) encodings.append(__lowerCamelCase) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings") if return_tensors == "np": _A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch _A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0) _A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0) else: raise ValueError("Target return tensor type could not be returned") _A : Optional[Any] = BatchEncoding() _A : Tuple = input_ids _A : Dict = attention_mask if query_images is not None: _A : Optional[Any] = BatchEncoding() _A : List[str] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values _A : Union[str, Any] = query_pixel_values if images is not None: _A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: _A : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str: return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]: return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase) @property def _lowerCamelCase ( self) -> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self) -> List[str]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
11
1
from __future__ import annotations from random import random class __lowerCAmelCase : def __init__( self: int , _lowerCAmelCase: int | None = None ): lowercase :Optional[int] = value lowercase :List[str] = random() lowercase :Node | None = None lowercase :Node | None = None def __repr__( self: Tuple ): from pprint import pformat if self.left is None and self.right is None: return F"'{self.value}: {self.prior:.5}'" else: return pformat( {F"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 ) def __str__( self: Optional[Any] ): lowercase :Any = str(self.value ) + " " lowercase :Tuple = str(self.left or "" ) lowercase :Dict = str(self.right or "" ) return value + left + right def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowercase , lowercase :str = split(root.left, lowerCamelCase ) return left, root else: lowercase , lowercase :Tuple = split(root.right, lowerCamelCase ) return root, right def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowercase :Optional[int] = merge(left.right, lowerCamelCase ) return left else: lowercase :Any = merge(lowerCamelCase, right.left ) return right def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :Optional[int] = Node(lowerCamelCase ) lowercase , lowercase :List[Any] = split(lowerCamelCase, lowerCamelCase ) return merge(merge(lowerCamelCase, lowerCamelCase ), lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase , lowercase :Any = split(lowerCamelCase, value - 1 ) lowercase , lowercase :Optional[Any] = split(lowerCamelCase, lowerCamelCase ) return merge(lowerCamelCase, lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase ): if not root: # None return else: inorder(root.left ) print(root.value, end="," ) inorder(root.right ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): for arg in args.split(): if arg[0] == "+": lowercase :Any = insert(lowerCamelCase, int(arg[1:] ) ) elif arg[0] == "-": lowercase :Union[str, Any] = erase(lowerCamelCase, int(arg[1:] ) ) else: print("Unknown command" ) return root def UpperCAmelCase__ ( ): lowercase :Dict = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) lowercase :str = input() while args != "q": lowercase :Tuple = interact_treap(lowerCamelCase, lowerCamelCase ) print(lowerCamelCase ) lowercase :List[Any] = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
158
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCAmelCase : str = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _UpperCAmelCase : Dict = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCAmelCase): _a = '''mask2former''' _a = ['''swin'''] _a = {'''hidden_size''': '''hidden_dim'''} def __init__( self: List[str] , _lowerCAmelCase: Optional[Dict] = None , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 10_24 , _lowerCAmelCase: str = "relu" , _lowerCAmelCase: int = 6 , _lowerCAmelCase: int = 10 , _lowerCAmelCase: int = 8 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: int = 20_48 , _lowerCAmelCase: bool = False , _lowerCAmelCase: bool = False , _lowerCAmelCase: int = 4 , _lowerCAmelCase: int = 2_55 , _lowerCAmelCase: int = 1_00 , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: float = 2.0 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: int = 1_25_44 , _lowerCAmelCase: float = 3.0 , _lowerCAmelCase: float = 0.75 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: float = 1.0 , _lowerCAmelCase: bool = True , _lowerCAmelCase: List[int] = [4, 8, 16, 32] , _lowerCAmelCase: bool = None , **_lowerCAmelCase: List[str] , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) lowercase :Optional[int] = CONFIG_MAPPING["swin"]( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowerCAmelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :List[str] = backbone_config.pop("model_type" ) lowercase :Tuple = CONFIG_MAPPING[backbone_model_type] lowercase :int = config_class.from_dict(_lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " F"Supported model types: {','.join(self.backbones_supported )}" ) lowercase :Optional[Any] = backbone_config lowercase :Union[str, Any] = feature_size lowercase :Any = mask_feature_size lowercase :List[Any] = hidden_dim lowercase :Optional[int] = encoder_feedforward_dim lowercase :Dict = activation_function lowercase :Tuple = encoder_layers lowercase :List[str] = decoder_layers lowercase :Optional[Any] = num_attention_heads lowercase :Optional[Any] = dropout lowercase :Any = dim_feedforward lowercase :List[Any] = pre_norm lowercase :List[Any] = enforce_input_projection lowercase :Optional[int] = common_stride lowercase :List[Any] = ignore_value lowercase :Optional[int] = num_queries lowercase :List[str] = no_object_weight lowercase :Dict = class_weight lowercase :Union[str, Any] = mask_weight lowercase :List[Any] = dice_weight lowercase :Dict = train_num_points lowercase :Optional[int] = oversample_ratio lowercase :List[Any] = importance_sample_ratio lowercase :Dict = init_std lowercase :Union[str, Any] = init_xavier_std lowercase :Optional[Any] = use_auxiliary_loss lowercase :Any = feature_strides lowercase :int = output_auxiliary_logits lowercase :Dict = decoder_layers super().__init__(**_lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Tuple , _lowerCAmelCase: PretrainedConfig , **_lowerCAmelCase: str ): return cls( backbone_config=_lowerCAmelCase , **_lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self: int ): lowercase :str = copy.deepcopy(self.__dict__ ) lowercase :Optional[Any] = self.backbone_config.to_dict() lowercase :Union[str, Any] = self.__class__.model_type return output
158
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] ): """simple docstring""" if not is_accelerate_available(): return method UpperCAmelCase_: Union[str, Any] = version.parse(accelerate.__version__ ).base_version if version.parse(lowerCAmelCase__ ) < version.parse("""0.17.0""" ): return method def wrapper(self: List[Any] , *lowerCAmelCase__: Tuple , **lowerCAmelCase__: Any ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowerCAmelCase__ , **lowerCAmelCase__ ) return wrapper
147
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _a : def __init__(self, SCREAMING_SNAKE_CASE_ = "cpu", SCREAMING_SNAKE_CASE_ = "openai/clip-vit-large-patch14" ) -> None: UpperCAmelCase_: Optional[Any] = device UpperCAmelCase_: Optional[Any] = CLIPTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] UpperCAmelCase_: Optional[Any] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] UpperCAmelCase_: Optional[Any] = torchvision.transforms.Normalize(self.image_mean, self.image_std ) UpperCAmelCase_: Tuple = torchvision.transforms.Resize(224 ) UpperCAmelCase_: Any = torchvision.transforms.CenterCrop(224 ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: Dict = self.resize(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = self.center_crop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = self.normalize(SCREAMING_SNAKE_CASE_ ) return images def __call__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: Dict = self.tokenizer(text=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = self.preprocess_img(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _a ( nn.Module ): def __init__(self, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0.0_1, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="image", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, ) -> None: super().__init__() UpperCAmelCase_: List[Any] = None UpperCAmelCase_: List[str] = device if device else get_device() if vqgan: UpperCAmelCase_: int = vqgan else: UpperCAmelCase_: Optional[Any] = load_vqgan(self.device, conf_path=SCREAMING_SNAKE_CASE_, ckpt_path=SCREAMING_SNAKE_CASE_ ) self.vqgan.eval() if clip: UpperCAmelCase_: List[str] = clip else: UpperCAmelCase_: Any = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) UpperCAmelCase_: Optional[int] = ProcessorGradientFlow(device=self.device ) UpperCAmelCase_: Optional[int] = iterations UpperCAmelCase_: List[Any] = lr UpperCAmelCase_: str = log UpperCAmelCase_: Tuple = make_grid UpperCAmelCase_: List[str] = return_val UpperCAmelCase_: Dict = quantize UpperCAmelCase_: int = self.vqgan.decoder.z_shape def __snake_case (self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=True ) -> List[Any]: UpperCAmelCase_: Tuple = [] if output_path is None: UpperCAmelCase_: Optional[int] = """./animation.gif""" if input_path is None: UpperCAmelCase_: Tuple = self.save_path UpperCAmelCase_: List[Any] = sorted(glob(input_path + """/*""" ) ) if not len(SCREAMING_SNAKE_CASE_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(SCREAMING_SNAKE_CASE_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) UpperCAmelCase_: Dict = total_duration / len(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = [frame_duration] * len(SCREAMING_SNAKE_CASE_ ) if extend_frames: UpperCAmelCase_: List[str] = 1.5 UpperCAmelCase_: List[Any] = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(SCREAMING_SNAKE_CASE_ ) ) imageio.mimsave(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, duration=SCREAMING_SNAKE_CASE_ ) print(f'gif saved to {output_path}' ) def __snake_case (self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError UpperCAmelCase_: List[Any] = preprocess(Image.open(SCREAMING_SNAKE_CASE_ ), target_image_size=256 ).to(self.device ) UpperCAmelCase_: Union[str, Any] = preprocess_vqgan(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ , *UpperCAmelCase_: str = self.vqgan.encode(SCREAMING_SNAKE_CASE_ ) return z def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: List[Any] = self.latent.detach().requires_grad_() UpperCAmelCase_: Optional[int] = base_latent + transform_vector if self.quantize: UpperCAmelCase_ , *UpperCAmelCase_: Optional[Any] = self.vqgan.quantize(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: Tuple = trans_latent return self.vqgan.decode(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> List[str]: UpperCAmelCase_: Any = self.clip_preprocessor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_, return_tensors="""pt""", padding=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = self.clip(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = clip_outputs.logits_per_image if weights is not None: UpperCAmelCase_: Any = similarity_logits * weights return similarity_logits.sum() def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: UpperCAmelCase_: Dict = self._get_clip_similarity(pos_prompts["""prompts"""], SCREAMING_SNAKE_CASE_, weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: UpperCAmelCase_: Tuple = self._get_clip_similarity(neg_prompts["""prompts"""], SCREAMING_SNAKE_CASE_, weights=neg_prompts["""weights"""] ) else: UpperCAmelCase_: Any = torch.tensor([1], device=self.device ) UpperCAmelCase_: List[str] = -torch.log(SCREAMING_SNAKE_CASE_ ) + torch.log(SCREAMING_SNAKE_CASE_ ) return loss def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: Tuple = torch.randn_like(self.latent, requires_grad=SCREAMING_SNAKE_CASE_, device=self.device ) UpperCAmelCase_: str = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCAmelCase_: Optional[int] = self._add_vector(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = loop_post_process(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = self._get_CLIP_loss(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) print("""CLIP loss""", SCREAMING_SNAKE_CASE_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=SCREAMING_SNAKE_CASE_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: wandb.init(reinit=SCREAMING_SNAKE_CASE_, project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: UpperCAmelCase_: str = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = image.resize((256, 256) ) wandb.log("""Original Image""", wandb.Image(SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if not prompts: return [] UpperCAmelCase_: Tuple = [] UpperCAmelCase_: str = [] if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Optional[Any] = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(SCREAMING_SNAKE_CASE_, (tuple, list) ): UpperCAmelCase_: str = prompt[0] UpperCAmelCase_: List[str] = float(prompt[1] ) elif ":" in prompt: UpperCAmelCase_ , UpperCAmelCase_: int = prompt.split(""":""" ) UpperCAmelCase_: int = float(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: str = prompt UpperCAmelCase_: Dict = 1.0 processed_prompts.append(SCREAMING_SNAKE_CASE_ ) weights.append(SCREAMING_SNAKE_CASE_ ) return { "prompts": processed_prompts, "weights": torch.tensor(SCREAMING_SNAKE_CASE_, device=self.device ), } def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, ) -> Optional[Any]: if image_path: UpperCAmelCase_: Optional[int] = self._get_latent(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: str = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCAmelCase_: List[Any] = self.process_prompts(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = self.process_prompts(SCREAMING_SNAKE_CASE_ ) if save_final and save_path is None: UpperCAmelCase_: Optional[int] = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: List[str] = save_path + """_""" + get_timestamp() os.makedirs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = save_path UpperCAmelCase_: Optional[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: Tuple = loop_post_process(SCREAMING_SNAKE_CASE_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ): if show_intermediate: show_pil(SCREAMING_SNAKE_CASE_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f'iter_{iter:03d}.png' ) ) if self.log: wandb.log({"""Image""": wandb.Image(SCREAMING_SNAKE_CASE_ )} ) if show_final: show_pil(SCREAMING_SNAKE_CASE_ ) if save_final: transformed_img.save(os.path.join(self.save_path, f'iter_{iter:03d}_final.png' ) )
147
1
'''simple docstring''' from statistics import mean import numpy as np def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Union[str, Any] = 0 # Number of processes finished snake_case_ : Tuple = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. snake_case_ : List[Any] = [0] * no_of_process # List to include calculation results snake_case_ : Tuple = [0] * no_of_process # Sort by arrival time. snake_case_ : str = [burst_time[i] for i in np.argsort(lowerCamelCase_ )] snake_case_ : List[Any] = [process_name[i] for i in np.argsort(lowerCamelCase_ )] arrival_time.sort() while no_of_process > finished_process_count: snake_case_ : Optional[int] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: snake_case_ : Dict = arrival_time[i] snake_case_ : Union[str, Any] = 0 # Index showing the location of the process being performed snake_case_ : Optional[int] = 0 # Saves the current response ratio. snake_case_ : Optional[Any] = 0 for i in range(0 , lowerCamelCase_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: snake_case_ : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: snake_case_ : List[Any] = temp snake_case_ : Optional[int] = i # Calculate the turn around time snake_case_ : List[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. snake_case_ : int = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = [0] * no_of_process for i in range(0 , lowerCamelCase_ ): snake_case_ : Union[str, Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __A : Any = 5 __A : Optional[int] = ['A', 'B', 'C', 'D', 'E'] __A : str = [1, 2, 3, 4, 5] __A : Union[str, Any] = [1, 2, 3, 4, 5] __A : Dict = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __A : Optional[Any] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
370
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self :List[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Union[str, Any]=3 ,_UpperCamelCase :Any=1_8 ,_UpperCamelCase :Optional[Any]=3_0 ,_UpperCamelCase :List[str]=4_0_0 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :List[Any]=True ,): snake_case_ : List[str] = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case_ : Union[str, Any] = parent snake_case_ : str = batch_size snake_case_ : List[Any] = num_channels snake_case_ : Tuple = image_size snake_case_ : int = min_resolution snake_case_ : int = max_resolution snake_case_ : Union[str, Any] = do_resize snake_case_ : Optional[Any] = size snake_case_ : Any = apply_ocr def a__ ( self :Union[str, Any] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self :List[Any] ): snake_case_ : Union[str, Any] = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self :int ): return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self :Any ): snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""size""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""apply_ocr""" ) ) def a__ ( self :int ): snake_case_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 1_8, """width""": 1_8} ) snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ) self.assertEqual(image_processor.size ,{"""height""": 4_2, """width""": 4_2} ) def a__ ( self :Optional[Any] ): pass def a__ ( self :Union[str, Any] ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,Image.Image ) # Test not batched input snake_case_ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) self.assertIsInstance(encoding.words ,_UpperCamelCase ) self.assertIsInstance(encoding.boxes ,_UpperCamelCase ) # Test batched snake_case_ : List[Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Tuple ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,np.ndarray ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Any = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Optional[Any] ): # Initialize image_processing snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Union[str, Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :List[Any] ): # with apply_OCR = True snake_case_ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" ,split="""test""" ) snake_case_ : str = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case_ : Dict = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case_ : Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case_ : Any = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,_UpperCamelCase ) self.assertListEqual(encoding.boxes ,_UpperCamelCase ) # with apply_OCR = False snake_case_ : Dict = LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase ) snake_case_ : Optional[int] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) )
8
0
def UpperCamelCase ( __lowerCamelCase : str ): return "".join(chr(ord(__lowerCamelCase ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
59
from math import sqrt def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_ ( __UpperCAmelCase : int = 1_00_01 ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 while count != nth and number < 3: number += 1 if is_prime(__UpperCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__UpperCAmelCase ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
225
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=1_3 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=9_9 , _a=3_2 , _a=5 , _a=4 , _a=3_7 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=1_6 , _a=2 , _a=0.02 , _a=4 , ) -> Dict: _a : List[Any] = parent _a : int = batch_size _a : Union[str, Any] = seq_length _a : Optional[int] = is_training _a : int = use_attention_mask _a : List[str] = use_token_type_ids _a : Tuple = use_labels _a : Any = vocab_size _a : Dict = hidden_size _a : int = num_hidden_layers _a : List[Any] = num_attention_heads _a : int = intermediate_size _a : Tuple = hidden_act _a : Tuple = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : Optional[Any] = max_position_embeddings _a : Optional[Any] = type_vocab_size _a : Dict = type_sequence_label_size _a : str = initializer_range _a : List[Any] = num_choices def __lowercase ( self ) -> Dict: _a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Optional[Any] = None if self.use_attention_mask: _a : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _a : List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_a , ) return config, input_ids, attention_mask def __lowercase ( self ) -> Tuple: _a : Union[str, Any] = self.prepare_config_and_inputs() _a , _a , _a : Union[str, Any] = config_and_inputs _a : Dict = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self ) -> Optional[Any]: _a : Optional[int] = FlaxDistilBertModelTester(self ) @slow def __lowercase ( self ) -> Any: for model_class_name in self.all_model_classes: _a : List[Any] = model_class_name.from_pretrained('''distilbert-base-uncased''' ) _a : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ) -> Tuple: _a : Any = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _a : Dict = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _a : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a : Union[str, Any] = model(_a , attention_mask=_a )[0] _a : List[str] = (1, 1_1, 7_6_8) self.assertEqual(output.shape , _a ) _a : Dict = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _a , atol=1e-4 ) )
15
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __a : Dict=None ) -> str: """simple docstring""" if subparsers is not None: _a : Union[str, Any] = subparsers.add_parser('''test''' ) else: _a : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' ,default=__a ,help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) ,) if subparsers is not None: parser.set_defaults(func=__a ) return parser def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: _a : List[Any] = script_name else: _a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}""" _a : str = ['''accelerate-launch'''] + test_args.split() _a : str = execute_subprocess_async(__a ,env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : Optional[int] = test_command_parser() _a : List[Any] = parser.parse_args() test_command(__a ) if __name__ == "__main__": main()
15
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def UpperCamelCase ( __lowercase : NDArray[floataa] ,__lowercase : NDArray[floataa] ,__lowercase : list[int] ,__lowercase : int ,): '''simple docstring''' A_ , A_ : Any = coefficient_matrix.shape A_ , A_ : Optional[int] = constant_matrix.shape if rowsa != colsa: A_ : Optional[Any] = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__lowercase ) if colsa != 1: A_ : str = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__lowercase ) if rowsa != rowsa: A_ : str = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__lowercase ) if len(__lowercase ) != rowsa: A_ : Tuple = ( 'Number of initial values must be equal to number of rows in coefficient ' f'''matrix but received {len(__lowercase )} and {rowsa}''' ) raise ValueError(__lowercase ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) A_ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) A_ , A_ : Union[str, Any] = table.shape strictly_diagonally_dominant(__lowercase ) # Iterates the whole matrix for given number of times for _ in range(__lowercase ): A_ : Optional[Any] = [] for row in range(__lowercase ): A_ : Any = 0 for col in range(__lowercase ): if col == row: A_ : Tuple = table[row][col] elif col == cols - 1: A_ : str = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A_ : Any = (temp + val) / denom new_val.append(__lowercase ) A_ : List[Any] = new_val return [float(__lowercase ) for i in new_val] def UpperCamelCase ( __lowercase : NDArray[floataa] ): '''simple docstring''' A_ , A_ : Union[str, Any] = table.shape A_ : Union[str, Any] = True for i in range(0 ,__lowercase ): A_ : Any = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
140
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _UpperCAmelCase = 2 class UpperCAmelCase : '''simple docstring''' def __init__( self , *, # begin keyword-only arguments lowercase="<s>" , lowercase="<pad>" , lowercase="</s>" , lowercase="<unk>" , lowercase=None , ): """simple docstring""" A_ , A_ , A_ , A_ : Tuple = bos, unk, pad, eos A_ : Optional[Any] = [] A_ : Dict = [] A_ : List[Any] = {} A_ : int = self.add_symbol(lowercase ) A_ : Union[str, Any] = self.add_symbol(lowercase ) A_ : Union[str, Any] = self.add_symbol(lowercase ) A_ : Any = self.add_symbol(lowercase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowercase ) A_ : Tuple = len(self.symbols ) def __eq__( self , lowercase ): """simple docstring""" return self.indices == other.indices def __getitem__( self , lowercase ): """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): """simple docstring""" return len(self.symbols ) def __contains__( self , lowercase ): """simple docstring""" return sym in self.indices @classmethod def lowerCAmelCase_ ( cls , lowercase ): """simple docstring""" A_ : int = cls() d.add_from_file(lowercase ) return d def lowerCAmelCase_ ( self , lowercase , lowercase=1 , lowercase=False ): """simple docstring""" if word in self.indices and not overwrite: A_ : List[Any] = self.indices[word] A_ : List[str] = self.count[idx] + n return idx else: A_ : int = len(self.symbols ) A_ : Optional[Any] = idx self.symbols.append(lowercase ) self.count.append(lowercase ) return idx def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return 0 def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if isinstance(lowercase , lowercase ): try: with open(lowercase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowercase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowercase ) ) return A_ : Any = f.readlines() A_ : List[Any] = self._load_meta(lowercase ) for line in lines[indices_start_line:]: try: A_ , A_ : int = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": A_ : Optional[int] = True A_ , A_ : str = line.rsplit(' ' , 1 ) else: A_ : Optional[int] = False A_ : Optional[int] = int(lowercase ) A_ : Tuple = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowercase ) ) self.add_symbol(lowercase , n=lowercase , overwrite=lowercase ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def UpperCamelCase ( __lowercase : Any ): '''simple docstring''' A_ : Optional[Any] = dict((re.sub(r'@@$' ,'' ,__lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$' ,'</w>' ,__lowercase ), v) for k, v in d.items() ) A_ : Optional[Any] = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] A_ : Union[str, Any] = d[k] # restore return da def UpperCamelCase ( __lowercase : Any ,__lowercase : str ): '''simple docstring''' if not os.path.exists(__lowercase ): raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(__lowercase ,exist_ok=__lowercase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models A_ : Optional[Any] = os.path.join(__lowercase ,'checkpoint.pt' ) if not os.path.isfile(__lowercase ): raise ValueError(f'''path to the file {checkpoint_file} does not exist!''' ) A_ : Any = torch.load(__lowercase ,map_location='cpu' ) A_ : str = chkpt['cfg']['model'] # dicts A_ : Any = os.path.join(__lowercase ,'dict.txt' ) if not os.path.isfile(__lowercase ): raise ValueError(f'''path to the file {dict_file} does not exist!''' ) A_ : Optional[int] = Dictionary.load(__lowercase ) A_ : Union[str, Any] = rewrite_dict_keys(src_dict.indices ) A_ : List[Any] = len(__lowercase ) A_ : Tuple = os.path.join(__lowercase ,VOCAB_FILES_NAMES['vocab_file'] ) print(f'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(__lowercase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(__lowercase ,ensure_ascii=__lowercase ,indent=__lowercase ) ) # merges_file (bpecodes) A_ : List[Any] = os.path.join(__lowercase ,'bpecodes' ) if not os.path.isfile(__lowercase ): raise ValueError(f'''path to the file {bpecodes_file} does not exist!''' ) A_ : Optional[Any] = os.path.join(__lowercase ,VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(__lowercase ,__lowercase ) # model config A_ : Dict = os.path.join(__lowercase ,'config.json' ) A_ : List[Any] = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(f'''Generating {biogpt_model_config_file}''' ) with open(__lowercase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(__lowercase ,ensure_ascii=__lowercase ,indent=__lowercase ) ) # tokenizer config A_ : List[Any] = os.path.join(__lowercase ,__lowercase ) A_ : Dict = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 10_24, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(f'''Generating {biogpt_tokenizer_config_file}''' ) with open(__lowercase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(__lowercase ,ensure_ascii=__lowercase ,indent=__lowercase ) ) # model A_ : Any = chkpt['model'] # remove unneeded keys A_ : List[Any] = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(__lowercase ,__lowercase ) A_ : int = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): A_ : Union[str, Any] = model_state_dict.pop(__lowercase ) else: A_ : str = model_state_dict.pop(__lowercase ) A_ : Optional[int] = BioGptConfig.from_pretrained(__lowercase ) A_ : List[Any] = BioGptForCausalLM(__lowercase ) # check that it loads ok model_new.load_state_dict(__lowercase ) # save A_ : List[str] = os.path.join(__lowercase ,__lowercase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(__lowercase ,__lowercase ) print('Conversion is done!' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCAmelCase = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
140
1
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa lowerCAmelCase_ = logging.getLogger(__name__) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Any ="""summarization""" a_ : Optional[Any] =["""loss"""] a_ : List[Any] =ROUGE_KEYS a_ : str ="""rouge2""" def __init__( self : str , UpperCamelCase : List[Any] , **UpperCamelCase : str ): '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: _snake_case : List[Any] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(UpperCamelCase , num_labels=UpperCamelCase , mode=self.mode , **UpperCamelCase ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) _snake_case : Any = Path(self.output_dir ) / 'metrics.json' _snake_case : Optional[int] = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) _snake_case : int = 0 _snake_case : Optional[int] = defaultdict(UpperCamelCase ) _snake_case : int = self.config.model_type _snake_case : Union[str, Any] = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size _snake_case : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _snake_case : str = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } _snake_case : Any = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _snake_case : int = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], f"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _snake_case : List[str] = get_git_info()['repo_sha'] _snake_case : List[Any] = hparams.num_workers _snake_case : List[Any] = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , UpperCamelCase ): _snake_case : List[str] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _snake_case : Tuple = self.decoder_start_token_id _snake_case : Optional[int] = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) _snake_case : int = False _snake_case : int = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _snake_case : List[str] = self.hparams.eval_max_gen_length else: _snake_case : Tuple = self.model.config.max_length _snake_case : int = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Dict[str, torch.Tensor] ): '''simple docstring''' _snake_case : List[str] = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(UpperCamelCase , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) _snake_case : str = True return readable_batch def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : int , **UpperCamelCase : Any ): '''simple docstring''' return self.model(UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : List[int] ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer.batch_decode( UpperCamelCase , skip_special_tokens=UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase ) return lmap(str.strip , UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : dict ): '''simple docstring''' _snake_case : Tuple = self.tokenizer.pad_token_id _snake_case , _snake_case : str = batch['input_ids'], batch['attention_mask'] _snake_case : int = batch['labels'] if isinstance(self.model , UpperCamelCase ): _snake_case : Union[str, Any] = self.model._shift_right(UpperCamelCase ) else: _snake_case : List[str] = shift_tokens_right(UpperCamelCase , UpperCamelCase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _snake_case : Any = decoder_input_ids self.save_readable_batch(UpperCamelCase ) _snake_case : Dict = self(UpperCamelCase , attention_mask=UpperCamelCase , decoder_input_ids=UpperCamelCase , use_cache=UpperCamelCase ) _snake_case : Optional[int] = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _snake_case : Union[str, Any] = nn.CrossEntropyLoss(ignore_index=UpperCamelCase ) assert lm_logits.shape[-1] == self.vocab_size _snake_case : Any = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _snake_case : int = nn.functional.log_softmax(UpperCamelCase , dim=-1 ) _snake_case , _snake_case : List[Any] = label_smoothed_nll_loss( UpperCamelCase , UpperCamelCase , self.hparams.label_smoothing , ignore_index=UpperCamelCase ) return (loss,) @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return self.tokenizer.pad_token_id def UpperCamelCase_ ( self : str , UpperCamelCase : Tuple , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : Optional[int] = self._step(UpperCamelCase ) _snake_case : Optional[int] = dict(zip(self.loss_names , UpperCamelCase ) ) # tokens per batch _snake_case : str = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() _snake_case : Optional[Any] = batch['input_ids'].shape[0] _snake_case : int = batch['input_ids'].eq(self.pad ).sum() _snake_case : str = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[str] , UpperCamelCase : int ): '''simple docstring''' return self._generative_step(UpperCamelCase ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Dict="val" ): '''simple docstring''' self.step_count += 1 _snake_case : Tuple = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _snake_case : List[str] = losses['loss'] _snake_case : Dict = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } _snake_case : str = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _snake_case : torch.FloatTensor = torch.tensor(UpperCamelCase ).type_as(UpperCamelCase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(UpperCamelCase ) _snake_case : Any = {f"""{prefix}_avg_{k}""": x for k, x in losses.items()} _snake_case : int = self.step_count self.metrics[prefix].append(UpperCamelCase ) # callback writes this to self.metrics_save_path _snake_case : Any = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, f"""{prefix}_loss""": loss, f"""{prefix}_{self.val_metric}""": metric_tensor, } def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : Dict ): '''simple docstring''' return calculate_rouge(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : dict ): '''simple docstring''' _snake_case : List[Any] = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _snake_case : List[str] = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=UpperCamelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _snake_case : Optional[Any] = (time.time() - ta) / batch['input_ids'].shape[0] _snake_case : List[str] = self.ids_to_clean_text(UpperCamelCase ) _snake_case : List[str] = self.ids_to_clean_text(batch['labels'] ) _snake_case : List[Any] = self._step(UpperCamelCase ) _snake_case : List[Any] = dict(zip(self.loss_names , UpperCamelCase ) ) _snake_case : Dict = self.calc_generative_metrics(UpperCamelCase , UpperCamelCase ) _snake_case : str = np.mean(lmap(UpperCamelCase , UpperCamelCase ) ) base_metrics.update(gen_time=UpperCamelCase , gen_len=UpperCamelCase , preds=UpperCamelCase , target=UpperCamelCase , **UpperCamelCase ) return base_metrics def UpperCamelCase_ ( self : Any , UpperCamelCase : Any , UpperCamelCase : List[str] ): '''simple docstring''' return self._generative_step(UpperCamelCase ) def UpperCamelCase_ ( self : Any , UpperCamelCase : Tuple ): '''simple docstring''' return self.validation_epoch_end(UpperCamelCase , prefix='test' ) def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : int = self.n_obs[type_path] _snake_case : Any = self.target_lens[type_path] _snake_case : str = self.dataset_class( self.tokenizer , type_path=UpperCamelCase , n_obs=UpperCamelCase , max_target_length=UpperCamelCase , **self.dataset_kwargs , ) return dataset def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : bool = False ): '''simple docstring''' _snake_case : List[Any] = self.get_dataset(UpperCamelCase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _snake_case : Optional[Any] = dataset.make_sortish_sampler(UpperCamelCase , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCamelCase , batch_size=UpperCamelCase , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase , num_workers=self.num_workers , sampler=UpperCamelCase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _snake_case : str = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCamelCase , batch_sampler=UpperCamelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( UpperCamelCase , batch_size=UpperCamelCase , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase , num_workers=self.num_workers , sampler=UpperCamelCase , ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : List[str] = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=UpperCamelCase ) return dataloader def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCamelCase_ ( UpperCamelCase : List[Any] , UpperCamelCase : str ): '''simple docstring''' BaseTransformer.add_model_specific_args(UpperCamelCase , UpperCamelCase ) add_generic_args(UpperCamelCase , UpperCamelCase ) parser.add_argument( '--max_source_length' , default=10_24 , type=UpperCamelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=UpperCamelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=1_42 , type=UpperCamelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=1_42 , type=UpperCamelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=UpperCamelCase ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=UpperCamelCase ) parser.add_argument('--max_tokens_per_batch' , type=UpperCamelCase , default=UpperCamelCase ) parser.add_argument('--logger_name' , type=UpperCamelCase , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=UpperCamelCase , default=-1 , required=UpperCamelCase , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=UpperCamelCase , default=5_00 , required=UpperCamelCase , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=UpperCamelCase , default=-1 , required=UpperCamelCase , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=UpperCamelCase , default='summarization' , required=UpperCamelCase , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=UpperCamelCase , default=0.0 , required=UpperCamelCase ) parser.add_argument('--src_lang' , type=UpperCamelCase , default='' , required=UpperCamelCase ) parser.add_argument('--tgt_lang' , type=UpperCamelCase , default='' , required=UpperCamelCase ) parser.add_argument('--eval_beams' , type=UpperCamelCase , default=UpperCamelCase , required=UpperCamelCase ) parser.add_argument( '--val_metric' , type=UpperCamelCase , default=UpperCamelCase , required=UpperCamelCase , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=UpperCamelCase , default=UpperCamelCase , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=UpperCamelCase , default=1 , required=UpperCamelCase , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=UpperCamelCase , default=-1 , required=UpperCamelCase , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""translation""" a_ : str =["""loss"""] a_ : Optional[Any] =["""bleu"""] a_ : Dict ="""bleu""" def __init__( self : Any , UpperCamelCase : Tuple , **UpperCamelCase : str ): '''simple docstring''' super().__init__(UpperCamelCase , **UpperCamelCase ) _snake_case : Optional[int] = hparams.src_lang _snake_case : Union[str, Any] = hparams.tgt_lang def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : List[Any] ): '''simple docstring''' return calculate_bleu(UpperCamelCase , UpperCamelCase ) def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: int=None )-> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=lowerCAmelCase ) check_output_dir(lowerCAmelCase , expected_items=3 ) if model is None: if "summarization" in args.task: _snake_case : SummarizationModule = SummarizationModule(lowerCAmelCase ) else: _snake_case : SummarizationModule = TranslationModule(lowerCAmelCase ) _snake_case : Optional[Any] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): _snake_case : List[Any] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _snake_case : int = os.environ.get('WANDB_PROJECT' , lowerCAmelCase ) _snake_case : Dict = WandbLogger(name=model.output_dir.name , project=lowerCAmelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _snake_case : Any = WandbLogger(name=model.output_dir.name , project=F"""hf_{dataset}""" ) if args.early_stopping_patience >= 0: _snake_case : Optional[Any] = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: _snake_case : Any = False _snake_case : Any = args.val_metric == 'loss' _snake_case : pl.Trainer = generic_train( lowerCAmelCase , lowerCAmelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , lowerCAmelCase ) , early_stopping_callback=lowerCAmelCase , logger=lowerCAmelCase , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model _snake_case : int = '' _snake_case : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=lowerCAmelCase ) ) if checkpoints: _snake_case : Any = checkpoints[-1] _snake_case : Optional[int] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() lowerCAmelCase_ = pl.Trainer.add_argparse_args(parser) lowerCAmelCase_ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) lowerCAmelCase_ = parser.parse_args() main(args)
