code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
from __future__ import annotations
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = text, pattern
__UpperCamelCase , __UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int:
'''simple docstring'''
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int:
'''simple docstring'''
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def A__ ( self )-> list[int]:
'''simple docstring'''
__UpperCamelCase = []
for i in range(self.textLen - self.patLen + 1 ):
__UpperCamelCase = self.mismatch_in_text(SCREAMING_SNAKE_CASE_ )
if mismatch_index == -1:
positions.append(SCREAMING_SNAKE_CASE_ )
else:
__UpperCamelCase = self.match_in_pattern(self.text[mismatch_index] )
__UpperCamelCase = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
lowercase__ : int = "ABAABA"
lowercase__ : int = "AB"
lowercase__ : Optional[Any] = BoyerMooreSearch(text, pattern)
lowercase__ : Optional[int] = bms.bad_character_heuristic()
if len(positions) == 0:
print("No match found")
else:
print("Pattern found in following positions: ")
print(positions)
| 328 |
def A_ ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
lowercase__ : List[str] = generate_large_matrix()
lowercase__ : Tuple = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def A_ ( snake_case : list[list[int]] ) -> None:
'''simple docstring'''
assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid )
assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) )
def A_ ( snake_case : list[int] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = len(snake_case ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__UpperCamelCase = (left + right) // 2
__UpperCamelCase = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__UpperCamelCase = mid + 1
else:
__UpperCamelCase = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(snake_case )
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = len(grid[0] )
for i in range(len(snake_case ) ):
__UpperCamelCase = find_negative_index(grid[i][:bound] )
total += bound
return (len(snake_case ) * len(grid[0] )) - total
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
for row in grid:
for i, number in enumerate(snake_case ):
if number < 0:
total += len(snake_case ) - i
break
return total
def A_ ( ) -> None:
'''simple docstring'''
from timeit import timeit
print('''Running benchmarks''' )
__UpperCamelCase = (
'''from __main__ import count_negatives_binary_search, '''
'''count_negatives_brute_force, count_negatives_brute_force_with_break, grid'''
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 328 | 1 |
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __lowercase ( a_ , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase : int = BlenderbotSmallTokenizer
UpperCamelCase : Union[str, Any] = False
def __A ( self ) -> Optional[int]:
'''simple docstring'''
super().setUp()
lowerCamelCase = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""]
lowerCamelCase = dict(zip(A , range(len(A ) ) ) )
lowerCamelCase = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""]
lowerCamelCase = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""}
lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(A ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(A ) )
def __A ( self , **A ) -> Optional[Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **A )
def __A ( self , A ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase = """adapt act apte"""
lowerCamelCase = """adapt act apte"""
return input_text, output_text
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowerCamelCase = """adapt act apte"""
lowerCamelCase = ["""adapt""", """act""", """ap@@""", """te"""]
lowerCamelCase = tokenizer.tokenize(A )
self.assertListEqual(A , A )
lowerCamelCase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
lowerCamelCase = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
def __A ( self ) -> List[str]:
'''simple docstring'''
lowerCamelCase = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
assert tok("""sam""" ).input_ids == [13_84]
lowerCamelCase = """I am a small frog."""
lowerCamelCase = tok([src_text] , padding=A , truncation=A )["""input_ids"""]
lowerCamelCase = tok.batch_decode(A , skip_special_tokens=A , clean_up_tokenization_spaces=A )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def __A ( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
lowerCamelCase = """I am a small frog ."""
lowerCamelCase = """."""
lowerCamelCase = tok(A )["""input_ids"""]
lowerCamelCase = tok(A )["""input_ids"""]
assert encoded[-1] == encoded_dot[0]
| 66 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : List[Any] = {
"BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json",
# See all AltCLIP models at https://huggingface.co/models?filter=altclip
}
class __lowercase ( a_ ):
"""simple docstring"""
UpperCamelCase : Any = "altclip_text_model"
def __init__( self , A=25_00_02 , A=10_24 , A=24 , A=16 , A=40_96 , A="gelu" , A=0.1 , A=0.1 , A=5_14 , A=1 , A=0.02 , A=0.02 , A=1e-0_5 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=7_68 , **A , ) -> int:
'''simple docstring'''
super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A )
lowerCamelCase = vocab_size
lowerCamelCase = hidden_size
lowerCamelCase = num_hidden_layers
lowerCamelCase = num_attention_heads
lowerCamelCase = hidden_act
lowerCamelCase = intermediate_size
lowerCamelCase = hidden_dropout_prob
lowerCamelCase = attention_probs_dropout_prob
lowerCamelCase = max_position_embeddings
lowerCamelCase = type_vocab_size
lowerCamelCase = initializer_range
lowerCamelCase = initializer_factor
lowerCamelCase = layer_norm_eps
lowerCamelCase = position_embedding_type
lowerCamelCase = use_cache
lowerCamelCase = project_dim
class __lowercase ( a_ ):
"""simple docstring"""
UpperCamelCase : Dict = "altclip_vision_model"
def __init__( self , A=7_68 , A=30_72 , A=5_12 , A=12 , A=12 , A=3 , A=2_24 , A=32 , A="quick_gelu" , A=1e-5 , A=0.0 , A=0.02 , A=1.0 , **A , ) -> Dict:
'''simple docstring'''
super().__init__(**A )
lowerCamelCase = hidden_size
lowerCamelCase = intermediate_size
lowerCamelCase = projection_dim
lowerCamelCase = num_hidden_layers
lowerCamelCase = num_attention_heads
lowerCamelCase = num_channels
lowerCamelCase = patch_size
lowerCamelCase = image_size
lowerCamelCase = initializer_range
lowerCamelCase = initializer_factor
lowerCamelCase = attention_dropout
lowerCamelCase = layer_norm_eps
lowerCamelCase = hidden_act
@classmethod
def __A ( cls , A , **A ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(A )
lowerCamelCase , lowerCamelCase = cls.get_config_dict(A , **A )
# get the vision config dict if we are loading from AltCLIPConfig
if config_dict.get("""model_type""" ) == "altclip":
lowerCamelCase = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(A , **A )
class __lowercase ( a_ ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = "altclip"
UpperCamelCase : Optional[Any] = True
def __init__( self , A=None , A=None , A=7_68 , A=2.6592 , **A ) -> Dict:
'''simple docstring'''
lowerCamelCase = kwargs.pop("""text_config_dict""" , A )
lowerCamelCase = kwargs.pop("""vision_config_dict""" , A )
super().__init__(**A )
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
lowerCamelCase = {}
# This is the complete result when using `text_config_dict`.
lowerCamelCase = AltCLIPTextConfig(**A ).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
lowerCamelCase = (
F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. '
F'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
lowerCamelCase = (
F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The '
F'value `text_config["{key}"]` will be overriden.'
)
logger.warning(A )
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict )
if vision_config_dict is not None:
if vision_config is None:
lowerCamelCase = {}
# This is the complete result when using `vision_config_dict`.
lowerCamelCase = AltCLIPVisionConfig(**A ).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
lowerCamelCase = {
str(A ): value for key, value in _vision_config_dict["""id2label"""].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
lowerCamelCase = (
F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different '
F'values. The value `vision_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
lowerCamelCase = (
F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. '
F'The value `vision_config["{key}"]` will be overriden.'
)
logger.warning(A )
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict )
if text_config is None:
lowerCamelCase = {}
logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" )
if vision_config is None:
lowerCamelCase = {}
logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" )
lowerCamelCase = AltCLIPTextConfig(**A )
lowerCamelCase = AltCLIPVisionConfig(**A )
lowerCamelCase = projection_dim
lowerCamelCase = logit_scale_init_value
lowerCamelCase = 1.0
@classmethod
def __A ( cls , A , A , **A ) -> Dict:
'''simple docstring'''
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase = copy.deepcopy(self.__dict__ )
lowerCamelCase = self.text_config.to_dict()
lowerCamelCase = self.vision_config.to_dict()
lowerCamelCase = self.__class__.model_type
return output
| 66 | 1 |
from manim import *
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
def a (self : List[str] ):
"""simple docstring"""
__snake_case = Rectangle(height=0.5 , width=0.5 )
__snake_case = Rectangle(height=0.2_5 , width=0.2_5 )
__snake_case = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 )
__snake_case = [mem.copy() for i in range(6 )]
__snake_case = [mem.copy() for i in range(6 )]
__snake_case = VGroup(*a__ ).arrange(a__ , buff=0 )
__snake_case = VGroup(*a__ ).arrange(a__ , buff=0 )
__snake_case = VGroup(a__ , a__ ).arrange(a__ , buff=0 )
__snake_case = Text('''CPU''' , font_size=24 )
__snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(a__ )
__snake_case = [mem.copy() for i in range(4 )]
__snake_case = VGroup(*a__ ).arrange(a__ , buff=0 )
__snake_case = Text('''GPU''' , font_size=24 )
__snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ )
gpu.move_to([-1, -1, 0] )
self.add(a__ )
__snake_case = [mem.copy() for i in range(6 )]
__snake_case = VGroup(*a__ ).arrange(a__ , buff=0 )
__snake_case = Text('''Model''' , font_size=24 )
__snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ )
model.move_to([3, -1.0, 0] )
self.add(a__ )
__snake_case = []
__snake_case = []
__snake_case = []
for i, rect in enumerate(a__ ):
rect.set_stroke(a__ )
__snake_case = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=a__ )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(model_cpu_arr[0] , direction=a__ , buff=0.0 )
else:
cpu_target.next_to(model_cpu_arr[i - 1] , direction=a__ , buff=0.0 )
self.add(a__ )
model_cpu_arr.append(a__ )
self.add(*a__ , *a__ , *a__ )
__snake_case = [mem.copy() for i in range(6 )]
__snake_case = VGroup(*a__ ).arrange(a__ , buff=0 )
__snake_case = Text('''Loaded Checkpoint''' , font_size=24 )
__snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ )
checkpoint.move_to([3, 0.5, 0] )
self.add(a__ )
__snake_case = []
__snake_case = []
for i, rect in enumerate(a__ ):
__snake_case = fill.copy().set_fill(a__ , opacity=0.7 )
target.move_to(a__ )
ckpt_arr.append(a__ )
__snake_case = target.copy()
if i < 5:
cpu_target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.move_to(cpu_right_col_base[i - 5] )
ckpt_cpu_arr.append(a__ )
self.add(*a__ , *a__ )
__snake_case = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
__snake_case = MarkupText(
f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(a__ , a__ )
__snake_case = MarkupText(
f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , )
blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(a__ )
__snake_case = MarkupText(
f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , )
step_a.move_to([2, 2, 0] )
__snake_case = [meta_mem.copy() for i in range(6 )]
__snake_case = [meta_mem.copy() for i in range(6 )]
__snake_case = VGroup(*a__ ).arrange(a__ , buff=0 )
__snake_case = VGroup(*a__ ).arrange(a__ , buff=0 )
__snake_case = VGroup(a__ , a__ ).arrange(a__ , buff=0 )
__snake_case = Text('''Disk''' , font_size=24 )
__snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ )
disk.move_to([-4.0, -1.2_5, 0] )
self.play(Write(a__ , run_time=3 ) , Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) )
__snake_case = []
for i, rect in enumerate(a__ ):
__snake_case = rect.copy()
target.generate_target()
target.target.move_to(disk_left_col_base[i] ).scale(0.5 )
animations.append(MoveToTarget(a__ , run_time=1.5 ) )
self.play(*a__ )
self.play(FadeOut(a__ ) )
__snake_case = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(a__ , run_time=3 ) )
self.play(
FadeOut(a__ , a__ , *a__ , *a__ ) , )
self.wait()
| 24 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers import (
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
BertConfig,
DPRConfig,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
class __a :
def __init__( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int]=13 , __magic_name__ : str=7 , __magic_name__ : Dict=True , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Tuple=99 , __magic_name__ : List[str]=32 , __magic_name__ : int=2 , __magic_name__ : List[str]=4 , __magic_name__ : Tuple=37 , __magic_name__ : Dict="gelu" , __magic_name__ : int=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Optional[int]=5_12 , __magic_name__ : Tuple=16 , __magic_name__ : Optional[int]=2 , __magic_name__ : Optional[int]=0.0_2 , __magic_name__ : Dict=3 , __magic_name__ : str=4 , __magic_name__ : Optional[Any]=None , __magic_name__ : Any=0 , ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = parent
UpperCAmelCase_ : List[Any] = batch_size
UpperCAmelCase_ : List[Any] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : Optional[Any] = use_input_mask
UpperCAmelCase_ : Tuple = use_token_type_ids
UpperCAmelCase_ : int = use_labels
UpperCAmelCase_ : Union[str, Any] = vocab_size
UpperCAmelCase_ : Union[str, Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : Any = num_attention_heads
UpperCAmelCase_ : Any = intermediate_size
UpperCAmelCase_ : Dict = hidden_act
UpperCAmelCase_ : Tuple = hidden_dropout_prob
UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : str = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : List[str] = type_sequence_label_size
UpperCAmelCase_ : Tuple = initializer_range
UpperCAmelCase_ : str = num_labels
UpperCAmelCase_ : Tuple = num_choices
UpperCAmelCase_ : Union[str, Any] = scope
UpperCAmelCase_ : Union[str, Any] = projection_dim
def UpperCAmelCase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Dict = None
if self.use_input_mask:
# follow test_modeling_tf_ctrl.py
UpperCAmelCase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : Tuple = None
if self.use_token_type_ids:
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Optional[int] = None
UpperCAmelCase_ : Optional[Any] = None
UpperCAmelCase_ : int = None
if self.use_labels:
UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : Optional[Any] = BertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
UpperCAmelCase_ : List[str] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : str , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Any ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = TFDPRContextEncoder(config=__magic_name__ )
UpperCAmelCase_ : Tuple = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : int = model(__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Any = model(__magic_name__ )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase_ : List[str] = TFDPRQuestionEncoder(config=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = TFDPRReader(config=__magic_name__ )
UpperCAmelCase_ : Tuple = model(__magic_name__ , attention_mask=__magic_name__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids}
return config, inputs_dict
@require_tf
class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Any = (
(
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
if is_tf_available()
else ()
)
__a : int = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {}
__a : str = False
__a : str = False
__a : Dict = False
__a : Optional[Any] = False
__a : Any = False
def UpperCAmelCase__ ( self : int ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = TFDPRModelTester(self )
UpperCAmelCase_ : Dict = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_context_encoder(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_question_encoder(*__magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_reader(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Union[str, Any] = TFDPRContextEncoder.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[Any] = TFDPRContextEncoder.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Tuple = TFDPRQuestionEncoder.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Tuple = TFDPRReader.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_tf
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' )
UpperCAmelCase_ : Optional[int] = tf.constant(
[[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP]
UpperCAmelCase_ : List[Any] = model(__magic_name__ )[0] # embedding shape = (1, 768)