260
def lowerCamelCase_ ( lowerCAmelCase: int )-> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
260
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowerCAmelCase_ : __lowerCamelCase : int __lowerCamelCase : Node | None = None __lowerCamelCase : Node | None = None def __a(): '''simple docstring''' _lowerCAmelCase = Node(1 ) _lowerCAmelCase = Node(2 ) _lowerCAmelCase = Node(3 ) _lowerCAmelCase = Node(4 ) _lowerCAmelCase = Node(5 ) return tree def __a(SCREAMING_SNAKE_CASE_ : Node | None ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def __a(SCREAMING_SNAKE_CASE_ : Node | None ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def __a(SCREAMING_SNAKE_CASE_ : Node | None ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def __a(SCREAMING_SNAKE_CASE_ : Node | None ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def __a(SCREAMING_SNAKE_CASE_ : Node | None ): '''simple docstring''' _lowerCAmelCase = [] if root is None: return output _lowerCAmelCase = deque([root] ) while process_queue: _lowerCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def __a(SCREAMING_SNAKE_CASE_ : Node | None , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = [] def populate_output(SCREAMING_SNAKE_CASE_ : Node | None , SCREAMING_SNAKE_CASE_ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return output def __a(SCREAMING_SNAKE_CASE_ : Node | None , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = [] def populate_output(SCREAMING_SNAKE_CASE_ : Node | None , SCREAMING_SNAKE_CASE_ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return output def __a(SCREAMING_SNAKE_CASE_ : Node | None ): '''simple docstring''' if root is None: return [] _lowerCAmelCase = [] _lowerCAmelCase = 0 _lowerCAmelCase = height(SCREAMING_SNAKE_CASE_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _lowerCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _lowerCAmelCase = 0 return output def __a(): # Main function for testing. '''simple docstring''' _lowerCAmelCase = make_tree() print(F'''In-order Traversal: {inorder(SCREAMING_SNAKE_CASE_ )}''' ) print(F'''Pre-order Traversal: {preorder(SCREAMING_SNAKE_CASE_ )}''' ) print(F'''Post-order Traversal: {postorder(SCREAMING_SNAKE_CASE_ )}''' , "\n" ) print(F'''Height of Tree: {height(SCREAMING_SNAKE_CASE_ )}''' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(SCREAMING_SNAKE_CASE_ ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(SCREAMING_SNAKE_CASE_ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE_ , level=SCREAMING_SNAKE_CASE_ ) ) print("\nZigZag order Traversal: " ) print(zigzag(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
158
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=False ): '''simple docstring''' _lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase = "" else: _lowerCAmelCase = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) _lowerCAmelCase = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase = in_proj_bias[: config.hidden_size] _lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase = in_proj_bias[-config.hidden_size :] def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = val def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' _lowerCAmelCase = ViTMSNConfig() _lowerCAmelCase = 1000 _lowerCAmelCase = "datasets/huggingface/label-files" _lowerCAmelCase = "imagenet-1k-id2label.json" _lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , "r" ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _lowerCAmelCase = 384 _lowerCAmelCase = 1536 _lowerCAmelCase = 6 elif "l16" in checkpoint_url: _lowerCAmelCase = 1024 _lowerCAmelCase = 4096 _lowerCAmelCase = 24 _lowerCAmelCase = 16 _lowerCAmelCase = 0.1 elif "b4" in checkpoint_url: _lowerCAmelCase = 4 elif "l7" in checkpoint_url: _lowerCAmelCase = 7 _lowerCAmelCase = 1024 _lowerCAmelCase = 4096 _lowerCAmelCase = 24 _lowerCAmelCase = 16 _lowerCAmelCase = 0.1 _lowerCAmelCase = ViTMSNModel(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["target_encoder"] _lowerCAmelCase = ViTImageProcessor(size=config.image_size ) remove_projection_head(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() _lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) _lowerCAmelCase = ViTImageProcessor( size=config.image_size , image_mean=SCREAMING_SNAKE_CASE_ , image_std=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) _lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _lowerCAmelCase = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: _lowerCAmelCase = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: _lowerCAmelCase = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: _lowerCAmelCase = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: _lowerCAmelCase = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
158
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __a ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=30 , a__=4_00 , a__=True , a__=None , a__=True , a__=[0.5, 0.5, 0.5] , a__=[0.5, 0.5, 0.5] , a__=True , a__=1 / 2_55 , a__=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def snake_case_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case_ ( self , a__ , a__=False ): if not batched: _lowerCamelCase = image_inputs[0] if isinstance(a__ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['shortest_edge'] * h / w ) _lowerCamelCase = self.size['shortest_edge'] elif w > h: _lowerCamelCase = self.size['shortest_edge'] _lowerCamelCase = int(self.size['shortest_edge'] * w / h ) else: _lowerCamelCase = self.size['shortest_edge'] _lowerCamelCase = self.size['shortest_edge'] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(a__ , key=lambda a__ : item[0] )[0] _lowerCamelCase = max(a__ , key=lambda a__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __a ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : int = DeformableDetrImageProcessor if is_vision_available() else None def snake_case_ ( self ): _lowerCamelCase = DeformableDetrImageProcessingTester(self ) @property def snake_case_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ): _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , 'image_mean' ) ) self.assertTrue(hasattr(a__ , 'image_std' ) ) self.assertTrue(hasattr(a__ , 'do_normalize' ) ) self.assertTrue(hasattr(a__ , 'do_resize' ) ) self.assertTrue(hasattr(a__ , 'do_rescale' ) ) self.assertTrue(hasattr(a__ , 'do_pad' ) ) self.assertTrue(hasattr(a__ , 'size' ) ) def snake_case_ ( self ): _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , a__ ) _lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=a__ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , a__ ) def snake_case_ ( self ): pass def snake_case_ ( self ): # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) _lowerCamelCase = image_processing(a__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self ): # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(a__ , return_tensors='pt' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self ): # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(a__ , return_tensors='pt' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case_ ( self ): # prepare image and target _lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'image_id': 3_97_69, 'annotations': target} # encode them _lowerCamelCase = DeformableDetrImageProcessor() _lowerCamelCase = image_processing(images=a__ , annotations=a__ , return_tensors='pt' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , a__ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a__ , atol=1e-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a__ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , a__ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a__ , atol=1e-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a__ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a__ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a__ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a__ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a__ ) ) @slow def snake_case_ ( self ): # prepare image, target and masks_path _lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} _lowerCamelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _lowerCamelCase = DeformableDetrImageProcessor(format='coco_panoptic' ) _lowerCamelCase = image_processing(images=a__ , annotations=a__ , masks_path=a__ , return_tensors='pt' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , a__ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a__ , atol=1e-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a__ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , a__ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a__ , atol=1e-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a__ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a__ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a__ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , a__ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a__ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a__ ) )
80
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ : List[str] ={"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] =["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] =["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys A_ : str =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
80
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path", type=__A, default="data/dump.txt", help="The path to the data." ) parser.add_argument("--tokenizer_type", type=__A, default="bert", choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name", type=__A, default="bert-base-uncased", help="The tokenizer to use." ) parser.add_argument("--dump_file", type=__A, default="data/dump", help="The dump file prefix." ) UpperCAmelCase__ = parser.parse_args() logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": UpperCAmelCase__ = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `[CLS]` UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `<s>` UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` UpperCAmelCase__ = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(f"""Loading text from {args.file_path}""" ) with open(args.file_path, "r", encoding="utf8" ) as fp: UpperCAmelCase__ = fp.readlines() logger.info("Start encoding" ) logger.info(f"""{len(__A )} examples to process.""" ) UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 10_000 UpperCAmelCase__ = time.time() for text in data: UpperCAmelCase__ = f"""{bos} {text.strip()} {sep}""" UpperCAmelCase__ = tokenizer.encode(__A, add_special_tokens=__A ) rslt.append(__A ) iter += 1 if iter % interval == 0: UpperCAmelCase__ = time.time() logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) UpperCAmelCase__ = time.time() logger.info("Finished binarization" ) logger.info(f"""{len(__A )} examples processed.""" ) UpperCAmelCase__ = f"""{args.dump_file}.{args.tokenizer_name}.pickle""" UpperCAmelCase__ = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase__ = [np.uintaa(__A ) for d in rslt] else: UpperCAmelCase__ = [np.intaa(__A ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"""Dump to {dp_file}""" ) with open(__A, "wb" ) as handle: pickle.dump(rslt_, __A, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
65
from collections import deque from .hash_table import HashTable class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Tuple: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) ->Tuple: snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) snake_case_ = self.values[key] def snake_case__( self : List[Any] ) ->str: return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=None ) ->str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
8
0
from __future__ import annotations class __magic_name__ : def __init__( self : Optional[int] , lowerCamelCase__ : Optional[int] = 0 ) -> str: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = key def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase__ : str = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase__ : int = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int = 0 ) -> Optional[int]: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase__ : Optional[int] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCamelCase__ : Union[str, Any] = '''''' for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def UpperCAmelCase__ ( self : str , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int = 0 ) -> str: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase__ : Dict = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCamelCase__ : Any = '''''' for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] = 0 ) -> Any: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
352
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : Dict = image.size UpperCamelCase__ , UpperCamelCase__ : List[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase__ : Any = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) UpperCamelCase__ : Union[str, Any] = np.array(SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0 UpperCamelCase__ : Optional[int] = image[None].transpose(0 , 3 , 1 , 2 ) UpperCamelCase__ : int = torch.from_numpy(SCREAMING_SNAKE_CASE ) return 2.0 * image - 1.0 class __magic_name__ ( __lowerCAmelCase): def __init__( self : Dict , lowerCamelCase__ : VQModel , lowerCamelCase__ : UNetaDModel , lowerCamelCase__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(vqvae=lowerCamelCase__ , unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self : int , lowerCamelCase__ : Union[torch.Tensor, PIL.Image.Image] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : Optional[int] = 100 , lowerCamelCase__ : Optional[float] = 0.0 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(lowerCamelCase__ , PIL.Image.Image ): UpperCamelCase__ : int = 1 elif isinstance(lowerCamelCase__ , torch.Tensor ): UpperCamelCase__ : Dict = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCamelCase__ )}" ) if isinstance(lowerCamelCase__ , PIL.Image.Image ): UpperCamelCase__ : Any = preprocess(lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ : Tuple = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCamelCase__ : Any = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCamelCase__ : Union[str, Any] = next(self.unet.parameters() ).dtype UpperCamelCase__ : Any = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device , dtype=lowerCamelCase__ ) UpperCamelCase__ : Any = image.to(device=self.device , dtype=lowerCamelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) UpperCamelCase__ : str = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ : int = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase__ : Dict = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ : Optional[int] = {} if accepts_eta: UpperCamelCase__ : Union[str, Any] = eta for t in self.progress_bar(lowerCamelCase__ ): # concat latents and low resolution image in the channel dimension. UpperCamelCase__ : Any = torch.cat([latents, image] , dim=1 ) UpperCamelCase__ : List[str] = self.scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) # predict the noise residual UpperCamelCase__ : Dict = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ : Tuple = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample # decode the image latents with the VQVAE UpperCamelCase__ : Tuple = self.vqvae.decode(lowerCamelCase__ ).sample UpperCamelCase__ : Tuple = torch.clamp(lowerCamelCase__ , -1.0 , 1.0 ) UpperCamelCase__ : Any = image / 2 + 0.5 UpperCamelCase__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ : List[str] = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase__ )
51
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] ,A : List[str] ,A : Tuple=13 ,A : List[Any]=7 ,A : Optional[int]=True ,A : Tuple=True ,A : List[Any]=True ,A : Optional[int]=True ,A : str=99 ,A : Tuple=32 ,A : List[str]=5 ,A : Dict=4 ,A : int=37 ,A : Optional[int]="gelu" ,A : Optional[int]=0.1 ,A : Any=0.1 ,A : int=5_12 ,A : List[str]=16 ,A : List[str]=2 ,A : int=0.02 ,A : Union[str, Any]=4 ,): __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_attention_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_choices def UpperCamelCase_ ( self : Tuple ): __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = None if self.use_attention_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=A ,) return config, input_ids, attention_mask def UpperCamelCase_ ( self : Optional[int] ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self : int ): __A = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __A = model_class_name.from_pretrained("distilbert-base-uncased" ) __A = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : str ): __A = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __A = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __A = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __A = model(A ,attention_mask=A )[0] __A = (1, 11, 7_68) self.assertEqual(output.shape ,A ) __A = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,A ,atol=1E-4 ) )
15
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" __A = args.pruning_method __A = args.threshold __A = args.model_name_or_path.rstrip("/" ) __A = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) __A = torch.load(os.path.join(a_ , "pytorch_model.bin" ) ) __A = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __A = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: __A = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: __A = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": __A = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A = TopKBinarizer.apply(a_ , a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A = ThresholdBinarizer.apply(a_ , a_ , a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A , __A = -0.1, 1.1 __A = torch.sigmoid(a_ ) __A = s * (r - l) + l __A = s_bar.clamp(min=0.0 , max=1.0 ) __A = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: __A = os.path.join( os.path.dirname(a_ ) , F'''bertarized_{os.path.basename(a_ )}''' ) if not os.path.isdir(a_ ): shutil.copytree(a_ , a_ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(a_ , os.path.join(a_ , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) SCREAMING_SNAKE_CASE :str = parser.parse_args() main(args)
15
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = CpmAntTokenizer UpperCamelCase__ : Optional[Any] = False def _A ( self ): '''simple docstring''' super().setUp() __SCREAMING_SNAKE_CASE = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __SCREAMING_SNAKE_CASE = '今天天气真好!' __SCREAMING_SNAKE_CASE = ['今天', '天气', '真', '好', '!'] __SCREAMING_SNAKE_CASE = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE = '今天天气真好!' __SCREAMING_SNAKE_CASE = [tokenizer.bos_token] + tokens __SCREAMING_SNAKE_CASE = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A ) __SCREAMING_SNAKE_CASE = tokenizer.decode(_A ) self.assertEqual(_A , _A )
118
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Optional[int] =logging.get_logger(__name__) def __lowercase ( a__ , a__=False ) -> Tuple: __SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def __lowercase ( a__ , a__ , a__=False ) -> Tuple: for i in range(config.num_hidden_layers ): if base_model: __SCREAMING_SNAKE_CASE = '' else: __SCREAMING_SNAKE_CASE = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] __SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def __lowercase ( a__ , a__ , a__ ) -> str: __SCREAMING_SNAKE_CASE = dct.pop(a__ ) __SCREAMING_SNAKE_CASE = val def __lowercase ( ) -> List[Any]: __SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def __lowercase ( a__ , a__ ) -> Dict: __SCREAMING_SNAKE_CASE = DeiTConfig() # all deit models have fine-tuned heads __SCREAMING_SNAKE_CASE = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __SCREAMING_SNAKE_CASE = 10_00 __SCREAMING_SNAKE_CASE = 'huggingface/label-files' __SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json' __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) __SCREAMING_SNAKE_CASE = {int(a__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = int(deit_name[-6:-4] ) __SCREAMING_SNAKE_CASE = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): __SCREAMING_SNAKE_CASE = 1_92 __SCREAMING_SNAKE_CASE = 7_68 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 3 elif deit_name[9:].startswith('small' ): __SCREAMING_SNAKE_CASE = 3_84 __SCREAMING_SNAKE_CASE = 15_36 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): __SCREAMING_SNAKE_CASE = 10_24 __SCREAMING_SNAKE_CASE = 40_96 __SCREAMING_SNAKE_CASE = 24 __SCREAMING_SNAKE_CASE = 16 # load original model from timm __SCREAMING_SNAKE_CASE = timm.create_model(a__ , pretrained=a__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __SCREAMING_SNAKE_CASE = timm_model.state_dict() __SCREAMING_SNAKE_CASE = create_rename_keys(a__ , a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , a__ ) # load HuggingFace model __SCREAMING_SNAKE_CASE = DeiTForImageClassificationWithTeacher(a__ ).eval() model.load_state_dict(a__ ) # Check outputs on an image, prepared by DeiTImageProcessor __SCREAMING_SNAKE_CASE = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __SCREAMING_SNAKE_CASE = DeiTImageProcessor(size=a__ , crop_size=config.image_size ) __SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors='pt' ) __SCREAMING_SNAKE_CASE = encoding['pixel_values'] __SCREAMING_SNAKE_CASE = model(a__ ) __SCREAMING_SNAKE_CASE = timm_model(a__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a__ , outputs.logits , atol=1E-3 ) Path(a__ ).mkdir(exist_ok=a__ ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ : str =parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
118
1
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __A : Any = "\\n Text data.\n Second line of data." __A : str = "file" @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') _UpperCAmelCase = bytes(_SCREAMING_SNAKE_CASE , '''utf-8''' ) with zstd.open(_SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} _UpperCAmelCase = input_paths[compression_format] _UpperCAmelCase = tmp_path / '''cache''' _UpperCAmelCase = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ) as f: _UpperCAmelCase = f.read() with open(_SCREAMING_SNAKE_CASE ) as f: _UpperCAmelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = '''custom_cache''' _UpperCAmelCase = '''custom_extracted_dir''' _UpperCAmelCase = tmp_path / '''custom_extracted_path''' if default_extracted: _UpperCAmelCase = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _UpperCAmelCase = xz_file _UpperCAmelCase = ( DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = str(Path(_SCREAMING_SNAKE_CASE ).resolve() ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file # relative path _UpperCAmelCase = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) # relative path _UpperCAmelCase = '''./__missing_file__.txt''' with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = get_from_cache(f'tmp://{tmpfs_file}' ) with open(_SCREAMING_SNAKE_CASE ) as f: _UpperCAmelCase = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE ) def lowercase ( ): '''simple docstring''' with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_SCREAMING_SNAKE_CASE ): http_get('''https://huggingface.co''' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_get('''ftp://huggingface.co''' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_get('''s3://huggingface.co''' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_head('''s3://huggingface.co''' )
260
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __A : str = sys.version_info >= (3, 10) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = field(default="""toto""" , metadata={"""help""": """help message"""}) @dataclass class _a : """simple docstring""" UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """titi""" UpperCamelCase__ = """toto""" class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """titi""" UpperCamelCase__ = """toto""" UpperCamelCase__ = 42 @dataclass class _a : """simple docstring""" UpperCamelCase__ = "toto" def lowercase__ ( self : Tuple )->Optional[int]: _UpperCAmelCase = BasicEnum(self.foo ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = "toto" def lowercase__ ( self : List[str] )->List[Any]: _UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = None UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """help message"""}) UpperCamelCase__ = None UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[]) @dataclass class _a : """simple docstring""" UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[1, 2, 3]) UpperCamelCase__ = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) UpperCamelCase__ = list_field(default=[0.1, 0.2, 0.3]) @dataclass class _a : """simple docstring""" UpperCamelCase__ = field() UpperCamelCase__ = field() UpperCamelCase__ = field() def lowercase__ ( self : int )->str: _UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = field() UpperCamelCase__ = None UpperCamelCase__ = field(default="""toto""" , metadata={"""help""": """help message"""}) UpperCamelCase__ = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) if is_python_no_less_than_3_10: @dataclass class _a : """simple docstring""" UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None @dataclass class _a : """simple docstring""" UpperCamelCase__ = None UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """help message"""}) UpperCamelCase__ = None UpperCamelCase__ = list_field(default=[]) UpperCamelCase__ = list_field(default=[]) class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : int , __UpperCamelCase : argparse.ArgumentParser , __UpperCamelCase : argparse.ArgumentParser )->Dict: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _UpperCAmelCase = {k: v for k, v in vars(__UpperCamelCase ).items() if k != '''container'''} _UpperCAmelCase = {k: v for k, v in vars(__UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , __UpperCamelCase ) and yy.get('''choices''' , __UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](__UpperCamelCase ) , yy['''type'''](__UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : int )->str: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--bar''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--baz''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--flag''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((_UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(__UpperCamelCase , look_for_args_file=__UpperCamelCase ) self.assertFalse(example.flag ) def lowercase__ ( self : Dict )->List[Any]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=__UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=__UpperCamelCase , help='''help message''' ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Tuple )->List[str]: _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=__UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=__UpperCamelCase , default=__UpperCamelCase ) _UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCamelCase ) for dataclass_type in dataclass_types: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) ) def lowercase__ ( self : Optional[Any] )->str: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) _UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowercase__ ( self : List[str] )->List[str]: @dataclass class _a : """simple docstring""" UpperCamelCase__ = "toto" _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def lowercase__ ( self : int )->int: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=__UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=__UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual( __UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) _UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(__UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowercase__ ( self : Union[str, Any] )->Tuple: _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=__UpperCamelCase , type=__UpperCamelCase ) expected.add_argument('''--bar''' , default=__UpperCamelCase , type=__UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=__UpperCamelCase , type=__UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=__UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=__UpperCamelCase ) _UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCamelCase ) for dataclass_type in dataclass_types: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_args([] ) self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , bar=__UpperCamelCase , baz=__UpperCamelCase , ces=[] , des=[] ) ) _UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(__UpperCamelCase , Namespace(foo=1_2 , bar=3.1_4 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowercase__ ( self : Any )->int: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument('''--required_str''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__UpperCamelCase , ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : str )->List[Any]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__UpperCamelCase , required=__UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__UpperCamelCase , ) expected.add_argument('''--opt''' , type=__UpperCamelCase , default=__UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=__UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__UpperCamelCase ) self.argparsersEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->Optional[int]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } _UpperCAmelCase = parser.parse_dict(__UpperCamelCase )[0] _UpperCAmelCase = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(__UpperCamelCase , parser.parse_dict , __UpperCamelCase , allow_extra_keys=__UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->Optional[int]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(__UpperCamelCase , '''temp_json''' ) os.mkdir(__UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] _UpperCAmelCase = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) _UpperCAmelCase = { '''foo''': 1_2, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(__UpperCamelCase , '''temp_yaml''' ) os.mkdir(__UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] _UpperCAmelCase = BasicExample(**__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : int )->List[str]: _UpperCAmelCase = HfArgumentParser(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase )
260
1
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , **__lowerCamelCase ): '''simple docstring''' super().__init__(**__lowerCamelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' return super().__call__(__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase__( self , **__lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = {} if "candidate_labels" in kwargs: __A : Tuple = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __A : List[str] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase="This is a photo of {}." ): '''simple docstring''' __A : Optional[int] = load_image(__lowerCamelCase ) __A : Optional[int] = self.image_processor(images=[image] , return_tensors=self.framework ) __A : int = candidate_labels __A : int = [hypothesis_template.format(__lowerCamelCase ) for x in candidate_labels] __A : Dict = self.tokenizer(__lowerCamelCase , return_tensors=self.framework , padding=__lowerCamelCase ) __A : int = [text_inputs] return inputs def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = model_inputs.pop('''candidate_labels''' ) __A : str = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __lowerCamelCase ): __A : Union[str, Any] = text_inputs[0] else: # Batching case. __A : str = text_inputs[0][0] __A : List[str] = self.model(**__lowerCamelCase , **__lowerCamelCase ) __A : Dict = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = model_outputs.pop('''candidate_labels''' ) __A : int = model_outputs['''logits'''][0] if self.framework == "pt": __A : Union[str, Any] = logits.softmax(dim=-1 ).squeeze(-1 ) __A : Dict = probs.tolist() if not isinstance(__lowerCamelCase , __lowerCamelCase ): __A : List[Any] = [scores] elif self.framework == "tf": __A : List[Any] = stable_softmax(__lowerCamelCase , axis=-1 ) __A : str = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) __A : str = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__lowerCamelCase , __lowerCamelCase ) , key=lambda __lowerCamelCase : -x[0] ) ] return result
362
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCamelCase ( ) -> Any: '''simple docstring''' UpperCamelCase__ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=__A ) UpperCamelCase__ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=__A ) env_command_parser(subparsers=__A ) launch_command_parser(subparsers=__A ) tpu_command_parser(subparsers=__A ) test_command_parser(subparsers=__A ) # Let's go UpperCamelCase__ = parser.parse_args() if not hasattr(__A , "func" ): parser.print_help() exit(1 ) # Run args.func(__A ) if __name__ == "__main__": main()
80
'''simple docstring''' from math import factorial, pi def _UpperCamelCase ( __A , __A = 30 ) -> float: '''simple docstring''' if not isinstance(__A , (int, float) ): raise ValueError("maclaurin_sin() requires either an int or float for theta" ) if not isinstance(__A , __A ) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy" ) UpperCamelCase__ = float(__A ) UpperCamelCase__ = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__A ) ) def _UpperCamelCase ( __A , __A = 30 ) -> float: '''simple docstring''' if not isinstance(__A , (int, float) ): raise ValueError("maclaurin_cos() requires either an int or float for theta" ) if not isinstance(__A , __A ) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy" ) UpperCamelCase__ = float(__A ) UpperCamelCase__ = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
80
1
import warnings from .generation import TFGenerationMixin class lowerCAmelCase ( lowercase_ ): # warning at import time warnings.warn( 'Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ' 'be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.' , lowercase_ , )
201
import math def _A ( __magic_name__ ): lowercase__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__magic_name__ ) def _A ( __magic_name__ = 1 / 1_2345 ): lowercase__ = 0 lowercase__ = 0 lowercase__ = 3 while True: lowercase__ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__magic_name__ ): lowercase__ = int(__magic_name__ ) total_partitions += 1 if check_partition_perfect(__magic_name__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__magic_name__ ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
201