# compare the actual values for a slice.
UpperCAmelCase_ : List[str] = tf.constant(
[
[
0.0_3_2_3_6_2_5_3,
0.1_2_7_5_3_3_3_5,
0.1_6_8_1_8_5_0_9,
0.0_0_2_7_9_7_8_6,
0.3_8_9_6_9_3_3,
0.2_4_2_6_4_9_4_5,
0.2_1_7_8_9_7_1,
-0.0_2_3_3_5_2_2_7,
-0.0_8_4_8_1_9_5_9,
-0.1_4_3_2_4_1_1_7,
]
] )
self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 125 | 0 |
"""simple docstring"""
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
_lowerCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"}
_lowerCAmelCase : str = {
"vocab_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt",
},
"emoji_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json",
},
}
_lowerCAmelCase : Union[str, Any] = {
"abeja/gpt-neox-japanese-2.7b": 20_48,
}
def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> Any:
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE__ , "r" , encoding="utf-8" ) as f:
_UpperCAmelCase : str = json.loads(f.read() )
_UpperCAmelCase : List[Any] = collections.OrderedDict()
_UpperCAmelCase : Optional[Any] = collections.OrderedDict()
_UpperCAmelCase : int = collections.OrderedDict()
with open(SCREAMING_SNAKE_CASE__ , "r" , encoding="utf-8" ) as f:
_UpperCAmelCase : List[Any] = f.readlines()
_UpperCAmelCase : str = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token]
for idx, b in enumerate(SCREAMING_SNAKE_CASE__ ):
_UpperCAmelCase : Dict = b
_UpperCAmelCase : Any = idx
for wd in b:
_UpperCAmelCase : List[Any] = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class UpperCAmelCase_ ( _UpperCamelCase ):
__SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Tuple = ['input_ids', 'attention_mask']
def __init__( self : List[Any] , A : Union[str, Any] , A : Any , A : Dict="<|endoftext|>" , A : Tuple="<|endoftext|>" , A : List[Any]="<|startoftext|>" , A : str="<|endoftext|>" , A : Optional[int]=False , **A : str , ):
super().__init__(
unk_token=A , pad_token=A , bos_token=A , eos_token=A , do_clean_text=A , **A , )
if not os.path.isfile(A ):
raise ValueError(
f'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained'
" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
if not os.path.isfile(A ):
raise ValueError(
f'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google'
" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
_UpperCAmelCase : List[str] = do_clean_text
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = load_vocab_and_emoji(A , A )
_UpperCAmelCase : Any = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def snake_case_ ( self : Any ):
# self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab
return len(self.raw_vocab )
def snake_case_ ( self : Tuple ):
return dict(self.raw_vocab , **self.added_tokens_encoder )
def snake_case_ ( self : Union[str, Any] , A : int ):
return self.subword_tokenizer.tokenize(A , clean=self.do_clean_text )
def snake_case_ ( self : Any , A : int ):
return self.vocab.get(A , self.vocab.get(self.unk_token ) )
def snake_case_ ( self : Optional[Any] , A : Union[str, Any] ):
return self.subword_tokenizer.convert_id_to_token(A )
def snake_case_ ( self : Any , A : List[Any] ):
_UpperCAmelCase : List[Any] = "".join(A ).strip()
return out_string
def snake_case_ ( self : Dict , A : "Conversation" ):
_UpperCAmelCase : Tuple = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(A , add_special_tokens=A ) + [self.eos_token_id] )
if len(A ) > self.model_max_length:
_UpperCAmelCase : Tuple = input_ids[-self.model_max_length :]
return input_ids
def snake_case_ ( self : List[Any] , A : str , A : Optional[str] = None ):
_UpperCAmelCase : int = 0
if os.path.isdir(A ):
_UpperCAmelCase : List[Any] = os.path.join(
A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
_UpperCAmelCase : int = os.path.join(
A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] )
else:
_UpperCAmelCase : Any = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"]
)
_UpperCAmelCase : int = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"]
)
with open(A , "w" , encoding="utf-8" ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
" Please check that the vocabulary is not corrupted!" )
_UpperCAmelCase : str = token_index
writer.write(",".join(A ) + "\n" )
index += 1
with open(A , "w" , encoding="utf-8" ) as writer:
json.dump(self.emoji , A )
return vocab_file, emoji_file
class UpperCAmelCase_ ( _UpperCamelCase ):
def __init__( self : Optional[int] , A : Tuple , A : Dict , A : Optional[Any] ):
_UpperCAmelCase : Any = vocab # same as swe
_UpperCAmelCase : Optional[int] = ids_to_tokens # same as bpe
_UpperCAmelCase : Tuple = emoji
_UpperCAmelCase : Dict = np.max([len(A ) for w in self.vocab.keys()] )
_UpperCAmelCase : int = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" )
_UpperCAmelCase : str = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" )
_UpperCAmelCase : Optional[int] = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" )
_UpperCAmelCase : Optional[int] = re.compile(
R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
_UpperCAmelCase : Optional[int] = re.compile(
R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
_UpperCAmelCase : Optional[int] = re.compile(
R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" )
_UpperCAmelCase : Optional[int] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
_UpperCAmelCase : Union[str, Any] = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
_UpperCAmelCase : Dict = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} )
def __len__( self : Union[str, Any] ):
return len(self.ids_to_tokens )
def snake_case_ ( self : Optional[Any] , A : Optional[Any] ):
_UpperCAmelCase : List[Any] = self.content_repattera.sub("<URL>" , A )
_UpperCAmelCase : List[Any] = self.content_repattera.sub("<EMAIL>" , A )
_UpperCAmelCase : str = self.content_repattera.sub("<TEL>" , A )
_UpperCAmelCase : Optional[Any] = self.content_repattera.sub("<DATE>" , A )
_UpperCAmelCase : str = self.content_repattera.sub("<DATE>" , A )
_UpperCAmelCase : Optional[Any] = self.content_repattera.sub("<PRICE>" , A )
_UpperCAmelCase : int = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
_UpperCAmelCase : int = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" )
return content
def snake_case_ ( self : Optional[int] , A : Union[str, Any] , A : List[str]=False ):
_UpperCAmelCase : Union[str, Any] = text.replace(" " , "<SP>" )
_UpperCAmelCase : Optional[Any] = text.replace(" " , "<SP>" )
_UpperCAmelCase : List[str] = text.replace("\r\n" , "<BR>" )
_UpperCAmelCase : Optional[Any] = text.replace("\n" , "<BR>" )
_UpperCAmelCase : int = text.replace("\r" , "<BR>" )
_UpperCAmelCase : int = text.replace("\t" , "<TAB>" )
_UpperCAmelCase : List[Any] = text.replace("—" , "ー" )
_UpperCAmelCase : Union[str, Any] = text.replace("−" , "ー" )
for k, v in self.emoji["emoji"].items():
if k in text:
_UpperCAmelCase : Union[str, Any] = text.replace(A , A )
if clean:
_UpperCAmelCase : Any = self.clean_text(A )
def check_simbol(A : Optional[int] ):
_UpperCAmelCase : Optional[Any] = x.encode()
if len(A ) == 1 and len(A ) == 2:
_UpperCAmelCase : List[Any] = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0XC_2A1 and c <= 0XC_2BF)
or (c >= 0XC_780 and c <= 0XC_783)
or (c >= 0XC_AB9 and c <= 0XC_BBF)
or (c >= 0XC_C80 and c <= 0XC_DA2)
):
return True
return False
def checkuae(A : List[str] ):
_UpperCAmelCase : Union[str, Any] = x.encode()
if len(A ) == 1 and len(A ) == 3:
_UpperCAmelCase : str = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0XE28_080 and c <= 0XE2B_07F:
return True
return False
_UpperCAmelCase : str = 0
_UpperCAmelCase : Optional[Any] = []
while pos < len(A ):
_UpperCAmelCase : Any = min(len(A ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3
_UpperCAmelCase : Dict = [] # (token_id, token, pos)
for e in range(A , A , -1 ):
_UpperCAmelCase : Tuple = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(A ) > 2:
_UpperCAmelCase : int = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(A ) > 0:
# the smallest token_id is adopted
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = sorted(A , key=lambda A : x[0] )[0]
result.append(A )
_UpperCAmelCase : Optional[Any] = e
else:
_UpperCAmelCase : Union[str, Any] = pos + 1
_UpperCAmelCase : Dict = text[pos:end]
if check_simbol(A ):
result.append("<KIGOU>" )
elif checkuae(A ):
result.append("<U2000U2BFF>" )
else:
for i in wd.encode("utf-8" ):
result.append("<|byte%d|>" % i )
_UpperCAmelCase : str = end
return result
def snake_case_ ( self : str , A : Dict , A : Union[str, Any]="\n" ):
_UpperCAmelCase : int = []
_UpperCAmelCase : int = []
_UpperCAmelCase : Optional[Any] = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(A ) > 0:
words.append(bytearray(A ).decode("utf-8" , errors="replace" ) )
_UpperCAmelCase : Any = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["emoji_inv"][word] )
elif word == "<SP>":
words.append(" " )
elif word == "<BR>":
words.append(A )
elif word == "<TAB>":
words.append("\t" )
elif word == "<BLOCK>":
words.append("▀" )
elif word == "<KIGOU>":
words.append("ǀ" )
elif word == "<U2000U2BFF>":
words.append("‖" )
else:
words.append(A )
if len(A ) > 0:
words.append(bytearray(A ).decode("utf-8" , errors="replace" ) )
_UpperCAmelCase : str = "".join(A )
return text
| 202 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..utils import cached_file
# docstyle-ignore
_lowerCAmelCase : Any = "\nHuman: <<task>>\n\nAssistant: "
_lowerCAmelCase : str = "huggingface-tools/default-prompts"
_lowerCAmelCase : Union[str, Any] = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"}
def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int="run" ) -> int:
'''simple docstring'''
if prompt_or_repo_id is None:
_UpperCAmelCase : Optional[int] = DEFAULT_PROMPTS_REPO
# prompt is considered a repo ID when it does not contain any kind of space
if re.search("\\s" , SCREAMING_SNAKE_CASE__ ) is not None:
return prompt_or_repo_id
_UpperCAmelCase : Dict = cached_file(
SCREAMING_SNAKE_CASE__ , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} )
with open(SCREAMING_SNAKE_CASE__ , "r" , encoding="utf-8" ) as f:
return f.read()
| 202 | 1 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , ):
if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1:
raise ValueError('You cannot supply more or less than 2 values' )
elif electron_conc < 0:
raise ValueError('Electron concentration cannot be negative in a semiconductor' )
elif hole_conc < 0:
raise ValueError('Hole concentration cannot be negative in a semiconductor' )
elif intrinsic_conc < 0:
raise ValueError(
'Intrinsic concentration cannot be negative in a semiconductor' )
elif electron_conc == 0:
return (
"electron_conc",
intrinsic_conc**2 / hole_conc,
)
elif hole_conc == 0:
return (
"hole_conc",
intrinsic_conc**2 / electron_conc,
)
elif intrinsic_conc == 0:
return (
"intrinsic_conc",
(electron_conc * hole_conc) ** 0.5,
)
else:
return (-1, -1)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 96 |
"""simple docstring"""
import functools
from typing import Any
def _snake_case ( lowercase__ , lowercase__ ):
# Validation
if not isinstance(lowercase__ , lowercase__ ) or len(lowercase__ ) == 0:
raise ValueError('the string should be not empty string' )
if not isinstance(lowercase__ , lowercase__ ) or not all(
isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) > 0 for item in words ):
raise ValueError('the words should be a list of non-empty strings' )
# Build trie
_lowerCamelCase : dict[str, Any] = {}
_lowerCamelCase : List[Any] = 'WORD_KEEPER'
for word in words:
_lowerCamelCase : Dict = trie
for c in word:
if c not in trie_node:
_lowerCamelCase : Any = {}
_lowerCamelCase : str = trie_node[c]
_lowerCamelCase : Optional[Any] = True
_lowerCamelCase : Dict = len(lowercase__ )
# Dynamic programming method
@functools.cache
def is_breakable(lowercase__ ) -> bool:
if index == len_string:
return True
_lowerCamelCase : List[Any] = trie
for i in range(lowercase__ , lowercase__ ):
_lowerCamelCase : Any = trie_node.get(string[i] , lowercase__ )
if trie_node is None:
return False
if trie_node.get(lowercase__ , lowercase__ ) and is_breakable(i + 1 ):
return True
return False
return is_breakable(0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 96 | 1 |
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .modeling_utils import ModelMixin
@dataclass
class __lowerCamelCase ( snake_case_ ):
"""simple docstring"""
lowerCAmelCase__ = 42
class __lowerCamelCase ( snake_case_ , snake_case_ ):
"""simple docstring"""
@register_to_config
def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
lowercase_ = num_attention_heads
lowercase_ = attention_head_dim
lowercase_ = num_attention_heads * attention_head_dim
lowercase_ = in_channels
lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase )
lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase )
# 3. Define transformers blocks
lowercase_ = nn.ModuleList(
[
BasicTransformerBlock(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , )
for d in range(UpperCAmelCase )
] )
lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase )
def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape
lowercase_ = batch_frames // num_frames
lowercase_ = hidden_states
lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 )
lowercase_ = self.norm(UpperCAmelCase )
lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase )
lowercase_ = self.proj_in(UpperCAmelCase )
# 2. Blocks
for block in self.transformer_blocks:
lowercase_ = block(
UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , )
# 3. Output
lowercase_ = self.proj_out(UpperCAmelCase )
lowercase_ = (
hidden_states[None, None, :]
.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
.permute(0 , 3 , 4 , 1 , 2 )
.contiguous()
)
lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase_ = hidden_states + residual
if not return_dict:
return (output,)
return TransformerTemporalModelOutput(sample=UpperCAmelCase )
| 297 |
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class __lowerCamelCase ( snake_case_ ):
"""simple docstring"""
def A__ ( self , UpperCAmelCase ) -> float:
'''simple docstring'''
return 0.0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: int ):
'''simple docstring'''
lowercase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
lowercase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ):
'''simple docstring'''
lowercase_ = 512
lowercase_ = [1] + [0] * (size - 1)
lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs]
lowercase_ = [0] * (samplerate - size) # zero-padding
outputs += filler
lowercase_ = np.abs(np.fft.fft(__lowerCamelCase ) )
lowercase_ = 20 * np.logaa(__lowerCamelCase )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("Frequency (Hz)" )
plt.xscale("log" )
# Display within reasonable bounds
lowercase_ = get_bounds(__lowerCamelCase , __lowerCamelCase )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("Gain (dB)" )
plt.plot(__lowerCamelCase )
plt.show()
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ):
'''simple docstring'''
lowercase_ = 512
lowercase_ = [1] + [0] * (size - 1)
lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs]
lowercase_ = [0] * (samplerate - size) # zero-padding
outputs += filler
lowercase_ = np.angle(np.fft.fft(__lowerCamelCase ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("Frequency (Hz)" )
plt.xscale("log" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("Phase shift (Radians)" )
plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) )
plt.show()
| 297 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCAmelCase : str = {
"""configuration_time_series_transformer""": [
"""TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""TimeSeriesTransformerConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : List[str] = [
"""TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TimeSeriesTransformerForPrediction""",
"""TimeSeriesTransformerModel""",
"""TimeSeriesTransformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 50 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
_UpperCamelCase: List[Any] = logging.getLogger(__name__)
@dataclass
class a__ :
_lowerCamelCase = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
_lowerCamelCase = field(
default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
_lowerCamelCase = field(
default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
_lowerCamelCase = field(
default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, )
_lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Whether tp freeze the encoder.'} )
_lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Whether to freeze the embeddings.'} )
@dataclass
class a__ :
_lowerCamelCase = field(
metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} )
_lowerCamelCase = field(
default='summarization', metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'}, )
_lowerCamelCase = field(
default=1_024, metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
}, )
_lowerCamelCase = field(
default=128, metadata={
'help': (
'The maximum total sequence length for target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
}, )
_lowerCamelCase = field(
default=142, metadata={
'help': (
'The maximum total sequence length for validation target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded. '
'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used '
'during ``evaluate`` and ``predict``.'
)
}, )
_lowerCamelCase = field(
default=142, metadata={
'help': (
'The maximum total sequence length for test target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
}, )
_lowerCamelCase = field(default=-1, metadata={'help': '# training examples. -1 means use all.'} )
_lowerCamelCase = field(default=-1, metadata={'help': '# validation examples. -1 means use all.'} )
_lowerCamelCase = field(default=-1, metadata={'help': '# test examples. -1 means use all.'} )
_lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Source language id for translation.'} )
_lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Target language id for translation.'} )
_lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': '# num_beams to use for evaluation.'} )
_lowerCamelCase = field(
default=SCREAMING_SNAKE_CASE__, metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'}, )
def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int:
'''simple docstring'''
logger.info(f'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(f''' {key} = {metrics[key]}''' )
save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , f'''{split}_results.json''' ) )
def lowercase__ ( ) -> Optional[int]:
'''simple docstring'''
lowercase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase , lowercase , lowercase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase , lowercase , lowercase : Optional[Any] = parser.parse_args_into_dataclasses()
check_output_dir(_UpperCAmelCase )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('Training/evaluation parameters %s' , _UpperCAmelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase : List[str] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowercase : int = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
assert hasattr(_UpperCAmelCase , _UpperCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
lowercase : str = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowercase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(_UpperCAmelCase , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
lowercase : Optional[int] = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(_UpperCAmelCase , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowercase : Optional[Any] = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
lowercase : List[Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(_UpperCAmelCase )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
lowercase : Dict = SeqaSeqDataset
# Get datasets
lowercase : int = (
dataset_class(
_UpperCAmelCase , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_train
else None
)
lowercase : str = (
dataset_class(
_UpperCAmelCase , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
lowercase : Optional[Any] = (
dataset_class(
_UpperCAmelCase , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
lowercase : List[Any] = (
build_compute_metrics_fn(data_args.task , _UpperCAmelCase ) if training_args.predict_with_generate else None
)
lowercase : List[Any] = SeqaSeqTrainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , data_args=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , data_collator=SeqaSeqDataCollator(
_UpperCAmelCase , _UpperCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_UpperCAmelCase , tokenizer=_UpperCAmelCase , )
lowercase : List[Any] = {}
# Training
if training_args.do_train:
logger.info('*** Train ***' )
lowercase : Union[str, Any] = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
lowercase : List[str] = train_result.metrics
lowercase : Dict = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('train' , _UpperCAmelCase , training_args.output_dir )
all_metrics.update(_UpperCAmelCase )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
lowercase : Tuple = trainer.evaluate(metric_key_prefix='val' )
lowercase : Dict = data_args.n_val
lowercase : Tuple = round(metrics['val_loss'] , 4 )
if trainer.is_world_process_zero():
handle_metrics('val' , _UpperCAmelCase , training_args.output_dir )
all_metrics.update(_UpperCAmelCase )
if training_args.do_predict:
logger.info('*** Predict ***' )
lowercase : List[Any] = trainer.predict(test_dataset=_UpperCAmelCase , metric_key_prefix='test' )
lowercase : str = test_output.metrics
lowercase : Dict = data_args.n_test
if trainer.is_world_process_zero():
lowercase : Tuple = round(metrics['test_loss'] , 4 )
handle_metrics('test' , _UpperCAmelCase , training_args.output_dir )
all_metrics.update(_UpperCAmelCase )
if training_args.predict_with_generate:
lowercase : str = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
lowercase : Tuple = lmap(str.strip , _UpperCAmelCase )
write_txt_file(_UpperCAmelCase , os.path.join(training_args.output_dir , 'test_generations.txt' ) )
if trainer.is_world_process_zero():
save_json(_UpperCAmelCase , os.path.join(training_args.output_dir , 'all_results.json' ) )
return all_metrics
def lowercase__ ( _UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 255 | 0 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from accelerate import PartialState
from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce
def _a ( lowerCamelCase: List[Any] ) -> Dict:
'''simple docstring'''
return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device )
def _a ( lowerCamelCase: Tuple ) -> Optional[Any]:
'''simple docstring'''
__A = create_tensor(lowerCamelCase )
__A = gather(lowerCamelCase )
assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) )
def _a ( lowerCamelCase: List[str] ) -> List[str]:
'''simple docstring'''
__A = [state.process_index]
__A = gather_object(lowerCamelCase )
assert len(lowerCamelCase ) == state.num_processes, F"""{gathered_obj}, {len(lowerCamelCase )} != {state.num_processes}"""
assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}"""
def _a ( lowerCamelCase: List[str] ) -> int:
'''simple docstring'''
__A = create_tensor(lowerCamelCase )
__A = broadcast(lowerCamelCase )
assert broadcasted_tensor.shape == torch.Size([state.num_processes] )
assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) )
def _a ( lowerCamelCase: Tuple ) -> int:
'''simple docstring'''
if state.is_main_process:
__A = torch.arange(state.num_processes + 1 ).to(state.device )
else:
__A = torch.arange(state.num_processes ).to(state.device )
__A = pad_across_processes(lowerCamelCase )
assert padded_tensor.shape == torch.Size([state.num_processes + 1] )
if not state.is_main_process:
assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0]
def _a ( lowerCamelCase: Union[str, Any] ) -> Dict:
'''simple docstring'''
if state.num_processes != 2:
return
__A = create_tensor(lowerCamelCase )
__A = reduce(lowerCamelCase , '''sum''' )
__A = torch.tensor([4.0, 6] ).to(state.device )
assert torch.allclose(lowerCamelCase , lowerCamelCase ), F"""{reduced_tensor} != {truth_tensor}"""
def _a ( lowerCamelCase: Tuple ) -> int:
'''simple docstring'''
if state.num_processes != 2:
return
__A = create_tensor(lowerCamelCase )
__A = reduce(lowerCamelCase , '''mean''' )
__A = torch.tensor([2.0, 3] ).to(state.device )
assert torch.allclose(lowerCamelCase , lowerCamelCase ), F"""{reduced_tensor} != {truth_tensor}"""
def _a ( lowerCamelCase: str ) -> Dict:
'''simple docstring'''
main()
def _a ( ) -> str:
'''simple docstring'''
__A = PartialState()
state.print(F"""State: {state}""" )
state.print('''testing gather''' )
test_gather(lowerCamelCase )
state.print('''testing gather_object''' )
test_gather_object(lowerCamelCase )
state.print('''testing broadcast''' )
test_broadcast(lowerCamelCase )
state.print('''testing pad_across_processes''' )
test_pad_across_processes(lowerCamelCase )
state.print('''testing reduce_sum''' )
test_reduce_sum(lowerCamelCase )
state.print('''testing reduce_mean''' )
test_reduce_mean(lowerCamelCase )
if __name__ == "__main__":
main()
| 250 |
from __future__ import annotations
snake_case__ : Dict = [True] * 1000001
snake_case__ : int = 2
while i * i <= 1000000:
if seive[i]:
for j in range(i * i, 1000001, i):
snake_case__ : str = False
i += 1
def _a ( lowerCamelCase: int ) -> bool:
'''simple docstring'''
return seive[n]
def _a ( lowerCamelCase: int ) -> bool:
'''simple docstring'''
return any(digit in '''02468''' for digit in str(lowerCamelCase ) )
def _a ( lowerCamelCase: int = 1_00_00_00 ) -> list[int]:
'''simple docstring'''