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): snake_case_ : Optional[Any] = "pt" elif is_tf_available(): snake_case_ : Union[str, Any] = "tf" else: snake_case_ : str = "jax" class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[Any] = ByTaTokenizer UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[int]): """simple docstring""" super().setUp() UpperCAmelCase_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def lowerCamelCase ( self : Tuple): """simple docstring""" return ByTaTokenizer.from_pretrained('''google/byt5-small''') def lowerCamelCase ( self : List[str] , **_snake_case : Union[str, Any]): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Dict , _snake_case : int , _snake_case : Tuple=False , _snake_case : Dict=20 , _snake_case : Optional[Any]=5): """simple docstring""" UpperCAmelCase_ = [] for i in range(len(_snake_case)): try: UpperCAmelCase_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_snake_case) except UnicodeDecodeError: pass toks.append((i, tok)) UpperCAmelCase_ = list(filter(lambda _snake_case: re.match(r'''^[ a-zA-Z]+$''' , t[1]) , _snake_case)) UpperCAmelCase_ = list(filter(lambda _snake_case: [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_snake_case) , _snake_case)) if max_length is not None and len(_snake_case) > max_length: UpperCAmelCase_ = toks[:max_length] if min_length is not None and len(_snake_case) < min_length and len(_snake_case) > 0: while len(_snake_case) < min_length: UpperCAmelCase_ = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase_ = [t[0] for t in toks] # Ensure consistency UpperCAmelCase_ = tokenizer.decode(_snake_case , clean_up_tokenization_spaces=_snake_case) if " " not in output_txt and len(_snake_case) > 1: UpperCAmelCase_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_snake_case) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_snake_case) ) if with_prefix_space: UpperCAmelCase_ = ''' ''' + output_txt UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) return output_txt, output_ids def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>''']) UpperCAmelCase_ = tokenizer(['''hi''', '''I went to the gym''', '''''']) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids''']) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = '''Unicode €.''' UpperCAmelCase_ = tokenizer(_snake_case) UpperCAmelCase_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _snake_case) # decoding UpperCAmelCase_ = tokenizer.decode(_snake_case) self.assertEqual(_snake_case , '''Unicode €.</s>''') UpperCAmelCase_ = tokenizer('''e è é ê ë''') UpperCAmelCase_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _snake_case) # decoding UpperCAmelCase_ = tokenizer.decode(_snake_case) self.assertEqual(_snake_case , '''e è é ê ë</s>''') # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''')) , '''e è é ê ë</s>''') def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off UpperCAmelCase_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on UpperCAmelCase_ = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case) self.assertIsInstance(_snake_case , _snake_case) if FRAMEWORK != "jax": UpperCAmelCase_ = list(batch.input_ids.numpy()[0]) else: UpperCAmelCase_ = list(batch.input_ids.tolist()[0]) self.assertListEqual(_snake_case , _snake_case) self.assertEqual((2, 37) , batch.input_ids.shape) self.assertEqual((2, 37) , batch.attention_mask.shape) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase_ = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _snake_case) self.assertIn('''attention_mask''' , _snake_case) self.assertNotIn('''decoder_input_ids''' , _snake_case) self.assertNotIn('''decoder_attention_mask''' , _snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = [ '''Summary of the text.''', '''Another summary.''', ] UpperCAmelCase_ = tokenizer( text_target=_snake_case , max_length=32 , padding='''max_length''' , truncation=_snake_case , return_tensors=_snake_case) self.assertEqual(32 , targets['''input_ids'''].shape[1]) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = ['''A long paragraph for summarization. </s>'''] UpperCAmelCase_ = ['''Summary of the text. </s>'''] # fmt: off UpperCAmelCase_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] UpperCAmelCase_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on UpperCAmelCase_ = tokenizer(_snake_case , text_target=_snake_case) self.assertEqual(_snake_case , batch['''input_ids'''][0]) self.assertEqual(_snake_case , batch['''labels'''][0]) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): self.assertNotEqual(tokenizer.model_max_length , 42) # Now let's start the test UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = ''' He is very happy, UNwant\u00E9d,running''' UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(_snake_case) UpperCAmelCase_ = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case) self.assertListEqual(_snake_case , _snake_case) shutil.rmtree(_snake_case) UpperCAmelCase_ = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam''']) UpperCAmelCase_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''') tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens}) UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(_snake_case) UpperCAmelCase_ = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case) self.assertListEqual(_snake_case , _snake_case) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length , 42) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(_snake_case , model_max_length=43) self.assertEqual(tokenizer.model_max_length , 43) shutil.rmtree(_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_snake_case) with open(os.path.join(_snake_case , '''special_tokens_map.json''') , encoding='''utf-8''') as json_file: UpperCAmelCase_ = json.load(_snake_case) with open(os.path.join(_snake_case , '''tokenizer_config.json''') , encoding='''utf-8''') as json_file: UpperCAmelCase_ = json.load(_snake_case) UpperCAmelCase_ = [F"""<extra_id_{i}>""" for i in range(125)] UpperCAmelCase_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] UpperCAmelCase_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_snake_case , '''special_tokens_map.json''') , '''w''' , encoding='''utf-8''') as outfile: json.dump(_snake_case , _snake_case) with open(os.path.join(_snake_case , '''tokenizer_config.json''') , '''w''' , encoding='''utf-8''') as outfile: json.dump(_snake_case , _snake_case) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ = tokenizer_class.from_pretrained( _snake_case , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''])) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_snake_case)] UpperCAmelCase_ = tokenizer_class.from_pretrained( _snake_case , additional_special_tokens=_snake_case , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''])) , ) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_snake_case) UpperCAmelCase_ = tokenizer_class.from_pretrained(_snake_case) self.assertTrue(tokenizer.decode([255]) == '''''') def lowerCamelCase ( self : int): """simple docstring""" pass def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Dict): """simple docstring""" pass def lowerCamelCase ( self : List[Any]): """simple docstring""" pass def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.get_tokenizers(fast=_snake_case , do_lower_case=_snake_case) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): UpperCAmelCase_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertIsInstance(_snake_case , _snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): UpperCAmelCase_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] UpperCAmelCase_ = 0 UpperCAmelCase_ = tokenizer.convert_ids_to_tokens( _snake_case , skip_special_tokens=_snake_case) for attr in attributes_list: setattr(_snake_case , attr + '''_id''' , _snake_case) self.assertEqual(getattr(_snake_case , _snake_case) , _snake_case) self.assertEqual(getattr(_snake_case , attr + '''_id''') , _snake_case) setattr(_snake_case , attr + '''_id''' , _snake_case) self.assertEqual(getattr(_snake_case , _snake_case) , _snake_case) self.assertEqual(getattr(_snake_case , attr + '''_id''') , _snake_case) setattr(_snake_case , '''additional_special_tokens_ids''' , []) self.assertListEqual(getattr(_snake_case , '''additional_special_tokens''') , []) self.assertListEqual(getattr(_snake_case , '''additional_special_tokens_ids''') , []) setattr(_snake_case , '''additional_special_tokens_ids''' , [token_id_to_test_setters]) self.assertListEqual(getattr(_snake_case , '''additional_special_tokens''') , [token_to_test_setters]) self.assertListEqual(getattr(_snake_case , '''additional_special_tokens_ids''') , [token_id_to_test_setters])
51
0
from functools import lru_cache def lowerCAmelCase_( lowercase_ : int ) -> set: _lowerCamelCase = 2 _lowerCamelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(lowercase_ ) if n > 1: factors.add(lowercase_ ) return factors @lru_cache def lowerCAmelCase_( lowercase_ : int ) -> int: return len(unique_prime_factors(lowercase_ ) ) def lowerCAmelCase_( lowercase_ : list ) -> bool: return len(set(lowercase_ ) ) in (0, 1) def lowerCAmelCase_( lowercase_ : int ) -> list: _lowerCamelCase = 2 while True: # Increment each value of a generated range _lowerCamelCase = [base + i for i in range(lowercase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. _lowerCamelCase = [upf_len(lowercase_ ) for x in group] checker.append(lowercase_ ) # If all numbers in the list are equal, return the group variable. if equality(lowercase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_( lowercase_ : int = 4 ) -> int: _lowerCamelCase = run(lowercase_ ) return results[0] if len(lowercase_ ) else None if __name__ == "__main__": print(solution())
364
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCAmelCase_( lowercase_ : List[str]="" ) -> str: _lowerCamelCase = tempfile.mkdtemp() return os.path.join(lowercase_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _lowerCamelCase = AgentAudio(lowerCamelCase__ ) _lowerCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCamelCase__ ) ) # Ensure that the file contains the same value as the original tensor _lowerCamelCase , _lowerCamelCase = sf.read(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , torch.tensor(lowerCamelCase__ ) , atol=1e-4 ) ) def snake_case__ ( self ): _lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _lowerCamelCase = get_new_path(suffix='''.wav''' ) sf.write(lowerCamelCase__ , lowerCamelCase__ , 1_6_0_0_0 ) _lowerCamelCase = AgentAudio(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , lowerCamelCase__ ) @require_vision @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) _lowerCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _lowerCamelCase = Image.open(lowerCamelCase__ ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _lowerCamelCase = Image.open(lowerCamelCase__ ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = '''Hey!''' _lowerCamelCase = AgentText(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , agent_type.to_string() ) self.assertEqual(lowerCamelCase__ , agent_type.to_raw() ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
73
0
A : int = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
118
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A : Any = logging.getLogger(__name__) def a__ ( __UpperCamelCase , __UpperCamelCase ): return (preds == labels).mean() @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) lowerCamelCase__ = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) lowerCamelCase__ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def a__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , __UpperCamelCase ) # Set seed set_seed(training_args.seed ) try: SCREAMING_SNAKE_CASE_ = processors[data_args.task_name]() SCREAMING_SNAKE_CASE_ = processor.get_labels() SCREAMING_SNAKE_CASE_ = len(__UpperCamelCase ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCamelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets SCREAMING_SNAKE_CASE_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__UpperCamelCase ) -> Dict: SCREAMING_SNAKE_CASE_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__UpperCamelCase , p.label_ids )} # Data collator SCREAMING_SNAKE_CASE_ = DataCollatorWithPadding(__UpperCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer SCREAMING_SNAKE_CASE_ = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=__UpperCamelCase , eval_dataset=__UpperCamelCase , compute_metrics=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE_ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() SCREAMING_SNAKE_CASE_ = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(__UpperCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , __UpperCamelCase , __UpperCamelCase ) writer.write("%s = %s\n" % (key, value) ) results.update(__UpperCamelCase ) return results def a__ ( __UpperCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
118
1
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. snake_case__ : Optional[Any] = 10 def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[int] , lowerCamelCase_ : int ): """simple docstring""" for i in range(__a , __a ): if array[i] == target: return i return -1 def _lowerCamelCase ( lowerCamelCase_ : list[int] , lowerCamelCase_ : int ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : List[Any] = len(__a ) while left <= right: if right - left < precision: return lin_search(__a , __a , __a , __a ) UpperCAmelCase_ : Tuple = (left + right) // 3 + 1 UpperCAmelCase_ : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase_ : Optional[int] = one_third - 1 elif array[two_third] < target: UpperCAmelCase_ : Tuple = two_third + 1 else: UpperCAmelCase_ : Optional[Any] = one_third + 1 UpperCAmelCase_ : Any = two_third - 1 else: return -1 def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[int] , lowerCamelCase_ : int ): """simple docstring""" if left < right: if right - left < precision: return lin_search(__a , __a , __a , __a ) UpperCAmelCase_ : List[str] = (left + right) // 3 + 1 UpperCAmelCase_ : int = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__a , one_third - 1 , __a , __a ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __a , __a , __a ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __a , __a ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : Union[str, Any] = input('''Enter numbers separated by comma:\n''').strip() snake_case__ : List[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." snake_case__ : List[str] = int(input('''Enter the number to be found in the list:\n''').strip()) snake_case__ : List[str] = ite_ternary_search(collection, target) snake_case__ : Tuple = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
355
'''simple docstring''' from manim import * class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Dict = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase_ : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase_ : List[str] = Rectangle(height=0.25 , width=0.25 ) UpperCAmelCase_ : Any = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Union[str, Any] = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Optional[int] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCAmelCase_ : Any = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCAmelCase_ : str = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCAmelCase_ : Any = Text('CPU' , font_size=2_4 ) UpperCAmelCase_ : Tuple = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCAmelCase_ : str = [mem.copy() for i in range(4 )] UpperCAmelCase_ : Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCAmelCase_ : List[str] = Text('GPU' , font_size=2_4 ) UpperCAmelCase_ : Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.move_to([-1, -1, 0] ) self.add(snake_case_ ) UpperCAmelCase_ : str = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCAmelCase_ : str = Text('Model' , font_size=2_4 ) UpperCAmelCase_ : Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.add(snake_case_ ) UpperCAmelCase_ : str = [] UpperCAmelCase_ : Optional[Any] = [] for i, rect in enumerate(snake_case_ ): UpperCAmelCase_ : str = fill.copy().set_fill(snake_case_ , opacity=0.8 ) target.move_to(snake_case_ ) model_arr.append(snake_case_ ) UpperCAmelCase_ : int = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(snake_case_ ) self.add(*snake_case_ , *snake_case_ ) UpperCAmelCase_ : List[Any] = [meta_mem.copy() for i in range(6 )] UpperCAmelCase_ : List[str] = [meta_mem.copy() for i in range(6 )] UpperCAmelCase_ : Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCAmelCase_ : Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCAmelCase_ : Optional[Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCAmelCase_ : Tuple = Text('Disk' , font_size=2_4 ) UpperCAmelCase_ : Union[str, Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) disk.move_to([-4, -1.25, 0] ) self.add(snake_case_ , snake_case_ ) UpperCAmelCase_ : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase_ : Any = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(snake_case_ , snake_case_ ) UpperCAmelCase_ : Dict = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=1_8 , ) blue_text.next_to(snake_case_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(snake_case_ ) UpperCAmelCase_ : Optional[Any] = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ ) ) UpperCAmelCase_ : Tuple = Square(0.3 ) input.set_fill(snake_case_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , snake_case_ , buff=0.5 ) self.play(Write(snake_case_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=snake_case_ , buff=0.02 ) self.play(MoveToTarget(snake_case_ ) ) self.play(FadeOut(snake_case_ ) ) UpperCAmelCase_ : Any = Arrow(start=snake_case_ , end=snake_case_ , color=snake_case_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , snake_case_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) UpperCAmelCase_ : List[str] = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=3 ) ) UpperCAmelCase_ : List[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(snake_case_ ) , Circumscribe(model_arr[0] , color=snake_case_ , **snake_case_ ) , Circumscribe(model_cpu_arr[0] , color=snake_case_ , **snake_case_ ) , Circumscribe(gpu_rect[0] , color=snake_case_ , **snake_case_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) UpperCAmelCase_ : Union[str, Any] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , snake_case_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) UpperCAmelCase_ : Tuple = AnimationGroup( FadeOut(snake_case_ , run_time=0.5 ) , MoveToTarget(snake_case_ , run_time=0.5 ) , FadeIn(snake_case_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(snake_case_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: UpperCAmelCase_ : Any = 0.7 self.play( Circumscribe(model_arr[i] , **snake_case_ ) , Circumscribe(cpu_left_col_base[i] , **snake_case_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=snake_case_ , **snake_case_ ) , Circumscribe(gpu_rect[0] , color=snake_case_ , **snake_case_ ) , Circumscribe(model_arr[i + 1] , color=snake_case_ , **snake_case_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=snake_case_ , **snake_case_ ) , Circumscribe(cpu_left_col_base[-1] , color=snake_case_ , **snake_case_ ) , Circumscribe(gpu_rect[0] , color=snake_case_ , **snake_case_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) UpperCAmelCase_ : Any = a_c UpperCAmelCase_ : int = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(snake_case_ ) , FadeOut(snake_case_ , run_time=0.5 ) , ) UpperCAmelCase_ : Optional[Any] = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=3 ) , MoveToTarget(snake_case_ ) ) self.wait()
274
0
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration lowerCAmelCase = pytest.mark.integration lowerCAmelCase = {"""comet"""} lowerCAmelCase = importlib.util.find_spec('fairseq') is not None lowerCAmelCase = {"""code_eval"""} lowerCAmelCase = os.name == """nt""" lowerCAmelCase = {"""bertscore""", """frugalscore""", """perplexity"""} lowerCAmelCase = importlib.util.find_spec('transformers') is not None def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" @wraps(snake_case__ ) def wrapper(self , SCREAMING_SNAKE_CASE ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''\"test requires Fairseq\"''' ) else: test_case(self , snake_case__ ) return wrapper def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" @wraps(snake_case__ ) def wrapper(self , SCREAMING_SNAKE_CASE ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''\"test requires transformers\"''' ) else: test_case(self , snake_case__ ) return wrapper def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" @wraps(snake_case__ ) def wrapper(self , SCREAMING_SNAKE_CASE ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''\"test not supported on Windows\"''' ) else: test_case(self , snake_case__ ) return wrapper def _a ( ): """simple docstring""" lowercase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @local class _a ( parameterized.TestCase ): _lowercase : int = {} _lowercase : int = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = '''[...]''' lowercase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , _a ) ).module_path ) lowercase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=_a ) # check parameters lowercase__ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_a , metric_module.__name__ ): with self.use_local_metrics(): try: lowercase__ = doctest.testmod(_a , verbose=_a , raise_on_error=_a ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = '''[...]''' lowercase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , _a ) ).module_path ) # run doctest with self.use_local_metrics(): lowercase__ = doctest.testmod(_a , verbose=_a , raise_on_error=_a ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] ) -> Optional[int]: """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_a ): yield else: yield @contextmanager def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" def load_local_metric(UpperCamelCase_: int , *UpperCamelCase_: Dict , **UpperCamelCase_: Tuple ): return load_metric(os.path.join('''metrics''' , _a ) , *_a , **_a ) with patch('''datasets.load_metric''' ) as mock_load_metric: lowercase__ = load_local_metric yield @classmethod def lowerCamelCase_ ( cls: Union[str, Any] , UpperCamelCase_: str ) -> int: """simple docstring""" def wrapper(UpperCamelCase_: Optional[Any] ): lowercase__ = contextmanager(_a ) lowercase__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class _a ( UpperCAmelCase__ ): def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Any] ) -> Optional[int]: """simple docstring""" assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: lowercase__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" import torch def bert_cos_score_idf(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: lowercase__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def load_from_checkpoint(SCREAMING_SNAKE_CASE ): class _a : def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: List[Any] , **UpperCamelCase_: int ) -> Union[str, Any]: """simple docstring""" assert len(_a ) == 2 lowercase__ = [0.19, 0.92] return scores, sum(_a ) / len(_a ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: lowercase__ = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: lowercase__ = load_from_checkpoint yield def _a ( ): """simple docstring""" lowercase__ = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) lowercase__ = '''ERROR''' lowercase__ = f'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(snake_case__ , match=re.escape(snake_case__ ) ): metric.compute(predictions=[] , references=[] , scheme=snake_case__ )
110
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase : Any = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ lowerCAmelCase : Any = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ lowerCAmelCase : Any = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def _lowerCAmelCase ( self , _a , _a , _a=None , _a=1 , _a="binary" , _a=None , _a="warn" , ): """simple docstring""" lowerCamelCase = recall_score( _a , _a , labels=_a , pos_label=_a , average=_a , sample_weight=_a , zero_division=_a , ) return {"recall": float(_a ) if score.size == 1 else score}
291
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Any = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""sentencepiece"""] )
184
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : Optional[Union[str, Path]] = None __lowercase : bool = False __lowercase : bool = False __lowercase : bool = False __lowercase : Optional[Dict] = None __lowercase : Optional[str] = None __lowercase : bool = False __lowercase : bool = False __lowercase : bool = False __lowercase : bool = True __lowercase : Optional[int] = None __lowercase : int = 1 __lowercase : Optional[Union[str, bool]] = None __lowercase : bool = False __lowercase : Optional[Dict] = None __lowercase : Optional[str] = None def UpperCAmelCase_ ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
184
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Optional[int] = "data2vec-audio" def __init__( self, __magic_name__=32, __magic_name__=768, __magic_name__=12, __magic_name__=12, __magic_name__=3072, __magic_name__="gelu", __magic_name__=0.1, __magic_name__=0.1, __magic_name__=0.1, __magic_name__=0.0, __magic_name__=0.1, __magic_name__=0.1, __magic_name__=0.02, __magic_name__=1E-5, __magic_name__="gelu", __magic_name__=(512, 512, 512, 512, 512, 512, 512), __magic_name__=(5, 2, 2, 2, 2, 2, 2), __magic_name__=(10, 3, 3, 3, 3, 2, 2), __magic_name__=False, __magic_name__=16, __magic_name__=19, __magic_name__=5, __magic_name__=0.05, __magic_name__=10, __magic_name__=2, __magic_name__=0.0, __magic_name__=10, __magic_name__=0, __magic_name__="sum", __magic_name__=False, __magic_name__=False, __magic_name__=256, __magic_name__=(512, 512, 512, 512, 1500), __magic_name__=(5, 3, 3, 1, 1), __magic_name__=(1, 2, 3, 1, 1), __magic_name__=512, __magic_name__=0, __magic_name__=1, __magic_name__=2, __magic_name__=False, __magic_name__=3, __magic_name__=2, __magic_name__=3, __magic_name__=None, **__magic_name__, ) -> List[str]: """simple docstring""" super().__init__(**__magic_name__, pad_token_id=__magic_name__, bos_token_id=__magic_name__, eos_token_id=__magic_name__ ) UpperCamelCase__ : Union[str, Any] = hidden_size UpperCamelCase__ : Optional[Any] = feat_extract_activation UpperCamelCase__ : int = list(__magic_name__ ) UpperCamelCase__ : Optional[Any] = list(__magic_name__ ) UpperCamelCase__ : str = list(__magic_name__ ) UpperCamelCase__ : Optional[int] = conv_bias UpperCamelCase__ : List[str] = num_conv_pos_embeddings UpperCamelCase__ : Optional[Any] = num_conv_pos_embedding_groups UpperCamelCase__ : Tuple = conv_pos_kernel_size UpperCamelCase__ : Union[str, Any] = len(self.conv_dim ) UpperCamelCase__ : Optional[Any] = num_hidden_layers UpperCamelCase__ : Any = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : int = num_attention_heads UpperCamelCase__ : List[str] = hidden_dropout UpperCamelCase__ : Optional[Any] = attention_dropout UpperCamelCase__ : List[Any] = activation_dropout UpperCamelCase__ : Optional[Any] = feat_proj_dropout UpperCamelCase__ : Tuple = final_dropout UpperCamelCase__ : Any = layerdrop UpperCamelCase__ : Optional[int] = layer_norm_eps UpperCamelCase__ : Optional[int] = initializer_range UpperCamelCase__ : Union[str, Any] = vocab_size UpperCamelCase__ : Optional[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ : Optional[int] = mask_time_prob UpperCamelCase__ : Optional[int] = mask_time_length UpperCamelCase__ : Tuple = mask_time_min_masks UpperCamelCase__ : Any = mask_feature_prob UpperCamelCase__ : List[Any] = mask_feature_length UpperCamelCase__ : List[Any] = mask_feature_min_masks # ctc loss UpperCamelCase__ : Optional[Any] = ctc_loss_reduction UpperCamelCase__ : List[Any] = ctc_zero_infinity # adapter UpperCamelCase__ : Any = add_adapter UpperCamelCase__ : Dict = adapter_kernel_size UpperCamelCase__ : List[Any] = adapter_stride UpperCamelCase__ : Any = num_adapter_layers UpperCamelCase__ : List[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ : int = list(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = list(__magic_name__ ) UpperCamelCase__ : List[str] = list(__magic_name__ ) UpperCamelCase__ : List[str] = xvector_output_dim @property def UpperCamelCase__ ( self ) -> int: """simple docstring""" return math.prod(self.conv_stride )
201
class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ = "", __magic_name__ = False ) -> None: """simple docstring""" # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : Optional[Any] = is_leaf UpperCamelCase__ : List[str] = prefix def UpperCamelCase__ ( self, __magic_name__ ) -> tuple[str, str, str]: """simple docstring""" UpperCamelCase__ : Dict = 0 for q, w in zip(self.prefix, __magic_name__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" for word in words: self.insert(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Tuple = RadixNode(prefix=__magic_name__, is_leaf=__magic_name__ ) else: UpperCamelCase__ : Any = self.nodes[word[0]] UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = incoming_node.match( __magic_name__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__magic_name__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : Tuple = self.nodes[matching_string[0]] UpperCamelCase__ : List[Any] = RadixNode(__magic_name__, __magic_name__ ) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : Any = True else: self.nodes[matching_string[0]].insert(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> bool: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0], __magic_name__ ) if not incoming_node: return False else: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Dict = incoming_node.match( __magic_name__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> bool: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0], __magic_name__ ) if not incoming_node: return False else: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = incoming_node.match( __magic_name__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__magic_name__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: UpperCamelCase__ : Optional[Any] = list(self.nodes.values() )[0] UpperCamelCase__ : Union[str, Any] = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : int = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: UpperCamelCase__ : Any = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : Union[str, Any] = list(incoming_node.nodes.values() )[0] UpperCamelCase__ : List[str] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : int = merging_node.nodes return True def UpperCamelCase__ ( self, __magic_name__ = 0 ) -> None: """simple docstring""" if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowerCAmelCase_ ( ) -> bool: UpperCamelCase__ : Optional[int] = '''banana bananas bandana band apple all beast'''.split() UpperCamelCase__ : Optional[int] = RadixNode() root.insert_many(__UpperCAmelCase ) assert all(root.find(__UpperCAmelCase ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowerCAmelCase_ ( ) -> None: assert test_trie() def lowerCAmelCase_ ( ) -> None: UpperCamelCase__ : int = RadixNode() UpperCamelCase__ : Any = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(__UpperCAmelCase ) print('''Words:''' , __UpperCAmelCase ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
201
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase ( __a , __a ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """swin""" __SCREAMING_SNAKE_CASE = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__(self , __a=224 , __a=4 , __a=3 , __a=96 , __a=[2, 2, 6, 2] , __a=[3, 6, 12, 24] , __a=7 , __a=4.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=0.02 , __a=1E-5 , __a=32 , __a=None , __a=None , **__a , ) -> Any: """simple docstring""" super().__init__(**UpperCamelCase__ ) UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = len(UpperCamelCase__ ) UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase__ = int(embed_dim * 2 ** (len(UpperCamelCase__ ) - 1) ) UpperCAmelCase__ = ['stem'] + [F"stage{idx}" for idx in range(1 , len(UpperCamelCase__ ) + 1 )] UpperCAmelCase__ , UpperCAmelCase__ = get_aligned_output_features_output_indices( out_features=UpperCamelCase__ , out_indices=UpperCamelCase__ , stage_names=self.stage_names ) class lowercase ( __a ): '''simple docstring''' __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase__ (self ) -> float: """simple docstring""" return 1E-4
369
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
0
from functools import lru_cache def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> set: _snake_case : Optional[int] = 2 _snake_case : Union[str, Any] = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(lowerCamelCase__ ) if n > 1: factors.add(lowerCamelCase__ ) return factors @lru_cache def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return len(unique_prime_factors(lowerCamelCase__ ) ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] ) -> bool: return len(set(lowerCamelCase__ ) ) in (0, 1) def lowercase ( SCREAMING_SNAKE_CASE__ : Dict ) -> list: _snake_case : Tuple = 2 while True: # Increment each value of a generated range _snake_case : int = [base + i for i in range(lowerCamelCase__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. _snake_case : int = [upf_len(lowerCamelCase__ ) for x in group] checker.append(lowerCamelCase__ ) # If all numbers in the list are equal, return the group variable. if equality(lowerCamelCase__ ): return group # Increment our base variable by 1 base += 1 def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] = 4 ) -> int: _snake_case : int = run(lowerCamelCase__ ) return results[0] if len(lowerCamelCase__ ) else None if __name__ == "__main__": print(solution())
317
import qiskit def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> qiskit.result.counts.Counts: __lowerCamelCase : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register __lowerCamelCase : List[str] = qiskit.QuantumCircuit(lowerCamelCase__ , lowerCamelCase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __lowerCamelCase : List[Any] = qiskit.execute(lowerCamelCase__ , lowerCamelCase__ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCamelCase__ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
73
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCAmelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Dict = StableDiffusionLatentUpscalePipeline _lowercase: Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } _lowercase: Any = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} _lowercase: Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase: Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowercase: Optional[int] = frozenset([] ) _lowercase: Optional[Any] = True @property def lowercase__ ( self : Optional[int] ) -> Optional[Any]: _lowerCAmelCase = 1 _lowerCAmelCase = 4 _lowerCAmelCase = (16, 16) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__snake_case ) return image def lowercase__ ( self : str ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=__snake_case , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) , in_channels=8 , mid_block_type=__snake_case , only_cross_attention=__snake_case , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) _lowerCAmelCase = EulerDiscreteScheduler(prediction_type="""sample""" ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""quick_gelu""" , projection_dim=5_12 , ) _lowerCAmelCase = CLIPTextModel(__snake_case ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase = { """unet""": model.eval(), """vae""": vae.eval(), """scheduler""": scheduler, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowercase__ ( self : Tuple , __snake_case : Optional[int] , __snake_case : List[str]=0 ) -> List[Any]: if str(__snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(__snake_case ) else: _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": self.dummy_image.cpu(), """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowercase__ ( self : List[str] ) -> List[Any]: _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = pipe(**__snake_case ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) _lowerCAmelCase = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1E-3 ) def lowercase__ ( self : str ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def lowercase__ ( self : List[Any] ) -> str: super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowercase__ ( self : int ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def lowercase__ ( self : Tuple ) -> Any: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def lowercase__ ( self : List[str] ) -> str: super().test_save_load_local(expected_max_difference=3E-3 ) def lowercase__ ( self : List[str] ) -> Any: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowercase__ ( self : Optional[int] ) -> str: _lowerCAmelCase = [ """DDIMScheduler""", """DDPMScheduler""", """PNDMScheduler""", """HeunDiscreteScheduler""", """EulerAncestralDiscreteScheduler""", """KDPM2DiscreteScheduler""", """KDPM2AncestralDiscreteScheduler""", """DPMSolverSDEScheduler""", ] _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = 2 _lowerCAmelCase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _lowerCAmelCase = getattr(__snake_case , scheduler_enum.name ) _lowerCAmelCase = scheduler_cls.from_config(pipe.scheduler.config ) _lowerCAmelCase = pipe(**__snake_case )[0] outputs.append(__snake_case ) assert check_same_shape(__snake_case ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Optional[int]: _lowerCAmelCase = torch.manual_seed(33 ) _lowerCAmelCase = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) _lowerCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) _lowerCAmelCase = """a photo of an astronaut high resolution, unreal engine, ultra realistic""" _lowerCAmelCase = pipe(__snake_case , generator=__snake_case , output_type="""latent""" ).images _lowerCAmelCase = upscaler( prompt=__snake_case , image=__snake_case , num_inference_steps=20 , guidance_scale=0 , generator=__snake_case , output_type="""np""" , ).images[0] _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def lowercase__ ( self : Optional[int] ) -> List[Any]: _lowerCAmelCase = torch.manual_seed(33 ) _lowerCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) _lowerCAmelCase = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas""" _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) _lowerCAmelCase = upscaler( prompt=__snake_case , image=__snake_case , num_inference_steps=20 , guidance_scale=0 , generator=__snake_case , output_type="""np""" , ).images[0] _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-2
220
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" def get_masked_lm_array(lowerCAmelCase ): _lowerCAmelCase = f"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_array(lowerCAmelCase ): _lowerCAmelCase = f"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_layer_array(lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_attention_layer_array(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = array.reshape(lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) print(f"Loading model based on config from {config_path}..." ) _lowerCAmelCase = BertConfig.from_json_file(lowerCAmelCase ) _lowerCAmelCase = BertForMaskedLM(lowerCAmelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _lowerCAmelCase = model.bert.encoder.layer[layer_index] # Self-attention _lowerCAmelCase = layer.attention.self _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_query_dense/kernel""" , self_attn.query.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_query_dense/bias""" , self_attn.query.bias.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_key_dense/kernel""" , self_attn.key.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_key_dense/bias""" , self_attn.key.bias.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_value_dense/kernel""" , self_attn.value.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_value_dense/bias""" , self_attn.value.bias.data.shape ) # Self-attention Output _lowerCAmelCase = layer.attention.output _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_output_dense/kernel""" , self_output.dense.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_output_dense/bias""" , self_output.dense.bias.data.shape ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_attention_layer_norm/gamma""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_attention_layer_norm/beta""" ) # Intermediate _lowerCAmelCase = layer.intermediate _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_intermediate_dense/kernel""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_intermediate_dense/bias""" ) # Output _lowerCAmelCase = layer.output _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_dense/kernel""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_dense/bias""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_layer_norm/gamma""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_layer_norm/beta""" ) # Embeddings _lowerCAmelCase = get_encoder_array("""_position_embedding_layer/embeddings""" ) _lowerCAmelCase = get_encoder_array("""_type_embedding_layer/embeddings""" ) _lowerCAmelCase = get_encoder_array("""_embedding_norm_layer/gamma""" ) _lowerCAmelCase = get_encoder_array("""_embedding_norm_layer/beta""" ) # LM Head _lowerCAmelCase = model.cls.predictions.transform _lowerCAmelCase = get_masked_lm_array("""dense/kernel""" ) _lowerCAmelCase = get_masked_lm_array("""dense/bias""" ) _lowerCAmelCase = get_masked_lm_array("""layer_norm/gamma""" ) _lowerCAmelCase = get_masked_lm_array("""layer_norm/beta""" ) _lowerCAmelCase = get_masked_lm_array("""embedding_table""" ) # Pooling _lowerCAmelCase = BertPooler(config=lowerCAmelCase ) _lowerCAmelCase = get_encoder_array("""_pooler_layer/kernel""" ) _lowerCAmelCase = get_encoder_array("""_pooler_layer/bias""" ) # Export final model model.save_pretrained(lowerCAmelCase ) # Integration test - should load without any errors ;) _lowerCAmelCase = BertForMaskedLM.from_pretrained(lowerCAmelCase ) print(new_model.eval() ) print("""Model conversion was done sucessfully!""" ) if __name__ == "__main__": A__ : str =argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) A__ : Dict =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
220
1
def __lowerCamelCase ( __a :int = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" A__ = limit + 1 A__ = [0] * limit for first_term in range(1 , __a ): for n in range(__a , __a , __a ): A__ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a A__ = sum(1 for x in frequency[1:limit] if x == 1_0 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