__A = [2] # result already includes the number 2.
for num in range(3 , limit + 1 , 2 ):
if is_prime(lowerCamelCase ) and not contains_an_even_digit(lowerCamelCase ):
__A = str(lowerCamelCase )
__A = [int(str_num[j:] + str_num[:j] ) for j in range(len(lowerCamelCase ) )]
if all(is_prime(lowerCamelCase ) for i in list_nums ):
result.append(lowerCamelCase )
return result
def _a ( ) -> int:
'''simple docstring'''
return len(find_circular_primes() )
if __name__ == "__main__":
print(f'{len(find_circular_primes()) = }')
| 250 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
__a = logging.get_logger(__name__)
class lowerCamelCase ( _lowerCAmelCase ):
'''simple docstring'''
def __init__( self: List[Any] , snake_case: int , snake_case: int , snake_case: float , **snake_case: Optional[int] ) -> Optional[Any]:
snake_case_ :List[Any] = feature_size
snake_case_ :Tuple = sampling_rate
snake_case_ :Optional[int] = padding_value
snake_case_ :Dict = kwargs.pop("""padding_side""" , """right""" )
snake_case_ :List[Any] = kwargs.pop("""return_attention_mask""" , snake_case )
super().__init__(**snake_case )
def lowerCAmelCase_ ( self: List[str] , snake_case: Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , snake_case: Union[bool, str, PaddingStrategy] = True , snake_case: Optional[int] = None , snake_case: bool = False , snake_case: Optional[int] = None , snake_case: Optional[bool] = None , snake_case: Optional[Union[str, TensorType]] = None , ) -> BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
snake_case_ :int = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"""You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"""
f""" to this method that includes {self.model_input_names[0]}, but you provided"""
f""" {list(processed_features.keys() )}""" )
snake_case_ :Union[str, Any] = processed_features[self.model_input_names[0]]
snake_case_ :Optional[int] = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(snake_case ) == 0:
if return_attention_mask:
snake_case_ :Optional[int] = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
snake_case_ :Optional[Any] = required_input[0]
if isinstance(snake_case , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
snake_case_ :Tuple = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(snake_case ):
snake_case_ :Tuple = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(snake_case ):
snake_case_ :int = """tf"""
elif is_torch_tensor(snake_case ):
snake_case_ :Union[str, Any] = """pt"""
elif isinstance(snake_case , (int, float, list, tuple, np.ndarray) ):
snake_case_ :Optional[int] = """np"""
else:
raise ValueError(
f"""type of {first_element} unknown: {type(snake_case )}. """
"""Should be one of a python, numpy, pytorch or tensorflow object.""" )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
snake_case_ :Optional[int] = to_numpy(snake_case )
else:
snake_case_ :int = [to_numpy(snake_case ) for v in value]
# Convert padding_strategy in PaddingStrategy
snake_case_ :Union[str, Any] = self._get_padding_strategies(padding=snake_case , max_length=snake_case )
snake_case_ :List[Any] = processed_features[self.model_input_names[0]]
snake_case_ :Optional[Any] = len(snake_case )
if not all(len(snake_case ) == batch_size for v in processed_features.values() ):
raise ValueError("""Some items in the output dictionary have a different batch size than others.""" )
snake_case_ :Optional[Any] = []
for i in range(snake_case ):
snake_case_ :List[Any] = {k: v[i] for k, v in processed_features.items()}
# truncation
snake_case_ :Union[str, Any] = self._truncate(
snake_case , max_length=snake_case , pad_to_multiple_of=snake_case , truncation=snake_case , )
truncated_inputs.append(snake_case )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
snake_case_ :Optional[Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
snake_case_ :int = PaddingStrategy.MAX_LENGTH
snake_case_ :List[Any] = {}
for i in range(snake_case ):
# padding
snake_case_ :Any = self._pad(
truncated_inputs[i] , max_length=snake_case , padding_strategy=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , )
for key, value in outputs.items():
if key not in batch_outputs:
snake_case_ :Optional[int] = []
if value.dtype is np.dtype(np.floataa ):
snake_case_ :Tuple = value.astype(np.floataa )
batch_outputs[key].append(snake_case )
return BatchFeature(snake_case , tensor_type=snake_case )
def lowerCAmelCase_ ( self: Dict , snake_case: Union[Dict[str, np.ndarray], BatchFeature] , snake_case: Optional[int] = None , snake_case: PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case: Optional[int] = None , snake_case: Optional[bool] = None , ) -> dict:
snake_case_ :Any = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
snake_case_ :Any = len(snake_case )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
snake_case_ :Optional[int] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
snake_case_ :Tuple = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(snake_case ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
snake_case_ :Union[str, Any] = np.ones(len(snake_case ) , dtype=np.intaa )
if needs_to_be_padded:
snake_case_ :Optional[int] = max_length - len(snake_case )
if self.padding_side == "right":
if return_attention_mask:
snake_case_ :Union[str, Any] = np.pad(
processed_features["""attention_mask"""] , (0, difference) )
snake_case_ :Tuple = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
snake_case_ :int = np.pad(
snake_case , snake_case , """constant""" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
snake_case_ :Dict = np.pad(
processed_features["""attention_mask"""] , (difference, 0) )
snake_case_ :str = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
snake_case_ :Optional[Any] = np.pad(
snake_case , snake_case , """constant""" , constant_values=self.padding_value )
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) )
return processed_features
def lowerCAmelCase_ ( self: Optional[Any] , snake_case: Union[Dict[str, np.ndarray], BatchFeature] , snake_case: Optional[int] = None , snake_case: Optional[int] = None , snake_case: Optional[bool] = None , ) -> List[Any]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" )
snake_case_ :Any = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
snake_case_ :str = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
snake_case_ :Optional[Any] = len(snake_case ) > max_length
if needs_to_be_truncated:
snake_case_ :Union[str, Any] = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
snake_case_ :Union[str, Any] = processed_features["""attention_mask"""][:max_length]
return processed_features
def lowerCAmelCase_ ( self: List[Any] , snake_case: Tuple=False , snake_case: Union[str, Any]=None ) -> Union[str, Any]:
# Get padding strategy
if padding is not False:
if padding is True:
snake_case_ :Optional[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(snake_case , snake_case ):
snake_case_ :Dict = PaddingStrategy(snake_case )
elif isinstance(snake_case , snake_case ):
snake_case_ :Optional[Any] = padding
else:
snake_case_ :Optional[Any] = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"""Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"""
""" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" )
return padding_strategy
| 66 |
"""simple docstring"""
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCamelCase :
'''simple docstring'''
def __init__( self: Optional[int] , snake_case: Any , snake_case: Optional[Any]=13 , snake_case: Tuple=32 , snake_case: Optional[int]=2 , snake_case: Tuple=3 , snake_case: Tuple=16 , snake_case: Optional[Any]=[1, 2, 1] , snake_case: Optional[int]=[2, 2, 4] , snake_case: Optional[int]=2 , snake_case: int=2.0 , snake_case: Union[str, Any]=True , snake_case: List[str]=0.0 , snake_case: List[Any]=0.0 , snake_case: Optional[Any]=0.1 , snake_case: List[Any]="gelu" , snake_case: Optional[int]=False , snake_case: Union[str, Any]=True , snake_case: Union[str, Any]=0.0_2 , snake_case: Optional[int]=1E-5 , snake_case: Optional[Any]=True , snake_case: List[Any]=None , snake_case: List[Any]=True , snake_case: Optional[Any]=10 , snake_case: str=8 , ) -> Tuple:
snake_case_ :Dict = parent
snake_case_ :Any = batch_size
snake_case_ :List[Any] = image_size
snake_case_ :List[Any] = patch_size
snake_case_ :int = num_channels
snake_case_ :Tuple = embed_dim
snake_case_ :str = depths
snake_case_ :str = num_heads
snake_case_ :Optional[int] = window_size
snake_case_ :Tuple = mlp_ratio
snake_case_ :Any = qkv_bias
snake_case_ :List[Any] = hidden_dropout_prob
snake_case_ :Optional[Any] = attention_probs_dropout_prob
snake_case_ :Union[str, Any] = drop_path_rate
snake_case_ :Any = hidden_act
snake_case_ :Optional[Any] = use_absolute_embeddings
snake_case_ :Union[str, Any] = patch_norm
snake_case_ :Dict = layer_norm_eps
snake_case_ :str = initializer_range
snake_case_ :Tuple = is_training
snake_case_ :Tuple = scope
snake_case_ :Union[str, Any] = use_labels
snake_case_ :Optional[Any] = type_sequence_label_size
snake_case_ :Dict = encoder_stride
def lowerCAmelCase_ ( self: int ) -> int:
snake_case_ :List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ :Any = None
if self.use_labels:
snake_case_ :str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ :int = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase_ ( self: str ) -> Union[str, Any]:
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def lowerCAmelCase_ ( self: str , snake_case: Optional[int] , snake_case: Dict , snake_case: str ) -> List[Any]:
snake_case_ :Union[str, Any] = SwinvaModel(config=snake_case )
model.to(snake_case )
model.eval()
snake_case_ :Optional[int] = model(snake_case )
snake_case_ :Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
snake_case_ :int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowerCAmelCase_ ( self: int , snake_case: List[str] , snake_case: Tuple , snake_case: int ) -> Any:
snake_case_ :Dict = SwinvaForMaskedImageModeling(config=snake_case )
model.to(snake_case )
model.eval()
snake_case_ :Tuple = model(snake_case )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
snake_case_ :List[Any] = 1
snake_case_ :int = SwinvaForMaskedImageModeling(snake_case )
model.to(snake_case )
model.eval()
snake_case_ :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ :int = model(snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def lowerCAmelCase_ ( self: List[Any] , snake_case: Any , snake_case: List[str] , snake_case: Union[str, Any] ) -> Tuple:
snake_case_ :int = self.type_sequence_label_size
snake_case_ :List[Any] = SwinvaForImageClassification(snake_case )
model.to(snake_case )
model.eval()
snake_case_ :Dict = model(snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase_ ( self: int ) -> str:
snake_case_ :Any = self.prepare_config_and_inputs()
snake_case_, snake_case_, snake_case_ :List[str] = config_and_inputs
snake_case_ :List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_A : Optional[Any] = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_A : Any = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
_A : List[Any] = False
_A : List[str] = False
_A : Tuple = False
_A : List[str] = False
def lowerCAmelCase_ ( self: Dict ) -> List[Any]:
snake_case_ :Optional[int] = SwinvaModelTester(self )
snake_case_ :List[str] = ConfigTester(self , config_class=snake_case , embed_dim=37 )
def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[Any]:
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase_ ( self: Union[str, Any] ) -> Tuple:
snake_case_ :List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def lowerCAmelCase_ ( self: Union[str, Any] ) -> str:
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def lowerCAmelCase_ ( self: int ) -> Dict:
pass
def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]:
snake_case_, snake_case_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ :Optional[int] = model_class(snake_case )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case_ :List[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) )
def lowerCAmelCase_ ( self: Dict ) -> Optional[int]:
snake_case_, snake_case_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ :Optional[int] = model_class(snake_case )
snake_case_ :List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ :int = [*signature.parameters.keys()]
snake_case_ :List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , snake_case )
def lowerCAmelCase_ ( self: List[str] ) -> Optional[Any]:
snake_case_, snake_case_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ :List[str] = True
for model_class in self.all_model_classes:
snake_case_ :List[Any] = True
snake_case_ :Any = False
snake_case_ :Optional[int] = True
snake_case_ :Tuple = model_class(snake_case )
model.to(snake_case )
model.eval()
with torch.no_grad():
snake_case_ :Any = model(**self._prepare_for_class(snake_case , snake_case ) )
snake_case_ :str = outputs.attentions
snake_case_ :Dict = len(self.model_tester.depths )
self.assertEqual(len(snake_case ) , snake_case )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
snake_case_ :Union[str, Any] = True
snake_case_ :Tuple = config.window_size**2
snake_case_ :Any = model_class(snake_case )
model.to(snake_case )
model.eval()
with torch.no_grad():
snake_case_ :Union[str, Any] = model(**self._prepare_for_class(snake_case , snake_case ) )
snake_case_ :int = outputs.attentions
self.assertEqual(len(snake_case ) , snake_case )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
snake_case_ :Any = len(snake_case )
# Check attention is always last and order is fine
snake_case_ :int = True
snake_case_ :Dict = True
snake_case_ :Optional[int] = model_class(snake_case )
model.to(snake_case )
model.eval()
with torch.no_grad():
snake_case_ :Dict = model(**self._prepare_for_class(snake_case , snake_case ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
snake_case_ :Any = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
snake_case_ :int = 2
self.assertEqual(out_len + added_hidden_states , len(snake_case ) )
snake_case_ :str = outputs.attentions
self.assertEqual(len(snake_case ) , snake_case )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def lowerCAmelCase_ ( self: int , snake_case: Dict , snake_case: Dict , snake_case: Optional[Any] , snake_case: Dict ) -> List[str]:
snake_case_ :Dict = model_class(snake_case )
model.to(snake_case )
model.eval()
with torch.no_grad():
snake_case_ :Optional[int] = model(**self._prepare_for_class(snake_case , snake_case ) )
snake_case_ :str = outputs.hidden_states
snake_case_ :List[Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(snake_case ) , snake_case )
# Swinv2 has a different seq_length
snake_case_ :List[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
snake_case_ :Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
snake_case_ :str = outputs.reshaped_hidden_states
self.assertEqual(len(snake_case ) , snake_case )
snake_case_, snake_case_, snake_case_, snake_case_ :Any = reshaped_hidden_states[0].shape
snake_case_ :int = (
reshaped_hidden_states[0].view(snake_case , snake_case , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowerCAmelCase_ ( self: Any ) -> Any:
snake_case_, snake_case_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ :Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
snake_case_ :Union[str, Any] = True
self.check_hidden_states_output(snake_case , snake_case , snake_case , snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ :List[str] = True
self.check_hidden_states_output(snake_case , snake_case , snake_case , snake_case )
def lowerCAmelCase_ ( self: Tuple ) -> Any:
snake_case_, snake_case_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ :Optional[int] = 3
snake_case_ :Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
snake_case_ :str = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
snake_case_ :Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
snake_case_ :int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
snake_case_ :str = True
self.check_hidden_states_output(snake_case , snake_case , snake_case , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ :Tuple = True
self.check_hidden_states_output(snake_case , snake_case , snake_case , (padded_height, padded_width) )
def lowerCAmelCase_ ( self: Any ) -> Tuple:
snake_case_ :int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*snake_case )
def lowerCAmelCase_ ( self: Optional[int] ) -> Dict:
snake_case_ :Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case )
@slow
def lowerCAmelCase_ ( self: List[Any] ) -> Dict:
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ :List[str] = SwinvaModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]:
snake_case_, snake_case_ :str = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ :Optional[int] = _config_zero_init(snake_case )
for model_class in self.all_model_classes:
snake_case_ :Tuple = model_class(config=snake_case )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@require_vision
@require_torch
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]:
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def lowerCAmelCase_ ( self: List[str] ) -> List[str]:
snake_case_ :Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
snake_case )
snake_case_ :str = self.default_image_processor
snake_case_ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
snake_case_ :str = image_processor(images=snake_case , return_tensors="""pt""" ).to(snake_case )
# forward pass
with torch.no_grad():
snake_case_ :Tuple = model(**snake_case )
# verify the logits
snake_case_ :Dict = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , snake_case )
snake_case_ :int = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(snake_case )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
| 66 | 1 |
'''simple docstring'''
from ... import PretrainedConfig
__lowercase: Optional[Any] = {
"sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json",
}
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__):
_lowerCamelCase : List[str] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP
_lowerCamelCase : Union[str, Any] = 'nezha'
def __init__( self : List[str], a_ : Any=2_1128, a_ : Any=768, a_ : Optional[int]=12, a_ : List[Any]=12, a_ : Union[str, Any]=3072, a_ : List[str]="gelu", a_ : List[Any]=0.1, a_ : Optional[Any]=0.1, a_ : Any=512, a_ : List[str]=64, a_ : Any=2, a_ : Tuple=0.02, a_ : int=1e-1_2, a_ : str=0.1, a_ : Any=0, a_ : Tuple=2, a_ : Any=3, a_ : Optional[int]=True, **a_ : List[str], ):
"""simple docstring"""
super().__init__(pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, **a_ )
UpperCamelCase__ = vocab_size
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = hidden_act
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = max_relative_position
UpperCamelCase__ = type_vocab_size
UpperCamelCase__ = initializer_range
UpperCamelCase__ = layer_norm_eps
UpperCamelCase__ = classifier_dropout
UpperCamelCase__ = use_cache
| 31 |
'''simple docstring'''
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
__lowercase: int = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=False ) -> Union[str, Any]:
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
"Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions." )