274
import argparse from collections import defaultdict import yaml A : str = '''docs/source/en/_toctree.yml''' def __lowerCamelCase ( __a :str ) -> List[Any]: """simple docstring""" A__ = defaultdict(__a ) A__ = [] A__ = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(__a ) A__ = new_doc_list A__ = [key for key, value in counts.items() if value > 1] A__ = [] for duplicate_key in duplicates: A__ = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(__a ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) A__ = sorted(__a , key=lambda __a : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__a ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(__a ) # Sort return overview_doc def __lowerCamelCase ( __a :Any=False ) -> List[str]: """simple docstring""" with open(__a , encoding="""utf-8""" ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]["""sections"""] # Then to the model doc A__ = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 A__ = api_doc[scheduler_idx]["""sections"""] A__ = clean_doc_toc(__a ) A__ = False if new_scheduler_doc != scheduler_doc: A__ = True if overwrite: A__ = new_scheduler_doc if diff: if overwrite: A__ = api_doc with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def __lowerCamelCase ( __a :Optional[int]=False ) -> Dict: """simple docstring""" with open(__a , encoding="""utf-8""" ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]["""sections"""] # Then to the model doc A__ = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 A__ = False A__ = api_doc[pipeline_idx]["""sections"""] A__ = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: A__ = pipeline_doc["""section"""] A__ = clean_doc_toc(__a ) if overwrite: A__ = new_sub_pipeline_doc new_pipeline_docs.append(__a ) # sort overall pipeline doc A__ = clean_doc_toc(__a ) if new_pipeline_docs != pipeline_docs: A__ = True if overwrite: A__ = new_pipeline_docs if diff: if overwrite: A__ = api_doc with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A : Optional[Any] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
274
1
'''simple docstring''' from math import factorial def UpperCAmelCase_ ( __lowercase : int = 100 ) -> int: '''simple docstring''' return sum(map(__lowercase , str(factorial(__lowercase ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
369
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE :List[str] = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Union[PIL.Image.Image, np.ndarray] class A_ ( lowerCAmelCase_ ): def __init__( self : Any , snake_case_ : PriorTransformer , snake_case_ : CLIPVisionModel , snake_case_ : CLIPImageProcessor , snake_case_ : HeunDiscreteScheduler , snake_case_ : ShapERenderer , ): super().__init__() self.register_modules( prior=snake_case_ , image_encoder=snake_case_ , image_processor=snake_case_ , scheduler=snake_case_ , renderer=snake_case_ , ) def lowercase ( self : List[Any] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] ): if latents is None: _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _UpperCAmelCase = latents.to(snake_case_ ) _UpperCAmelCase = latents * scheduler.init_noise_sigma return latents def lowercase ( self : Optional[Any] , snake_case_ : Union[str, Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase = torch.device(f'cuda:{gpu_id}' ) _UpperCAmelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case_ , snake_case_ ) @property def lowercase ( self : List[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(snake_case_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowercase ( self : Optional[Any] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : int , snake_case_ : List[str] , ): if isinstance(snake_case_ , snake_case_ ) and isinstance(image[0] , torch.Tensor ): _UpperCAmelCase = torch.cat(snake_case_ , axis=0 ) if image[0].ndim == 4 else torch.stack(snake_case_ , axis=0 ) if not isinstance(snake_case_ , torch.Tensor ): _UpperCAmelCase = self.image_processor(snake_case_ , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _UpperCAmelCase = image.to(dtype=self.image_encoder.dtype , device=snake_case_ ) _UpperCAmelCase = self.image_encoder(snake_case_ )["last_hidden_state"] _UpperCAmelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _UpperCAmelCase = image_embeds.repeat_interleave(snake_case_ , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase = torch.zeros_like(snake_case_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(snake_case_ ) def __call__( self : str , snake_case_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , snake_case_ : int = 1 , snake_case_ : int = 2_5 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : Optional[torch.FloatTensor] = None , snake_case_ : float = 4.0 , snake_case_ : int = 6_4 , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ): if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(snake_case_ , torch.Tensor ): _UpperCAmelCase = image.shape[0] elif isinstance(snake_case_ , snake_case_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _UpperCAmelCase = len(snake_case_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(snake_case_ )}' ) _UpperCAmelCase = self._execution_device _UpperCAmelCase = batch_size * num_images_per_prompt _UpperCAmelCase = guidance_scale > 1.0 _UpperCAmelCase = self._encode_image(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # prior self.scheduler.set_timesteps(snake_case_ , device=snake_case_ ) _UpperCAmelCase = self.scheduler.timesteps _UpperCAmelCase = self.prior.config.num_embeddings _UpperCAmelCase = self.prior.config.embedding_dim _UpperCAmelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , snake_case_ , snake_case_ , snake_case_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _UpperCAmelCase = latents.reshape(latents.shape[0] , snake_case_ , snake_case_ ) for i, t in enumerate(self.progress_bar(snake_case_ ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) _UpperCAmelCase = self.prior( snake_case_ , timestep=snake_case_ , proj_embedding=snake_case_ , ).predicted_image_embedding # remove the variance _UpperCAmelCase , _UpperCAmelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _UpperCAmelCase , _UpperCAmelCase = noise_pred.chunk(2 ) _UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _UpperCAmelCase = self.scheduler.step( snake_case_ , timestep=snake_case_ , sample=snake_case_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=snake_case_ ) _UpperCAmelCase = [] for i, latent in enumerate(snake_case_ ): print() _UpperCAmelCase = self.renderer.decode( latent[None, :] , snake_case_ , size=snake_case_ , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(snake_case_ ) _UpperCAmelCase = torch.stack(snake_case_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _UpperCAmelCase = images.cpu().numpy() if output_type == "pil": _UpperCAmelCase = [self.numpy_to_pil(snake_case_ ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=snake_case_ )
156
0
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput A : int = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _lowercase ( lowercase__): """simple docstring""" def __init__( self : int , *__lowerCamelCase : Any , __lowerCamelCase : List[str]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=None , **__lowerCamelCase : List[Any] ): '''simple docstring''' super().__init__(*__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Any = eval_examples lowerCamelCase__ : Optional[int] = post_process_function lowerCamelCase__ : List[Any] = quant_trainer_args lowerCamelCase__ : Dict = 128 # default number of calibration samples def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict=None ): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) lowerCamelCase__ : Optional[int] = calib_dataset if calib_dataset is not None else self.calib_dataset lowerCamelCase__ : Union[str, Any] = self._remove_unused_columns(__lowerCamelCase , description="Calibration" ) return DataLoader( __lowerCamelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__lowerCamelCase , ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[int]=None ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.train_dataset if calib_dataset is None else calib_dataset lowerCamelCase__ : str = self.get_calib_dataloader(__lowerCamelCase ) lowerCamelCase__ : List[str] = self.model quant_trainer.configure_model(__lowerCamelCase , self.quant_trainer_args , calib=__lowerCamelCase ) model.eval() quant_trainer.enable_calibration(__lowerCamelCase ) logger.info("***** Running calibration *****" ) logger.info(f" Num examples = {self.calib_num}" ) logger.info(f" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(__lowerCamelCase ): # Prediction step lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.prediction_step(__lowerCamelCase , __lowerCamelCase , prediction_loss_only=__lowerCamelCase ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(__lowerCamelCase , self.quant_trainer_args ) lowerCamelCase__ : Optional[int] = model def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : str = "eval" ): '''simple docstring''' lowerCamelCase__ : Any = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase__ : List[Any] = self.get_eval_dataloader(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase__ : Union[str, Any] = self.compute_metrics lowerCamelCase__ : List[str] = None lowerCamelCase__ : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase__ : int = eval_loop( __lowerCamelCase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , ) finally: lowerCamelCase__ : Union[str, Any] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowerCamelCase__ : Union[str, Any] = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions ) lowerCamelCase__ : str = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): lowerCamelCase__ : Optional[int] = metrics.pop(__lowerCamelCase ) self.log(__lowerCamelCase ) else: lowerCamelCase__ : Tuple = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase__ : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCamelCase ) return metrics def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : int=None , __lowerCamelCase : str = "test" ): '''simple docstring''' lowerCamelCase__ : Dict = self.get_test_dataloader(__lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase__ : str = self.compute_metrics lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase__ : str = eval_loop( __lowerCamelCase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , ) finally: lowerCamelCase__ : List[Any] = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase__ : Union[str, Any] = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions , "predict" ) lowerCamelCase__ : Dict = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): lowerCamelCase__ : int = metrics.pop(__lowerCamelCase ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : List[Any]="./" ): '''simple docstring''' lowerCamelCase__ : int = self.eval_dataset lowerCamelCase__ : Optional[int] = self.get_eval_dataloader(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = next(iter(__lowerCamelCase ) ) # saving device - to make it consistent lowerCamelCase__ : Optional[Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple lowerCamelCase__ : Any = tuple(v.to(__lowerCamelCase ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer lowerCamelCase__ : Tuple = True lowerCamelCase__ : Union[str, Any] = self.model.to(__lowerCamelCase ) model.eval() model.float() lowerCamelCase__ : int = model.module if hasattr(__lowerCamelCase , "module" ) else model quant_trainer.configure_model(__lowerCamelCase , self.quant_trainer_args ) lowerCamelCase__ : List[Any] = os.path.join(__lowerCamelCase , "model.onnx" ) logger.info(f"exporting model to {output_model_file}" ) lowerCamelCase__ : Any = {0: "batch_size", 1: "seq_len"} torch.onnx.export( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , export_params=__lowerCamelCase , opset_version=13 , do_constant_folding=__lowerCamelCase , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=__lowerCamelCase , ) logger.info("onnx export finished" )
184
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge A : Optional[int] = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] A : List[Any] = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Dict = calculate_rouge(_A , _A , bootstrap_aggregation=_A , rouge_keys=["rouge2", "rougeL"] ) assert isinstance(_A , _A ) lowerCamelCase__ : List[Any] = calculate_rouge(_A , _A , bootstrap_aggregation=_A , rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Any = "rougeLsum" lowerCamelCase__ : List[str] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=[k] )[k] lowerCamelCase__ : str = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=[k] )[k] assert score > score_no_sep def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : int = ["rouge1", "rouge2", "rougeL"] lowerCamelCase__ : Union[str, Any] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=_A ) lowerCamelCase__ : Any = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=_A ) assert score_sep == score_no_sep def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[Any] = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] lowerCamelCase__ : Tuple = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(_A , _A , newline_sep=_A ) == calculate_rouge(_A , _A , newline_sep=_A ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : List[str] = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] lowerCamelCase__ : str = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] lowerCamelCase__ : Union[str, Any] = calculate_rouge(_A , _A , rouge_keys=["rougeLsum"] , newline_sep=_A )["rougeLsum"] lowerCamelCase__ : List[str] = calculate_rouge(_A , _A , rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Tuple = Path("examples/seq2seq/test_data/wmt_en_ro" ) lowerCamelCase__ : Any = calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) ) assert isinstance(_A , _A ) lowerCamelCase__ : str = calculate_rouge_path( data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=_A ) assert isinstance(_A , _A )
184
1
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def A ( a_ ,a_=None ) -> Dict: __UpperCamelCase : List[str] =None if token is not None: __UpperCamelCase : Optional[Any] ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} __UpperCamelCase : Union[str, Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' __UpperCamelCase : List[Any] =requests.get(a_ ,headers=a_ ).json() __UpperCamelCase : List[str] ={} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) __UpperCamelCase : Dict =math.ceil((result['total_count'] - 100) / 100 ) for i in range(a_ ): __UpperCamelCase : int =requests.get(url + F'&page={i + 2}' ,headers=a_ ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def A ( a_ ,a_=None ) -> Dict: __UpperCamelCase : str =None if token is not None: __UpperCamelCase : Any ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} __UpperCamelCase : str =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' __UpperCamelCase : Tuple =requests.get(a_ ,headers=a_ ).json() __UpperCamelCase : Optional[Any] ={} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) __UpperCamelCase : Dict =math.ceil((result['total_count'] - 100) / 100 ) for i in range(a_ ): __UpperCamelCase : Optional[Any] =requests.get(url + F'&page={i + 2}' ,headers=a_ ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def A ( a_ ,a_ ,a_ ,a_ ) -> List[str]: __UpperCamelCase : Dict =None if token is not None: __UpperCamelCase : int ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} __UpperCamelCase : Optional[Any] =requests.get(a_ ,headers=a_ ,allow_redirects=a_ ) __UpperCamelCase : Optional[int] =result.headers['Location'] __UpperCamelCase : Tuple =requests.get(a_ ,allow_redirects=a_ ) __UpperCamelCase : Any =os.path.join(a_ ,F'{artifact_name}.zip' ) with open(a_ ,'wb' ) as fp: fp.write(response.content ) def A ( a_ ,a_=None ) -> List[Any]: __UpperCamelCase : str =[] __UpperCamelCase : List[Any] =[] __UpperCamelCase : Optional[int] =None with zipfile.ZipFile(a_ ) as z: for filename in z.namelist(): if not os.path.isdir(a_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(a_ ) as f: for line in f: __UpperCamelCase : str =line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __UpperCamelCase : Tuple =line[: line.index(': ' )] __UpperCamelCase : str =line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed __UpperCamelCase : Any =line[len('FAILED ' ) :] failed_tests.append(a_ ) elif filename == "job_name.txt": __UpperCamelCase : Optional[Any] =line if len(a_ ) != len(a_ ): raise ValueError( F'`errors` and `failed_tests` should have the same number of elements. Got {len(a_ )} for `errors` ' F'and {len(a_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' ' problem.' ) __UpperCamelCase : List[Any] =None if job_name and job_links: __UpperCamelCase : Union[str, Any] =job_links.get(a_ ,a_ ) # A list with elements of the form (line of error, error, failed test) __UpperCamelCase : str =[x + [y] + [job_link] for x, y in zip(a_ ,a_ )] return result def A ( a_ ,a_=None ) -> List[Any]: __UpperCamelCase : Tuple =[] __UpperCamelCase : Optional[int] =[os.path.join(a_ ,a_ ) for p in os.listdir(a_ ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(a_ ,job_links=a_ ) ) return errors def A ( a_ ,a_=None ) -> Optional[int]: __UpperCamelCase : Dict =Counter() counter.update([x[1] for x in logs] ) __UpperCamelCase : Dict =counter.most_common() __UpperCamelCase : str ={} for error, count in counts: if error_filter is None or error not in error_filter: __UpperCamelCase : str ={'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} __UpperCamelCase : Optional[int] =dict(sorted(r.items() ,key=lambda a_ : item[1]["count"] ,reverse=a_ ) ) return r def A ( a_ ) -> List[Any]: __UpperCamelCase : Dict =test.split('::' )[0] if test.startswith('tests/models/' ): __UpperCamelCase : Dict =test.split('/' )[2] else: __UpperCamelCase : int =None return test def A ( a_ ,a_=None ) -> Union[str, Any]: __UpperCamelCase : int =[(x[0], x[1], get_model(x[2] )) for x in logs] __UpperCamelCase : Tuple =[x for x in logs if x[2] is not None] __UpperCamelCase : Union[str, Any] ={x[2] for x in logs} __UpperCamelCase : Optional[int] ={} for test in tests: __UpperCamelCase : int =Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __UpperCamelCase : str =counter.most_common() __UpperCamelCase : Optional[int] ={error: count for error, count in counts if (error_filter is None or error not in error_filter)} __UpperCamelCase : int =sum(error_counts.values() ) if n_errors > 0: __UpperCamelCase : List[str] ={'count': n_errors, 'errors': error_counts} __UpperCamelCase : int =dict(sorted(r.items() ,key=lambda a_ : item[1]["count"] ,reverse=a_ ) ) return r def A ( a_ ) -> str: __UpperCamelCase : List[str] ='| no. | error | status |' __UpperCamelCase : Tuple ='|-:|:-|:-|' __UpperCamelCase : Tuple =[header, sep] for error in reduced_by_error: __UpperCamelCase : Tuple =reduced_by_error[error]['count'] __UpperCamelCase : int =F'| {count} | {error[:100]} | |' lines.append(a_ ) return "\n".join(a_ ) def A ( a_ ) -> List[Any]: __UpperCamelCase : List[Any] ='| model | no. of errors | major error | count |' __UpperCamelCase : int ='|-:|-:|-:|-:|' __UpperCamelCase : int =[header, sep] for model in reduced_by_model: __UpperCamelCase : Tuple =reduced_by_model[model]['count'] __UpperCamelCase , __UpperCamelCase : int =list(reduced_by_model[model]['errors'].items() )[0] __UpperCamelCase : Optional[Any] =F'| {model} | {count} | {error[:60]} | {_count} |' lines.append(a_ ) return "\n".join(a_ ) if __name__ == "__main__": A_ :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') A_ :List[Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ :Optional[Any] = get_job_links(args.workflow_run_id, token=args.token) A_ :int = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ :int = k.find(''' / ''') A_ :Tuple = k[index + len(''' / ''') :] A_ :List[str] = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ :Dict = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ :Union[str, Any] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ :Dict = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ :List[str] = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ :Dict = reduce_by_error(errors) A_ :List[str] = reduce_by_model(errors) A_ :Optional[int] = make_github_table(reduced_by_error) A_ :Any = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
245
import math import tensorflow as tf from packaging import version def A ( a_ ) -> Optional[Any]: __UpperCamelCase : Dict =tf.convert_to_tensor(a_ ) __UpperCamelCase : str =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) ,x.dtype ) )) return x * cdf def A ( a_ ) -> Union[str, Any]: __UpperCamelCase : str =tf.convert_to_tensor(a_ ) __UpperCamelCase : Union[str, Any] =tf.cast(math.pi ,x.dtype ) __UpperCamelCase : List[str] =tf.cast(0.044_715 ,x.dtype ) __UpperCamelCase : Optional[int] =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(a_ ,3 )) )) return x * cdf def A ( a_ ) -> Any: __UpperCamelCase : str =tf.convert_to_tensor(a_ ) return x * tf.tanh(tf.math.softplus(a_ ) ) def A ( a_ ) -> Dict: __UpperCamelCase : int =tf.convert_to_tensor(a_ ) __UpperCamelCase : Optional[int] =tf.cast(0.044_715 ,x.dtype ) __UpperCamelCase : List[str] =tf.cast(0.7_978_845_608 ,x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def A ( a_ ) -> List[str]: __UpperCamelCase : List[Any] =tf.convert_to_tensor(a_ ) __UpperCamelCase : Optional[int] =tf.cast(1.702 ,x.dtype ) return x * tf.math.sigmoid(coeff * x ) def A ( a_ ) -> Tuple: return tf.clip_by_value(_gelu(a_ ) ,-10 ,10 ) def A ( a_ ,a_=-1 ) -> Any: __UpperCamelCase , __UpperCamelCase : List[Any] =tf.split(a_ ,2 ,axis=a_ ) return a * tf.math.sigmoid(a_ ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def A ( a_ ) -> Tuple: return tf.keras.activations.gelu(a_ ,approximate=a_ ) A_ :int = tf.keras.activations.gelu A_ :Any = approximate_gelu_wrap else: A_ :str = _gelu A_ :Dict = _gelu_new A_ :str = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def A ( a_ ) -> Dict: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
245
1
"""simple docstring""" class UpperCAmelCase_ : def __init__( self , a ) -> None: lowercase__ : Union[str, Any] = size lowercase__ : Any = [0] * size lowercase__ : str = [0] * size @staticmethod def _UpperCAmelCase ( a ) -> int: return index | (index + 1) @staticmethod def _UpperCAmelCase ( a ) -> int: return (index & (index + 1)) - 1 def _UpperCAmelCase ( self , a , a ) -> None: lowercase__ : Dict = value while index < self.size: lowercase__ : List[Any] = self.get_prev(a ) + 1 if current_left_border == index: lowercase__ : Union[str, Any] = value else: lowercase__ : Any = max(a , a , a ) lowercase__ : List[str] = self.get_next(a ) def _UpperCAmelCase ( self , a , a ) -> int: right -= 1 # Because of right is exclusive lowercase__ : Dict = 0 while left <= right: lowercase__ : str = self.get_prev(a ) if left <= current_left: lowercase__ : Any = max(a , self.tree[right] ) lowercase__ : Dict = current_left else: lowercase__ : Any = max(a , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
77
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int = 10 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or n < 0: raise ValueError("""Invalid input""" ) A__ = 10**n A__ = 2_8433 * (pow(2 , 783_0457 , UpperCAmelCase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(1_0) = }""")
335
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case_ : List[str] = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys snake_case_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
import comet # From: unbabel-comet import torch import datasets snake_case_ : Tuple = datasets.logging.get_logger(__name__) snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence'''), '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]): """simple docstring""" if self.config_name == "default": UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''')) else: UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name)) def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False): """simple docstring""" if gpus is None: UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0 UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())] UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case) return {"mean_score": mean_score, "scores": scores}
7
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class a ( a_ ): UpperCAmelCase_ : torch.FloatTensor class a ( a_, a_ ): @register_to_config def __init__( self , _lowerCamelCase = 1_6 , _lowerCamelCase = 8_8 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = 3_2 , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = "geglu" , _lowerCamelCase = True , _lowerCamelCase = True , ): super().__init__() lowercase = num_attention_heads lowercase = attention_head_dim lowercase = num_attention_heads * attention_head_dim lowercase = in_channels lowercase = torch.nn.GroupNorm(num_groups=_lowerCamelCase , num_channels=_lowerCamelCase , eps=1e-6 , affine=_lowerCamelCase ) lowercase = nn.Linear(_lowerCamelCase , _lowerCamelCase ) # 3. Define transformers blocks lowercase = nn.ModuleList( [ BasicTransformerBlock( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , dropout=_lowerCamelCase , cross_attention_dim=_lowerCamelCase , activation_fn=_lowerCamelCase , attention_bias=_lowerCamelCase , double_self_attention=_lowerCamelCase , norm_elementwise_affine=_lowerCamelCase , ) for d in range(_lowerCamelCase ) ] ) lowercase = nn.Linear(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=1 , _lowerCamelCase=None , _lowerCamelCase = True , ): lowercase , lowercase , lowercase , lowercase = hidden_states.shape lowercase = batch_frames // num_frames lowercase = hidden_states lowercase = hidden_states[None, :].reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase = self.norm(_lowerCamelCase ) lowercase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _lowerCamelCase , _lowerCamelCase ) lowercase = self.proj_in(_lowerCamelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase = block( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , timestep=_lowerCamelCase , cross_attention_kwargs=_lowerCamelCase , class_labels=_lowerCamelCase , ) # 3. Output lowercase = self.proj_out(_lowerCamelCase ) lowercase = ( hidden_states[None, None, :] .reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase = hidden_states.reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_lowerCamelCase )
220
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class a ( a_ ): UpperCAmelCase_ : BigBirdConfig UpperCAmelCase_ : jnp.dtype =jnp.floataa UpperCAmelCase_ : bool =True def UpperCamelCase_ ( self ): super().setup() lowercase = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): lowercase = super().__call__(*_lowerCamelCase , **_lowerCamelCase ) lowercase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class a ( a_ ): UpperCAmelCase_ : str =FlaxBigBirdForNaturalQuestionsModule def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Tuple ): '''simple docstring''' def cross_entropy(__snake_case : Dict , __snake_case : str , __snake_case : Any=None ): lowercase = logits.shape[-1] lowercase = (labels[..., None] == jnp.arange(__snake_case )[None]).astype('f4' ) lowercase = jax.nn.log_softmax(__snake_case , axis=-1 ) lowercase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase = reduction(__snake_case ) return loss lowercase = partial(__snake_case , reduction=jnp.mean ) lowercase = cross_entropy(__snake_case , __snake_case ) lowercase = cross_entropy(__snake_case , __snake_case ) lowercase = cross_entropy(__snake_case , __snake_case ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class a : UpperCAmelCase_ : str ="google/bigbird-roberta-base" UpperCAmelCase_ : int =3000 UpperCAmelCase_ : int =1_0500 UpperCAmelCase_ : int =128 UpperCAmelCase_ : int =3 UpperCAmelCase_ : int =1 UpperCAmelCase_ : int =5 # tx_args UpperCAmelCase_ : float =3e-5 UpperCAmelCase_ : float =0.0 UpperCAmelCase_ : int =2_0000 UpperCAmelCase_ : float =0.00_95 UpperCAmelCase_ : str ="bigbird-roberta-natural-questions" UpperCAmelCase_ : str ="training-expt" UpperCAmelCase_ : str ="data/nq-training.jsonl" UpperCAmelCase_ : str ="data/nq-validation.jsonl" def UpperCamelCase_ ( self ): os.makedirs(self.base_dir , exist_ok=_lowerCamelCase ) lowercase = os.path.join(self.base_dir , self.save_dir ) lowercase = self.batch_size_per_device * jax.device_count() @dataclass class a : UpperCAmelCase_ : int UpperCAmelCase_ : int =4096 # no dynamic padding on TPUs def __call__( self , _lowerCamelCase ): lowercase = self.collate_fn(_lowerCamelCase ) lowercase = jax.tree_util.tree_map(_lowerCamelCase , _lowerCamelCase ) return batch def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase , lowercase = self.fetch_inputs(features['input_ids'] ) lowercase = { 'input_ids': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), 'attention_mask': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ), } return batch def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = [self._fetch_inputs(_lowerCamelCase ) for ids in input_ids] return zip(*_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = [1 for _ in range(len(_lowerCamelCase ) )] while len(_lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _SCREAMING_SNAKE_CASE ( __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[Any]=None ): '''simple docstring''' if seed is not None: lowercase = dataset.shuffle(seed=__snake_case ) for i in range(len(__snake_case ) // batch_size ): lowercase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__snake_case ) @partial(jax.pmap , axis_name='batch' ) def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : List[Any] , **__snake_case : List[Any] ): '''simple docstring''' def loss_fn(__snake_case : str ): lowercase = model_inputs.pop('start_labels' ) lowercase = model_inputs.pop('end_labels' ) lowercase = model_inputs.pop('pooled_labels' ) lowercase = state.apply_fn(**__snake_case , params=__snake_case , dropout_rng=__snake_case , train=__snake_case ) lowercase , lowercase , lowercase = outputs return state.loss_fn( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) lowercase , lowercase = jax.random.split(__snake_case ) lowercase = jax.value_and_grad(__snake_case ) lowercase , lowercase = grad_fn(state.params ) lowercase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) lowercase = jax.lax.pmean(__snake_case , 'batch' ) lowercase = state.apply_gradients(grads=__snake_case ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , **__snake_case : Dict ): '''simple docstring''' lowercase = model_inputs.pop('start_labels' ) lowercase = model_inputs.pop('end_labels' ) lowercase = model_inputs.pop('pooled_labels' ) lowercase = state.apply_fn(**__snake_case , params=state.params , train=__snake_case ) lowercase , lowercase , lowercase = outputs lowercase = state.loss_fn(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) lowercase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class a ( train_state.TrainState ): UpperCAmelCase_ : Callable =struct.field(pytree_node=a_ ) @dataclass class a : UpperCAmelCase_ : Args UpperCAmelCase_ : Callable UpperCAmelCase_ : Callable UpperCAmelCase_ : Callable UpperCAmelCase_ : Callable UpperCAmelCase_ : wandb UpperCAmelCase_ : Callable =None def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): lowercase = model.params lowercase = TrainState.create( apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , loss_fn=_lowerCamelCase , ) if ckpt_dir is not None: lowercase , lowercase , lowercase , lowercase , lowercase = restore_checkpoint(_lowerCamelCase , _lowerCamelCase ) lowercase = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } lowercase , lowercase = build_tx(**_lowerCamelCase ) lowercase = train_state.TrainState( step=_lowerCamelCase , apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , opt_state=_lowerCamelCase , ) lowercase = args lowercase = data_collator lowercase = lr lowercase = params lowercase = jax_utils.replicate(_lowerCamelCase ) return state def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = self.args lowercase = len(_lowerCamelCase ) // args.batch_size lowercase = jax.random.PRNGKey(0 ) lowercase = jax.random.split(_lowerCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): lowercase = jnp.array(0 , dtype=jnp.floataa ) lowercase = get_batched_dataset(_lowerCamelCase , args.batch_size , seed=_lowerCamelCase ) lowercase = 0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc=F'Running EPOCH-{epoch}' ): lowercase = self.data_collator(_lowerCamelCase ) lowercase , lowercase , lowercase = self.train_step_fn(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: lowercase = jax_utils.unreplicate(state.step ) lowercase = running_loss.item() / i lowercase = self.scheduler_fn(state_step - 1 ) lowercase = self.evaluate(_lowerCamelCase , _lowerCamelCase ) lowercase = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(_lowerCamelCase ) ) self.logger.log(_lowerCamelCase , commit=_lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowercase = get_batched_dataset(_lowerCamelCase , self.args.batch_size ) lowercase = len(_lowerCamelCase ) // self.args.batch_size lowercase = jnp.array(0 , dtype=jnp.floataa ) lowercase = 0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc='Evaluating ... ' ): lowercase = self.data_collator(_lowerCamelCase ) lowercase = self.val_step_fn(_lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowercase = jax_utils.unreplicate(_lowerCamelCase ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=' ... ' ) self.model_save_fn(_lowerCamelCase , params=state.params ) with open(os.path.join(_lowerCamelCase , 'opt_state.msgpack' ) , 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_lowerCamelCase , 'args.joblib' ) ) joblib.dump(self.data_collator , os.path.join(_lowerCamelCase , 'data_collator.joblib' ) ) with open(os.path.join(_lowerCamelCase , 'training_state.json' ) , 'w' ) as f: json.dump({'step': state.step.item()} , _lowerCamelCase ) print('DONE' ) def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Tuple ): '''simple docstring''' print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ' ) with open(os.path.join(__snake_case , 'flax_model.msgpack' ) , 'rb' ) as f: lowercase = from_bytes(state.params , f.read() ) with open(os.path.join(__snake_case , 'opt_state.msgpack' ) , 'rb' ) as f: lowercase = from_bytes(state.opt_state , f.read() ) lowercase = joblib.load(os.path.join(__snake_case , 'args.joblib' ) ) lowercase = joblib.load(os.path.join(__snake_case , 'data_collator.joblib' ) ) with open(os.path.join(__snake_case , 'training_state.json' ) , 'r' ) as f: lowercase = json.load(__snake_case ) lowercase = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : str , __snake_case : Any , __snake_case : Any ): '''simple docstring''' lowercase = num_train_steps - warmup_steps lowercase = optax.linear_schedule(init_value=__snake_case , end_value=__snake_case , transition_steps=__snake_case ) lowercase = optax.linear_schedule(init_value=__snake_case , end_value=1e-7 , transition_steps=__snake_case ) lowercase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' def weight_decay_mask(__snake_case : Tuple ): lowercase = traverse_util.flatten_dict(__snake_case ) lowercase = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(__snake_case ) lowercase = scheduler_fn(__snake_case , __snake_case , __snake_case , __snake_case ) lowercase = optax.adamw(learning_rate=__snake_case , weight_decay=__snake_case , mask=__snake_case ) return tx, lr
220
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): __snake_case : List[Any] = ['''pixel_values'''] def __init__( self : Tuple , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Dict[str, int]] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 2_55 , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : str , ): super().__init__(**lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = size if size is not None else {"shortest_edge": 2_56} lowerCAmelCase_ : List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} lowerCAmelCase_ : Dict = get_size_dict(lowerCAmelCase__ , param_name="""crop_size""" ) lowerCAmelCase_ : Tuple = do_resize lowerCAmelCase_ : Optional[int] = size lowerCAmelCase_ : List[Any] = resample lowerCAmelCase_ : str = do_center_crop lowerCAmelCase_ : List[Any] = crop_size lowerCAmelCase_ : Dict = do_rescale lowerCAmelCase_ : Union[str, Any] = rescale_factor lowerCAmelCase_ : Any = do_normalize lowerCAmelCase_ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : str , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ): lowerCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCAmelCase_ : Union[str, Any] = get_resize_output_image_size(lowerCAmelCase__ , size=size["""shortest_edge"""] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def A ( self : int , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Union[str, Any] , ): lowerCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(lowerCAmelCase__ , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def A ( self : Any , UpperCAmelCase : np.ndarray , UpperCAmelCase : float , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Union[str, Any] ): return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def A ( self : Optional[int] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : int , ): return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def A ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[float] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase : List[Any] , ): lowerCAmelCase_ : str = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ : Any = size if size is not None else self.size lowerCAmelCase_ : Dict = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = resample if resample is not None else self.resample lowerCAmelCase_ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ : Dict = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ , param_name="""crop_size""" ) lowerCAmelCase_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ : str = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ : List[Any] = image_std if image_std is not None else self.image_std lowerCAmelCase_ : int = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase_ : List[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: lowerCAmelCase_ : int = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: lowerCAmelCase_ : Optional[int] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: lowerCAmelCase_ : str = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: lowerCAmelCase_ : Optional[Any] = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] lowerCAmelCase_ : Optional[int] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] lowerCAmelCase_ : List[str] = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Tuple] = None ): lowerCAmelCase_ : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = target_sizes.numpy() lowerCAmelCase_ : Any = [] for idx in range(len(lowerCAmelCase__ ) ): lowerCAmelCase_ : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase__ ) else: lowerCAmelCase_ : Dict = logits.argmax(dim=1 ) lowerCAmelCase_ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
367
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
0
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __snake_case ( lowerCAmelCase_ ): __lowerCamelCase : torch.FloatTensor __lowerCamelCase : Optional[torch.FloatTensor] = None def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=0.999 , __lowerCAmelCase="cosine" , )-> Union[str, Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCAmelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCAmelCase : Dict =[] for i in range(__lowerCAmelCase ): UpperCAmelCase : Optional[Any] =i / num_diffusion_timesteps UpperCAmelCase : Optional[int] =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) ) return torch.tensor(__lowerCAmelCase , dtype=torch.floataa ) class __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCamelCase : Tuple = 1 @register_to_config def __init__( self , snake_case__ = 1000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = True , snake_case__ = True , snake_case__ = 0 , snake_case__ = "epsilon" , snake_case__ = 1.0 , **snake_case__ , ) -> Optional[Any]: '''simple docstring''' if kwargs.get('''set_alpha_to_one''' , _snake_case ) is not None: UpperCAmelCase : str =( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _snake_case , standard_warn=_snake_case ) UpperCAmelCase : Dict =kwargs['''set_alpha_to_one'''] if trained_betas is not None: UpperCAmelCase : Optional[int] =torch.tensor(_snake_case , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCAmelCase : Any =torch.linspace(_snake_case , _snake_case , _snake_case , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase : str =( torch.linspace(beta_start**0.5 , beta_end**0.5 , _snake_case , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase : Optional[Any] =betas_for_alpha_bar(_snake_case ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) UpperCAmelCase : str =1.0 - self.betas UpperCAmelCase : List[str] =torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. UpperCAmelCase : str =torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution UpperCAmelCase : Any =1.0 # setable values UpperCAmelCase : Tuple =None UpperCAmelCase : Tuple =torch.from_numpy(np.arange(0 , _snake_case ).copy().astype(np.intaa ) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> str: '''simple docstring''' return sample def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple: '''simple docstring''' if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) UpperCAmelCase : Optional[Any] =num_inference_steps UpperCAmelCase : Union[str, Any] =self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase : List[Any] =(np.arange(0 , _snake_case ) * step_ratio).round().copy().astype(np.intaa ) UpperCAmelCase : str =torch.from_numpy(_snake_case ).to(_snake_case ) self.timesteps += self.config.steps_offset def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 0.0 , snake_case__ = False , snake_case__ = None , snake_case__ = True , ) -> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] =timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process UpperCAmelCase : Any =self.alphas_cumprod[timestep] UpperCAmelCase : Any =( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) UpperCAmelCase : Dict =1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase : Optional[Any] =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 UpperCAmelCase : str =model_output elif self.config.prediction_type == "sample": UpperCAmelCase : Any =model_output UpperCAmelCase : Optional[int] =(sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": UpperCAmelCase : List[Any] =(alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output UpperCAmelCase : Tuple =(alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: UpperCAmelCase : Optional[int] =pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase : Optional[int] =(1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase : Tuple =alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_snake_case , pred_original_sample=_snake_case ) def __len__( self ) -> int: '''simple docstring''' return self.config.num_train_timesteps
348
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : int = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } __lowerCAmelCase : List[Any] = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } __lowerCAmelCase : Dict = { "jukebox": 512, } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Tuple = VOCAB_FILES_NAMES A__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : List[str] = PRETRAINED_LYRIC_TOKENS_SIZES A__ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , _snake_case : List[str] , _snake_case : Any , _snake_case : Tuple , _snake_case : Dict=["v3", "v2", "v2"] , _snake_case : Tuple=512 , _snake_case : Any=5 , _snake_case : List[Any]="<|endoftext|>" , **_snake_case : Union[str, Any] , ): __lowercase : Dict = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else unk_token super().__init__( unk_token=_snake_case , n_genres=_snake_case , version=_snake_case , max_n_lyric_tokens=_snake_case , **_snake_case , ) __lowercase : List[str] = version __lowercase : Union[str, Any] = max_n_lyric_tokens __lowercase : Dict = n_genres with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: __lowercase : str = json.load(_snake_case ) with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: __lowercase : Optional[int] = json.load(_snake_case ) with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: __lowercase : Optional[int] = json.load(_snake_case ) __lowercase : Dict = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase : int = oov.replace(r'''\-\'''' , r'''\-+\'''' ) __lowercase : Union[str, Any] = regex.compile(_snake_case ) __lowercase : int = {v: k for k, v in self.artists_encoder.items()} __lowercase : Tuple = {v: k for k, v in self.genres_encoder.items()} __lowercase : Dict = {v: k for k, v in self.lyrics_encoder.items()} @property def snake_case_ ( self : Tuple ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def snake_case_ ( self : Optional[Any] ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def snake_case_ ( self : int , _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict ): __lowercase : Union[str, Any] = [self.artists_encoder.get(_snake_case , 0 ) for artist in list_artists] for genres in range(len(_snake_case ) ): __lowercase : Union[str, Any] = [self.genres_encoder.get(_snake_case , 0 ) for genre in list_genres[genres]] __lowercase : str = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase : int = [[self.lyrics_encoder.get(_snake_case , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def snake_case_ ( self : Dict , _snake_case : Any ): return list(_snake_case ) def snake_case_ ( self : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : List[str] , **_snake_case : Optional[int] ): __lowercase , __lowercase , __lowercase : Optional[int] = self.prepare_for_tokenization(_snake_case , _snake_case , _snake_case ) __lowercase : List[Any] = self._tokenize(_snake_case ) return artist, genre, lyrics def snake_case_ ( self : str , _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : bool = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase : Union[str, Any] = artists[idx].lower() __lowercase : str = [genres[idx].lower()] else: __lowercase : Any = self._normalize(artists[idx] ) + '''.v2''' __lowercase : Tuple = [ self._normalize(_snake_case ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase : Optional[int] = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) __lowercase : Dict = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' __lowercase : List[Any] = {vocab[index]: index + 1 for index in range(len(_snake_case ) )} __lowercase : List[str] = 0 __lowercase : Any = len(_snake_case ) + 1 __lowercase : str = self.vocab __lowercase : Union[str, Any] = {v: k for k, v in self.vocab.items()} __lowercase : Dict = '''''' else: __lowercase : Tuple = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) __lowercase : List[Any] = self._run_strip_accents(_snake_case ) __lowercase : Tuple = lyrics.replace('''\\''' , '''\n''' ) __lowercase : str = self.out_of_vocab.sub('''''' , _snake_case ), [], [] return artists, genres, lyrics def snake_case_ ( self : Optional[int] , _snake_case : List[str] ): __lowercase : Any = unicodedata.normalize('''NFD''' , _snake_case ) __lowercase : Optional[int] = [] for char in text: __lowercase : Union[str, Any] = unicodedata.category(_snake_case ) if cat == "Mn": continue output.append(_snake_case ) return "".join(_snake_case ) def snake_case_ ( self : Optional[int] , _snake_case : str ): __lowercase : List[str] = ( [chr(_snake_case ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(_snake_case ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(_snake_case ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) __lowercase : Optional[Any] = frozenset(_snake_case ) __lowercase : Union[str, Any] = re.compile(r'''_+''' ) __lowercase : Optional[int] = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) __lowercase : int = pattern.sub('''_''' , _snake_case ).strip('''_''' ) return text def snake_case_ ( self : List[Any] , _snake_case : List[str] ): return " ".join(_snake_case ) def snake_case_ ( self : List[str] , _snake_case : Any , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : bool = False ): # Convert to TensorType if not isinstance(_snake_case , _snake_case ): __lowercase : Optional[Any] = TensorType(_snake_case ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf __lowercase : int = tf.constant __lowercase : Optional[int] = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch __lowercase : Union[str, Any] = torch.tensor __lowercase : Dict = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 __lowercase : Union[str, Any] = jnp.array __lowercase : Optional[int] = _is_jax else: __lowercase : Tuple = np.asarray __lowercase : str = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase : Union[str, Any] = [inputs] if not is_tensor(_snake_case ): __lowercase : int = as_tensor(_snake_case ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : str , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Tuple="" , _snake_case : Tuple="pt" ): __lowercase : List[str] = [0, 0, 0] __lowercase : List[str] = [artist] * len(self.version ) __lowercase : List[Any] = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase : Tuple = self.tokenize(_snake_case , _snake_case , _snake_case ) __lowercase , __lowercase , __lowercase : List[str] = self._convert_token_to_id(_snake_case , _snake_case , _snake_case ) __lowercase : Optional[Any] = [-INFINITY] * len(full_tokens[-1] ) __lowercase : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_snake_case ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def snake_case_ ( self : Optional[int] , _snake_case : str , _snake_case : Optional[str] = None ): if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase : int = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_snake_case ) ) __lowercase : int = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_snake_case ) ) __lowercase : Union[str, Any] = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_snake_case ) ) return (artists_file, genres_file, lyrics_file) def snake_case_ ( self : str , _snake_case : Tuple , _snake_case : str , _snake_case : Dict ): __lowercase : List[str] = self.artists_decoder.get(_snake_case ) __lowercase : Optional[Any] = [self.genres_decoder.get(_snake_case ) for genre in genres_index] __lowercase : Dict = [self.lyrics_decoder.get(_snake_case ) for character in lyric_index] return artist, genres, lyrics
156
0
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __magic_name__ ( lowerCAmelCase ): def __init__( self , snake_case , snake_case = None , snake_case = None , snake_case = True , snake_case = None , snake_case = False , snake_case = None , snake_case = True , snake_case = "arrow" , **snake_case , ) -> Tuple: '''simple docstring''' super().__init__( split=snake_case , features=snake_case , cache_dir=snake_case , keep_in_memory=snake_case , streaming=snake_case , **snake_case , ) _UpperCAmelCase : Optional[int] =load_from_cache_file _UpperCAmelCase : Union[str, Any] =file_format _UpperCAmelCase : int =Spark( df=snake_case , features=snake_case , cache_dir=snake_case , working_dir=snake_case , **snake_case , ) def lowerCAmelCase ( self) -> Dict: '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split) _UpperCAmelCase : Tuple =None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=snake_case , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split)
242
'''simple docstring''' from string import ascii_uppercase lowercase ={str(ord(c) - 55): c for c in ascii_uppercase} def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 3_6: raise ValueError('base must be <= 36' ) _UpperCAmelCase : Union[str, Any] ='' _UpperCAmelCase : Optional[int] =0 _UpperCAmelCase : str =0 while div != 1: _UpperCAmelCase , _UpperCAmelCase : int =divmod(__lowerCamelCase , __lowerCamelCase ) if base >= 1_1 and 9 < mod < 3_6: _UpperCAmelCase : str =ALPHABET_VALUES[str(__lowerCamelCase )] else: _UpperCAmelCase : Any =str(__lowerCamelCase ) new_value += actual_value _UpperCAmelCase : Union[str, Any] =num // base _UpperCAmelCase : Dict =div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(__lowerCamelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
242
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : str = { """facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] ="""wav2vec2""" def __init__( self : Dict , UpperCAmelCase__ : Optional[int]=3_2 , UpperCAmelCase__ : int=7_6_8 , UpperCAmelCase__ : Tuple=1_2 , UpperCAmelCase__ : str=1_2 , UpperCAmelCase__ : int=3_0_7_2 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Union[str, Any]=1e-5 , UpperCAmelCase__ : Union[str, Any]="group" , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase__ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase__ : int=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : int=1_2_8 , UpperCAmelCase__ : Any=1_6 , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Union[str, Any]=0.05 , UpperCAmelCase__ : Any=1_0 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : List[str]=1_0 , UpperCAmelCase__ : str=0 , UpperCAmelCase__ : List[str]=3_2_0 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Any=1_0_0 , UpperCAmelCase__ : List[str]=2_5_6 , UpperCAmelCase__ : Dict=2_5_6 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : str="sum" , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Dict=2_5_6 , UpperCAmelCase__ : Tuple=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase__ : Union[str, Any]=(5, 3, 3, 1, 1) , UpperCAmelCase__ : Union[str, Any]=(1, 2, 3, 1, 1) , UpperCAmelCase__ : List[str]=5_1_2 , UpperCAmelCase__ : List[Any]=0 , UpperCAmelCase__ : str=1 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Any=None , **UpperCAmelCase__ : List[str] , ) ->str: """simple docstring""" super().__init__(**UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Tuple = feat_extract_norm SCREAMING_SNAKE_CASE : Tuple = feat_extract_activation SCREAMING_SNAKE_CASE : str = list(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = list(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = list(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = conv_bias SCREAMING_SNAKE_CASE : List[str] = num_conv_pos_embeddings SCREAMING_SNAKE_CASE : str = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE : List[str] = len(self.conv_dim ) SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : int = hidden_dropout SCREAMING_SNAKE_CASE : Union[str, Any] = attention_dropout SCREAMING_SNAKE_CASE : int = activation_dropout SCREAMING_SNAKE_CASE : Dict = feat_proj_dropout SCREAMING_SNAKE_CASE : List[str] = final_dropout SCREAMING_SNAKE_CASE : Optional[Any] = layerdrop SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : Dict = do_stable_layer_norm SCREAMING_SNAKE_CASE : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE : Optional[Any] = apply_spec_augment SCREAMING_SNAKE_CASE : Dict = mask_time_prob SCREAMING_SNAKE_CASE : Tuple = mask_time_length SCREAMING_SNAKE_CASE : Any = mask_time_min_masks SCREAMING_SNAKE_CASE : Dict = mask_feature_prob SCREAMING_SNAKE_CASE : Tuple = mask_feature_length SCREAMING_SNAKE_CASE : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE : List[str] = num_codevectors_per_group SCREAMING_SNAKE_CASE : Optional[int] = num_codevector_groups SCREAMING_SNAKE_CASE : Optional[Any] = contrastive_logits_temperature SCREAMING_SNAKE_CASE : List[str] = feat_quantizer_dropout SCREAMING_SNAKE_CASE : Optional[int] = num_negatives SCREAMING_SNAKE_CASE : List[str] = codevector_dim SCREAMING_SNAKE_CASE : Dict = proj_codevector_dim SCREAMING_SNAKE_CASE : int = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE : int = ctc_loss_reduction SCREAMING_SNAKE_CASE : int = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE : List[Any] = add_adapter SCREAMING_SNAKE_CASE : int = adapter_kernel_size SCREAMING_SNAKE_CASE : List[Any] = adapter_stride SCREAMING_SNAKE_CASE : List[str] = num_adapter_layers SCREAMING_SNAKE_CASE : str = output_hidden_size or hidden_size SCREAMING_SNAKE_CASE : Dict = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE : List[Any] = list(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : int = list(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = list(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = xvector_output_dim @property def _lowercase ( self : Optional[int] ) ->Dict: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
245
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __lowercase ( _A , _A , _A ) -> int: SCREAMING_SNAKE_CASE : Optional[Any] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE : int = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } SCREAMING_SNAKE_CASE : List[Any] = F"{src_lang}-{tgt_lang}" SCREAMING_SNAKE_CASE : List[str] = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(_A , exist_ok=_A ) SCREAMING_SNAKE_CASE : int = os.path.join(_A , """README.md""" ) print(F"Generating {path}" ) with open(_A , """w""" , encoding="""utf-8""" ) as f: f.write(_A ) # make sure we are under the root of the project UpperCAmelCase__ : List[str] = Path(__file__).resolve().parent.parent.parent UpperCAmelCase__ : Dict = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = model_name.split("""-""") UpperCAmelCase__ : Tuple = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
245
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> int: '''simple docstring''' snake_case : int = abs(SCREAMING_SNAKE_CASE__ ) snake_case : str = 0 while n > 0: res += n % 10 n //= 10 return res def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> int: '''simple docstring''' snake_case : List[str] = abs(SCREAMING_SNAKE_CASE__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> int: '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE__ ) for c in str(abs(SCREAMING_SNAKE_CASE__ ) ) ) def _UpperCamelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> None: snake_case : int = F'{func.__name__}({value})' snake_case : Optional[int] = timeit(F'__main__.{call}' , setup='''import __main__''' ) print(F'{call:56} = {func(SCREAMING_SNAKE_CASE__ )} -- {timing:.4f} seconds' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
83
'''simple docstring''' from collections.abc import Generator def _UpperCamelCase ( ) -> Generator[int, None, None]: '''simple docstring''' snake_case ,snake_case : Tuple = 0, 1 while True: snake_case ,snake_case : List[Any] = b, a + b yield b def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = 1000 ) -> int: '''simple docstring''' snake_case : Optional[int] = 1 snake_case : List[Any] = fibonacci_generator() while len(str(next(SCREAMING_SNAKE_CASE__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
83
1
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowercase: '''simple docstring''' def __init__( self: Any, a_: Union[str, Any], a_: Dict=13, a_: Optional[Any]=32, a_: Any=2, a_: Any=3, a_: Optional[Any]=16, a_: List[str]=[1, 2, 1], a_: int=[2, 2, 4], a_: Dict=2, a_: Optional[int]=2.0, a_: Union[str, Any]=True, a_: Optional[Any]=0.0, a_: Optional[int]=0.0, a_: Union[str, Any]=0.1, a_: str="gelu", a_: int=False, a_: Union[str, Any]=True, a_: Dict=0.02, a_: List[Any]=1E-5, a_: int=True, a_: Union[str, Any]=None, a_: Optional[int]=True, a_: List[Any]=10, a_: Tuple=8, a_: Optional[Any]=["stage1", "stage2", "stage3"], a_: Union[str, Any]=[1, 2, 3], ): '''simple docstring''' _snake_case : str = parent _snake_case : Optional[int] = batch_size _snake_case : Any = image_size _snake_case : int = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Optional[Any] = depths _snake_case : Tuple = num_heads _snake_case : Union[str, Any] = window_size _snake_case : List[Any] = mlp_ratio _snake_case : Union[str, Any] = qkv_bias _snake_case : List[Any] = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : Union[str, Any] = drop_path_rate _snake_case : str = hidden_act _snake_case : Union[str, Any] = use_absolute_embeddings _snake_case : Optional[Any] = patch_norm _snake_case : Any = layer_norm_eps _snake_case : Union[str, Any] = initializer_range _snake_case : Union[str, Any] = is_training _snake_case : Optional[Any] = scope _snake_case : Union[str, Any] = use_labels _snake_case : Union[str, Any] = type_sequence_label_size _snake_case : str = encoder_stride _snake_case : List[Any] = out_features _snake_case : Tuple = out_indices def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Tuple = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : List[str] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: str ): '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, ) def UpperCamelCase_ ( self: str, a_: List[str], a_: List[str], a_: str ): '''simple docstring''' _snake_case : str = MaskFormerSwinModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Any = model(a_ ) _snake_case : List[str] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _snake_case : List[str] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase_ ( self: Dict, a_: Tuple, a_: Tuple, a_: Any ): '''simple docstring''' _snake_case : int = MaskFormerSwinBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : str = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(a_ ): _snake_case : Optional[Any] = ["""stem"""] _snake_case : Tuple = MaskFormerSwinBackbone(config=a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[Any] = config_and_inputs _snake_case : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase__ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : List[Any] = MaskFormerSwinModelTester(self ) _snake_case : List[str] = ConfigTester(self, config_class=a_, embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a_ ) @unittest.skip("""Swin does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip("""Swin does not support feedforward chunking""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) _snake_case : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_, nn.Linear ) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Tuple = model_class(a_ ) _snake_case : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Union[str, Any] = [*signature.parameters.keys()] _snake_case : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: int, a_: str, a_: Dict, a_: Union[str, Any], a_: Union[str, Any] ): '''simple docstring''' _snake_case : Any = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Optional[Any] = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Optional[Any] = outputs.hidden_states _snake_case : Any = getattr( self.model_tester, """expected_num_hidden_layers""", len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a_ ), a_ ) # Swin has a different seq_length _snake_case : int = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _snake_case : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _snake_case : Tuple = True self.check_hidden_states_output(a_, a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[Any] = True self.check_hidden_states_output(a_, a_, a_, a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : str = 3 _snake_case : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _snake_case : List[Any] = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _snake_case : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _snake_case : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _snake_case : Any = True self.check_hidden_states_output(a_, a_, a_, (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Dict = True self.check_hidden_states_output(a_, a_, a_, (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a_: List[str] ): _snake_case : Union[str, Any] = 0 return t def check_equivalence(a_: List[Any], a_: List[Any], a_: List[str], a_: List[str]={} ): with torch.no_grad(): _snake_case : Any = model(**a_, return_dict=a_, **a_ ) _snake_case : int = model(**a_, return_dict=a_, **a_ ).to_tuple() def recursive_check(a_: Union[str, Any], a_: Tuple ): if isinstance(a_, (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a_, a_ ): recursive_check(a_, a_ ) elif isinstance(a_, a_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(a_, a_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a_ ), set_nan_tensor_to_zero(a_ ), atol=1E-5 ), msg=( """Tuple and dict output are not equal. Difference:""" f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" f" {torch.isnan(a_ ).any()} and `inf`: {torch.isinf(a_ )}. Dict has" f" `nan`: {torch.isnan(a_ ).any()} and `inf`: {torch.isinf(a_ )}." ), ) recursive_check(a_, a_ ) for model_class in self.all_model_classes: _snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.eval() _snake_case : int = self._prepare_for_class(a_, a_ ) _snake_case : str = self._prepare_for_class(a_, a_ ) check_equivalence(a_, a_, a_ ) _snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ ) check_equivalence(a_, a_, a_ ) _snake_case : Tuple = self._prepare_for_class(a_, a_ ) _snake_case : str = self._prepare_for_class(a_, a_ ) check_equivalence(a_, a_, a_, {"""output_hidden_states""": True} ) _snake_case : int = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Optional[int] = self._prepare_for_class(a_, a_, return_labels=a_ ) check_equivalence(a_, a_, a_, {"""output_hidden_states""": True} ) @require_torch class lowercase( unittest.TestCase , __a ): '''simple docstring''' lowercase__ = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase__ = MaskFormerSwinConfig def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = MaskFormerSwinModelTester(self ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: _snake_case : Any = backbone_class(a_ ) backbone.to(a_ ) backbone.eval() _snake_case : Union[str, Any] = backbone(**a_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps, a_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels ): self.assertTrue(feature_map.shape[:2], (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _snake_case : List[str] = backbone(**a_, output_hidden_states=a_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ), len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:], backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _snake_case , _snake_case , _snake_case : Any = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels), (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _snake_case : Dict = backbone(**a_, output_attentions=a_ ) self.assertIsNotNone(outputs.attentions )
64
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : """simple docstring""" def __init__( self : Union[str, Any],lowercase_ : Any,lowercase_ : Union[str, Any]=1_3,lowercase_ : Tuple=3_0,lowercase_ : List[Any]=2,lowercase_ : Optional[int]=3,lowercase_ : Union[str, Any]=True,lowercase_ : Tuple=True,lowercase_ : Any=3_2,lowercase_ : List[str]=2,lowercase_ : Optional[int]=4,lowercase_ : Union[str, Any]=3_7,lowercase_ : Tuple="gelu",lowercase_ : str=0.1,lowercase_ : Tuple=0.1,lowercase_ : Union[str, Any]=1_0,lowercase_ : int=0.02,lowercase_ : List[Any]=3,lowercase_ : Any=None,)-> Dict: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A__ = (image_size // patch_size) ** 2 A__ = num_patches + 1 def snake_case__ ( self : int )-> List[str]: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Tuple )-> List[Any]: '''simple docstring''' return ViTConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=lowercase_,initializer_range=self.initializer_range,) def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : Union[str, Any],lowercase_ : Tuple )-> Optional[Any]: '''simple docstring''' A__ = TFViTModel(config=lowercase_ ) A__ = model(lowercase_,training=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. A__ = self.image_size // 2 A__ = pixel_values[:, :, :image_size, :image_size] A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ ) A__ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, seq_length, self.hidden_size) ) def snake_case__ ( self : List[Any],lowercase_ : List[Any],lowercase_ : List[Any],lowercase_ : List[Any] )-> Dict: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFViTForImageClassification(lowercase_ ) A__ = model(lowercase_,labels=lowercase_,training=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. A__ = self.image_size // 2 A__ = pixel_values[:, :, :image_size, :image_size] A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images A__ = 1 A__ = TFViTForImageClassification(lowercase_ ) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : int )-> List[Any]: '''simple docstring''' A__ = TFViTModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,has_text_modality=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def snake_case__ ( self : Optional[Any] )-> str: '''simple docstring''' pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def snake_case__ ( self : Any )-> int: '''simple docstring''' pass def snake_case__ ( self : str )-> Dict: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings(),(tf.keras.layers.Layer) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_,tf.keras.layers.Layer ) ) def snake_case__ ( self : int )-> List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) A__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1],lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : Optional[Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(lowercase_ ) def _snake_case( ) -> str: '''simple docstring''' A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self : List[Any] )-> str: '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def snake_case__ ( self : Any )-> Dict: '''simple docstring''' A__ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=lowercase_,return_tensors='tf' ) # forward pass A__ = model(**lowercase_ ) # verify the logits A__ = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,lowercase_ ) A__ = tf.constant([-0.2_744, 0.8_215, -0.0_836] ) tf.debugging.assert_near(outputs.logits[0, :3],lowercase_,atol=1E-4 )
7
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowercase__ = TypeVar("""T""") class lowerCAmelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : List[str] = data _lowerCamelCase : Node[T] | None = None def __str__( self ): return F'''{self.data}''' class lowerCAmelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self ): _lowerCamelCase : Node[T] | None = None def __iter__( self ): _lowerCamelCase : List[Any] = self.top while node: yield node.data _lowerCamelCase : int = node.next def __str__( self ): return "->".join([str(lowercase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def A_ ( self ): return self.top is None def A_ ( self , lowercase ): _lowerCamelCase : Optional[int] = Node(lowercase ) if not self.is_empty(): _lowerCamelCase : Dict = self.top _lowerCamelCase : Optional[Any] = node def A_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , lowercase ) _lowerCamelCase : Dict = self.top _lowerCamelCase : int = self.top.next return pop_node.data def A_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def A_ ( self ): _lowerCamelCase : Dict = None if __name__ == "__main__": from doctest import testmod testmod()
367
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _snake_case ( lowercase__ ): return x[0] def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = get_letter_count(lowercase__ ) _lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowercase__ ) _lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ ) _lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] ) _lowerCamelCase : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowercase__ , reverse=lowercase__ ) _lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : str = get_frequency_order(lowercase__ ) _lowerCamelCase : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] lowerCAmelCase_ = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase_ = {F'''funnel-transformer/{name}''': 512 for name in _model_names} lowerCAmelCase_ = {F'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names} class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = VOCAB_FILES_NAMES lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : int = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : Dict = FunnelTokenizer lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = 2 def __init__( self : Optional[int] ,_snake_case : Dict=None ,_snake_case : List[str]=None ,_snake_case : Optional[Any]=True ,_snake_case : Optional[int]="<unk>" ,_snake_case : Dict="<sep>" ,_snake_case : Any="<pad>" ,_snake_case : str="<cls>" ,_snake_case : Optional[Any]="<mask>" ,_snake_case : int="<s>" ,_snake_case : Dict="</s>" ,_snake_case : Optional[int]=True ,_snake_case : List[str]=True ,_snake_case : Dict=None ,_snake_case : str="##" ,**_snake_case : Optional[Any] ,) -> Any: """simple docstring""" super().__init__( _snake_case ,tokenizer_file=_snake_case ,do_lower_case=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,clean_text=_snake_case ,tokenize_chinese_chars=_snake_case ,strip_accents=_snake_case ,wordpieces_prefix=_snake_case ,**_snake_case ,) lowercase__ : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,_snake_case ) != do_lower_case or normalizer_state.get('''strip_accents''' ,_snake_case ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,_snake_case ) != tokenize_chinese_chars ): lowercase__ : List[str] = getattr(_snake_case ,normalizer_state.pop('''type''' ) ) lowercase__ : List[str] = do_lower_case lowercase__ : Any = strip_accents lowercase__ : Union[str, Any] = tokenize_chinese_chars lowercase__ : Union[str, Any] = normalizer_class(**_snake_case ) lowercase__ : List[str] = do_lower_case def UpperCAmelCase ( self : int ,_snake_case : Tuple ,_snake_case : Tuple=None ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self : Tuple ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : Optional[int] = [self.sep_token_id] lowercase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self : Tuple ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase__ : str = self._tokenizer.model.save(_snake_case ,name=_snake_case ) return tuple(_snake_case )
16
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _lowerCamelCase : List[str] = 5_0000 _lowerCamelCase : Optional[int] = 5000 _lowerCamelCase ,_lowerCamelCase : int = os.path.split(__file__) _lowerCamelCase : str = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" for i in range(A__ ): UpperCamelCase = dataset[i] @get_duration def __lowerCamelCase ( A__ , A__ , A__ ) -> int: """simple docstring""" for i in range(0 , len(A__ ) , A__ ): UpperCamelCase = dataset[i : i + batch_size] @get_duration def __lowerCamelCase ( A__ , A__ , A__ ) -> List[Any]: """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(A__ ): UpperCamelCase = dataset[i] @get_duration def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> int: """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(0 , A__ , A__ ): UpperCamelCase = dataset[i : i + batch_size] def __lowerCamelCase ( ) -> List[str]: """simple docstring""" UpperCamelCase = {'num examples': SPEED_TEST_N_EXAMPLES} UpperCamelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}), ] UpperCamelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) UpperCamelCase = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) UpperCamelCase = generate_example_dataset( os.path.join(A__ , 'dataset.arrow' ) , A__ , num_examples=A__ , seq_shapes={'list': (100,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(A__ ) ) UpperCamelCase = func(A__ , **A__ ) print('shuffling dataset' ) UpperCamelCase = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(A__ ) ) UpperCamelCase = func( A__ , **A__ ) with open(A__ , 'wb' ) as f: f.write(json.dumps(A__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
28
0
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = 1 @register_to_config def __init__( self : Union[str, Any] , lowercase_ : int = 1000 , lowercase_ : Optional[Union[np.ndarray, List[float]]] = None): '''simple docstring''' self.set_timesteps(lowercase_) # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE_ : int = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. SCREAMING_SNAKE_CASE_ : List[str] = 4 # running values SCREAMING_SNAKE_CASE_ : List[str] = [] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : int , lowercase_ : Union[str, torch.device] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = num_inference_steps SCREAMING_SNAKE_CASE_ : int = torch.linspace(1 , 0 , num_inference_steps + 1)[:-1] SCREAMING_SNAKE_CASE_ : Dict = torch.cat([steps, torch.tensor([0.0])]) if self.config.trained_betas is not None: SCREAMING_SNAKE_CASE_ : Any = torch.tensor(self.config.trained_betas , dtype=torch.floataa) else: SCREAMING_SNAKE_CASE_ : List[Any] = torch.sin(steps * math.pi / 2) ** 2 SCREAMING_SNAKE_CASE_ : List[str] = (1.0 - self.betas**2) ** 0.5 SCREAMING_SNAKE_CASE_ : Optional[Any] = (torch.atana(self.betas , self.alphas) / math.pi * 2)[:-1] SCREAMING_SNAKE_CASE_ : List[Any] = timesteps.to(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = [] def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : torch.FloatTensor , lowercase_ : int , lowercase_ : torch.FloatTensor , lowercase_ : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''') SCREAMING_SNAKE_CASE_ : List[str] = (self.timesteps == timestep).nonzero().item() SCREAMING_SNAKE_CASE_ : Dict = timestep_index + 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(lowercase_) if len(self.ets) == 1: SCREAMING_SNAKE_CASE_ : List[Any] = self.ets[-1] elif len(self.ets) == 2: SCREAMING_SNAKE_CASE_ : Any = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets) == 3: SCREAMING_SNAKE_CASE_ : List[Any] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: SCREAMING_SNAKE_CASE_ : Optional[Any] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) SCREAMING_SNAKE_CASE_ : Any = self._get_prev_sample(lowercase_ , lowercase_ , lowercase_ , lowercase_) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : torch.FloatTensor , *lowercase_ : List[Any] , **lowercase_ : Any): '''simple docstring''' return sample def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.alphas[timestep_index] SCREAMING_SNAKE_CASE_ : Optional[int] = self.betas[timestep_index] SCREAMING_SNAKE_CASE_ : Tuple = self.alphas[prev_timestep_index] SCREAMING_SNAKE_CASE_ : Optional[Any] = self.betas[prev_timestep_index] SCREAMING_SNAKE_CASE_ : Optional[int] = (sample - sigma * ets) / max(lowercase_ , 1e-8) SCREAMING_SNAKE_CASE_ : Dict = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : str): '''simple docstring''' return self.config.num_train_timesteps
367
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCAmelCase_ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _A (__a ) -> Union[str, Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def _A (__a ) -> Any: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
318