raise
if not is_sharded:
UpperCamelCase__ = os.path.abspath(_UpperCamelCase )
logger.info(F'Loading PyTorch weights from {pt_path}' )
UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" )
logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' )
UpperCamelCase__ = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
UpperCamelCase__ = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase )
return flax_state_dict
def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray):
'''simple docstring'''
def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool:
return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0
# layer norm
UpperCamelCase__ = pt_tuple_key[:-1] + ("scale",)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
UpperCamelCase__ = pt_tuple_key[:-1] + ("mean",)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
UpperCamelCase__ = pt_tuple_key[:-1] + ("var",)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# embedding
UpperCamelCase__ = pt_tuple_key[:-1] + ("embedding",)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ):
UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ):
UpperCamelCase__ = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
UpperCamelCase__ = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
UpperCamelCase__ = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
UpperCamelCase__ = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
UpperCamelCase__ = pt_tuple_key[-2] + "_g"
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
UpperCamelCase__ = pt_tuple_key[-2] + "_v"
if name is not None:
UpperCamelCase__ = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()}
UpperCamelCase__ = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
UpperCamelCase__ = flax_model.params["params"]
else:
UpperCamelCase__ = flax_model.params
UpperCamelCase__ = flatten_dict(_UpperCamelCase )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
UpperCamelCase__ = flatten_dict(flax_model.params["batch_stats"] )
random_flax_state_dict.update(_UpperCamelCase )
UpperCamelCase__ = {}
UpperCamelCase__ = (model_prefix not in flax_model_params) and (
model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()}
)
UpperCamelCase__ = (model_prefix in flax_model_params) and (
model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
UpperCamelCase__ = tuple(pt_key.split("." ) )
# remove base model prefix if necessary
UpperCamelCase__ = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
UpperCamelCase__ = pt_tuple_key[1:]
# Correctly rename weight parameters
UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor(
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# add model prefix if necessary
UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
UpperCamelCase__ = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
UpperCamelCase__ = jnp.asarray(_UpperCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase )
continue
# also add unexpected weight so that warning is thrown
UpperCamelCase__ = jnp.asarray(_UpperCamelCase )
else:
# also add unexpected weight so that warning is thrown
UpperCamelCase__ = jnp.asarray(_UpperCamelCase )
return unflatten_dict(_UpperCamelCase )
def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any:
'''simple docstring'''
import torch
# Load the index
UpperCamelCase__ = {}
for shard_file in shard_filenames:
# load using msgpack utils
UpperCamelCase__ = torch.load(_UpperCamelCase )
UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()}
UpperCamelCase__ = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
UpperCamelCase__ = flax_model.params["params"]
UpperCamelCase__ = flatten_dict(_UpperCamelCase )
random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) )
else:
UpperCamelCase__ = flax_model.params
UpperCamelCase__ = flatten_dict(_UpperCamelCase )
UpperCamelCase__ = (model_prefix not in flax_model_params) and (
model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()}
)
UpperCamelCase__ = (model_prefix in flax_model_params) and (
model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
UpperCamelCase__ = tuple(pt_key.split("." ) )
# remove base model prefix if necessary
UpperCamelCase__ = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
UpperCamelCase__ = pt_tuple_key[1:]
# Correctly rename weight parameters
UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor(
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# add model prefix if necessary
UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
UpperCamelCase__ = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
UpperCamelCase__ = jnp.asarray(_UpperCamelCase )
continue
if "var" in flax_key[-1]:
UpperCamelCase__ = jnp.asarray(_UpperCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase )
continue
# also add unexpected weight so that warning is thrown
UpperCamelCase__ = jnp.asarray(_UpperCamelCase )
else:
# also add unexpected weight so that warning is thrown
UpperCamelCase__ = jnp.asarray(_UpperCamelCase )
return unflatten_dict(_UpperCamelCase )
def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ = os.path.abspath(_UpperCamelCase )
logger.info(F'Loading Flax weights from {flax_checkpoint_path}' )
# import correct flax class
UpperCamelCase__ = getattr(_UpperCamelCase , "Flax" + model.__class__.__name__ )
# load flax weight dict
with open(_UpperCamelCase , "rb" ) as state_f:
try:
UpperCamelCase__ = from_bytes(_UpperCamelCase , state_f.read() )
except UnpicklingError:
raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' )
return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase )
def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Optional[Any]:
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
"Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions." )
raise
# check if we have bf16 weights
UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values()
if any(_UpperCamelCase ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` "
"before loading those in PyTorch model." )
UpperCamelCase__ = jax.tree_util.tree_map(
lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase )
UpperCamelCase__ = flatten_dict(_UpperCamelCase )
UpperCamelCase__ = pt_model.state_dict()
UpperCamelCase__ = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()}
)
UpperCamelCase__ = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
UpperCamelCase__ = []
UpperCamelCase__ = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
UpperCamelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix
UpperCamelCase__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
UpperCamelCase__ = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
UpperCamelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict:
# conv layer
UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",)
UpperCamelCase__ = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict:
# linear layer
UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",)
UpperCamelCase__ = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
UpperCamelCase__ = flax_key_tuple[:-1] + ("running_mean",)
elif "var" in flax_key_tuple[-1]:
UpperCamelCase__ = flax_key_tuple[:-1] + ("running_var",)
if "batch_stats" in flax_state:
UpperCamelCase__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
UpperCamelCase__ = ".".join(_UpperCamelCase )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
UpperCamelCase__ = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
UpperCamelCase__ = key.split("." )
UpperCamelCase__ = None
if key_components[-3::2] == ["parametrizations", "original0"]:
UpperCamelCase__ = key_components[-2] + "_g"
elif key_components[-3::2] == ["parametrizations", "original1"]:
UpperCamelCase__ = key_components[-2] + "_v"
if name is not None:
UpperCamelCase__ = key_components[:-3] + [name]
UpperCamelCase__ = ".".join(_UpperCamelCase )
UpperCamelCase__ = key
if flax_key in special_pt_names:
UpperCamelCase__ = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '
F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
else:
# add weight to pytorch dict
UpperCamelCase__ = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor
UpperCamelCase__ = torch.from_numpy(_UpperCamelCase )
# remove from missing keys
missing_keys.remove(_UpperCamelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(_UpperCamelCase )
pt_model.load_state_dict(_UpperCamelCase )
# re-transform missing_keys to list
UpperCamelCase__ = list(_UpperCamelCase )
if len(_UpperCamelCase ) > 0:
logger.warning(
"Some weights of the Flax model were not used when initializing the PyTorch model"
F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'
F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'
" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"
F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'
" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"
" FlaxBertForSequenceClassification model)." )
else:
logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' )
if len(_UpperCamelCase ) > 0:
logger.warning(
F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'
F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'
" use it for predictions and inference." )
else:
logger.warning(
F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n'
"If your task is similar to the task the model of the checkpoint was trained on, "
F'you can already use {pt_model.__class__.__name__} for predictions without further training.' )
return pt_model
| 31 | 1 |
"""simple docstring"""
import warnings
from ..trainer import Trainer
from ..utils import logging
_A : List[Any] = logging.get_logger(__name__)
class a__ ( a_ ):
def __init__( self , _a=None , **_a ):
warnings.warn(
"`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` "
"instead." , _a , )
super().__init__(args=_a , **_a )
| 202 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class a__ ( unittest.TestCase ):
def __magic_name__ ( self ):
lowercase : Optional[int] = "laion/clap-htsat-unfused"
lowercase : Optional[int] = tempfile.mkdtemp()
def __magic_name__ ( self , **_a ):
return RobertaTokenizer.from_pretrained(self.checkpoint , **_a )
def __magic_name__ ( self , **_a ):
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_a )
def __magic_name__ ( self ):
shutil.rmtree(self.tmpdirname )
def __magic_name__ ( self ):
lowercase : Optional[int] = self.get_tokenizer()
lowercase : List[Any] = self.get_feature_extractor()
lowercase : Dict = ClapProcessor(tokenizer=_a , feature_extractor=_a )
processor.save_pretrained(self.tmpdirname )
lowercase : int = ClapProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _a )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _a )
def __magic_name__ ( self ):
lowercase : Tuple = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() )
processor.save_pretrained(self.tmpdirname )
lowercase : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowercase : Optional[int] = self.get_feature_extractor(do_normalize=_a , padding_value=1.0 )
lowercase : Dict = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_a , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _a )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _a )
def __magic_name__ ( self ):
lowercase : List[Any] = self.get_feature_extractor()
lowercase : List[str] = self.get_tokenizer()
lowercase : int = ClapProcessor(tokenizer=_a , feature_extractor=_a )
lowercase : Dict = floats_list((3, 1_000) )
lowercase : str = feature_extractor(_a , return_tensors="np" )
lowercase : Dict = processor(audios=_a , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __magic_name__ ( self ):
lowercase : Dict = self.get_feature_extractor()
lowercase : int = self.get_tokenizer()
lowercase : Dict = ClapProcessor(tokenizer=_a , feature_extractor=_a )
lowercase : Optional[Any] = "This is a test string"
lowercase : Any = processor(text=_a )
lowercase : List[Any] = tokenizer(_a )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __magic_name__ ( self ):
lowercase : Optional[int] = self.get_feature_extractor()
lowercase : Any = self.get_tokenizer()
lowercase : Union[str, Any] = ClapProcessor(tokenizer=_a , feature_extractor=_a )
lowercase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase : str = processor.batch_decode(_a )
lowercase : Optional[int] = tokenizer.batch_decode(_a )
self.assertListEqual(_a , _a )
def __magic_name__ ( self ):
lowercase : List[Any] = self.get_feature_extractor()
lowercase : Union[str, Any] = self.get_tokenizer()
lowercase : Any = ClapProcessor(tokenizer=_a , feature_extractor=_a )
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
| 202 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase_ :Optional[Any] = KandinskyVaaControlnetImgaImgPipeline
lowerCamelCase_ :Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint']
lowerCamelCase_ :Any = ['image_embeds', 'negative_image_embeds', 'image', 'hint']
lowerCamelCase_ :Union[str, Any] = [
'generator',
'height',
'width',
'strength',
'guidance_scale',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
lowerCamelCase_ :Optional[int] = False
@property
def _UpperCamelCase ( self ):
'''simple docstring'''
return 3_2
@property
def _UpperCamelCase ( self ):
'''simple docstring'''
return 3_2
@property
def _UpperCamelCase ( self ):
'''simple docstring'''
return self.time_input_dim
@property
def _UpperCamelCase ( self ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def _UpperCamelCase ( self ):
'''simple docstring'''
return 1_0_0
@property
def _UpperCamelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ : List[str] = {
'in_channels': 8,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image_hint',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
UpperCAmelCase_ : Dict = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE )
return model
@property
def _UpperCamelCase ( self ):
'''simple docstring'''
return {
"block_out_channels": [3_2, 3_2, 6_4, 6_4],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def _UpperCamelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ : str = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCamelCase ( self ):
'''simple docstring'''
UpperCAmelCase_ : Any = self.dummy_unet
UpperCAmelCase_ : Any = self.dummy_movq
UpperCAmelCase_ : int = {
'num_train_timesteps': 1_0_0_0,
'beta_schedule': 'linear',
'beta_start': 0.0_00_85,
'beta_end': 0.0_12,
'clip_sample': False,
'set_alpha_to_one': False,
'steps_offset': 0,
'prediction_type': 'epsilon',
'thresholding': False,
}
UpperCAmelCase_ : List[Any] = DDIMScheduler(**_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Optional[int] = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def _UpperCamelCase ( self , snake_case_ , snake_case_=0 ):
'''simple docstring'''
UpperCAmelCase_ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_SCREAMING_SNAKE_CASE )
# create init_image
UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ : Optional[Any] = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('RGB' ).resize((2_5_6, 2_5_6) )
# create hint
UpperCAmelCase_ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE )
if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ):
UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(_SCREAMING_SNAKE_CASE )
else:
UpperCAmelCase_ : Tuple = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Dict = {
'image': init_image,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'hint': hint,
'generator': generator,
'height': 6_4,
'width': 6_4,
'num_inference_steps': 1_0,
'guidance_scale': 7.0,
'strength': 0.2,
'output_type': 'np',
}
return inputs
def _UpperCamelCase ( self ):
'''simple docstring'''
UpperCAmelCase_ : int = 'cpu'
UpperCAmelCase_ : str = self.get_dummy_components()
UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Union[str, Any] = pipe.to(_SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Any = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) )
UpperCAmelCase_ : List[str] = output.images
UpperCAmelCase_ : Dict = pipe(
**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE , )[0]
UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
UpperCAmelCase_ : Optional[Any] = np.array(
[0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _UpperCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self ):
'''simple docstring'''
UpperCAmelCase_ : Optional[int] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' )
UpperCAmelCase_ : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
UpperCAmelCase_ : Optional[Any] = init_image.resize((5_1_2, 5_1_2) )
UpperCAmelCase_ : List[str] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/hint_image_cat.png' )
UpperCAmelCase_ : Optional[Any] = torch.from_numpy(np.array(_SCREAMING_SNAKE_CASE ) ).float() / 2_55.0
UpperCAmelCase_ : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
UpperCAmelCase_ : Dict = 'A robot, 4k photo'
UpperCAmelCase_ : Union[str, Any] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa )
UpperCAmelCase_ : int = pipeline.to(_SCREAMING_SNAKE_CASE )
pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : List[str] = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCAmelCase_ , UpperCAmelCase_ : Any = pipe_prior(
_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , strength=0.85 , generator=_SCREAMING_SNAKE_CASE , negative_prompt='' , ).to_tuple()
UpperCAmelCase_ : Dict = pipeline(
image=_SCREAMING_SNAKE_CASE , image_embeds=_SCREAMING_SNAKE_CASE , negative_image_embeds=_SCREAMING_SNAKE_CASE , hint=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type='np' , )
UpperCAmelCase_ : str = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
| 368 |
'''simple docstring'''
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case__ : List[Any] = logging.get_logger(__name__)
snake_case__ : Optional[Any] = {
'''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''',
}
class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ):
'''simple docstring'''
lowerCamelCase_ :List[str] = '''autoformer'''
lowerCamelCase_ :Optional[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self , snake_case_ = None , snake_case_ = None , snake_case_ = "student_t" , snake_case_ = "nll" , snake_case_ = 1 , snake_case_ = [1, 2, 3, 4, 5, 6, 7] , snake_case_ = True , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = 6_4 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 3_2 , snake_case_ = 3_2 , snake_case_ = "gelu" , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 1_0_0 , snake_case_ = 0.02 , snake_case_ = True , snake_case_=True , snake_case_ = 1_0 , snake_case_ = 2_5 , snake_case_ = 3 , **snake_case_ , ):
'''simple docstring'''
UpperCAmelCase_ : List[Any] = prediction_length
UpperCAmelCase_ : List[str] = context_length if context_length is not None else prediction_length
UpperCAmelCase_ : Optional[int] = distribution_output
UpperCAmelCase_ : Optional[int] = loss
UpperCAmelCase_ : Union[str, Any] = input_size
UpperCAmelCase_ : int = num_time_features
UpperCAmelCase_ : List[str] = lags_sequence
UpperCAmelCase_ : Any = scaling
UpperCAmelCase_ : Any = num_dynamic_real_features
UpperCAmelCase_ : int = num_static_real_features
UpperCAmelCase_ : Optional[Any] = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(snake_case_ ) != num_static_categorical_features:
raise ValueError(