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ : List[str] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCAmelCase__ : Optional[int] = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) lowerCAmelCase__ : Union[str, Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowerCAmelCase__ : Optional[Any] = {"""unk_token""": """<unk>"""} lowerCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase ) ) lowerCAmelCase__ : List[Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowerCAmelCase__ : List[str] = os.path.join(self.tmpdirname , UpperCamelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] , **UpperCamelCase : Tuple ) -> str: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def _lowerCAmelCase ( self : List[str] , **UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] , **UpperCamelCase : Tuple ) -> Optional[int]: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ) def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCAmelCase__ : Optional[int] = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowerCAmelCase__ : Dict = self.get_tokenizer() lowerCAmelCase__ : int = self.get_rust_tokenizer() lowerCAmelCase__ : List[Any] = self.get_image_processor() lowerCAmelCase__ : Any = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase__ : List[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase ) lowerCAmelCase__ : str = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase__ : int = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase__ : str = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase__ : List[Any] = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 ) lowerCAmelCase__ : Union[str, Any] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = self.get_image_processor() lowerCAmelCase__ : Union[str, Any] = self.get_tokenizer() lowerCAmelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : str = self.prepare_image_inputs() lowerCAmelCase__ : Optional[int] = image_processor(UpperCamelCase , return_tensors="""np""" ) lowerCAmelCase__ : Optional[Any] = processor(images=UpperCamelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowerCAmelCase__ : List[Any] = self.get_image_processor() lowerCAmelCase__ : Any = self.get_tokenizer() lowerCAmelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : Tuple = """lower newer""" lowerCAmelCase__ : Optional[Any] = processor(text=UpperCamelCase ) lowerCAmelCase__ : int = tokenizer(UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = self.get_image_processor() lowerCAmelCase__ : str = self.get_tokenizer() lowerCAmelCase__ : List[str] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = """lower newer""" lowerCAmelCase__ : Any = self.prepare_image_inputs() lowerCAmelCase__ : Dict = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.get_image_processor() lowerCAmelCase__ : List[str] = self.get_tokenizer() lowerCAmelCase__ : List[str] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ : Tuple = processor.batch_decode(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = tokenizer.batch_decode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowerCAmelCase__ : Dict = self.get_image_processor() lowerCAmelCase__ : str = self.get_tokenizer() lowerCAmelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : Dict = """lower newer""" lowerCAmelCase__ : str = self.prepare_image_inputs() lowerCAmelCase__ : Dict = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
242
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _A = logging.get_logger(__name__) class _lowerCamelCase : def __init__( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : int ) -> str: """simple docstring""" lowerCAmelCase__ : List[Any] = question_encoder lowerCAmelCase__ : Optional[int] = generator lowerCAmelCase__ : Optional[int] = self.question_encoder def _lowerCAmelCase ( self : Dict , UpperCamelCase : Optional[Any] ) -> str: """simple docstring""" if os.path.isfile(UpperCamelCase ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) lowerCAmelCase__ : Dict = os.path.join(UpperCamelCase , """question_encoder_tokenizer""" ) lowerCAmelCase__ : List[Any] = os.path.join(UpperCamelCase , """generator_tokenizer""" ) self.question_encoder.save_pretrained(UpperCamelCase ) self.generator.save_pretrained(UpperCamelCase ) @classmethod def _lowerCAmelCase ( cls : Union[str, Any] , UpperCamelCase : List[str] , **UpperCamelCase : List[str] ) -> Dict: """simple docstring""" # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer lowerCAmelCase__ : Dict = kwargs.pop("""config""" , UpperCamelCase ) if config is None: lowerCAmelCase__ : int = RagConfig.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : List[str] = AutoTokenizer.from_pretrained( UpperCamelCase , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) lowerCAmelCase__ : List[str] = AutoTokenizer.from_pretrained( UpperCamelCase , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=UpperCamelCase , generator=UpperCamelCase ) def __call__( self : Dict , *UpperCamelCase : List[Any] , **UpperCamelCase : Union[str, Any] ) -> int: """simple docstring""" return self.current_tokenizer(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Dict , *UpperCamelCase : Tuple , **UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" return self.generator.batch_decode(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[Any] ) -> str: """simple docstring""" return self.generator.decode(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.question_encoder def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.generator def _lowerCAmelCase ( self : List[str] , UpperCamelCase : List[str] , UpperCamelCase : Optional[List[str]] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : str = "longest" , UpperCamelCase : str = None , UpperCamelCase : bool = True , **UpperCamelCase : Union[str, Any] , ) -> BatchEncoding: """simple docstring""" warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , UpperCamelCase , ) if max_length is None: lowerCAmelCase__ : Any = self.current_tokenizer.model_max_length lowerCAmelCase__ : Tuple = self( UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors=UpperCamelCase , max_length=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , **UpperCamelCase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: lowerCAmelCase__ : Tuple = self.current_tokenizer.model_max_length lowerCAmelCase__ : Tuple = self( text_target=UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors=UpperCamelCase , padding=UpperCamelCase , max_length=UpperCamelCase , truncation=UpperCamelCase , **UpperCamelCase , ) lowerCAmelCase__ : Any = labels["""input_ids"""] return model_inputs
242
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" a = 0 @slow def UpperCamelCase_ (self ): """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): a = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(lowerCamelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): a = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(lowerCamelCase_ ) , 0 ) def UpperCamelCase_ (self ): """simple docstring""" a = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def UpperCamelCase_ (self ): """simple docstring""" a = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def UpperCamelCase_ (self ): """simple docstring""" a = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) # Check that tokenizer_type ≠ model_type a = AutoTokenizer.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def UpperCamelCase_ (self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(lowerCamelCase_ , "vocab.txt" ) ) a = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type="bert" , use_fast=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(lowerCamelCase_ , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(lowerCamelCase_ , "merges.txt" ) ) a = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type="gpt2" , use_fast=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) @require_tokenizers def UpperCamelCase_ (self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(lowerCamelCase_ , "vocab.txt" ) ) a = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type="bert" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(lowerCamelCase_ , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(lowerCamelCase_ , "merges.txt" ) ) a = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type="gpt2" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" with pytest.raises(lowerCamelCase_ ): AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx" ) @require_tokenizers def UpperCamelCase_ (self ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: a = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , lowerCamelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , lowerCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def UpperCamelCase_ (self ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( lowerCamelCase_ , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ): a = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" ) def UpperCamelCase_ (self ): """simple docstring""" a = TOKENIZER_MAPPING.values() a = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(lowerCamelCase_ ) @require_tokenizers def UpperCamelCase_ (self ): """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=lowerCamelCase_ ) , lowerCamelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) , lowerCamelCase_ ) @require_tokenizers def UpperCamelCase_ (self ): """simple docstring""" a = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=lowerCamelCase_ ) a = 'Hello, world. How are you?' a = tokenizer.tokenize(lowerCamelCase_ ) self.assertEqual("[UNK]" , tokens[0] ) a = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=lowerCamelCase_ ) a = tokenizer.tokenize(lowerCamelCase_ ) self.assertEqual("[UNK]" , tokens[0] ) @require_tokenizers def UpperCamelCase_ (self ): """simple docstring""" a = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" ) self.assertEqual(type(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , "[UNK]" ) self.assertEqual(tokenizer.padding_side , "right" ) self.assertEqual(tokenizer.truncation_side , "right" ) def UpperCamelCase_ (self ): """simple docstring""" a = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) a = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def UpperCamelCase_ (self ): """simple docstring""" a = AutoTokenizer.from_pretrained("ctrl" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = get_tokenizer_config("bert-base-cased" ) a = config.pop("_commit_hash" , lowerCamelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(lowerCamelCase_ , {"do_lower_case": False} ) # This model does not have a tokenizer_config so we get back an empty dict. a = get_tokenizer_config(lowerCamelCase_ ) self.assertDictEqual(lowerCamelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. a = AutoTokenizer.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) a = get_tokenizer_config(lowerCamelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] , "BertTokenizer" ) def UpperCamelCase_ (self ): """simple docstring""" try: AutoConfig.register("custom" , lowerCamelCase_ ) AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ ) a = CustomTokenizer.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) a = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def UpperCamelCase_ (self ): """simple docstring""" try: AutoConfig.register("custom" , lowerCamelCase_ ) # Can register in two steps AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoTokenizer.register(lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: a = BertTokenizerFast.from_pretrained(lowerCamelCase_ ) bert_tokenizer.save_pretrained(lowerCamelCase_ ) a = CustomTokenizerFast.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) a = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) a = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase_ (self ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): a = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): a = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCamelCase_ ) a = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) a = AutoTokenizer.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version a = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) a = AutoTokenizer.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) @require_tokenizers def UpperCamelCase_ (self ): """simple docstring""" class _lowercase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __A = False class _lowercase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __A = NewTokenizer __A = False try: AutoConfig.register("custom" , lowerCamelCase_ ) AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ ) AutoTokenizer.register(lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ ) # If remote code is not set, the default is to use local a = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) a = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. a = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) a = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub a = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertTrue(tokenizer.special_attribute_present ) a = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase_ (self ): """simple docstring""" a = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=lowerCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version a = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def UpperCamelCase_ (self ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , "bert-base is not a local folder and is not a valid model identifier" ): a = AutoTokenizer.from_pretrained("bert-base" ) def UpperCamelCase_ (self ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): a = AutoTokenizer.from_pretrained(lowerCamelCase_ , revision="aaaaaa" ) def UpperCamelCase_ (self ): """simple docstring""" a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
359
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a( A : Optional[Any] ) -> Tuple: """simple docstring""" a = 384 a = 7 if "tiny" in model_name: a = 96 a = (2, 2, 6, 2) a = (3, 6, 12, 24) elif "small" in model_name: a = 96 a = (2, 2, 18, 2) a = (3, 6, 12, 24) elif "base" in model_name: a = 128 a = (2, 2, 18, 2) a = (4, 8, 16, 32) a = 12 a = 512 elif "large" in model_name: a = 192 a = (2, 2, 18, 2) a = (6, 12, 24, 48) a = 12 a = 768 # set label information a = 150 a = "huggingface/label-files" a = "ade20k-id2label.json" a = json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) ) a = {int(A ): v for k, v in idalabel.items()} a = {v: k for k, v in idalabel.items()} a = SwinConfig( embed_dim=A , depths=A , num_heads=A , window_size=A , out_features=["stage1", "stage2", "stage3", "stage4"] , ) a = UperNetConfig( backbone_config=A , auxiliary_in_channels=A , num_labels=A , idalabel=A , labelaid=A , ) return config def a( A : Optional[Any] ) -> Tuple: """simple docstring""" a = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def a( A : List[str] , A : List[str] , A : Dict ) -> Any: """simple docstring""" a = dct.pop(A ) a = val def a( A : str , A : List[str] ) -> List[Any]: """simple docstring""" a = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) a = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a = in_proj_weight[:dim, :] a = in_proj_bias[: dim] a = in_proj_weight[ dim : dim * 2, : ] a = in_proj_bias[ dim : dim * 2 ] a = in_proj_weight[ -dim :, : ] a = in_proj_bias[-dim :] # fmt: on def a( A : Optional[int] ) -> Optional[Any]: """simple docstring""" a , a = x.shape a = x.reshape(A , 4 , in_channel // 4 ) a = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(A , A ) return x def a( A : int ) -> Dict: """simple docstring""" a , a = x.shape a = x.reshape(A , in_channel // 4 , 4 ) a = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(A , A ) return x def a( A : List[Any] ) -> Dict: """simple docstring""" a = x.shape[0] a = x.reshape(4 , in_channel // 4 ) a = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(A ) return x def a( A : Optional[Any] ) -> List[str]: """simple docstring""" a = x.shape[0] a = x.reshape(in_channel // 4 , 4 ) a = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(A ) return x def a( A : Any , A : int , A : Dict ) -> Union[str, Any]: """simple docstring""" a = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } a = model_name_to_url[model_name] a = torch.hub.load_state_dict_from_url(A , map_location="cpu" , file_name=A )[ "state_dict" ] for name, param in state_dict.items(): print(A , param.shape ) a = get_upernet_config(A ) a = UperNetForSemanticSegmentation(A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a = state_dict.pop(A ) if "bn" in key: a = key.replace("bn" , "batch_norm" ) a = val # rename keys a = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: a = reverse_correct_unfold_reduction_order(A ) if "norm" in key: a = reverse_correct_unfold_norm_order(A ) model.load_state_dict(A ) # verify on image a = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" a = Image.open(requests.get(A , stream=A ).raw ).convert("RGB" ) a = SegformerImageProcessor() a = processor(A , return_tensors="pt" ).pixel_values with torch.no_grad(): a = model(A ) a = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": a = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": a = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": a = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": a = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _lowercase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase: int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
71
0
'''simple docstring''' from __future__ import annotations def A__ ( UpperCAmelCase_ ): return len(set(UpperCAmelCase_ ) ) == len(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
83
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowercase__ ( lowercase ): def __init__( self : Any ,lowerCamelCase__ : str ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : str = dataset _UpperCamelCase : Optional[Any] = process _UpperCamelCase : Optional[Any] = params def __len__( self : Tuple ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Tuple ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.dataset[i] _UpperCamelCase : Dict = self.process(lowerCamelCase__ ,**self.params ) return processed class lowercase__ ( lowercase ): def __init__( self : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int]=None ): '''simple docstring''' _UpperCamelCase : Optional[int] = loader _UpperCamelCase : Tuple = infer _UpperCamelCase : List[str] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _UpperCamelCase : Any = None _UpperCamelCase : Union[str, Any] = loader_batch_size # Internal bookkeeping _UpperCamelCase : Optional[Any] = None _UpperCamelCase : str = None def __len__( self : List[str] ): '''simple docstring''' return len(self.loader ) def __iter__( self : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = iter(self.loader ) return self def UpperCamelCase_ ( self : Any ): '''simple docstring''' if isinstance(self._loader_batch_data ,torch.Tensor ): # Batch data is simple tensor, just fetch the slice _UpperCamelCase : Union[str, Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _UpperCamelCase : Union[str, Any] = {} for k, element in self._loader_batch_data.items(): if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): # Convert ModelOutput to tuple first _UpperCamelCase : str = element.to_tuple() if isinstance(element[0] ,torch.Tensor ): _UpperCamelCase : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] ,np.ndarray ): _UpperCamelCase : str = tuple(np.expand_dims(el[self._loader_batch_index] ,0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCamelCase__ ,lowerCamelCase__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] ,torch.Tensor ): _UpperCamelCase : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] ,np.ndarray ): _UpperCamelCase : Tuple = tuple(np.expand_dims(el[self._loader_batch_index] ,0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _UpperCamelCase : Optional[int] = None elif isinstance(element[self._loader_batch_index] ,torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCamelCase : int = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] ,np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCamelCase : Optional[Any] = np.expand_dims(element[self._loader_batch_index] ,0 ) else: # This is typically a list, so no need to `unsqueeze`. _UpperCamelCase : Union[str, Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _UpperCamelCase : Optional[int] = self._loader_batch_data.__class__(lowerCamelCase__ ) self._loader_batch_index += 1 return result def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _UpperCamelCase : Tuple = next(self.iterator ) _UpperCamelCase : List[str] = self.infer(lowerCamelCase__ ,**self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowerCamelCase__ ,torch.Tensor ): _UpperCamelCase : List[Any] = processed else: _UpperCamelCase : List[Any] = list(processed.keys() )[0] _UpperCamelCase : Optional[int] = processed[key] if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : int = len(lowerCamelCase__ ) else: _UpperCamelCase : List[str] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCamelCase : int = observed_batch_size # Setting internal index to unwrap the batch _UpperCamelCase : Dict = processed _UpperCamelCase : str = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowercase__ ( lowercase ): def __init__( self : str ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Any=None ): '''simple docstring''' super().__init__(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def __iter__( self : Dict ): '''simple docstring''' _UpperCamelCase : str = iter(self.loader ) _UpperCamelCase : List[str] = None return self def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' if self.subiterator is None: _UpperCamelCase : Tuple = self.infer(next(self.iterator ) ,**self.params ) try: # Try to return next item _UpperCamelCase : Optional[Any] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _UpperCamelCase : List[Any] = self.infer(next(self.iterator ) ,**self.params ) _UpperCamelCase : int = next(self.subiterator ) return processed class lowercase__ ( lowercase ): def __iter__( self : List[str] ): '''simple docstring''' _UpperCamelCase : Dict = iter(self.loader ) return self def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _UpperCamelCase : Dict = False _UpperCamelCase : Tuple = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _UpperCamelCase : Dict = self.loader_batch_item() _UpperCamelCase : List[str] = item.pop('is_last' ) accumulator.append(lowerCamelCase__ ) if is_last: return accumulator while not is_last: _UpperCamelCase : List[Any] = self.infer(next(self.iterator ) ,**self.params ) if self.loader_batch_size is not None: if isinstance(lowerCamelCase__ ,torch.Tensor ): _UpperCamelCase : str = processed else: _UpperCamelCase : Any = list(processed.keys() )[0] _UpperCamelCase : Tuple = processed[key] if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : Dict = len(lowerCamelCase__ ) else: _UpperCamelCase : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCamelCase : Any = observed_batch_size _UpperCamelCase : List[Any] = processed _UpperCamelCase : int = 0 while self._loader_batch_index < self.loader_batch_size: _UpperCamelCase : List[Any] = self.loader_batch_item() _UpperCamelCase : Optional[Any] = item.pop('is_last' ) accumulator.append(lowerCamelCase__ ) if is_last: return accumulator else: _UpperCamelCase : Any = processed _UpperCamelCase : List[Any] = item.pop('is_last' ) accumulator.append(lowerCamelCase__ ) return accumulator class lowercase__ ( lowercase ): def __init__( self : Tuple ,lowerCamelCase__ : Dataset ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : int = dataset _UpperCamelCase : str = key def __len__( self : Dict ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Tuple ,lowerCamelCase__ : Tuple ): '''simple docstring''' return self.dataset[i][self.key] class lowercase__ ( lowercase ): def __init__( self : List[Any] ,lowerCamelCase__ : Dataset ,lowerCamelCase__ : str ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : int = dataset _UpperCamelCase : Optional[Any] = keya _UpperCamelCase : str = keya def __len__( self : List[Any] ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : List[str] ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
83
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase_ ( _A ,unittest.TestCase ): '''simple docstring''' a__ = ConsistencyModelPipeline a__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS a__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt a__ = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: A : int = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: A : str = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : Dict=False ) -> List[Any]: if class_cond: A : Tuple = self.dummy_cond_unet else: A : Optional[int] = self.dummy_uncond_unet # Default to CM multistep sampler A : int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) A : Union[str, Any] = { "unet": unet, "scheduler": scheduler, } return components def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any=0 ) -> Dict: if str(__lowerCamelCase ).startswith("mps" ): A : Optional[Any] = torch.manual_seed(__lowerCamelCase ) else: A : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) A : List[str] = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[Any]: A : int = "cpu" # ensure determinism for the device-dependent torch.Generator A : Optional[Any] = self.get_dummy_components() A : Union[str, Any] = ConsistencyModelPipeline(**__lowerCamelCase ) A : Any = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A : Optional[int] = self.get_dummy_inputs(__lowerCamelCase ) A : int = pipe(**__lowerCamelCase ).images assert image.shape == (1, 32, 32, 3) A : Any = image[0, -3:, -3:, -1] A : Union[str, Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict: A : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator A : str = self.get_dummy_components(class_cond=__lowerCamelCase ) A : Union[str, Any] = ConsistencyModelPipeline(**__lowerCamelCase ) A : int = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A : List[str] = self.get_dummy_inputs(__lowerCamelCase ) A : Tuple = 0 A : str = pipe(**__lowerCamelCase ).images assert image.shape == (1, 32, 32, 3) A : Any = image[0, -3:, -3:, -1] A : Any = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict: A : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator A : int = self.get_dummy_components() A : Union[str, Any] = ConsistencyModelPipeline(**__lowerCamelCase ) A : int = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A : Any = self.get_dummy_inputs(__lowerCamelCase ) A : Dict = 1 A : List[str] = None A : str = pipe(**__lowerCamelCase ).images assert image.shape == (1, 32, 32, 3) A : str = image[0, -3:, -3:, -1] A : Dict = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[Any]: A : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator A : str = self.get_dummy_components(class_cond=__lowerCamelCase ) A : Union[str, Any] = ConsistencyModelPipeline(**__lowerCamelCase ) A : str = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A : Optional[Any] = self.get_dummy_inputs(__lowerCamelCase ) A : str = 1 A : List[str] = None A : Any = 0 A : Any = pipe(**__lowerCamelCase ).images assert image.shape == (1, 32, 32, 3) A : Any = image[0, -3:, -3:, -1] A : Optional[Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Tuple , __lowerCamelCase : Any=0 , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[Any]="cpu" , __lowerCamelCase : Dict=torch.floataa , __lowerCamelCase : Union[str, Any]=(1, 3, 64, 64) ) -> Dict: A : Any = torch.manual_seed(__lowerCamelCase ) A : List[str] = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: A : Optional[Any] = self.get_fixed_latents(seed=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase , shape=__lowerCamelCase ) A : Dict = latents return inputs def SCREAMING_SNAKE_CASE__ ( self : int , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[Any]="cpu" , __lowerCamelCase : int=torch.floataa , __lowerCamelCase : Optional[int]=(1, 3, 64, 64) ) -> Optional[Any]: if type(__lowerCamelCase ) == str: A : List[str] = torch.device(__lowerCamelCase ) A : Dict = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) A : Dict = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase ) return latents def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: A : Union[str, Any] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) A : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) A : Optional[Any] = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(torch_device=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A : Optional[Any] = self.get_inputs() A : List[str] = pipe(**__lowerCamelCase ).images assert image.shape == (1, 64, 64, 3) A : Dict = image[0, -3:, -3:, -1] A : Optional[int] = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: A : str = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) A : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) A : Union[str, Any] = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(torch_device=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A : List[str] = self.get_inputs() A : List[str] = 1 A : Tuple = None A : Optional[int] = pipe(**__lowerCamelCase ).images assert image.shape == (1, 64, 64, 3) A : str = image[0, -3:, -3:, -1] A : Optional[int] = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any: A : Dict = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) A : int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) A : List[Any] = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(torch_device=__lowerCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A : Dict = self.get_inputs(get_fixed_latents=__lowerCamelCase , device=__lowerCamelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowerCamelCase , enable_math=__lowerCamelCase , enable_mem_efficient=__lowerCamelCase ): A : Optional[Any] = pipe(**__lowerCamelCase ).images assert image.shape == (1, 64, 64, 3) A : int = image[0, -3:, -3:, -1] A : List[Any] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: A : Tuple = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) A : Dict = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) A : Optional[int] = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(torch_device=__lowerCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A : Tuple = self.get_inputs(get_fixed_latents=__lowerCamelCase , device=__lowerCamelCase ) A : List[Any] = 1 A : Dict = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowerCamelCase , enable_math=__lowerCamelCase , enable_mem_efficient=__lowerCamelCase ): A : Optional[int] = pipe(**__lowerCamelCase ).images assert image.shape == (1, 64, 64, 3) A : Dict = image[0, -3:, -3:, -1] A : List[Any] = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
256
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowerCamelCase_ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : Any ) -> Optional[Any]: raise NotImplementedError() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[Any]: raise NotImplementedError() class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : "AutoTokenizer" , __lowerCamelCase : bool = False , **__lowerCamelCase : Optional[Any] ) -> Optional[int]: A : str = tokenizer A : Tuple = skip_prompt A : Optional[Any] = decode_kwargs # variables used in the streaming process A : Any = [] A : Tuple = 0 A : List[str] = True def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : Optional[Any] ) -> int: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: A : List[str] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: A : Tuple = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) A : str = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): A : int = text[self.print_len :] A : Union[str, Any] = [] A : Any = 0 # If the last token is a CJK character, we print the characters. elif len(__lowerCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): A : Optional[int] = text[self.print_len :] self.print_len += len(__lowerCamelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: A : Union[str, Any] = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(__lowerCamelCase ) self.on_finalized_text(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]: # Flush the cache, if it exists if len(self.token_cache ) > 0: A : Optional[int] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) A : Optional[Any] = text[self.print_len :] A : Optional[int] = [] A : List[str] = 0 else: A : List[Any] = "" A : Union[str, Any] = True self.on_finalized_text(__lowerCamelCase , stream_end=__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : bool = False ) -> List[str]: print(__lowerCamelCase , flush=__lowerCamelCase , end="" if not stream_end else None ) def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : int ) -> Dict: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_e_0_0 and cp <= 0X9_f_f_f) or (cp >= 0X3_4_0_0 and cp <= 0X4_d_b_f) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_a_6_d_f) # or (cp >= 0X2_a_7_0_0 and cp <= 0X2_b_7_3_f) # or (cp >= 0X2_b_7_4_0 and cp <= 0X2_b_8_1_f) # or (cp >= 0X2_b_8_2_0 and cp <= 0X2_c_e_a_f) # or (cp >= 0Xf_9_0_0 and cp <= 0Xf_a_f_f) or (cp >= 0X2_f_8_0_0 and cp <= 0X2_f_a_1_f) # ): # return True return False class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : "AutoTokenizer" , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[float] = None , **__lowerCamelCase : Dict ) -> Any: super().__init__(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) A : Tuple = Queue() A : Dict = None A : List[str] = timeout def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : bool = False ) -> Any: self.text_queue.put(__lowerCamelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : int ) -> Tuple: return self def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: A : int = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
256
1
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
309
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCamelCase__: UpperCAmelCase__ : int UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess') def lowerCamelCase__ ( A__ : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(A__ ) != count_coins(A__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.left ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.right ) __lowerCamelCase = 1 - left_distrib_excess __lowerCamelCase = 1 - right_distrib_excess __lowerCamelCase = ( left_distrib_moves + right_distrib_moves + abs(A__ ) + abs(A__ ) ) __lowerCamelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(A__ , A__ ) return get_distrib(A__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
12
0
def __A ( _lowercase ) -> Optional[int]: '''simple docstring''' try: _A = float(_lowercase ) except ValueError: raise ValueError('''Please enter a valid number''' ) _A = decimal - int(_lowercase ) if fractional_part == 0: return int(_lowercase ), 1 else: _A = len(str(_lowercase ).split('''.''' )[1] ) _A = int(decimal * (10**number_of_frac_digits) ) _A = 10**number_of_frac_digits _A ,_A = denominator, numerator while True: _A = dividend % divisor if remainder == 0: break _A ,_A = divisor, remainder _A ,_A = numerator / divisor, denominator / divisor return int(_lowercase ), int(_lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
367
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "facebook/bart-large-mnli" A_ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) A_ = "text_classifier" A_ = AutoTokenizer A_ = AutoModelForSequenceClassification A_ = ["text", ["text"]] A_ = ["text"] def __A ( self: int ) -> str: super().setup() _A = self.model.config _A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): _A = int(__A ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def __A ( self: Union[str, Any] , __A: Union[str, Any] , __A: List[str] ) -> int: _A = labels return self.pre_processor( [text] * len(__A ) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def __A ( self: str , __A: List[Any] ) -> Union[str, Any]: _A = outputs.logits _A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
75
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowerCamelCase ( _lowercase ): """simple docstring""" snake_case = "megatron-bert" def __init__( self , _SCREAMING_SNAKE_CASE=2_9056 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=24 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-12 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , )->int: '''simple docstring''' super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ : List[Any] = vocab_size A_ : Optional[int] = hidden_size A_ : int = num_hidden_layers A_ : Dict = num_attention_heads A_ : List[str] = hidden_act A_ : Dict = intermediate_size A_ : List[str] = hidden_dropout_prob A_ : int = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : Union[str, Any] = type_vocab_size A_ : Optional[int] = initializer_range A_ : int = layer_norm_eps A_ : Optional[int] = position_embedding_type A_ : Dict = use_cache
186
'''simple docstring''' import numpy class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ (self , A , A , A ): for iteration in range(1 , iterations + 1 ): lowerCamelCase_ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = input_arr lowerCamelCase_ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
0
def _snake_case ( _snake_case : Dict , _snake_case : List[str] ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(SCREAMING_SNAKE_CASE__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
367
"""simple docstring""" from collections import deque class lowercase_ : '''simple docstring''' def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = process_name # process name _A = arrival_time # arrival time of the process # completion time of finished process or last interrupted time _A = arrival_time _A = burst_time # remaining burst time _A = 0 # total time of the process wait in ready queue _A = 0 # time from arrival time to completion time class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : list[int] , _UpperCAmelCase : deque[Process] , _UpperCAmelCase : int , ): # total number of mlfq's queues _A = number_of_queues # time slice of queues that round robin algorithm applied _A = time_slices # unfinished process is in this ready_queue _A = queue # current time _A = current_time # finished process is in this sequence queue _A = deque() def lowerCAmelCase_ ( self : Dict ): _A = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : list[Process] ): _A = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : list[Process] ): _A = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : list[Process] ): _A = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : deque[Process] ): return [q.burst_time for q in queue] def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCAmelCase_ ( self : int , _UpperCAmelCase : deque[Process] ): _A = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: _A = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 _A = 0 # set the process's turnaround time because it is finished _A = self.current_time - cp.arrival_time # set the completion time _A = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : deque[Process] , _UpperCAmelCase : int ): _A = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): _A = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time _A = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished _A = 0 # set the finish time _A = self.current_time # update the process' turnaround time because it is finished _A = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCAmelCase_ ( self : str ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): _A , _A = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest a = Process('''P1''', 0, 53) a = Process('''P2''', 0, 17) a = Process('''P3''', 0, 68) a = Process('''P4''', 0, 24) a = 3 a = [17, 25] a = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) a = Process('''P1''', 0, 53) a = Process('''P2''', 0, 17) a = Process('''P3''', 0, 68) a = Process('''P4''', 0, 24) a = 3 a = [17, 25] a = deque([Pa, Pa, Pa, Pa]) a = MLFQ(number_of_queues, time_slices, queue, 0) a = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
271