'The cardinality should be a list of the same length as `num_static_categorical_features`' )
UpperCAmelCase_ : List[Any] = cardinality
else:
UpperCAmelCase_ : Optional[int] = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(snake_case_ ) != num_static_categorical_features:
raise ValueError(
'The embedding dimension should be a list of the same length as `num_static_categorical_features`' )
UpperCAmelCase_ : List[str] = embedding_dimension
else:
UpperCAmelCase_ : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
UpperCAmelCase_ : List[str] = num_parallel_samples
# Transformer architecture configuration
UpperCAmelCase_ : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features
UpperCAmelCase_ : str = d_model
UpperCAmelCase_ : str = encoder_attention_heads
UpperCAmelCase_ : str = decoder_attention_heads
UpperCAmelCase_ : str = encoder_ffn_dim
UpperCAmelCase_ : str = decoder_ffn_dim
UpperCAmelCase_ : str = encoder_layers
UpperCAmelCase_ : str = decoder_layers
UpperCAmelCase_ : str = dropout
UpperCAmelCase_ : Optional[int] = attention_dropout
UpperCAmelCase_ : Tuple = activation_dropout
UpperCAmelCase_ : Any = encoder_layerdrop
UpperCAmelCase_ : Tuple = decoder_layerdrop
UpperCAmelCase_ : List[str] = activation_function
UpperCAmelCase_ : Tuple = init_std
UpperCAmelCase_ : Union[str, Any] = use_cache
# Autoformer
UpperCAmelCase_ : Any = label_length
UpperCAmelCase_ : Union[str, Any] = moving_average
UpperCAmelCase_ : Tuple = autocorrelation_factor
super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ )
@property
def _UpperCamelCase ( self ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 274 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
lowerCAmelCase: Optional[Any] = logging.get_logger(__name__)
class a__( lowerCamelCase__ ):
def __init__( self : Any , *__snake_case : List[str] , **__snake_case : Any ):
warnings.warn(
'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use BeitImageProcessor instead.' , __snake_case , )
super().__init__(*__snake_case , **__snake_case )
| 297 |
'''simple docstring'''
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class a__:
def __init__( self : Tuple ):
a : Optional[int] = ''
a : Optional[Any] = ''
a : str = []
a : int = 0
a : str = 2_56
a : Union[str, Any] = 0
a : Any = 0
a : Optional[int] = 0
a : List[str] = 0
def lowercase_ ( self : str , __snake_case : str ):
a : Any = cva.imread(__snake_case , 0 )
a : Optional[Any] = copy.deepcopy(self.img )
a , a , a : int = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' )
a : Optional[int] = np.sum(__snake_case )
for i in range(len(__snake_case ) ):
a : Optional[Any] = x[i] / self.k
self.sk += prk
a : str = (self.L - 1) * self.sk
if self.rem != 0:
a : Optional[int] = int(last % last )
a : int = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__snake_case )
a : str = int(np.ma.count(self.img ) / self.img[1].size )
a : Optional[int] = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
a : Any = self.img[j][i]
if num != self.last_list[num]:
a : str = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def lowercase_ ( self : Dict ):
plt.hist(self.img.ravel() , 2_56 , [0, 2_56] )
def lowercase_ ( self : List[Any] ):
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(50_00 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase: Optional[Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg')
lowerCAmelCase: Tuple = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 297 | 1 |
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase , lowercase=99 , lowercase=13 , lowercase=16 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=2 , lowercase=32 , lowercase=4 , lowercase=4 , lowercase=30 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=None , ):
_lowerCamelCase : int = parent
_lowerCamelCase : Optional[Any] = batch_size
_lowerCamelCase : Optional[Any] = decoder_seq_length
# For common tests
_lowerCamelCase : List[Any] = self.decoder_seq_length
_lowerCamelCase : List[str] = is_training
_lowerCamelCase : Optional[Any] = use_attention_mask
_lowerCamelCase : List[Any] = use_labels
_lowerCamelCase : Union[str, Any] = vocab_size
_lowerCamelCase : str = d_model
_lowerCamelCase : List[str] = d_model
_lowerCamelCase : Union[str, Any] = decoder_layers
_lowerCamelCase : Dict = decoder_layers
_lowerCamelCase : Optional[Any] = decoder_ffn_dim
_lowerCamelCase : List[str] = decoder_attention_heads
_lowerCamelCase : Any = decoder_attention_heads
_lowerCamelCase : List[str] = eos_token_id
_lowerCamelCase : Any = bos_token_id
_lowerCamelCase : int = pad_token_id
_lowerCamelCase : Any = decoder_start_token_id
_lowerCamelCase : Optional[Any] = use_cache
_lowerCamelCase : Any = max_position_embeddings
_lowerCamelCase : Union[str, Any] = None
_lowerCamelCase : Dict = decoder_seq_length
_lowerCamelCase : Optional[int] = 2
_lowerCamelCase : Optional[Any] = 1
def A_ ( self ):
_lowerCamelCase : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCamelCase : str = None
if self.use_attention_mask:
_lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
_lowerCamelCase : Union[str, Any] = None
if self.use_labels:
_lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCamelCase : List[Any] = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def A_ ( self , lowercase , lowercase , lowercase , lowercase , ):
_lowerCamelCase : Dict = True
_lowerCamelCase : List[Any] = TrOCRDecoder(config=lowercase ).to(lowercase ).eval()
_lowerCamelCase : Union[str, Any] = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
_lowerCamelCase : Union[str, Any] = model(lowercase , use_cache=lowercase )
_lowerCamelCase : Optional[Any] = model(lowercase )
_lowerCamelCase : Dict = model(lowercase , use_cache=lowercase )
self.parent.assertTrue(len(lowercase ) == len(lowercase ) )
self.parent.assertTrue(len(lowercase ) == len(lowercase ) + 1 )
_lowerCamelCase : str = outputs['past_key_values']
# create hypothetical next token and extent to next_input_ids
_lowerCamelCase : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
_lowerCamelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCamelCase : List[str] = model(lowercase )['last_hidden_state']
_lowerCamelCase : Union[str, Any] = model(lowercase , past_key_values=lowercase )['last_hidden_state']
# select random slice
_lowerCamelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCamelCase : List[str] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
_lowerCamelCase : Tuple = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(lowercase , lowercase , atol=1E-3 )
def A_ ( self ):
_lowerCamelCase : int = self.prepare_config_and_inputs()
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = config_and_inputs
_lowerCamelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( lowercase, lowercase, lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase__ = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase__ = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase__ = True
lowerCamelCase__ = False
def A_ ( self ):
_lowerCamelCase : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=lowercase )
_lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase )
def A_ ( self ):
pass
def A_ ( self ):
pass
def A_ ( self ):
pass
def A_ ( self ):
self.config_tester.run_common_tests()
def A_ ( self ):
_lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*lowercase )
def A_ ( self ):
return
@unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :)
def A_ ( self ):
pass
| 12 |
"""simple docstring"""
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
"""--original_config_file""",
default=None,
type=str,
help="""The YAML config file corresponding to the original architecture.""",
)
parser.add_argument(
"""--num_in_channels""",
default=None,
type=int,
help="""The number of input channels. If `None` number of input channels will be automatically inferred.""",
)
parser.add_argument(
"""--scheduler_type""",
default="""pndm""",
type=str,
help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""",
)
parser.add_argument(
"""--pipeline_type""",
default=None,
type=str,
help=(
"""The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'"""
""". If `None` pipeline will be automatically inferred."""
),
)
parser.add_argument(
"""--image_size""",
default=None,
type=int,
help=(
"""The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"""
""" Base. Use 768 for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--prediction_type""",
default=None,
type=str,
help=(
"""The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"""
""" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--extract_ema""",
action="""store_true""",
help=(
"""Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"""
""" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"""
""" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."""
),
)
parser.add_argument(
"""--upcast_attention""",
action="""store_true""",
help=(
"""Whether the attention computation should always be upcasted. This is necessary when running stable"""
""" diffusion 2.1."""
),
)
parser.add_argument(
"""--from_safetensors""",
action="""store_true""",
help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""",
)
parser.add_argument(
"""--to_safetensors""",
action="""store_true""",
help="""Whether to store pipeline in safetensors format or not.""",
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
parser.add_argument(
"""--stable_unclip""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""",
)
parser.add_argument(
"""--stable_unclip_prior""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""",
)
parser.add_argument(
"""--clip_stats_path""",
type=str,
help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""",
required=False,
)
parser.add_argument(
"""--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint."""
)
parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""")
parser.add_argument(
"""--vae_path""",
type=str,
default=None,
required=False,
help="""Set to a path, hub id to an already converted vae to not convert it again.""",
)
lowercase__ = parser.parse_args()
lowercase__ = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 12 | 1 |
'''simple docstring'''
def _A ( snake_case , snake_case ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(F'''{price_plus_tax(100, 0.2_5) = }''')
print(F'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
| 250 |
'''simple docstring'''
from __future__ import annotations
import requests
def _A ( snake_case ) -> dict:
_lowercase : Dict = F'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'''
return requests.get(snake_case ).json()
def _A ( snake_case = 10 ) -> list[dict]:
_lowercase : List[Any] = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty"
_lowercase : List[str] = requests.get(snake_case ).json()[:max_stories]
return [get_hackernews_story(snake_case ) for story_id in story_ids]
def _A ( snake_case = 10 ) -> str:
_lowercase : Union[str, Any] = hackernews_top_stories(snake_case )
return "\n".join("* [{title}]({url})".format(**snake_case ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 250 | 1 |
"""simple docstring"""
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
_a = logging.get_logger(__name__)
_a = Dict[str, Any]
_a = List[Prediction]
@add_end_docstrings(lowercase__ )
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ):
"""simple docstring"""
super().__init__(*_UpperCamelCase , **_UpperCamelCase )
if self.framework == "tf":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" )
requires_backends(self , "vision" )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def UpperCamelCase__ ( self , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = {}
if "threshold" in kwargs:
UpperCAmelCase_ : Optional[int] = kwargs["""threshold"""]
return {}, {}, postprocess_kwargs
def __call__( self , *lowercase_ , **lowercase_ ):
"""simple docstring"""
return super().__call__(*_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = load_image(_UpperCamelCase )
UpperCAmelCase_ : Optional[int] = torch.IntTensor([[image.height, image.width]] )
UpperCAmelCase_ : int = self.image_processor(images=[image] , return_tensors="pt" )
if self.tokenizer is not None:
UpperCAmelCase_ : List[Any] = self.tokenizer(text=inputs["words"] , boxes=inputs["boxes"] , return_tensors="pt" )
UpperCAmelCase_ : int = target_size
return inputs
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = model_inputs.pop("target_size" )
UpperCAmelCase_ : Dict = self.model(**_UpperCamelCase )
UpperCAmelCase_ : Dict = outputs.__class__({"target_size": target_size, **outputs} )
if self.tokenizer is not None:
UpperCAmelCase_ : Optional[int] = model_inputs["""bbox"""]
return model_outputs
def UpperCamelCase__ ( self , lowercase_ , lowercase_=0.9 ):
"""simple docstring"""
UpperCAmelCase_ : Any = model_outputs["""target_size"""]
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
UpperCAmelCase_ : Any = target_size[0].tolist()
def unnormalize(lowercase_ ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
] ) )
UpperCAmelCase_ : str = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
UpperCAmelCase_ : Union[str, Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
UpperCAmelCase_ : int = [unnormalize(_UpperCamelCase ) for bbox in model_outputs["""bbox"""].squeeze(0 )]
UpperCAmelCase_ : List[Any] = ["""score""", """label""", """box"""]
UpperCAmelCase_ : Optional[int] = [dict(zip(_UpperCamelCase , _UpperCamelCase ) ) for vals in zip(scores.tolist() , _UpperCamelCase , _UpperCamelCase ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
UpperCAmelCase_ : int = self.image_processor.post_process_object_detection(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
UpperCAmelCase_ : Union[str, Any] = raw_annotations[0]
UpperCAmelCase_ : List[Any] = raw_annotation["""scores"""]
UpperCAmelCase_ : Any = raw_annotation["""labels"""]
UpperCAmelCase_ : Any = raw_annotation["""boxes"""]
UpperCAmelCase_ : Any = scores.tolist()
UpperCAmelCase_ : str = [self.model.config.idalabel[label.item()] for label in labels]
UpperCAmelCase_ : int = [self._get_bounding_box(_UpperCamelCase ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
UpperCAmelCase_ : Any = ["""score""", """label""", """box"""]
UpperCAmelCase_ : str = [
dict(zip(_UpperCamelCase , _UpperCamelCase ) )
for vals in zip(raw_annotation["scores"] , raw_annotation["labels"] , raw_annotation["boxes"] )
]
return annotation
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
if self.framework != "pt":
raise ValueError("The ObjectDetectionPipeline is only available in PyTorch." )
UpperCAmelCase_ : Dict = box.int().tolist()
UpperCAmelCase_ : Union[str, Any] = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 358 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_a = logging.get_logger(__name__)
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = feature_size
UpperCAmelCase_ : Any = sampling_rate
UpperCAmelCase_ : Any = padding_value
UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" )
UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ )
super().__init__(**lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
UpperCAmelCase_ : Dict = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"
F""" to this method that includes {self.model_input_names[0]}, but you provided"""
F""" {list(processed_features.keys() )}""" )
UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]]
UpperCAmelCase_ : List[str] = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(lowercase_ ) == 0:
if return_attention_mask:
UpperCAmelCase_ : Union[str, Any] = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
UpperCAmelCase_ : List[str] = required_input[0]
if isinstance(lowercase_ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
UpperCAmelCase_ : Any = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(lowercase_ ):
UpperCAmelCase_ : Optional[Any] = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(lowercase_ ):
UpperCAmelCase_ : Dict = "tf"
elif is_torch_tensor(lowercase_ ):
UpperCAmelCase_ : Any = "pt"
elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ):
UpperCAmelCase_ : str = "np"
else:
raise ValueError(
F"""type of {first_element} unknown: {type(lowercase_ )}. """
"Should be one of a python, numpy, pytorch or tensorflow object." )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ )
else:
UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value]
# Convert padding_strategy in PaddingStrategy
UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ )
UpperCAmelCase_ : str = processed_features[self.model_input_names[0]]
UpperCAmelCase_ : int = len(lowercase_ )
if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ):
raise ValueError("Some items in the output dictionary have a different batch size than others." )
UpperCAmelCase_ : int = []
for i in range(lowercase_ ):
UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()}
# truncation
UpperCAmelCase_ : List[str] = self._truncate(
lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , )
truncated_inputs.append(lowercase_ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH
UpperCAmelCase_ : List[str] = {}
for i in range(lowercase_ ):
# padding
UpperCAmelCase_ : int = self._pad(
truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , )
for key, value in outputs.items():
if key not in batch_outputs:
UpperCAmelCase_ : Any = []
if value.dtype is np.dtype(np.floataa ):
UpperCAmelCase_ : List[Any] = value.astype(np.floataa )
batch_outputs[key].append(lowercase_ )
return BatchFeature(lowercase_ , tensor_type=lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
UpperCAmelCase_ : Tuple = len(lowercase_ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa )
if needs_to_be_padded:
UpperCAmelCase_ : Dict = max_length - len(lowercase_ )
if self.padding_side == "right":
if return_attention_mask:
UpperCAmelCase_ : List[Any] = np.pad(
processed_features["attention_mask"] , (0, difference) )
UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
UpperCAmelCase_ : Optional[Any] = np.pad(
lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
UpperCAmelCase_ : Optional[Any] = np.pad(
processed_features["attention_mask"] , (difference, 0) )
UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
UpperCAmelCase_ : str = np.pad(
lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value )
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return processed_features
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." )
UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length
if needs_to_be_truncated:
UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length]
return processed_features
def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ):
"""simple docstring"""
# Get padding strategy
if padding is not False:
if padding is True:
UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ )
elif isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = padding
else:
UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"
" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." )
return padding_strategy
| 23 | 0 |
'''simple docstring'''
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
__SCREAMING_SNAKE_CASE : Optional[Any] = """Run commands across TPU VMs for initial setup before running `accelerate launch`."""