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __snake_case ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCAmelCase__ : str = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def A () -> Dict: """simple docstring""" if os.name == "nt": UpperCAmelCase_ = CursorInfo() UpperCAmelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__A , ctypes.byref(__A ) ) UpperCAmelCase_ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__A , ctypes.byref(__A ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def A () -> Any: """simple docstring""" if os.name == "nt": UpperCAmelCase_ = CursorInfo() UpperCAmelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__A , ctypes.byref(__A ) ) UpperCAmelCase_ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__A , ctypes.byref(__A ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def A () -> Dict: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
51
import re def A ( a_ ) -> bool: __UpperCamelCase : Any =re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(a_ ,a_ ) ) if __name__ == "__main__": A_ :List[str] = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
71
0
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class snake_case ( unittest.TestCase ): def lowercase_ ( self : Dict)-> Dict: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = ["a", "b", "c"] # Defaults to last layer if both are None __lowerCAmelCase: int = get_aligned_output_features_output_indices(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) self.assertEqual(UpperCamelCase__ , ["c"]) self.assertEqual(UpperCamelCase__ , [2]) # Out indices set to match out features __lowerCAmelCase: str = get_aligned_output_features_output_indices(["a", "c"] , UpperCamelCase__ , UpperCamelCase__) self.assertEqual(UpperCamelCase__ , ["a", "c"]) self.assertEqual(UpperCamelCase__ , [0, 2]) # Out features set to match out indices __lowerCAmelCase: Dict = get_aligned_output_features_output_indices(UpperCamelCase__ , [0, 2] , UpperCamelCase__) self.assertEqual(UpperCamelCase__ , ["a", "c"]) self.assertEqual(UpperCamelCase__ , [0, 2]) # Out features selected from negative indices __lowerCAmelCase: str = get_aligned_output_features_output_indices(UpperCamelCase__ , [-3, -1] , UpperCamelCase__) self.assertEqual(UpperCamelCase__ , ["a", "c"]) self.assertEqual(UpperCamelCase__ , [-3, -1]) def lowercase_ ( self : Any)-> Dict: '''simple docstring''' with self.assertRaises(UpperCamelCase__): verify_out_features_out_indices(["a", "b"] , (0, 1) , UpperCamelCase__) # Out features must be a list with self.assertRaises(UpperCamelCase__): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"]) # Out features must be a subset of stage names with self.assertRaises(UpperCamelCase__): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"]) # Out indices must be a list or tuple with self.assertRaises(UpperCamelCase__): verify_out_features_out_indices(UpperCamelCase__ , 0 , ["a", "b"]) # Out indices must be a subset of stage names with self.assertRaises(UpperCamelCase__): verify_out_features_out_indices(UpperCamelCase__ , (0, 1) , ["a"]) # Out features and out indices must be the same length with self.assertRaises(UpperCamelCase__): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"]) # Out features should match out indices with self.assertRaises(UpperCamelCase__): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"]) # Out features and out indices should be in order with self.assertRaises(UpperCamelCase__): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"]) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"]) def lowercase_ ( self : Optional[Any])-> str: '''simple docstring''' __lowerCAmelCase: str = BackboneMixin() __lowerCAmelCase: List[Any] = ["a", "b", "c"] __lowerCAmelCase: Dict = ["a", "c"] __lowerCAmelCase: int = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly __lowerCAmelCase: Union[str, Any] = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"]) self.assertEqual(backbone.out_indices , [0, 1]) __lowerCAmelCase: Tuple = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"]) self.assertEqual(backbone.out_indices , [-3, -1])
354
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __A = get_logger(__name__) class snake_case : SCREAMING_SNAKE_CASE_ : List[Any] = """dummy_data""" SCREAMING_SNAKE_CASE_ : List[Any] = """datasets""" SCREAMING_SNAKE_CASE_ : Any = False def __init__( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Union[Version, str] , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[List[Callable]] = None , )-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: Tuple = dataset_name __lowerCAmelCase: Optional[Any] = cache_dir __lowerCAmelCase: Optional[int] = use_local_dummy_data __lowerCAmelCase: Optional[Any] = config # download_callbacks take a single url as input __lowerCAmelCase: List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowerCAmelCase: Union[str, Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowerCAmelCase: List[str] = str(UpperCamelCase__) # to be downloaded __lowerCAmelCase: Dict = None __lowerCAmelCase: Dict = None @property def lowercase_ ( self : List[str])-> str: '''simple docstring''' if self._dummy_file is None: __lowerCAmelCase: Tuple = self.download_dummy_data() return self._dummy_file @property def lowercase_ ( self : Dict)-> Optional[Any]: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name) # structure is dummy / version_name return os.path.join("dummy" , self.version_name) @property def lowercase_ ( self : List[str])-> Any: '''simple docstring''' return os.path.join(self.dummy_data_folder , "dummy_data.zip") def lowercase_ ( self : Optional[Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowerCAmelCase: str = cached_path( UpperCamelCase__ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase__ , force_extract=UpperCamelCase__) return os.path.join(UpperCamelCase__ , self.dummy_file_name) @property def lowercase_ ( self : Dict)-> List[Any]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file) @property def lowercase_ ( self : Optional[Any])-> Tuple: '''simple docstring''' if self._bucket_url is None: __lowerCAmelCase: int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/")) return self._bucket_url @property def lowercase_ ( self : str)-> Optional[int]: '''simple docstring''' if os.path.isdir(self.dummy_file): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/").split("/")[:-1]) def lowercase_ ( self : List[Any] , UpperCamelCase__ : int , *UpperCamelCase__ : List[str])-> Optional[int]: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowerCAmelCase: List[Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowerCAmelCase: str = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase__ , UpperCamelCase__): return self.create_dummy_data_dict(UpperCamelCase__ , UpperCamelCase__) elif isinstance(UpperCamelCase__ , (list, tuple)): return self.create_dummy_data_list(UpperCamelCase__ , UpperCamelCase__) else: return self.create_dummy_data_single(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : Dict , *UpperCamelCase__ : int)-> Dict: '''simple docstring''' return self.download_and_extract(UpperCamelCase__) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any])-> str: '''simple docstring''' return self.download_and_extract(UpperCamelCase__) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : List[Any] , *UpperCamelCase__ : int , **UpperCamelCase__ : str)-> List[str]: '''simple docstring''' return path def lowercase_ ( self : Optional[Any])-> Any: '''simple docstring''' return {} def lowercase_ ( self : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : int)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Optional[int] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase__ , UpperCamelCase__): for single_url in single_urls: download_callback(UpperCamelCase__) else: __lowerCAmelCase: Union[str, Any] = single_urls download_callback(UpperCamelCase__) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: Dict = [os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(Path(UpperCamelCase__).name)) for x in single_urls] else: __lowerCAmelCase: Any = single_urls __lowerCAmelCase: Optional[int] = os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(Path(UpperCamelCase__).name)) __lowerCAmelCase: Dict = value # make sure that values are unique if all(isinstance(UpperCamelCase__ , UpperCamelCase__) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len( dummy_data_dict.values()): # append key to value to make its name unique __lowerCAmelCase: Any = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowercase_ ( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any])-> int: '''simple docstring''' __lowerCAmelCase: Tuple = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowerCAmelCase: Any = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , UpperCamelCase__)) for url in data_url) __lowerCAmelCase: str = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed") for url in data_url) if data_url and (is_tf_records or is_pubmed_records): __lowerCAmelCase: Optional[int] = [data_url[0]] * len(UpperCamelCase__) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase__) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCAmelCase: Optional[Any] = os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(single_url.split("/")[-1])) dummy_data_list.append(UpperCamelCase__) return dummy_data_list def lowercase_ ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any])-> Optional[int]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(UpperCamelCase__) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCAmelCase: List[Any] = os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(data_url.split("/")[-1])) if os.path.exists(UpperCamelCase__) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowercase_ ( self : List[str])-> Dict: '''simple docstring''' pass def lowercase_ ( self : Union[str, Any])-> Tuple: '''simple docstring''' pass def lowercase_ ( self : Dict , UpperCamelCase__ : str)-> int: '''simple docstring''' def _iter_archive_members(UpperCamelCase__ : str): # this preserves the order of the members inside the ZIP archive __lowerCAmelCase: Optional[Any] = Path(self.dummy_file).parent __lowerCAmelCase: Optional[int] = path.relative_to(UpperCamelCase__) with ZipFile(self.local_path_to_dummy_data) as zip_file: __lowerCAmelCase: Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix()): yield dummy_parent_path.joinpath(UpperCamelCase__) __lowerCAmelCase: str = Path(UpperCamelCase__) __lowerCAmelCase: Optional[Any] = _iter_archive_members(UpperCamelCase__) if self.use_local_dummy_data else path.rglob("*") for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__")): yield file_path.relative_to(UpperCamelCase__).as_posix(), file_path.open("rb") def lowercase_ ( self : str , UpperCamelCase__ : str)-> str: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: Dict = [paths] for path in paths: if os.path.isfile(UpperCamelCase__): if os.path.basename(UpperCamelCase__).startswith((".", "__")): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase__): if os.path.basename(UpperCamelCase__).startswith((".", "__")): continue dirnames.sort() for filename in sorted(UpperCamelCase__): if filename.startswith((".", "__")): continue yield os.path.join(UpperCamelCase__ , UpperCamelCase__)
108
0
"""simple docstring""" import os def lowercase ( ) -> Union[str, Any]: _UpperCamelCase = os.path.dirname(os.path.realpath(a__ ) ) _UpperCamelCase = os.path.join(a__ , '''triangle.txt''' ) with open(a__ ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [] for line in triangle: _UpperCamelCase = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(a__ ) ) a.append(a__ ) for i in range(1 , len(a__ ) ): for j in range(len(a[i] ) ): _UpperCamelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0 _UpperCamelCase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a__ , a__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
256
"""simple docstring""" def lowercase ( a__ : str ) -> list[int]: _UpperCamelCase = [0 for i in range(len(a__ ) )] # initialize interval's left pointer and right pointer _UpperCamelCase , _UpperCamelCase = 0, 0 for i in range(1 , len(a__ ) ): # case when current index is inside the interval if i <= right_pointer: _UpperCamelCase = min(right_pointer - i + 1 , z_result[i - left_pointer] ) _UpperCamelCase = min_edge while go_next(a__ , a__ , a__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _UpperCamelCase , _UpperCamelCase = i, i + z_result[i] - 1 return z_result def lowercase ( a__ : int , a__ : list[int] , a__ : str ) -> bool: return i + z_result[i] < len(a__ ) and s[z_result[i]] == s[i + z_result[i]] def lowercase ( a__ : str , a__ : str ) -> int: _UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(a__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
256
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __magic_name__: int = logging.get_logger("transformers.models.encodec") __magic_name__: Dict = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } __magic_name__: List[Any] = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } __magic_name__: Optional[int] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } __magic_name__: int = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } __magic_name__: List[str] = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } __magic_name__: Tuple = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __magic_name__: List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __magic_name__: List[Any] = [] __magic_name__: str = [] def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" for attribute in key.split(""".""" ): __magic_name__ : Any = getattr(_A, _A ) if weight_type is not None: __magic_name__ : Any = getattr(_A, _A ).shape else: __magic_name__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __magic_name__ : List[Any] = value elif weight_type == "weight_g": __magic_name__ : int = value elif weight_type == "weight_v": __magic_name__ : Dict = value elif weight_type == "bias": __magic_name__ : int = value elif weight_type == "running_mean": __magic_name__ : Any = value elif weight_type == "running_var": __magic_name__ : Tuple = value elif weight_type == "num_batches_tracked": __magic_name__ : Tuple = value elif weight_type == "weight_ih_l0": __magic_name__ : Optional[int] = value elif weight_type == "weight_hh_l0": __magic_name__ : Tuple = value elif weight_type == "bias_ih_l0": __magic_name__ : Any = value elif weight_type == "bias_hh_l0": __magic_name__ : Optional[Any] = value elif weight_type == "weight_ih_l1": __magic_name__ : List[str] = value elif weight_type == "weight_hh_l1": __magic_name__ : Optional[int] = value elif weight_type == "bias_ih_l1": __magic_name__ : Optional[Any] = value elif weight_type == "bias_hh_l1": __magic_name__ : List[Any] = value else: __magic_name__ : List[str] = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def UpperCamelCase ( _A, _A ): """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: __magic_name__ ,__magic_name__ : List[Any] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : int = [] if model_name == "encodec_24khz" or "encodec_32khz": __magic_name__ : str = MAPPING_24K elif model_name == "encodec_48khz": __magic_name__ : Optional[Any] = MAPPING_48K else: raise ValueError(f'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(_A, _A ): logger.info(f'{name} was ignored' ) continue __magic_name__ : Union[str, Any] = False for key, mapped_key in MAPPING.items(): if "*" in key: __magic_name__ ,__magic_name__ : Union[str, Any] = key.split(""".*.""" ) if prefix in name and suffix in name: __magic_name__ : int = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue __magic_name__ : Dict = True if "*" in mapped_key: __magic_name__ : Union[str, Any] = name.split(_A )[0].split(""".""" )[-2] __magic_name__ : List[Any] = mapped_key.replace("""*""", _A ) if "weight_g" in name: __magic_name__ : Optional[int] = """weight_g""" elif "weight_v" in name: __magic_name__ : Optional[Any] = """weight_v""" elif "weight_ih_l0" in name: __magic_name__ : List[Any] = """weight_ih_l0""" elif "weight_hh_l0" in name: __magic_name__ : Union[str, Any] = """weight_hh_l0""" elif "bias_ih_l0" in name: __magic_name__ : Tuple = """bias_ih_l0""" elif "bias_hh_l0" in name: __magic_name__ : Dict = """bias_hh_l0""" elif "weight_ih_l1" in name: __magic_name__ : str = """weight_ih_l1""" elif "weight_hh_l1" in name: __magic_name__ : int = """weight_hh_l1""" elif "bias_ih_l1" in name: __magic_name__ : Dict = """bias_ih_l1""" elif "bias_hh_l1" in name: __magic_name__ : Optional[int] = """bias_hh_l1""" elif "bias" in name: __magic_name__ : Tuple = """bias""" elif "weight" in name: __magic_name__ : Optional[int] = """weight""" elif "running_mean" in name: __magic_name__ : Union[str, Any] = """running_mean""" elif "running_var" in name: __magic_name__ : List[Any] = """running_var""" elif "num_batches_tracked" in name: __magic_name__ : Union[str, Any] = """num_batches_tracked""" else: __magic_name__ : Optional[int] = None set_recursively(_A, _A, _A, _A, _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(f'Unused weights: {unused_weights}' ) @torch.no_grad() def UpperCamelCase ( _A, _A, _A, _A=None, _A=None, ): """simple docstring""" if config_path is not None: __magic_name__ : List[Any] = EncodecConfig.from_pretrained(_A ) else: __magic_name__ : List[Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __magic_name__ : Any = [8, 5, 4, 4] __magic_name__ : Optional[Any] = [2.2] __magic_name__ : Dict = 64 __magic_name__ : Tuple = 32000 __magic_name__ : List[Any] = 2048 __magic_name__ : List[Any] = False __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = False elif model_name == "encodec_48khz": __magic_name__ : Tuple = [8, 5, 4, 2] __magic_name__ : List[Any] = [3.0, 6.0, 12.0, 24.0] __magic_name__ : int = 48000 __magic_name__ : Union[str, Any] = 2 __magic_name__ : Any = False __magic_name__ : Optional[int] = """time_group_norm""" __magic_name__ : int = True __magic_name__ : int = 1.0 __magic_name__ : Optional[Any] = 0.01 else: raise ValueError(f'Unknown model name: {model_name}' ) __magic_name__ : Union[str, Any] = EncodecModel(_A ) __magic_name__ : Union[str, Any] = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(_A ) __magic_name__ : Tuple = torch.load(_A ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __magic_name__ : Union[str, Any] = original_checkpoint["""best_state"""] recursively_load_weights(_A, _A, _A ) model.save_pretrained(_A ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(_A ) model.push_to_hub(_A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __magic_name__: Optional[int] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
138
from decimal import Decimal, getcontext from math import ceil, factorial def UpperCamelCase ( _A ): """simple docstring""" if not isinstance(_A, _A ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) __magic_name__ : Dict = precision __magic_name__ : str = ceil(precision / 14 ) __magic_name__ : List[str] = 426880 * Decimal(10005 ).sqrt() __magic_name__ : List[Any] = 1 __magic_name__ : Dict = 13591409 __magic_name__ : Tuple = Decimal(_A ) for k in range(1, _A ): __magic_name__ : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_A ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __magic_name__: Tuple = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
138
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __a = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""DPTFeatureExtractor"""] __a = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Optional[int] = logging.get_logger(__name__) a_ : Optional[int] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a_ : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a_ : Optional[int] = {"""facebook/blenderbot_small-90M""": 5_12} def a_ ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ =set() lowerCamelCase_ =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ =char lowerCamelCase_ =set(__snake_case ) return pairs class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : Tuple =PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Dict =['input_ids', 'attention_mask'] def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase="__start__", lowerCAmelCase="__end__", lowerCAmelCase="__unk__", lowerCAmelCase="__null__", **lowerCAmelCase, ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase, bos_token=lowerCAmelCase, eos_token=lowerCAmelCase, pad_token=lowerCAmelCase, **lowerCAmelCase ) with open(lowerCAmelCase, encoding='''utf-8''' ) as vocab_handle: lowerCamelCase_ =json.load(lowerCAmelCase ) lowerCamelCase_ ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase, encoding='''utf-8''' ) as merges_handle: lowerCamelCase_ =merges_handle.read().split('''\n''' )[1:-1] lowerCamelCase_ =[tuple(merge.split() ) for merge in merges] lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowerCamelCase_ ={} @property def lowercase__ ( self ): """simple docstring""" return len(self.encoder ) def lowercase__ ( self ): """simple docstring""" return dict(self.encoder, **self.added_tokens_encoder ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ =re.sub('''([.,!?()])''', R''' \1''', lowerCAmelCase ) lowerCamelCase_ =re.sub('''(\')''', R''' \1 ''', lowerCAmelCase ) lowerCamelCase_ =re.sub(R'''\s{2,}''', ''' ''', lowerCAmelCase ) if "\n" in token: lowerCamelCase_ =token.replace('''\n''', ''' __newln__''' ) lowerCamelCase_ =token.split(''' ''' ) lowerCamelCase_ =[] for token in tokens: if not len(lowerCAmelCase ): continue lowerCamelCase_ =token.lower() lowerCamelCase_ =tuple(lowerCAmelCase ) lowerCamelCase_ =tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCamelCase_ =get_pairs(lowerCAmelCase ) if not pairs: words.append(lowerCAmelCase ) continue while True: lowerCamelCase_ =min(lowerCAmelCase, key=lambda lowerCAmelCase : self.bpe_ranks.get(lowerCAmelCase, float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_, lowerCamelCase_ =bigram lowerCamelCase_ =[] lowerCamelCase_ =0 while i < len(lowerCAmelCase ): try: lowerCamelCase_ =word.index(lowerCAmelCase, lowerCAmelCase ) new_word.extend(word[i:j] ) lowerCamelCase_ =j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ =tuple(lowerCAmelCase ) lowerCamelCase_ =new_word if len(lowerCAmelCase ) == 1: break else: lowerCamelCase_ =get_pairs(lowerCAmelCase ) lowerCamelCase_ ='''@@ '''.join(lowerCAmelCase ) lowerCamelCase_ =word[:-4] lowerCamelCase_ =word words.append(lowerCAmelCase ) return " ".join(lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =re.findall(R'''\S+\n?''', lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =token.lower() return self.encoder.get(lowerCAmelCase, self.encoder.get(self.unk_token ) ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.decoder.get(lowerCAmelCase, self.unk_token ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =''' '''.join(lowerCAmelCase ).replace('''@@ ''', '''''' ).strip() return out_string def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ =os.path.join( lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ =os.path.join( lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=lowerCAmelCase, ensure_ascii=lowerCAmelCase ) + '''\n''' ) lowerCamelCase_ =0 with open(lowerCAmelCase, '''w''', encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowerCamelCase_ =token_index writer.write(''' '''.join(lowerCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file
75
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class a_ : '''simple docstring''' __a: int __a: Node | None = None __a: Node | None = None def lowerCamelCase ( ) -> Node | None: lowerCAmelCase_ = Node(1 ) lowerCAmelCase_ = Node(2 ) lowerCAmelCase_ = Node(3 ) lowerCAmelCase_ = Node(4 ) lowerCAmelCase_ = Node(5 ) return tree def lowerCamelCase ( a_ ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCamelCase ( a_ ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCamelCase ( a_ ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCamelCase ( a_ ) -> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowerCamelCase ( a_ ) -> Sequence[Node | None]: lowerCAmelCase_ = [] if root is None: return output lowerCAmelCase_ = deque([root] ) while process_queue: lowerCAmelCase_ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCamelCase ( a_ , a_ ) -> Sequence[Node | None]: lowerCAmelCase_ = [] def populate_output(a_ , a_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(a_ , a_ ) return output def lowerCamelCase ( a_ , a_ ) -> Sequence[Node | None]: lowerCAmelCase_ = [] def populate_output(a_ , a_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(a_ , a_ ) return output def lowerCamelCase ( a_ ) -> Sequence[Node | None] | list[Any]: if root is None: return [] lowerCAmelCase_ = [] lowerCAmelCase_ = 0 lowerCAmelCase_ = height(a_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(a_ , a_ ) ) lowerCAmelCase_ = 1 else: output.append(get_nodes_from_right_to_left(a_ , a_ ) ) lowerCAmelCase_ = 0 return output def lowerCamelCase ( ) -> None: # Main function for testing. lowerCAmelCase_ = make_tree() print(F'''In-order Traversal: {inorder(a_ )}''' ) print(F'''Pre-order Traversal: {preorder(a_ )}''' ) print(F'''Post-order Traversal: {postorder(a_ )}''' , '\n' ) print(F'''Height of Tree: {height(a_ )}''' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(a_ ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(a_ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(a_ , level=a_ ) ) print('\nZigZag order Traversal: ' ) print(zigzag(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
352
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> None: '''simple docstring''' warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
14
0
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) a_ = 'pytorch_model.bin' a_ = 'pytorch_model.bin.index.json' a_ = 'adapter_config.json' a_ = 'adapter_model.bin' a_ = 'adapter_model.safetensors' a_ = 'tf_model.h5' a_ = 'tf_model.h5.index.json' a_ = 'model.ckpt' a_ = 'flax_model.msgpack' a_ = 'flax_model.msgpack.index.json' a_ = 'model.safetensors' a_ = 'model.safetensors.index.json' a_ = 'config.json' a_ = 'preprocessor_config.json' a_ = FEATURE_EXTRACTOR_NAME a_ = 'generation_config.json' a_ = 'modelcard.json' a_ = '▁' a_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility a_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. a_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] a_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowerCamelCase__ ( _a): if version.parse(_a) < version.parse(_a): if "dev" in min_version: SCREAMING_SNAKE_CASE : Optional[Any] = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: SCREAMING_SNAKE_CASE : List[Any] = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers.")
76
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : Any ,_a : Optional[int]=2 ,_a : Optional[Any]=True ,_a : Dict=False ,_a : Dict=10 ,_a : Any=3 ,_a : str=32 * 8 ,_a : Optional[int]=32 * 8 ,_a : int=4 ,_a : str=64 ,): '''simple docstring''' _a : Dict = parent _a : Union[str, Any] = batch_size _a : Tuple = is_training _a : List[str] = use_auxiliary_loss _a : Optional[Any] = num_queries _a : str = num_channels _a : List[str] = min_size _a : int = max_size _a : Optional[int] = num_labels _a : List[str] = hidden_dim _a : int = hidden_dim def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) _a : Optional[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=_a ) _a : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=_a ) > 0.5 ).float() _a : Tuple = (torch.rand((self.batch_size, self.num_labels) ,device=_a ) > 0.5).long() _a : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = MaskaFormerConfig( hidden_size=self.hidden_dim ,) _a : str = self.num_queries _a : Union[str, Any] = self.num_labels _a : Tuple = [1, 1, 1, 1] _a : Dict = self.num_channels _a : str = 64 _a : Tuple = 128 _a : Optional[Any] = self.hidden_dim _a : Union[str, Any] = self.hidden_dim _a : List[Any] = self.hidden_dim return config def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a, _a, _a, _a, _a : Optional[Any] = self.prepare_config_and_inputs() _a : str = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __lowercase ( self : List[str] ,_a : Optional[Any] ,_a : str ): '''simple docstring''' _a : str = output.encoder_hidden_states _a : Any = output.pixel_decoder_hidden_states _a : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) ,config.decoder_layers ) def __lowercase ( self : List[str] ,_a : str ,_a : List[Any] ,_a : Any ,_a : Union[str, Any]=False ): '''simple docstring''' with torch.no_grad(): _a : str = MaskaFormerModel(config=_a ) model.to(_a ) model.eval() _a : Any = model(pixel_values=_a ,pixel_mask=_a ) _a : Optional[Any] = model(_a ,output_hidden_states=_a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a ,_a ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Union[str, Any] ,_a : Tuple ,_a : List[str] ,_a : Any ): '''simple docstring''' _a : int = MaskaFormerForUniversalSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(_a : Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _a : Any = model(pixel_values=_a ,pixel_mask=_a ) _a : Optional[int] = model(_a ) comm_check_on_output(_a ) _a : List[str] = model( pixel_values=_a ,pixel_mask=_a ,mask_labels=_a ,class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __UpperCAmelCase : Dict = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} __UpperCAmelCase : Dict = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : Dict = False __UpperCAmelCase : List[Any] = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Union[str, Any] = MaskaFormerModelTester(self ) _a : Dict = ConfigTester(self ,config_class=_a ,has_text_modality=_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Optional[int] ): '''simple docstring''' _a, _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a ) def __lowercase ( self : str ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def __lowercase ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def __lowercase ( self : str ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def __lowercase ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __lowercase ( self : Dict ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowercase ( self : List[Any] ): '''simple docstring''' pass def __lowercase ( self : int ): '''simple docstring''' _a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Union[str, Any] = model_class(_a ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Optional[Any] = [*signature.parameters.keys()] _a : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) @slow def __lowercase ( self : List[str] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _a : Dict = MaskaFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : int = (self.model_tester.min_size,) * 2 _a : Any = { 'pixel_values': torch.randn((2, 3, *size) ,device=_a ), 'mask_labels': torch.randn((2, 10, *size) ,device=_a ), 'class_labels': torch.zeros(2 ,10 ,device=_a ).long(), } _a : List[Any] = self.model_tester.get_config() _a : int = MaskaFormerForUniversalSegmentation(_a ).to(_a ) _a : str = model(**_a ) self.assertTrue(outputs.loss is not None ) def __lowercase ( self : List[str] ): '''simple docstring''' _a, _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a ) def __lowercase ( self : int ): '''simple docstring''' _a, _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ).to(_a ) _a : Optional[int] = model(**_a ,output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def __lowercase ( self : Tuple ): '''simple docstring''' if not self.model_tester.is_training: return _a : List[str] = self.all_model_classes[1] _a, _a, _a, _a, _a : List[str] = self.model_tester.prepare_config_and_inputs() _a : Any = model_class(_a ) model.to(_a ) model.train() _a : Union[str, Any] = model(_a ,mask_labels=_a ,class_labels=_a ).loss loss.backward() def __lowercase ( self : int ): '''simple docstring''' _a : int = self.all_model_classes[1] _a, _a, _a, _a, _a : List[Any] = self.model_tester.prepare_config_and_inputs() _a : str = True _a : str = True _a : List[str] = model_class(_a ).to(_a ) model.train() _a : Optional[int] = model(_a ,mask_labels=_a ,class_labels=_a ) _a : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _a : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _a : Dict = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _a : List[str] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1e-4 def UpperCAmelCase_ (): """simple docstring""" _a : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def __lowercase ( self : Any ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __lowercase ( self : Any ): '''simple docstring''' _a : List[str] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a ) _a : int = self.default_image_processor _a : Tuple = prepare_img() _a : Any = image_processor(_a ,return_tensors='pt' ).to(_a ) _a : Union[str, Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a ,(1, 3, 384, 384) ) with torch.no_grad(): _a : Optional[Any] = model(**_a ) _a : List[Any] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) ) _a : str = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) ) _a : Any = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,_a ,atol=_a ) ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() _a : Optional[Any] = self.default_image_processor _a : List[Any] = prepare_img() _a : str = image_processor(_a ,return_tensors='pt' ).to(_a ) _a : Any = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a ,(1, 3, 384, 384) ) with torch.no_grad(): _a : Optional[int] = model(**_a ) # masks_queries_logits _a : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _a : Dict = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] _a : Optional[Any] = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,_a ,atol=_a ) ) # class_queries_logits _a : str = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) _a : str = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,_a ,atol=_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() _a : Tuple = self.default_image_processor _a : Tuple = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) _a : str = inputs['pixel_values'].to(_a ) _a : str = [el.to(_a ) for el in inputs['mask_labels']] _a : Dict = [el.to(_a ) for el in inputs['class_labels']] with torch.no_grad(): _a : List[str] = model(**_a ) self.assertTrue(outputs.loss is not None )
271
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" UpperCAmelCase__ : int = "char" UpperCAmelCase__ : Dict = "bpe" UpperCAmelCase__ : List[Any] = "wp" a__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" UpperCAmelCase__ : Dict = ["image_processor", "char_tokenizer"] UpperCAmelCase__ : int = "ViTImageProcessor" UpperCAmelCase__ : Optional[int] = "MgpstrTokenizer" def __init__( self , _a=None , _a=None , **_a ) -> Dict: _a : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _a : Any = kwargs.pop('''feature_extractor''' ) _a : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) _a : List[Any] = tokenizer _a : List[str] = AutoTokenizer.from_pretrained('''gpt2''' ) _a : Union[str, Any] = AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(__a , __a ) def __call__( self , _a=None , _a=None , _a=None , **_a ) -> Any: if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: _a : Optional[int] = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None: _a : int = self.char_tokenizer(__a , return_tensors=__a , **__a ) if text is None: return inputs elif images is None: return encodings else: _a : Optional[int] = encodings['input_ids'] return inputs def __lowercase ( self , _a ) -> List[str]: _a : Union[str, Any] = sequences _a : List[Any] = char_preds.size(0 ) _a : Union[str, Any] = self._decode_helper(__a , '''char''' ) _a : Optional[int] = self._decode_helper(__a , '''bpe''' ) _a : Any = self._decode_helper(__a , '''wp''' ) _a : int = [] _a : Tuple = [] for i in range(__a ): _a : Tuple = [char_scores[i], bpe_scores[i], wp_scores[i]] _a : List[str] = [char_strs[i], bpe_strs[i], wp_strs[i]] _a : Optional[int] = scores.index(max(__a ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _a : Optional[Any] = {} _a : int = final_strs _a : Dict = final_scores _a : int = char_strs _a : Dict = bpe_strs _a : Optional[Any] = wp_strs return out def __lowercase ( self , _a , _a ) -> Any: if format == DecodeType.CHARACTER: _a : Dict = self.char_decode _a : Dict = 1 _a : Optional[int] = '[s]' elif format == DecodeType.BPE: _a : Any = self.bpe_decode _a : Dict = 2 _a : Any = '#' elif format == DecodeType.WORDPIECE: _a : Tuple = self.wp_decode _a : Optional[int] = 1_0_2 _a : List[Any] = '[SEP]' else: raise ValueError(F"""Format {format} is not supported.""" ) _a : Optional[int] = [], [] _a : List[Any] = pred_logits.size(0 ) _a : List[str] = pred_logits.size(1 ) _a : Tuple = pred_logits.topk(1 , dim=-1 , largest=__a , sorted=__a ) _a : Any = preds_index.view(-1 , __a )[:, 1:] _a : Optional[int] = decoder(__a ) _a : Optional[int] = torch.nn.functional.softmax(__a , dim=2 ).max(dim=2 ) _a : Dict = preds_max_prob[:, 1:] for index in range(__a ): _a : Optional[int] = preds_str[index].find(__a ) _a : str = preds_str[index][:pred_eos] _a : Any = preds_index[index].cpu().tolist() _a : Any = pred_index.index(__a ) if eos_token in pred_index else -1 _a : Any = preds_max_prob[index][: pred_eos_index + 1] _a : Tuple = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__a ) conf_scores.append(__a ) return dec_strs, conf_scores def __lowercase ( self , _a ) -> Dict: _a : Optional[int] = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(__a )] return decode_strs def __lowercase ( self , _a ) -> Union[str, Any]: return self.bpe_tokenizer.batch_decode(__a ) def __lowercase ( self , _a ) -> Any: _a : List[str] = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(__a )] return decode_strs
350
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"] UpperCAmelCase__ : str = "ViltImageProcessor" UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : Dict = kwargs.pop('''feature_extractor''' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) _a : int = self.image_processor def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: _a : Tuple = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask _a : str = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> str: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Optional[int]: _a : str = self.tokenizer.model_input_names _a : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __lowercase ( self ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
15
0
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =False, False, False @dataclass class a__ : lowerCamelCase : Optional[int] =None lowerCamelCase : bool =True lowerCamelCase : bool =True lowerCamelCase : Optional[str] =None # Automatically constructed lowerCamelCase : ClassVar[str] ="dict" lowerCamelCase : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowerCamelCase : str =field(default="Audio" , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__( self : Dict ): """simple docstring""" return self.pa_type def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Union[str, bytes, dict] ): """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(a , a ): return {"bytes": None, "path": value} elif isinstance(a , a ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __lowerCamelCase = BytesIO() sf.write(a , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __lowerCamelCase = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: __lowerCamelCase = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_27_67 __lowerCamelCase = BytesIO(bytes() ) sf.write(a , a , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : dict , a : Optional[Dict[str, Union[str, bool, None]]] = None ): """simple docstring""" if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) __lowerCamelCase , __lowerCamelCase = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err __lowerCamelCase = xsplitext(a )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: __lowerCamelCase = token_per_repo_id or {} __lowerCamelCase = path.split('''::''' )[-1] try: __lowerCamelCase = string_to_dict(a , config.HUB_DATASETS_URL )['''repo_id'''] __lowerCamelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): __lowerCamelCase = None with xopen(a , '''rb''' , use_auth_token=a ) as f: __lowerCamelCase , __lowerCamelCase = sf.read(a ) else: __lowerCamelCase , __lowerCamelCase = sf.read(a ) __lowerCamelCase = array.T if self.mono: __lowerCamelCase = librosa.to_mono(a ) if self.sampling_rate and self.sampling_rate != sampling_rate: __lowerCamelCase = librosa.resample(a , orig_sr=a , target_sr=self.sampling_rate ) __lowerCamelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def SCREAMING_SNAKE_CASE__ ( self : str , a : Union[pa.StringArray, pa.StructArray] ): """simple docstring""" if pa.types.is_string(storage.type ): __lowerCamelCase = pa.array([None] * len(a ) , type=pa.binary() ) __lowerCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __lowerCamelCase = pa.array([None] * len(a ) , type=pa.string() ) __lowerCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): __lowerCamelCase = pa.array([Audio().encode_example(a ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: __lowerCamelCase = storage.field('''bytes''' ) else: __lowerCamelCase = pa.array([None] * len(a ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: __lowerCamelCase = storage.field('''path''' ) else: __lowerCamelCase = pa.array([None] * len(a ) , type=pa.string() ) __lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(a , self.pa_type ) def SCREAMING_SNAKE_CASE__ ( self : Dict , a : pa.StructArray ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(a : Optional[Any] ): with xopen(a , '''rb''' ) as f: __lowerCamelCase = f.read() return bytes_ __lowerCamelCase = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __lowerCamelCase = pa.array( [os.path.basename(a ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) __lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(a , self.pa_type )