def UpperCamelCase_ ( _UpperCAmelCase : Union[str, Any]=None ) -> Tuple:
"""simple docstring"""
if subparsers is not None:
_UpperCAmelCase : List[Any] = subparsers.add_parser("tpu-config" , description=_description )
else:
_UpperCAmelCase : Any = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description )
# Core arguments
_UpperCAmelCase : Optional[Any] = parser.add_argument_group(
"Config Arguments" , "Arguments that can be configured through `accelerate config`." )
config_args.add_argument(
"--config_file" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="Path to the config file to use for accelerate." , )
config_args.add_argument(
"--tpu_name" , default=_UpperCAmelCase , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , )
config_args.add_argument(
"--tpu_zone" , default=_UpperCAmelCase , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , )
_UpperCAmelCase : Tuple = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." )
pod_args.add_argument(
"--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , )
pod_args.add_argument(
"--command_file" , default=_UpperCAmelCase , help="The path to the file containing the commands to run on the pod on startup." , )
pod_args.add_argument(
"--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , )
pod_args.add_argument(
"--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , )
pod_args.add_argument(
"--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , )
pod_args.add_argument(
"--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." )
if subparsers is not None:
parser.set_defaults(func=_UpperCAmelCase )
return parser
def UpperCamelCase_ ( _UpperCAmelCase : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(_UpperCAmelCase ):
_UpperCAmelCase : Optional[Any] = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
_UpperCAmelCase : List[Any] = defaults.command_file
if not args.command and defaults.commands is not None:
_UpperCAmelCase : Tuple = defaults.commands
if not args.tpu_name:
_UpperCAmelCase : Union[str, Any] = defaults.tpu_name
if not args.tpu_zone:
_UpperCAmelCase : List[str] = defaults.tpu_zone
if args.accelerate_version == "dev":
_UpperCAmelCase : int = "git+https://github.com/huggingface/accelerate.git"
elif args.accelerate_version == "latest":
_UpperCAmelCase : List[Any] = "accelerate -U"
elif isinstance(parse(args.accelerate_version ) , _UpperCAmelCase ):
_UpperCAmelCase : int = F"""accelerate=={args.accelerate_version}"""
if not args.command_file and not args.command:
raise ValueError("You must specify either a command file or a command to run on the pod." )
if args.command_file:
with open(args.command_file , "r" ) as f:
_UpperCAmelCase : Tuple = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , _UpperCAmelCase ):
_UpperCAmelCase : Tuple = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
_UpperCAmelCase : Any = ["cd /usr/share"]
if args.install_accelerate:
new_cmd += [F"""pip install {args.accelerate_version}"""]
new_cmd += args.command
_UpperCAmelCase : int = "; ".join(_UpperCAmelCase )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
_UpperCAmelCase : Tuple = ["gcloud"]
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F"""Running {' '.join(_UpperCAmelCase )}""" )
return
subprocess.run(_UpperCAmelCase )
print("Successfully setup pod." )
def UpperCamelCase_ ( ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Any = tpu_command_parser()
_UpperCAmelCase : Tuple = parser.parse_args()
tpu_command_launcher(_UpperCAmelCase )
| 31 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class lowerCamelCase_ (unittest.TestCase ):
'''simple docstring'''
def __init__( self : int , A : Dict , A : Optional[int]=7 , A : Tuple=3 , A : Optional[Any]=10 , A : int=18 , A : Dict=30 , A : List[str]=400 , A : int=True , A : Optional[Any]=None , A : Optional[Any]=True , A : List[Any]=[0.5, 0.5, 0.5] , A : List[str]=[0.5, 0.5, 0.5] , A : Optional[int]=None , ):
_UpperCAmelCase : Dict = size if size is not None else {"shortest_edge": 18}
_UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18}
_UpperCAmelCase : Tuple = parent
_UpperCAmelCase : Any = batch_size
_UpperCAmelCase : Optional[int] = num_channels
_UpperCAmelCase : Optional[Any] = num_frames
_UpperCAmelCase : Any = image_size
_UpperCAmelCase : Dict = min_resolution
_UpperCAmelCase : Any = max_resolution
_UpperCAmelCase : Optional[int] = do_resize
_UpperCAmelCase : str = size
_UpperCAmelCase : List[Any] = do_normalize
_UpperCAmelCase : Any = image_mean
_UpperCAmelCase : Tuple = image_std
_UpperCAmelCase : Any = crop_size
def _A ( self : List[Any] ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class lowerCamelCase_ (snake_case__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase: Dict = VivitImageProcessor if is_vision_available() else None
def _A ( self : int ):
_UpperCAmelCase : Tuple = VivitImageProcessingTester(self )
@property
def _A ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def _A ( self : Union[str, Any] ):
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A , "image_mean" ) )
self.assertTrue(hasattr(A , "image_std" ) )
self.assertTrue(hasattr(A , "do_normalize" ) )
self.assertTrue(hasattr(A , "do_resize" ) )
self.assertTrue(hasattr(A , "do_center_crop" ) )
self.assertTrue(hasattr(A , "size" ) )
def _A ( self : List[Any] ):
_UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18} )
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} )
_UpperCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"shortest_edge": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
def _A ( self : Tuple ):
# Initialize image_processing
_UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
_UpperCAmelCase : Any = prepare_video_inputs(self.image_processor_tester , equal_resolution=A )
for video in video_inputs:
self.assertIsInstance(A , A )
self.assertIsInstance(video[0] , Image.Image )
# Test not batched input
_UpperCAmelCase : str = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processing(A , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _A ( self : List[Any] ):
# Initialize image_processing
_UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , numpify=A )
for video in video_inputs:
self.assertIsInstance(A , A )
self.assertIsInstance(video[0] , np.ndarray )
# Test not batched input
_UpperCAmelCase : Tuple = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
_UpperCAmelCase : Optional[int] = image_processing(A , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _A ( self : List[Any] ):
# Initialize image_processing
_UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , torchify=A )
for video in video_inputs:
self.assertIsInstance(A , A )
self.assertIsInstance(video[0] , torch.Tensor )
# Test not batched input
_UpperCAmelCase : Optional[Any] = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processing(A , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 31 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a : Union[str, Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Union[str, Any] = ['XLNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Tuple = ['XLNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[Any] = [
'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLNetForMultipleChoice',
'XLNetForQuestionAnswering',
'XLNetForQuestionAnsweringSimple',
'XLNetForSequenceClassification',
'XLNetForTokenClassification',
'XLNetLMHeadModel',
'XLNetModel',
'XLNetPreTrainedModel',
'load_tf_weights_in_xlnet',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[int] = [
'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLNetForMultipleChoice',
'TFXLNetForQuestionAnsweringSimple',
'TFXLNetForSequenceClassification',
'TFXLNetForTokenClassification',
'TFXLNetLMHeadModel',
'TFXLNetMainLayer',
'TFXLNetModel',
'TFXLNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
a : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 72 |
'''simple docstring'''
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version('>=', FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
a : Union[str, Any] = get_logger(__name__)
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Tuple:
'''simple docstring'''
os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase )
with FSDP.state_dict_type(
__UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
snake_case_ = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
snake_case_ = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin"
snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase )
if accelerator.process_index == 0:
logger.info(F"Saving model to {output_model_file}" )
torch.save(__UpperCAmelCase, __UpperCAmelCase )
logger.info(F"Model saved to {output_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
snake_case_ = (
F"{MODEL_NAME}_rank{accelerator.process_index}.bin"
if model_index == 0
else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
)
snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase )
logger.info(F"Saving model to {output_model_file}" )
torch.save(__UpperCAmelCase, __UpperCAmelCase )
logger.info(F"Model saved to {output_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
snake_case_ = os.path.join(__UpperCAmelCase, F"{MODEL_NAME}_{model_index}" )
os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase )
logger.info(F"Saving model to {ckpt_dir}" )
snake_case_ = {'''model''': state_dict}
dist_cp.save_state_dict(
state_dict=__UpperCAmelCase, storage_writer=dist_cp.FileSystemWriter(__UpperCAmelCase ), planner=DefaultSavePlanner(), )
logger.info(F"Model saved to {ckpt_dir}" )
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> str:
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(__UpperCAmelCase ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
'''Set the `sync_module_states` flag to `True` so that model states are synced across processes when '''
'''initializing FSDP object''' )
return
snake_case_ = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin"
snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase )
logger.info(F"Loading model from {input_model_file}" )
snake_case_ = torch.load(__UpperCAmelCase )
logger.info(F"Model loaded from {input_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
snake_case_ = (
F"{MODEL_NAME}_rank{accelerator.process_index}.bin"
if model_index == 0
else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
)
snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase )
logger.info(F"Loading model from {input_model_file}" )
snake_case_ = torch.load(__UpperCAmelCase )
logger.info(F"Model loaded from {input_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
snake_case_ = (
os.path.join(__UpperCAmelCase, F"{MODEL_NAME}_{model_index}" )
if F"{MODEL_NAME}" not in input_dir
else input_dir
)
logger.info(F"Loading model from {ckpt_dir}" )
snake_case_ = {'''model''': model.state_dict()}
dist_cp.load_state_dict(
state_dict=__UpperCAmelCase, storage_reader=dist_cp.FileSystemReader(__UpperCAmelCase ), planner=DefaultLoadPlanner(), )
snake_case_ = state_dict['''model''']
logger.info(F"Model loaded from {ckpt_dir}" )
model.load_state_dict(__UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Dict:
'''simple docstring'''
os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase )
with FSDP.state_dict_type(
__UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
snake_case_ = FSDP.optim_state_dict(__UpperCAmelCase, __UpperCAmelCase )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
snake_case_ = (
F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin"
)
snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase )
logger.info(F"Saving Optimizer state to {output_optimizer_file}" )
torch.save(__UpperCAmelCase, __UpperCAmelCase )
logger.info(F"Optimizer state saved in {output_optimizer_file}" )
else:
snake_case_ = os.path.join(__UpperCAmelCase, F"{OPTIMIZER_NAME}_{optimizer_index}" )
os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase )
logger.info(F"Saving Optimizer state to {ckpt_dir}" )
dist_cp.save_state_dict(
state_dict={'''optimizer''': optim_state}, storage_writer=dist_cp.FileSystemWriter(__UpperCAmelCase ), planner=DefaultSavePlanner(), )
logger.info(F"Optimizer state saved in {ckpt_dir}" )
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Union[str, Any]:
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
snake_case_ = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
snake_case_ = (
F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin"
)
snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase )
logger.info(F"Loading Optimizer state from {input_optimizer_file}" )
snake_case_ = torch.load(__UpperCAmelCase )
logger.info(F"Optimizer state loaded from {input_optimizer_file}" )
else:
snake_case_ = (
os.path.join(__UpperCAmelCase, F"{OPTIMIZER_NAME}_{optimizer_index}" )
if F"{OPTIMIZER_NAME}" not in input_dir
else input_dir
)
logger.info(F"Loading Optimizer from {ckpt_dir}" )
snake_case_ = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict(), optimizer_key='''optimizer''', storage_reader=dist_cp.FileSystemReader(__UpperCAmelCase ), )
snake_case_ = optim_state['''optimizer''']
logger.info(F"Optimizer loaded from {ckpt_dir}" )
snake_case_ = FSDP.optim_state_dict_to_load(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase )
optimizer.load_state_dict(__UpperCAmelCase )
| 72 | 1 |
from collections.abc import Callable
import numpy as np
def _UpperCAmelCase (UpperCamelCase__ : Callable , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ):
_A : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) )
_A : Tuple = np.zeros((n + 1,) )
_A : Union[str, Any] = ya
_A : List[str] = xa
for k in range(UpperCamelCase__ ):
_A : Any = y[k] + step_size * ode_func(UpperCamelCase__ , y[k] )
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 11 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
A : str = logging.get_logger(__name__)
A : Union[str, Any] = {
'''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''',
}
class A (SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCamelCase : Optional[Any] = '''layoutlmv3'''
def __init__( self : Tuple , __lowerCAmelCase : Optional[int]=5_02_65 , __lowerCAmelCase : Tuple=7_68 , __lowerCAmelCase : Union[str, Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : List[Any]=30_72 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Dict=5_12 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Dict=0.0_2 , __lowerCAmelCase : List[str]=1e-5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : int=0 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Tuple=10_24 , __lowerCAmelCase : List[str]=1_28 , __lowerCAmelCase : Optional[int]=1_28 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Any=1_28 , __lowerCAmelCase : str=64 , __lowerCAmelCase : Optional[int]=2_56 , __lowerCAmelCase : int=True , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : int=2_24 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Dict=None , **__lowerCAmelCase : Optional[Any] , ) -> Dict:
"""simple docstring"""
super().__init__(
vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
A__ = max_ad_position_embeddings
A__ = coordinate_size
A__ = shape_size
A__ = has_relative_attention_bias
A__ = rel_pos_bins
A__ = max_rel_pos
A__ = has_spatial_attention_bias
A__ = rel_ad_pos_bins
A__ = max_rel_ad_pos
A__ = text_embed
A__ = visual_embed
A__ = input_size
A__ = num_channels
A__ = patch_size
A__ = classifier_dropout
class A (SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCamelCase : List[str] = version.parse('''1.12''' )
@property
def a_ ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
("""bbox""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
else:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""bbox""", {0: """batch""", 1: """sequence"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels"""}),
] )
@property
def a_ ( self : Optional[int] ) -> float:
"""simple docstring"""
return 1e-5
@property
def a_ ( self : Tuple ) -> int:
"""simple docstring"""
return 12
def a_ ( self : str , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , """apply_ocr""" , __lowerCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
A__ = compute_effective_axis_dimension(
__lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
A__ = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase )
A__ = compute_effective_axis_dimension(
__lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase )
# Generate dummy inputs according to compute batch and sequence
A__ = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
A__ = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
A__ = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
A__ = dict(
processor(
__lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) )
return inputs
| 274 | 0 |
"""simple docstring"""
from typing import Any
class a_ :
'''simple docstring'''
def __init__(self, lowerCamelCase_ ):
'''simple docstring'''
lowerCamelCase__ : str = data
lowerCamelCase__ : Optional[Any] = None
def __repr__(self ):
'''simple docstring'''
return f'''Node({self.data})'''
class a_ :
'''simple docstring'''
def __init__(self ):
'''simple docstring'''
lowerCamelCase__ : List[str] = None
def __iter__(self ):
'''simple docstring'''
lowerCamelCase__ : str = self.head
while node:
yield node.data
lowerCamelCase__ : List[Any] = node.next
def __len__(self ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__(self ):
'''simple docstring'''
return "->".join([str(lowerCamelCase_ ) for item in self] )
def __getitem__(self, lowerCamelCase_ ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
lowerCamelCase__ : Union[str, Any] = self.head
for _ in range(lowerCamelCase_ ):
lowerCamelCase__ : Tuple = current.next
lowerCamelCase__ : str = data
def a__ (self, lowerCamelCase_ ):
'''simple docstring'''
self.insert_nth(len(self ), lowerCamelCase_ )
def a__ (self, lowerCamelCase_ ):
'''simple docstring'''
self.insert_nth(0, lowerCamelCase_ )
def a__ (self, lowerCamelCase_, lowerCamelCase_ ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
lowerCamelCase__ : Optional[Any] = Node(lowerCamelCase_ )
if self.head is None:
lowerCamelCase__ : List[str] = new_node
elif index == 0:
lowerCamelCase__ : int = self.head # link new_node to head
lowerCamelCase__ : List[Any] = new_node
else:
lowerCamelCase__ : Optional[int] = self.head
for _ in range(index - 1 ):
lowerCamelCase__ : Union[str, Any] = temp.next
lowerCamelCase__ : List[str] = temp.next
lowerCamelCase__ : str = new_node
def a__ (self ): # print every node data
'''simple docstring'''
print(self )
def a__ (self ):
'''simple docstring'''
return self.delete_nth(0 )
def a__ (self ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def a__ (self, lowerCamelCase_ = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
lowerCamelCase__ : str = self.head # default first node
if index == 0:
lowerCamelCase__ : Any = self.head.next
else:
lowerCamelCase__ : str = self.head
for _ in range(index - 1 ):
lowerCamelCase__ : int = temp.next
lowerCamelCase__ : List[Any] = temp.next
lowerCamelCase__ : int = temp.next.next
return delete_node.data
def a__ (self ):
'''simple docstring'''
return self.head is None
def a__ (self ):
'''simple docstring'''
lowerCamelCase__ : str = None
lowerCamelCase__ : Union[str, Any] = self.head
while current:
# Store the current node's next node.
lowerCamelCase__ : int = current.next
# Make the current node's next point backwards
lowerCamelCase__ : Dict = prev
# Make the previous node be the current node
lowerCamelCase__ : Optional[Any] = current
# Make the current node the next node (to progress iteration)
lowerCamelCase__ : Dict = next_node
# Return prev in order to put the head at the end
lowerCamelCase__ : Optional[Any] = prev
def lowerCamelCase_ ( ):
lowerCamelCase__ : Optional[Any] = LinkedList()
assert linked_list.is_empty() is True
assert str(_lowerCamelCase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(_lowerCamelCase ) == i
linked_list.insert_nth(_lowerCamelCase , i + 1 )
assert str(_lowerCamelCase ) == "->".join(str(_lowerCamelCase ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(_lowerCamelCase ) == "->".join(str(_lowerCamelCase ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(_lowerCamelCase ) == 9
assert str(_lowerCamelCase ) == "->".join(str(_lowerCamelCase ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
lowerCamelCase__ : Union[str, Any] = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(_lowerCamelCase ) == "->".join(str(_lowerCamelCase ) for i in range(-8 , 1 ) )
def lowerCamelCase_ ( ):
lowerCamelCase__ : Optional[int] = [
-9,
100,
Node(7734_5112 ),
'dlrow olleH',
7,
5555,
0,
-192.55_555,
'Hello, world!',
77.9,
Node(10 ),
None,
None,
12.20,
]
lowerCamelCase__ : Optional[int] = LinkedList()
for i in test_input:
linked_list.insert_tail(_lowerCamelCase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_lowerCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
lowerCamelCase__ : Optional[int] = linked_list.delete_head()
assert result == -9
assert (
str(_lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
lowerCamelCase__ : List[Any] = linked_list.delete_tail()
assert result == 12.2
assert (
str(_lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
lowerCamelCase__ : str = linked_list.delete_nth(10 )
assert result is None
assert (
str(_lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(_lowerCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_lowerCamelCase )
assert (
str(_lowerCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_lowerCamelCase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def lowerCamelCase_ ( ):
from doctest import testmod
testmod()
lowerCamelCase__ : int = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(_lowerCamelCase )
print('\nReading/changing Node data using indexing:' )
print(f'''Element at Position 1: {linked_list[1]}''' )
lowerCamelCase__ : Optional[Any] = input('Enter New Value: ' ).strip()
print('New list:' )
print(_lowerCamelCase )
print(f'''length of linked_list is : {len(_lowerCamelCase )}''' )
if __name__ == "__main__":
main()
| 358 |
"""simple docstring"""
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
A_ : Union[str, Any] = "2.13.1"
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("3.7"):
raise ImportWarning(
"To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"
"If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
A_ : int = concatenate_datasets
A_ : Any = DownloadConfig
A_ : List[Any] = DownloadManager
A_ : Optional[Any] = DownloadMode
A_ : List[str] = DownloadConfig
A_ : Optional[int] = DownloadMode
A_ : Dict = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 316 | 0 |
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCamelCase__:
def __init__( self: str , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any]=99 , UpperCamelCase_: List[str]=13 , UpperCamelCase_: int=16 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: List[str]=True , UpperCamelCase_: List[str]=True , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Dict=False , UpperCamelCase_: str=True , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Union[str, Any]=32 , UpperCamelCase_: Any=4 , UpperCamelCase_: Dict=4 , UpperCamelCase_: str=30 , UpperCamelCase_: List[str]=0 , UpperCamelCase_: Dict=1 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: Dict=None , ):
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = decoder_seq_length
# For common tests
__lowerCamelCase = self.decoder_seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = d_model
__lowerCamelCase = d_model
__lowerCamelCase = decoder_layers
__lowerCamelCase = decoder_layers
__lowerCamelCase = decoder_ffn_dim
__lowerCamelCase = decoder_attention_heads
__lowerCamelCase = decoder_attention_heads
__lowerCamelCase = eos_token_id
__lowerCamelCase = bos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = decoder_start_token_id
__lowerCamelCase = use_cache
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = None
__lowerCamelCase = decoder_seq_length
__lowerCamelCase = 2
__lowerCamelCase = 1
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_attention_mask:
__lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
__lowerCamelCase = None
if self.use_labels:
__lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
__lowerCamelCase = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Dict , ):
__lowerCamelCase = True
__lowerCamelCase = TrOCRDecoder(config=UpperCamelCase_ ).to(UpperCamelCase_ ).eval()
__lowerCamelCase = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
__lowerCamelCase = model(UpperCamelCase_ , use_cache=UpperCamelCase_ )
__lowerCamelCase = model(UpperCamelCase_ )
__lowerCamelCase = model(UpperCamelCase_ , use_cache=UpperCamelCase_ )
self.parent.assertTrue(len(UpperCamelCase_ ) == len(UpperCamelCase_ ) )
self.parent.assertTrue(len(UpperCamelCase_ ) == len(UpperCamelCase_ ) + 1 )
__lowerCamelCase = outputs["""past_key_values"""]
# create hypothetical next token and extent to next_input_ids
__lowerCamelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
__lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__lowerCamelCase = model(UpperCamelCase_ )["""last_hidden_state"""]
__lowerCamelCase = model(UpperCamelCase_ , past_key_values=UpperCamelCase_ )["""last_hidden_state"""]
# select random slice
__lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__lowerCamelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
__lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs
__lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Tuple = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
UpperCAmelCase__ : Dict = (TrOCRForCausalLM,) if is_torch_available() else ()
UpperCAmelCase__ : Union[str, Any] = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {}
UpperCAmelCase__ : Union[str, Any] = True
UpperCAmelCase__ : Dict = False
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase_ )
__lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ )
def lowerCAmelCase__ ( self: str ):
pass
def lowerCAmelCase__ ( self: List[str] ):
pass
def lowerCAmelCase__ ( self: Union[str, Any] ):
pass
def lowerCAmelCase__ ( self: List[str] ):
self.config_tester.run_common_tests()
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase_ )
def lowerCAmelCase__ ( self: str ):
return
@unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :)
def lowerCAmelCase__ ( self: Union[str, Any] ):
pass
| 12 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline
UpperCAmelCase__ : Optional[Any] = ['image']
UpperCAmelCase__ : int = ['image']
UpperCAmelCase__ : Any = [
'num_images_per_prompt',
'num_inference_steps',
'generator',
'latents',
'guidance_scale',
'frame_size',
'output_type',
'return_dict',
]
UpperCAmelCase__ : int = False
@property
def lowerCAmelCase__ ( self: int ):
return 32
@property
def lowerCAmelCase__ ( self: List[str] ):
return 32
@property
def lowerCAmelCase__ ( self: Any ):
return self.time_input_dim * 4
@property
def lowerCAmelCase__ ( self: Dict ):
return 8
@property
def lowerCAmelCase__ ( self: int ):
torch.manual_seed(0 )
__lowerCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
__lowerCamelCase = CLIPVisionModel(UpperCamelCase_ )
return model
@property
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = CLIPImageProcessor(
crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , )
return image_processor
@property
def lowerCAmelCase__ ( self: Tuple ):
torch.manual_seed(0 )
__lowerCamelCase = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""embedding_proj_norm_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
__lowerCamelCase = PriorTransformer(**UpperCamelCase_ )
return model
@property
def lowerCAmelCase__ ( self: List[Any] ):
torch.manual_seed(0 )
__lowerCamelCase = {
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
__lowerCamelCase = ShapERenderer(**UpperCamelCase_ )
return model
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = self.dummy_prior
__lowerCamelCase = self.dummy_image_encoder
__lowerCamelCase = self.dummy_image_processor
__lowerCamelCase = self.dummy_renderer
__lowerCamelCase = HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , )
__lowerCamelCase = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""image_processor""": image_processor,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ):
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
if str(UpperCamelCase_ ).startswith("""mps""" ):
__lowerCamelCase = torch.manual_seed(UpperCamelCase_ )
else:
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowerCamelCase = {
"""image""": input_image,
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = """cpu"""
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**UpperCamelCase_ )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) )
__lowerCamelCase = output.images[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__lowerCamelCase = np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase__ ( self: List[str] ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = torch_device == """cpu"""
__lowerCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**UpperCamelCase_ )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = 1
__lowerCamelCase = 2
__lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ )
for key in inputs.keys():
if key in self.batch_params:
__lowerCamelCase = batch_size * [inputs[key]]
__lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: Union[str, Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_img2img_out.npy""" )
__lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 )
__lowerCamelCase = pipe(
UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
| 12 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = CTRLTokenizer
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : List[str] = False
def __UpperCAmelCase ( self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>''']
__a = dict(zip(_a , range(len(_a ) ) ) )
__a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', '''''']
__a = {'''unk_token''': '''<unk>'''}
__a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_a ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(_a ) )
def __UpperCAmelCase ( self , **_a ):
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **_a )
def __UpperCAmelCase ( self , _a ):
__a = '''adapt react readapt apt'''
__a = '''adapt react readapt apt'''
return input_text, output_text
def __UpperCAmelCase ( self ):
__a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
__a = '''adapt react readapt apt'''
__a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split()
__a = tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
__a = tokens + [tokenizer.unk_token]
__a = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a )
| 11 |
"""simple docstring"""
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ):
super().__init__()
if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1:
__a = (
f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'''
f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '''
'''to update the config accordingly as leaving `steps_offset` might led to incorrect results'''
''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'''
''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'''
''' file'''
)
deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a )
__a = dict(scheduler.config )
__a = 1
__a = FrozenDict(_a )
if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False:
__a = (
f'''The configuration file of this scheduler: {scheduler} has not set the configuration'''
''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make'''
''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to'''
''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face'''
''' Hub, it would be very nice if you could open a Pull request for the'''
''' `scheduler/scheduler_config.json` file'''
)
deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a )
__a = dict(scheduler.config )
__a = True
__a = FrozenDict(_a )
if safety_checker is None:
logger.warning(
f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'''
''' results in services or applications open to the public. Both the diffusers team and Hugging Face'''
''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'''
''' it only for use-cases that involve analyzing network behavior or auditing its results. For more'''
''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' )
self.register_modules(
segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , )
def __UpperCAmelCase ( self , _a = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__a = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_a )
def __UpperCAmelCase ( self ):
self.enable_attention_slicing(_a )
def __UpperCAmelCase ( self ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
__a = torch.device('''cuda''' )
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(_a , _a )
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __UpperCAmelCase ( self ):
if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(_a , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ):
__a = self.segmentation_processor(
text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device )
__a = self.segmentation_model(**_a )
__a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy()
__a = self.numpy_to_pil(_a )[0].resize(image.size )
# Run inpainting pipeline with the generated mask
__a = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
| 11 | 1 |
from maths.prime_factors import prime_factors
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int:
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A__ = f'Input value of [number={number}] must be an integer'
raise TypeError(SCREAMING_SNAKE_CASE__ )
if number < 1:
raise ValueError('Input must be a positive integer' )
return -1 if len(prime_factors(SCREAMING_SNAKE_CASE__ ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@classmethod
def A ( cls : Union[str, Any] ) -> int:
UpperCAmelCase : Optional[Any] = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def A ( cls : List[str] ) -> Tuple:
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def A ( self : int ) -> Tuple:
UpperCAmelCase : List[Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase : Dict = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
__snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]:
UpperCAmelCase : str = True
UpperCAmelCase : int = flatten_dict(modela.params )
UpperCAmelCase : Dict = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
UpperCAmelCase : Dict = False
return models_are_equal
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
UpperCAmelCase : int = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__snake_case , __snake_case ) )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertTrue(check_models_equal(__snake_case , __snake_case ) )
def A ( self : List[str] ) -> Dict:
UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
UpperCAmelCase : Optional[int] = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertTrue(check_models_equal(__snake_case , __snake_case ) )
def A ( self : Optional[int] ) -> str:
UpperCAmelCase : Dict = '''bert'''
UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(__snake_case ):
UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertIsNotNone(__snake_case )
def A ( self : Dict ) -> List[Any]:
UpperCAmelCase : Optional[int] = '''bert'''
UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(__snake_case ):
UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertIsNotNone(__snake_case )
| 23 | 0 |
'''simple docstring'''
import numpy as np
from transformers import Pipeline
def UpperCAmelCase_ ( __lowerCamelCase : Any ):
lowercase_ :List[str] = np.max(__lowerCamelCase ,axis=-1 ,keepdims=__lowerCamelCase )
lowercase_ :Tuple = np.exp(outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 ,keepdims=__lowerCamelCase )
class a_ ( _lowerCAmelCase ):
def lowercase__ ( self : Dict , **lowercase : Dict ):
"""simple docstring"""
lowercase_ :Any = {}
if "second_text" in kwargs:
lowercase_ :List[str] = kwargs["second_text"]
return preprocess_kwargs, {}, {}
def lowercase__ ( self : Optional[Any] , lowercase : int , lowercase : Optional[int]=None ):
"""simple docstring"""
return self.tokenizer(lowercase , text_pair=lowercase , return_tensors=self.framework )
def lowercase__ ( self : Union[str, Any] , lowercase : List[str] ):
"""simple docstring"""
return self.model(**lowercase )
def lowercase__ ( self : Optional[int] , lowercase : Union[str, Any] ):
"""simple docstring"""
lowercase_ :Optional[int] = model_outputs.logits[0].numpy()
lowercase_ :Optional[Any] = softmax(lowercase )
lowercase_ :Tuple = np.argmax(lowercase )
lowercase_ :str = self.model.config.idalabel[best_class]
lowercase_ :Union[str, Any] = probabilities[best_class].item()
lowercase_ :Dict = logits.tolist()
return {"label": label, "score": score, "logits": logits}
| 147 |
'''simple docstring'''
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
lowerCAmelCase : Any ={
'''facebook/maskformer-swin-base-ade''': (
'''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json'''
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
lowerCAmelCase : int =logging.get_logger(__name__)
class a_ ( _lowerCAmelCase ):
__A = "maskformer"
__A = {"hidden_size": "mask_feature_size"}
__A = ["resnet", "swin"]
__A = ["detr"]
def __init__( self : List[Any] , lowercase : int = 256 , lowercase : int = 256 , lowercase : float = 0.1 , lowercase : bool = False , lowercase : Optional[Dict] = None , lowercase : Optional[Dict] = None , lowercase : float = 0.02 , lowercase : float = 1.0 , lowercase : float = 1.0 , lowercase : float = 1.0 , lowercase : float = 20.0 , lowercase : Optional[bool] = None , **lowercase : Any , ):
"""simple docstring"""
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
lowercase_ :Any = SwinConfig(
image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , )
if isinstance(lowercase , lowercase ):
lowercase_ :Optional[int] = backbone_config.pop("model_type" )
lowercase_ :Optional[int] = CONFIG_MAPPING[backbone_model_type]
lowercase_ :int = config_class.from_dict(lowercase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. '
F'Supported model types: {",".join(self.backbones_supported )}' )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
lowercase_ :Optional[Any] = DetrConfig()
else:
# verify that the decoder is supported
lowercase_ :Tuple = (
decoder_config.pop("model_type" ) if isinstance(lowercase , lowercase ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
F'Transformer Decoder {decoder_type} not supported, please use one of'
F' {",".join(self.decoders_supported )}' )
if isinstance(lowercase , lowercase ):
lowercase_ :str = CONFIG_MAPPING[decoder_type]
lowercase_ :List[str] = config_class.from_dict(lowercase )
lowercase_ :str = backbone_config
lowercase_ :Union[str, Any] = decoder_config
# main feature dimension for the model
lowercase_ :Any = fpn_feature_size
lowercase_ :Optional[int] = mask_feature_size
# initializer
lowercase_ :List[Any] = init_std
lowercase_ :Union[str, Any] = init_xavier_std
# Hungarian matcher && loss
lowercase_ :List[str] = cross_entropy_weight
lowercase_ :int = dice_weight
lowercase_ :List[str] = mask_weight
lowercase_ :Optional[Any] = use_auxiliary_loss
lowercase_ :str = no_object_weight
lowercase_ :int = output_auxiliary_logits
lowercase_ :Optional[Any] = self.decoder_config.encoder_attention_heads
lowercase_ :int = self.decoder_config.num_hidden_layers
super().__init__(**lowercase )
@classmethod
def lowercase__ ( cls : Tuple , lowercase : PretrainedConfig , lowercase : PretrainedConfig , **lowercase : Union[str, Any] ):
"""simple docstring"""
return cls(
backbone_config=lowercase , decoder_config=lowercase , **lowercase , )
def lowercase__ ( self : Optional[Any] ):
"""simple docstring"""
lowercase_ :str = copy.deepcopy(self.__dict__ )
lowercase_ :int = self.backbone_config.to_dict()
lowercase_ :List[Any] = self.decoder_config.to_dict()
lowercase_ :Optional[Any] = self.__class__.model_type
return output
| 147 | 1 |
"""simple docstring"""
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVR
from statsmodels.tsa.statespace.sarimax import SARIMAX
def snake_case_ ( A_ : list, A_ : list, A_ : list, A_ : list, A_ : list ):
'''simple docstring'''
_lowerCamelCase : Any = np.array([[1, item, train_mtch[i]] for i, item in enumerate(A_ )] )
_lowerCamelCase : Optional[int] = np.array(A_ )
_lowerCamelCase : List[str] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose(), A_ ) ), x.transpose() ), A_ )
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] )
def snake_case_ ( A_ : list, A_ : list, A_ : list ):
'''simple docstring'''
_lowerCamelCase : List[str] = (1, 2, 1)
_lowerCamelCase : Any = (1, 1, 0, 7)
_lowerCamelCase : int = SARIMAX(
A_, exog=A_, order=A_, seasonal_order=A_ )
_lowerCamelCase : Optional[int] = model.fit(disp=A_, maxiter=6_00, method='''nm''' )
_lowerCamelCase : Any = model_fit.predict(1, len(A_ ), exog=[test_match] )
return result[0]
def snake_case_ ( A_ : list, A_ : list, A_ : list ):
'''simple docstring'''
_lowerCamelCase : Any = SVR(kernel='''rbf''', C=1, gamma=0.1, epsilon=0.1 )
regressor.fit(A_, A_ )
_lowerCamelCase : Optional[Any] = regressor.predict(A_ )
return y_pred[0]
def snake_case_ ( A_ : list ):
'''simple docstring'''
train_user.sort()
_lowerCamelCase : Dict = np.percentile(A_, 25 )
_lowerCamelCase : Optional[int] = np.percentile(A_, 75 )
_lowerCamelCase : Dict = qa - qa
_lowerCamelCase : Tuple = qa - (iqr * 0.1)
return low_lim
def snake_case_ ( A_ : list, A_ : float ):
'''simple docstring'''
_lowerCamelCase : Any = 0
_lowerCamelCase : Dict = 0
for i in list_vote:
if i > actual_result:
_lowerCamelCase : Optional[Any] = not_safe + 1
else:
if abs(abs(A_ ) - abs(A_ ) ) <= 0.1:
safe += 1
else:
not_safe += 1
return safe > not_safe
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
lowerCAmelCase__ = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]]
lowerCAmelCase__ = pd.DataFrame(
data_input, columns=['''total_user''', '''total_even''', '''days''']
)
lowerCAmelCase__ = Normalizer().fit_transform(data_input_df.values)
# split data
lowerCAmelCase__ = normalize_df[:, 2].tolist()
lowerCAmelCase__ = normalize_df[:, 0].tolist()
lowerCAmelCase__ = normalize_df[:, 1].tolist()
# for svr (input variable = total date and total match)
lowerCAmelCase__ = normalize_df[:, [1, 2]].tolist()
lowerCAmelCase__ = x[: len(x) - 1]
lowerCAmelCase__ = x[len(x) - 1 :]
# for linear regression & sarimax
lowerCAmelCase__ = total_date[: len(total_date) - 1]
lowerCAmelCase__ = total_user[: len(total_user) - 1]
lowerCAmelCase__ = total_match[: len(total_match) - 1]
lowerCAmelCase__ = total_date[len(total_date) - 1 :]
lowerCAmelCase__ = total_user[len(total_user) - 1 :]
lowerCAmelCase__ = total_match[len(total_match) - 1 :]
# voting system with forecasting
lowerCAmelCase__ = [
linear_regression_prediction(
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
lowerCAmelCase__ = '''''' if data_safety_checker(res_vote, tst_user) else '''not '''
print('''Today\'s data is {not_str}safe.''')