67
"""simple docstring""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ = "" , snake_case__ = False ): """simple docstring""" lowerCAmelCase : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase : str = is_leaf lowerCAmelCase : str = prefix def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = 0 for q, w in zip(self.prefix , snake_case__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self , snake_case__ ): """simple docstring""" for word in words: self.insert(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.prefix == word: lowerCAmelCase : Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase : Optional[Any] = RadixNode(prefix=snake_case__ , is_leaf=snake_case__ ) else: lowerCAmelCase : Tuple = self.nodes[word[0]] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = incoming_node.match( snake_case__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(snake_case__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase : Optional[Any] = remaining_prefix lowerCAmelCase : int = self.nodes[matching_string[0]] lowerCAmelCase : List[Any] = RadixNode(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[int] = aux_node if remaining_word == "": lowerCAmelCase : Optional[int] = True else: self.nodes[matching_string[0]].insert(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = self.nodes.get(word[0] , snake_case__ ) if not incoming_node: return False else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : int = self.nodes.get(word[0] , snake_case__ ) if not incoming_node: return False else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(snake_case__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase : List[str] = list(self.nodes.values() )[0] lowerCAmelCase : List[str] = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase : Optional[int] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase : Optional[Any] = list(incoming_node.nodes.values() )[0] lowerCAmelCase : int = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase : Tuple = merging_node.nodes return True def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = "banana bananas bandana band apple all beast".split() lowerCAmelCase : List[str] = RadixNode() root.insert_many(SCREAMING_SNAKE_CASE ) assert all(root.find(SCREAMING_SNAKE_CASE ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def a__ ( ): '''simple docstring''' assert test_trie() def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = RadixNode() lowerCAmelCase : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(SCREAMING_SNAKE_CASE ) print("Words:" , SCREAMING_SNAKE_CASE ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
108
0
"""simple docstring""" import sys def _lowerCamelCase(__UpperCamelCase ) -> List[str]: _lowerCAmelCase =len(__UpperCamelCase ) _lowerCAmelCase =[[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )] _lowerCAmelCase =[[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )] for chain_length in range(2 , __UpperCamelCase ): for a in range(1 , n - chain_length + 1 ): _lowerCAmelCase =a + chain_length - 1 _lowerCAmelCase =sys.maxsize for c in range(__UpperCamelCase , __UpperCamelCase ): _lowerCAmelCase =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _lowerCAmelCase =cost _lowerCAmelCase =c return matrix, sol def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: if i == j: print("""A""" + str(__UpperCamelCase ) , end=""" """ ) else: print("""(""" , end=""" """ ) print_optiomal_solution(__UpperCamelCase , __UpperCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__UpperCamelCase , optimal_solution[i][j] + 1 , __UpperCamelCase ) print(""")""" , end=""" """ ) def _lowerCamelCase() -> Dict: _lowerCAmelCase =[30, 35, 15, 5, 10, 20, 25] _lowerCAmelCase =len(__UpperCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _lowerCAmelCase , _lowerCAmelCase =matrix_chain_order(__UpperCamelCase ) print("""No. of Operation required: """ + str(matrix[1][n - 1] ) ) print_optiomal_solution(__UpperCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
352
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = ['''image_processor''', '''tokenizer'''] lowerCamelCase = '''CLIPImageProcessor''' lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCAmelCase , ) _lowerCAmelCase =kwargs.pop("""feature_extractor""" ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: _lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
341
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __A : Optional[int] = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __A : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
138
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(_UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
138
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCAmelCase_ ( nn.Module): '''simple docstring''' __UpperCamelCase : int __UpperCamelCase : int __UpperCamelCase : float = 0.0 __UpperCamelCase : int = 1 __UpperCamelCase : int = 1 __UpperCamelCase : bool = True __UpperCamelCase : bool = False __UpperCamelCase : bool = False __UpperCamelCase : bool = False __UpperCamelCase : jnp.dtype = jnp.floataa def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = [] UpperCamelCase : str = [] for i in range(self.num_layers ): UpperCamelCase : Dict = self.in_channels if i == 0 else self.out_channels UpperCamelCase : str = FlaxResnetBlockaD( in_channels=__SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = resnets UpperCamelCase : List[str] = attentions if self.add_downsample: UpperCamelCase : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" UpperCamelCase : Any = () for resnet, attn in zip(self.resnets , self.attentions ): UpperCamelCase : List[Any] = resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = attn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: UpperCamelCase : int = self.downsamplers_a(__SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase_ ( nn.Module): '''simple docstring''' __UpperCamelCase : int __UpperCamelCase : int __UpperCamelCase : float = 0.0 __UpperCamelCase : int = 1 __UpperCamelCase : bool = True __UpperCamelCase : jnp.dtype = jnp.floataa def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = [] for i in range(self.num_layers ): UpperCamelCase : Union[str, Any] = self.in_channels if i == 0 else self.out_channels UpperCamelCase : Optional[Any] = FlaxResnetBlockaD( in_channels=__SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = resnets if self.add_downsample: UpperCamelCase : Dict = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" UpperCamelCase : Union[str, Any] = () for resnet in self.resnets: UpperCamelCase : Optional[int] = resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: UpperCamelCase : Union[str, Any] = self.downsamplers_a(__SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase_ ( nn.Module): '''simple docstring''' __UpperCamelCase : int __UpperCamelCase : int __UpperCamelCase : int __UpperCamelCase : float = 0.0 __UpperCamelCase : int = 1 __UpperCamelCase : int = 1 __UpperCamelCase : bool = True __UpperCamelCase : bool = False __UpperCamelCase : bool = False __UpperCamelCase : bool = False __UpperCamelCase : jnp.dtype = jnp.floataa def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = [] UpperCamelCase : Any = [] for i in range(self.num_layers ): UpperCamelCase : Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCamelCase : Any = self.prev_output_channel if i == 0 else self.out_channels UpperCamelCase : int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = resnets UpperCamelCase : List[str] = attentions if self.add_upsample: UpperCamelCase : Dict = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states UpperCamelCase : Optional[Any] = res_hidden_states_tuple[-1] UpperCamelCase : Optional[int] = res_hidden_states_tuple[:-1] UpperCamelCase : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCamelCase : Dict = resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = attn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE ) if self.add_upsample: UpperCamelCase : Optional[int] = self.upsamplers_a(__SCREAMING_SNAKE_CASE ) return hidden_states class UpperCAmelCase_ ( nn.Module): '''simple docstring''' __UpperCamelCase : int __UpperCamelCase : int __UpperCamelCase : int __UpperCamelCase : float = 0.0 __UpperCamelCase : int = 1 __UpperCamelCase : bool = True __UpperCamelCase : jnp.dtype = jnp.floataa def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = [] for i in range(self.num_layers ): UpperCamelCase : Union[str, Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCamelCase : Tuple = self.prev_output_channel if i == 0 else self.out_channels UpperCamelCase : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = resnets if self.add_upsample: UpperCamelCase : Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" for resnet in self.resnets: # pop res hidden states UpperCamelCase : Tuple = res_hidden_states_tuple[-1] UpperCamelCase : List[Any] = res_hidden_states_tuple[:-1] UpperCamelCase : Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCamelCase : int = resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE ) if self.add_upsample: UpperCamelCase : List[Any] = self.upsamplers_a(__SCREAMING_SNAKE_CASE ) return hidden_states class UpperCAmelCase_ ( nn.Module): '''simple docstring''' __UpperCamelCase : int __UpperCamelCase : float = 0.0 __UpperCamelCase : int = 1 __UpperCamelCase : int = 1 __UpperCamelCase : bool = False __UpperCamelCase : bool = False __UpperCamelCase : jnp.dtype = jnp.floataa def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] UpperCamelCase : Dict = [] for _ in range(self.num_layers ): UpperCamelCase : Dict = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = resnets UpperCamelCase : int = attentions def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" UpperCamelCase : int = self.resnets[0](__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): UpperCamelCase : Union[str, Any] = attn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE ) return hidden_states
356
from argparse import ArgumentParser from .env import EnvironmentCommand def a ( ): """simple docstring""" UpperCamelCase : Any = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) UpperCamelCase : Tuple = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) # Let's go UpperCamelCase : List[Any] = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , '''func''' ): parser.print_help() exit(1 ) # Run UpperCamelCase : str = args.func(SCREAMING_SNAKE_CASE_ ) service.run() if __name__ == "__main__": main()
315
0
"""simple docstring""" def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : str ): """simple docstring""" return int(input_a == input_a == 0 ) def A_ ( ): """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f'| 0 | 0 | {nor_gate(0, 0 )} |' ) print(f'| 0 | 1 | {nor_gate(0, 1 )} |' ) print(f'| 1 | 0 | {nor_gate(1, 0 )} |' ) print(f'| 1 | 1 | {nor_gate(1, 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
320
_lowerCamelCase : Optional[int] = 65521 def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 1 A__ = 0 for plain_chr in plain_text: A__ = (a + ord(lowercase_ )) % MOD_ADLER A__ = (b + a) % MOD_ADLER return (b << 16) | a
14
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( A ) -> Dict: # initialize config if "resnet-50" in model_name: lowerCAmelCase__ = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: lowerCAmelCase__ = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) lowerCAmelCase__ = DetrConfig(use_timm_backbone=A , backbone_config=A ) # set label attributes lowerCAmelCase__ = '''panoptic''' in model_name if is_panoptic: lowerCAmelCase__ = 250 else: lowerCAmelCase__ = 91 lowerCAmelCase__ = '''huggingface/label-files''' lowerCAmelCase__ = '''coco-detection-id2label.json''' lowerCAmelCase__ = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase__ = {int(A ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} return config, is_panoptic def _snake_case ( A ) -> Tuple: # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase__ = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def _snake_case ( A , A , A ) -> Optional[int]: lowerCAmelCase__ = state_dict.pop(A ) lowerCAmelCase__ = val def _snake_case ( A , A=False ) -> str: lowerCAmelCase__ = '''''' if is_panoptic: lowerCAmelCase__ = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:256, :] lowerCAmelCase__ = in_proj_bias[:256] lowerCAmelCase__ = in_proj_weight[256:512, :] lowerCAmelCase__ = in_proj_bias[256:512] lowerCAmelCase__ = in_proj_weight[-256:, :] lowerCAmelCase__ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:256, :] lowerCAmelCase__ = in_proj_bias[:256] lowerCAmelCase__ = in_proj_weight[256:512, :] lowerCAmelCase__ = in_proj_bias[256:512] lowerCAmelCase__ = in_proj_weight[-256:, :] lowerCAmelCase__ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowerCAmelCase__ = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCAmelCase__ = in_proj_weight_cross_attn[:256, :] lowerCAmelCase__ = in_proj_bias_cross_attn[:256] lowerCAmelCase__ = in_proj_weight_cross_attn[256:512, :] lowerCAmelCase__ = in_proj_bias_cross_attn[256:512] lowerCAmelCase__ = in_proj_weight_cross_attn[-256:, :] lowerCAmelCase__ = in_proj_bias_cross_attn[-256:] def _snake_case ( ) -> List[Any]: lowerCAmelCase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def _snake_case ( A , A=None , A=False ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ = get_detr_config(A ) # load original model from torch hub lowerCAmelCase__ = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(F"""Converting model {model_name}...""" ) lowerCAmelCase__ = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=A ).eval() lowerCAmelCase__ = detr.state_dict() # rename keys for src, dest in create_rename_keys(A ): if is_panoptic: lowerCAmelCase__ = '''detr.''' + src rename_key(A , A , A ) # query, key and value matrices need special treatment read_in_q_k_v(A , is_panoptic=A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCAmelCase__ = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): lowerCAmelCase__ = state_dict.pop(A ) lowerCAmelCase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCAmelCase__ = state_dict.pop(A ) lowerCAmelCase__ = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: lowerCAmelCase__ = state_dict.pop(A ) lowerCAmelCase__ = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowerCAmelCase__ = state_dict.pop(A ) lowerCAmelCase__ = val # finally, create HuggingFace model and load state dict lowerCAmelCase__ = DetrForSegmentation(A ) if is_panoptic else DetrForObjectDetection(A ) model.load_state_dict(A ) model.eval() # verify our conversion on an image lowerCAmelCase__ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' lowerCAmelCase__ = DetrImageProcessor(format=A ) lowerCAmelCase__ = processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase__ = encoding['''pixel_values'''] lowerCAmelCase__ = detr(A ) lowerCAmelCase__ = model(A ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) processor.save_pretrained(A ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') __UpperCAmelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
369
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=99 , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=9 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=32 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_=8 , lowerCamelCase_=0.1 , lowerCamelCase_=0.002 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=0 , lowerCamelCase_=None , lowerCamelCase_=None , ) -> str: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = encoder_seq_length lowerCAmelCase__ = decoder_seq_length # For common tests lowerCAmelCase__ = self.decoder_seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_attention_mask lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = d_ff lowerCAmelCase__ = relative_attention_num_buckets lowerCAmelCase__ = dropout_rate lowerCAmelCase__ = initializer_factor lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = decoder_start_token_id lowerCAmelCase__ = None lowerCAmelCase__ = decoder_layers def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return TaConfig.from_pretrained('''google/umt5-base''' ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , ) -> List[str]: if attention_mask is None: lowerCAmelCase__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase__ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowerCamelCase_ ) if decoder_head_mask is None: lowerCAmelCase__ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowerCamelCase_ ) if cross_attn_head_mask is None: lowerCAmelCase__ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=lowerCamelCase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase__ = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ = self.get_config() lowerCAmelCase__ = config.num_attention_heads lowerCAmelCase__ = self.prepare_inputs_dict(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return config, input_dict def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.prepare_config_and_inputs() return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Dict: lowerCAmelCase__ = UMTaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = model( input_ids=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , ) lowerCAmelCase__ = model(input_ids=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ ) lowerCAmelCase__ = result.last_hidden_state lowerCAmelCase__ = result.past_key_values lowerCAmelCase__ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(lowerCamelCase_ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> int: lowerCAmelCase__ = UMTaModel(config=lowerCamelCase_ ).get_decoder().to(lowerCamelCase_ ).eval() # first forward pass lowerCAmelCase__ = model(lowerCamelCase_ , use_cache=lowerCamelCase_ ) lowerCAmelCase__ = model(lowerCamelCase_ ) lowerCAmelCase__ = model(lowerCamelCase_ , use_cache=lowerCamelCase_ ) self.parent.assertTrue(len(lowerCamelCase_ ) == len(lowerCamelCase_ ) ) self.parent.assertTrue(len(lowerCamelCase_ ) == len(lowerCamelCase_ ) + 1 ) lowerCAmelCase__ , lowerCAmelCase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ = model(lowerCamelCase_ )['''last_hidden_state'''] lowerCAmelCase__ = model(lowerCamelCase_ , past_key_values=lowerCamelCase_ )['''last_hidden_state'''] # select random slice lowerCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ = output_from_no_past[:, -1, random_slice_idx].detach() lowerCAmelCase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , ) -> List[str]: lowerCAmelCase__ = UMTaModel(config=lowerCamelCase_ ).to(lowerCamelCase_ ).half().eval() lowerCAmelCase__ = model(**lowerCamelCase_ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(lowerCamelCase_ ).any().item() ) @require_torch class a__ ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Tuple = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowercase__ : List[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () lowercase__ : Dict = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowercase__ : Optional[int] = True lowercase__ : Tuple = False lowercase__ : Optional[int] = False lowercase__ : Optional[Any] = True lowercase__ : Optional[int] = True # The small UMT5 model needs higher percentages for CPU/MP tests lowercase__ : int = [0.8, 0.9] def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ = UMTaModel(config_and_inputs[0] ).to(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( lowerCamelCase_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=lowerCamelCase_ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ = config_and_inputs[0] lowerCAmelCase__ = UMTaForConditionalGeneration(lowerCamelCase_ ).eval() model.to(lowerCamelCase_ ) lowerCAmelCase__ = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=lowerCamelCase_ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCamelCase_ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCamelCase_ ), } for attn_name, (name, mask) in zip(lowerCamelCase_ , head_masking.items() ): lowerCAmelCase__ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCAmelCase__ = torch.ones( config.num_decoder_layers , config.num_heads , device=lowerCamelCase_ ) lowerCAmelCase__ = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=lowerCamelCase_ , return_dict_in_generate=lowerCamelCase_ , **lowerCamelCase_ , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCAmelCase__ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=lowerCamelCase_ ).to(lowerCamelCase_ ) lowerCAmelCase__ = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=lowerCamelCase_ , legacy=lowerCamelCase_ ) lowerCAmelCase__ = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] lowerCAmelCase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' , padding=lowerCamelCase_ ).input_ids # fmt: off lowerCAmelCase__ = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = model.generate(input_ids.to(lowerCamelCase_ ) ) lowerCAmelCase__ = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] lowerCAmelCase__ = tokenizer.batch_decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
228
0
from __future__ import annotations from collections import namedtuple def _a ( a :float , a :float , a :float ) -> tuple: a = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "yolos" def __init__( self : Any ,A : Optional[Any]=7_68 ,A : Dict=12 ,A : Any=12 ,A : str=30_72 ,A : Any="gelu" ,A : str=0.0 ,A : List[str]=0.0 ,A : Dict=0.02 ,A : int=1E-12 ,A : Tuple=[5_12, 8_64] ,A : List[Any]=16 ,A : str=3 ,A : str=True ,A : Any=1_00 ,A : Dict=True ,A : Dict=False ,A : Tuple=1 ,A : Union[str, Any]=5 ,A : Optional[Any]=2 ,A : Union[str, Any]=5 ,A : int=2 ,A : int=0.1 ,**A : List[str] ,): super().__init__(**A ) __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = initializer_range __A = layer_norm_eps __A = image_size __A = patch_size __A = num_channels __A = qkv_bias __A = num_detection_tokens __A = use_mid_position_embeddings __A = auxiliary_loss # Hungarian matcher __A = class_cost __A = bbox_cost __A = giou_cost # Loss coefficients __A = bbox_loss_coefficient __A = giou_loss_coefficient __A = eos_coefficient class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = version.parse("1.11" ) @property def UpperCamelCase_ ( self : str ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase_ ( self : List[Any] ): return 1E-4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 12
15
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: lowerCamelCase_ = 10_24 lowerCamelCase_ = 40_96 lowerCamelCase_ = 24 lowerCamelCase_ = 16 lowerCamelCase_ = [5, 11, 17, 23] lowerCamelCase_ = [2_56, 5_12, 10_24, 10_24] lowerCamelCase_ = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: lowerCamelCase_ = 7_68 lowerCamelCase_ = [1, 1, 1, 0.5] lowerCamelCase_ = [2_56, 5_12, 7_68, 7_68] lowerCamelCase_ = 1_50 lowerCamelCase_ = 16 lowerCamelCase_ = (1, 3_84, 3_84) lowerCamelCase_ = False lowerCamelCase_ = 'project' if "ade" in checkpoint_url: lowerCamelCase_ = True lowerCamelCase_ = 7_68 lowerCamelCase_ = [1, 1, 1, 0.5] lowerCamelCase_ = 1_50 lowerCamelCase_ = 16 lowerCamelCase_ = 'huggingface/label-files' lowerCamelCase_ = 'ade20k-id2label.json' lowerCamelCase_ = json.load(open(cached_download(hf_hub_url(lowercase , lowercase , repo_type='dataset' ) ) , 'r' ) ) lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = [1, 1_50, 4_80, 4_80] return config, expected_shape def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase_ = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: lowerCamelCase_ = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: lowerCamelCase_ = name.replace('patch_embed' , '' ) if "pos_embed" in name: lowerCamelCase_ = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: lowerCamelCase_ = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: lowerCamelCase_ = name.replace('proj' , 'projection' ) if "blocks" in name: lowerCamelCase_ = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: lowerCamelCase_ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: lowerCamelCase_ = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: lowerCamelCase_ = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: lowerCamelCase_ = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: lowerCamelCase_ = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: lowerCamelCase_ = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: lowerCamelCase_ = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: lowerCamelCase_ = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: lowerCamelCase_ = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase_ = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: lowerCamelCase_ = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: lowerCamelCase_ = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: lowerCamelCase_ = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: lowerCamelCase_ = name.replace('conv1' , 'convolution1' ) if "conv2" in name: lowerCamelCase_ = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase_ = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: lowerCamelCase_ = name.replace('pretrained' , 'dpt' ) if "bn" in name: lowerCamelCase_ = name.replace('bn' , 'batch_norm' ) if "head" in name: lowerCamelCase_ = name.replace('head' , 'head.head' ) if "encoder.norm" in name: lowerCamelCase_ = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: lowerCamelCase_ = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: lowerCamelCase_ = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: lowerCamelCase_ = name.replace('..' , '.' ) if "stem.conv" in name: lowerCamelCase_ = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: lowerCamelCase_ = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: lowerCamelCase_ = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: lowerCamelCase_ = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: lowerCamelCase_ = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: lowerCamelCase_ = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase_ = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : int ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) lowerCamelCase_ = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Optional[Any] , lowercase : List[str] , lowercase : List[Any] , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = get_dpt_config(lowercase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase_ = torch.load(lowercase , map_location='cpu' ) # remove certain keys remove_ignore_keys_(lowercase ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowercase ) lowerCamelCase_ = val # read in qkv matrices read_in_q_k_v(lowercase , lowercase ) # load HuggingFace model lowerCamelCase_ = DPTForSemanticSegmentation(lowercase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowercase ) model.load_state_dict(lowercase ) model.eval() # Check outputs on an image lowerCamelCase_ = 4_80 if 'ade' in checkpoint_url else 3_84 lowerCamelCase_ = DPTImageProcessor(size=lowercase ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(lowercase , return_tensors='pt' ) # forward pass lowerCamelCase_ = model(**lowercase ).logits if 'ade' in checkpoint_url else model(**lowercase ).predicted_depth if show_prediction: lowerCamelCase_ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=lowercase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) lowerCamelCase : List[str] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
208
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = "Hello world! cécé herlolip" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str , lowercase : bool ): '''simple docstring''' lowerCamelCase_ = FairseqRobertaModel.from_pretrained(lowercase ) roberta.eval() # disable dropout lowerCamelCase_ = roberta.model.encoder.sentence_encoder lowerCamelCase_ = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: lowerCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , lowercase ) lowerCamelCase_ = XLMRobertaXLForSequenceClassification(lowercase ) if classification_head else XLMRobertaXLForMaskedLM(lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ = roberta_sent_encoder.embed_tokens.weight lowerCamelCase_ = roberta_sent_encoder.embed_positions.weight lowerCamelCase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCamelCase_ = roberta_sent_encoder.layer_norm.weight lowerCamelCase_ = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ = model.roberta.encoder.layer[i] lowerCamelCase_ = roberta_sent_encoder.layers[i] lowerCamelCase_ = layer.attention lowerCamelCase_ = roberta_layer.self_attn_layer_norm.weight lowerCamelCase_ = roberta_layer.self_attn_layer_norm.bias # self attention lowerCamelCase_ = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCamelCase_ = roberta_layer.self_attn.q_proj.weight lowerCamelCase_ = roberta_layer.self_attn.q_proj.bias lowerCamelCase_ = roberta_layer.self_attn.k_proj.weight lowerCamelCase_ = roberta_layer.self_attn.k_proj.bias lowerCamelCase_ = roberta_layer.self_attn.v_proj.weight lowerCamelCase_ = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCamelCase_ = roberta_layer.self_attn.out_proj.weight lowerCamelCase_ = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCamelCase_ = roberta_layer.final_layer_norm.weight lowerCamelCase_ = roberta_layer.final_layer_norm.bias # intermediate lowerCamelCase_ = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCamelCase_ = roberta_layer.fca.weight lowerCamelCase_ = roberta_layer.fca.bias # output lowerCamelCase_ = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCamelCase_ = roberta_layer.fca.weight lowerCamelCase_ = roberta_layer.fca.bias # end of layer if classification_head: lowerCamelCase_ = roberta.model.classification_heads['mnli'].dense.weight lowerCamelCase_ = roberta.model.classification_heads['mnli'].dense.bias lowerCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.weight lowerCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head lowerCamelCase_ = roberta.model.encoder.lm_head.dense.weight lowerCamelCase_ = roberta.model.encoder.lm_head.dense.bias lowerCamelCase_ = roberta.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ = roberta.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ = roberta.model.encoder.lm_head.weight lowerCamelCase_ = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ = roberta.encode(lowercase ).unsqueeze(0 ) # batch of size 1 lowerCamelCase_ = model(lowercase )[0] if classification_head: lowerCamelCase_ = roberta.model.classification_heads['mnli'](roberta.extract_features(lowercase ) ) else: lowerCamelCase_ = roberta.model(lowercase )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ = torch.allclose(lowercase , lowercase , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(lowercase ).mkdir(parents=lowercase , exist_ok=lowercase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) lowerCamelCase : List[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
208
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'roformer' def __init__( self , lowercase=50_000 , lowercase=None , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3_072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=1_536 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=0 , lowercase=False , lowercase=True , **lowercase , ) -> Dict: super().__init__(pad_token_id=lowercase , **lowercase ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size if embedding_size is None else embedding_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = rotary_value lowerCAmelCase = use_cache class lowercase ( _UpperCAmelCase ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """sequence"""} lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
46
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) _snake_case = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) ) return round(_SCREAMING_SNAKE_CASE , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
341
0
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } __UpperCAmelCase =[ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: """simple docstring""" for attribute in key.split('''.''' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('''.''' )[-2] __lowerCamelCase = mapped_key.replace('''*''' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = '''weight_g''' elif "weight_v" in name: __lowerCamelCase = '''weight_v''' elif "bias" in name: __lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = '''weight''' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: """simple docstring""" __lowerCamelCase = full_name.split('''conv_layers.''' )[-1] __lowerCamelCase = name.split('''.''' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True ) -> Optional[Any]: """simple docstring""" if config_path is not None: __lowerCamelCase = UniSpeechSatConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = UniSpeechSatConfig() __lowerCamelCase = '''''' if is_finetuned: __lowerCamelCase = UniSpeechSatForCTC(UpperCamelCase__ ) else: __lowerCamelCase = UniSpeechSatForPreTraining(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowerCamelCase = model[0].eval() recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ ) hf_wavavec.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCAmelCase =parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
366
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase =logging.get_logger(__name__) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict =["pixel_values"] def __init__( self : List[str] , a : bool = True , a : Dict[str, int] = None , a : int = 0.9 , a : PILImageResampling = PILImageResampling.BICUBIC , a : bool = True , a : Dict[str, int] = None , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Dict , ): """simple docstring""" super().__init__(**a ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 2_24} __lowerCamelCase = get_size_dict(a , default_to_square=a ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCamelCase = get_size_dict(a , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = crop_pct __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE__ ( self : Any , a : np.ndarray , a : Dict[str, int] , a : Optional[float] = None , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : List[str] , ): """simple docstring""" __lowerCamelCase = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: __lowerCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __lowerCamelCase = int(size['''height'''] / crop_pct ) else: __lowerCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(a ) ) __lowerCamelCase = get_resize_output_image_size(a , size=a , default_to_square=a ) else: if "shortest_edge" in size: __lowerCamelCase = get_resize_output_image_size(a , size=size['''shortest_edge'''] , default_to_square=a ) elif "height" in size and "width" in size: __lowerCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(a ) ) return resize(a , size=a , resample=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Dict , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict , ): """simple docstring""" __lowerCamelCase = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(a , size=(size['''height'''], size['''width''']) , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : np.ndarray , a : Union[int, float] , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ): """simple docstring""" return rescale(a , scale=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Any , ): """simple docstring""" return normalize(a , mean=a , std=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : int = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : Tuple , ): """simple docstring""" __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = crop_pct if crop_pct is not None else self.crop_pct __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(a , default_to_square=a ) __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(a , param_name='''crop_size''' ) __lowerCamelCase = make_list_of_images(a ) if not valid_images(a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(a ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=a , size=a , crop_pct=a , resample=a ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=a , mean=a , std=a ) for image in images] __lowerCamelCase = [to_channel_dimension_format(a , a ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=a , tensor_type=a )
237
0
import operator as op _snake_case = "scaler.pt" _snake_case = "pytorch_model" _snake_case = "random_states" _snake_case = "optimizer" _snake_case = "scheduler" _snake_case = "pytorch_model.bin" _snake_case = "pytorch_model.bin.index.json" _snake_case = "model.safetensors" _snake_case = "model.safetensors.index.json" _snake_case = "1.10.2" _snake_case = "py38" _snake_case = "4.17.0" _snake_case = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] _snake_case = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] _snake_case = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] _snake_case = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] _snake_case = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] _snake_case = "2.0.1" _snake_case = ["pdsh", "standard", "openmpi", "mvapich"] _snake_case = ["default", "reduce-overhead", "max-autotune"] _snake_case = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _snake_case = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] _snake_case = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] _snake_case = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
26
"""simple docstring""" from scipy.stats import spearmanr import datasets a = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ): _A = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
315
0
"""simple docstring""" import fire from utils import calculate_rouge, save_json def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , **lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __SCREAMING_SNAKE_CASE = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __SCREAMING_SNAKE_CASE = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
195
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if digit_amount > 0: return round(number - int(lowerCAmelCase_ ) , lowerCAmelCase_ ) return number - int(lowerCAmelCase_ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
195
1