| 72 |
"""simple docstring"""
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def snake_case_ ( A_ : Tuple, A_ : int, A_ : Dict ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = LxmertConfig.from_json_file(A_ )
print(F'''Building PyTorch model from configuration: {config}''' )
_lowerCamelCase : List[str] = LxmertForPreTraining(A_ )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(A_, A_, A_ )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict(), A_ )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowerCAmelCase__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 72 | 1 |
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase : str = logging.get_logger(__name__)
lowercase : List[Any] = {
"""google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""",
}
class A__ ( a__ ):
"""simple docstring"""
__A : Optional[Any] = '''efficientnet'''
def __init__( self , lowercase = 3 , lowercase = 600 , lowercase = 2.0 , lowercase = 3.1 , lowercase = 8 , lowercase = [3, 3, 5, 3, 5, 5, 3] , lowercase = [32, 16, 24, 40, 80, 112, 192] , lowercase = [16, 24, 40, 80, 112, 192, 320] , lowercase = [] , lowercase = [1, 2, 2, 2, 1, 2, 1] , lowercase = [1, 2, 2, 3, 3, 4, 1] , lowercase = [1, 6, 6, 6, 6, 6, 6] , lowercase = 0.25 , lowercase = "swish" , lowercase = 2560 , lowercase = "mean" , lowercase = 0.02 , lowercase = 0.0_01 , lowercase = 0.99 , lowercase = 0.5 , lowercase = 0.2 , **lowercase , ) -> Tuple:
'''simple docstring'''
super().__init__(**lowercase)
a__ : Dict = num_channels
a__ : str = image_size
a__ : Any = width_coefficient
a__ : Any = depth_coefficient
a__ : Any = depth_divisor
a__ : Optional[Any] = kernel_sizes
a__ : Union[str, Any] = in_channels
a__ : List[Any] = out_channels
a__ : Optional[Any] = depthwise_padding
a__ : int = strides
a__ : int = num_block_repeats
a__ : Optional[Any] = expand_ratios
a__ : int = squeeze_expansion_ratio
a__ : Any = hidden_act
a__ : Optional[Any] = hidden_dim
a__ : Union[str, Any] = pooling_type
a__ : Optional[Any] = initializer_range
a__ : Tuple = batch_norm_eps
a__ : Optional[int] = batch_norm_momentum
a__ : Any = dropout_rate
a__ : List[Any] = drop_connect_rate
a__ : int = sum(lowercase) * 4
class A__ ( a__ ):
"""simple docstring"""
__A : Optional[Any] = version.parse('''1.11''' )
@property
def __lowercase ( self) -> Tuple:
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
])
@property
def __lowercase ( self) -> int:
'''simple docstring'''
return 1e-5
| 370 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def A_ ( A__ ) -> str:
a__ : Any = 384
if "tiny" in model_name:
a__ : List[Any] = [3, 3, 9, 3]
a__ : Optional[Any] = [96, 192, 384, 768]
if "small" in model_name:
a__ : Union[str, Any] = [3, 3, 27, 3]
a__ : List[Any] = [96, 192, 384, 768]
if "base" in model_name:
a__ : int = [3, 3, 27, 3]
a__ : List[str] = [128, 256, 512, 1024]
a__ : Optional[int] = 512
if "large" in model_name:
a__ : Optional[int] = [3, 3, 27, 3]
a__ : Any = [192, 384, 768, 1536]
a__ : int = 768
if "xlarge" in model_name:
a__ : str = [3, 3, 27, 3]
a__ : int = [256, 512, 1024, 2048]
a__ : List[str] = 1024
# set label information
a__ : int = 150
a__ : List[Any] = 'huggingface/label-files'
a__ : str = 'ade20k-id2label.json'
a__ : Optional[int] = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) )
a__ : List[str] = {int(A__ ): v for k, v in idalabel.items()}
a__ : Union[str, Any] = {v: k for k, v in idalabel.items()}
a__ : List[Any] = ConvNextConfig(
depths=A__ , hidden_sizes=A__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] )
a__ : Optional[int] = UperNetConfig(
backbone_config=A__ , auxiliary_in_channels=A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ , )
return config
def A_ ( A__ ) -> Tuple:
a__ : Optional[int] = []
# fmt: off
# stem
rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') )
rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') )
rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') )
rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') )
rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') )
rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') )
rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') )
rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') )
rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') )
rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') )
rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') )
rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') )
if i > 0:
rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') )
rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') )
rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') )
rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') )
rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
('decode_head.conv_seg.weight', 'decode_head.classifier.weight'),
('decode_head.conv_seg.bias', 'decode_head.classifier.bias'),
('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'),
('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'),
] )
# fmt: on
return rename_keys
def A_ ( A__ , A__ , A__ ) -> str:
a__ : List[str] = dct.pop(A__ )
a__ : int = val
def A_ ( A__ , A__ , A__ ) -> str:
a__ : Tuple = {
'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth',
'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth',
'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth',
'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth',
'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth',
}
a__ : Dict = model_name_to_url[model_name]
a__ : Optional[int] = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' )['state_dict']
a__ : List[Any] = get_upernet_config(A__ )
a__ : Dict = UperNetForSemanticSegmentation(A__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
a__ : Dict = state_dict.pop(A__ )
if "bn" in key:
a__ : Optional[int] = key.replace('bn' , 'batch_norm' )
a__ : List[Any] = val
# rename keys
a__ : Union[str, Any] = create_rename_keys(A__ )
for src, dest in rename_keys:
rename_key(A__ , A__ , A__ )
model.load_state_dict(A__ )
# verify on image
a__ : str = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'
a__ : int = Image.open(requests.get(A__ , stream=A__ ).raw ).convert('RGB' )
a__ : Union[str, Any] = SegformerImageProcessor()
a__ : Union[str, Any] = processor(A__ , return_tensors='pt' ).pixel_values
with torch.no_grad():
a__ : Optional[Any] = model(A__ )
if model_name == "upernet-convnext-tiny":
a__ : Union[str, Any] = torch.tensor(
[[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] )
elif model_name == "upernet-convnext-small":
a__ : int = torch.tensor(
[[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] )
elif model_name == "upernet-convnext-base":
a__ : int = torch.tensor(
[[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] )
elif model_name == "upernet-convnext-large":
a__ : Optional[Any] = torch.tensor(
[[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] )
elif model_name == "upernet-convnext-xlarge":
a__ : Optional[int] = torch.tensor(
[[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] )
print('Logits:' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , A__ , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(A__ )
print(F'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(A__ )
if push_to_hub:
print(F'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(F'openmmlab/{model_name}' )
processor.push_to_hub(F'openmmlab/{model_name}' )
if __name__ == "__main__":
lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-convnext-tiny""",
type=str,
choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]],
help="""Name of the ConvNext UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowercase : str = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 225 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
__A = None
__A = logging.get_logger(__name__)
__A = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {
"facebook/mbart-large-en-ro": (
"https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"
),
"facebook/mbart-large-cc25": (
"https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json",
"facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json",
},
}
__A = {
"facebook/mbart-large-en-ro": 1_0_2_4,
"facebook/mbart-large-cc25": 1_0_2_4,
}
# fmt: off
__A = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
class UpperCAmelCase (__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
_UpperCAmelCase :Union[str, Any] = VOCAB_FILES_NAMES
_UpperCAmelCase :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase :int = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase :Tuple = ["input_ids", "attention_mask"]
_UpperCAmelCase :Dict = MBartTokenizer
_UpperCAmelCase :Union[str, Any] = []
_UpperCAmelCase :Dict = []
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ):
lowercase__: Dict = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , )
lowercase__: int = vocab_file
lowercase__: Tuple = False if not self.vocab_file else True
lowercase__: Tuple = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
lowercase__: List[str] = {
lang_code: self.convert_tokens_to_ids(__UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
lowercase__: int = src_lang if src_lang is not None else '''en_XX'''
lowercase__: int = self.convert_tokens_to_ids(self._src_lang )
lowercase__: int = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def _snake_case ( self ):
return self._src_lang
@src_lang.setter
def _snake_case ( self , _UpperCAmelCase ):
lowercase__: Union[str, Any] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
lowercase__: Dict = [self.sep_token_id]
lowercase__: List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ):
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
lowercase__: Union[str, Any] = src_lang
lowercase__: str = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
lowercase__: Dict = self.convert_tokens_to_ids(__UpperCAmelCase )
lowercase__: int = tgt_lang_id
return inputs
def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = "en_XX" , _UpperCAmelCase = None , _UpperCAmelCase = "ro_RO" , **_UpperCAmelCase , ):
lowercase__: int = src_lang
lowercase__: Optional[Any] = tgt_lang
return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase )
def _snake_case ( self ):
return self.set_src_lang_special_tokens(self.src_lang )
def _snake_case ( self ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _snake_case ( self , _UpperCAmelCase ):
lowercase__: List[Any] = self.convert_tokens_to_ids(__UpperCAmelCase )
lowercase__: List[Any] = []
lowercase__: Any = [self.eos_token_id, self.cur_lang_code]
lowercase__: Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
lowercase__: Any = self.convert_ids_to_tokens(self.suffix_tokens )
lowercase__: List[Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _snake_case ( self , _UpperCAmelCase ):
lowercase__: Union[str, Any] = self.convert_tokens_to_ids(__UpperCAmelCase )
lowercase__: Any = []
lowercase__: List[Any] = [self.eos_token_id, self.cur_lang_code]
lowercase__: Dict = self.convert_ids_to_tokens(self.prefix_tokens )
lowercase__: int = self.convert_ids_to_tokens(self.suffix_tokens )
lowercase__: str = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(__UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" )
return
lowercase__: List[str] = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 177 |
"""simple docstring"""
def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int:
__UpperCamelCase = range(1 , snake_case )
__UpperCamelCase = range(1 , snake_case )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(1_0, 2_2) = }''')
| 316 | 0 |
from __future__ import annotations
def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> list[list[int]]:
UpperCamelCase : list[list[int]] = []
UpperCamelCase : list[int] = []
UpperCamelCase : List[Any] = 0
UpperCamelCase : str = sum(_lowerCAmelCase )
create_state_space_tree(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return result
def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> None:
if sum(_lowerCAmelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCAmelCase )) < max_sum:
return
if sum(_lowerCAmelCase ) == max_sum:
result.append(_lowerCAmelCase )
return
for index in range(_lowerCAmelCase , len(_lowerCAmelCase ) ):
create_state_space_tree(
_lowerCAmelCase , _lowerCAmelCase , index + 1 , [*path, nums[index]] , _lowerCAmelCase , remaining_nums_sum - nums[index] , )
__lowerCamelCase : Dict = [3, 34, 4, 12, 5, 2]
__lowerCamelCase : int = 9
__lowerCamelCase : Any = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 140 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase : Tuple = logging.get_logger(__name__)
class A__ ( __snake_case ):
_UpperCAmelCase :List[Any] = 'timm_backbone'
def __init__( self , A_=None , A_=3 , A_=True , A_=True , A_=None , **A_ , ):
'''simple docstring'''
super().__init__(**A_ )
UpperCamelCase : Tuple = backbone
UpperCamelCase : Dict = num_channels
UpperCamelCase : Tuple = features_only
UpperCamelCase : Optional[int] = use_pretrained_backbone
UpperCamelCase : Dict = True
UpperCamelCase : List[str] = out_indices if out_indices is not None else (-1,)
| 140 | 1 |
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase__ ( a , unittest.TestCase):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = CTRLTokenizer
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def _lowerCamelCase ( self) -> Optional[int]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_A : Optional[int] = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"]
_A : Dict = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase))))
_A : str = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""]
_A : str = {"unk_token": "<unk>"}
_A : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"])
_A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file , "w" , encoding="utf-8") as fp:
fp.write(json.dumps(__lowerCamelCase) + "\n")
with open(self.merges_file , "w" , encoding="utf-8") as fp:
fp.write("\n".join(__lowerCamelCase))
def _lowerCamelCase ( self , **__lowerCamelCase) -> Dict:
kwargs.update(self.special_tokens_map)
return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]:
_A : List[Any] = "adapt react readapt apt"
_A : Any = "adapt react readapt apt"
return input_text, output_text
def _lowerCamelCase ( self) -> Optional[int]:
_A : Optional[Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map)
_A : str = "adapt react readapt apt"
_A : List[Any] = "adapt re@@ a@@ c@@ t re@@ adapt apt".split()
_A : List[str] = tokenizer.tokenize(__lowerCamelCase)
self.assertListEqual(__lowerCamelCase , __lowerCamelCase)
_A : List[Any] = tokens + [tokenizer.unk_token]
_A : List[Any] = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase) , __lowerCamelCase)
| 11 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"]
__SCREAMING_SNAKE_CASE = "OwlViTImageProcessor"
__SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]:
_A : int = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __lowerCamelCase , )
_A : List[Any] = kwargs.pop("feature_extractor")
_A : Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(__lowerCamelCase , __lowerCamelCase)
def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any:
if text is None and query_images is None and images is None:
raise ValueError(
"You have to specify at least one text or query image or image. All three cannot be none.")
if text is not None:
if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)):
_A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)]
elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase):
_A : Optional[Any] = []
# Maximum number of queries across batch
_A : str = max([len(__lowerCamelCase) for t in text])
# Pad all batch samples to max number of text queries
for t in text:
if len(__lowerCamelCase) != max_num_queries:
_A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase))
_A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
encodings.append(__lowerCamelCase)
else:
raise TypeError("Input text should be a string, a list of strings or a nested list of strings")
if return_tensors == "np":
_A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0)
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
_A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0)
elif return_tensors == "pt" and is_torch_available():
import torch
_A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0)
_A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0)
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
_A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0)
else:
raise ValueError("Target return tensor type could not be returned")
_A : Optional[Any] = BatchEncoding()
_A : Tuple = input_ids
_A : Dict = attention_mask
if query_images is not None:
_A : Optional[Any] = BatchEncoding()
_A : List[str] = self.image_processor(
__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values
_A : Union[str, Any] = query_pixel_values
if images is not None:
_A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
if text is not None and images is not None:
_A : Tuple = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
_A : int = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str:
return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]:
return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]:
return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase)
@property
def _lowerCamelCase ( self) -> int:
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , )
return self.image_processor_class
@property
def _lowerCamelCase ( self) -> List[str]:
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , )
return self.image_processor
| 11 | 1 |
from __future__ import annotations
from random import random
class __lowerCAmelCase :
def __init__( self: int , _lowerCAmelCase: int | None = None ):
lowercase :Optional[int] = value
lowercase :List[str] = random()
lowercase :Node | None = None
lowercase :Node | None = None
def __repr__( self: Tuple ):
from pprint import pformat
if self.left is None and self.right is None:
return F"'{self.value}: {self.prior:.5}'"
else:
return pformat(
{F"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 )
def __str__( self: Optional[Any] ):
lowercase :Any = str(self.value ) + " "
lowercase :Tuple = str(self.left or "" )
lowercase :Dict = str(self.right or "" )
return value + left + right
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ):
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
lowercase , lowercase :str = split(root.left, lowerCamelCase )
return left, root
else:
lowercase , lowercase :Tuple = split(root.right, lowerCamelCase )
return root, right
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ):
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
lowercase :Optional[int] = merge(left.right, lowerCamelCase )
return left
else:
lowercase :Any = merge(lowerCamelCase, right.left )
return right
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ):
lowercase :Optional[int] = Node(lowerCamelCase )
lowercase , lowercase :List[Any] = split(lowerCamelCase, lowerCamelCase )
return merge(merge(lowerCamelCase, lowerCamelCase ), lowerCamelCase )
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ):
lowercase , lowercase :Any = split(lowerCamelCase, value - 1 )
lowercase , lowercase :Optional[Any] = split(lowerCamelCase, lowerCamelCase )
return merge(lowerCamelCase, lowerCamelCase )
def UpperCAmelCase__ ( lowerCamelCase ):
if not root: # None
return
else:
inorder(root.left )
print(root.value, end="," )
inorder(root.right )
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ):
for arg in args.split():
if arg[0] == "+":
lowercase :Any = insert(lowerCamelCase, int(arg[1:] ) )
elif arg[0] == "-":
lowercase :Union[str, Any] = erase(lowerCamelCase, int(arg[1:] ) )
else:
print("Unknown command" )
return root
def UpperCAmelCase__ ( ):
lowercase :Dict = None
print(
"enter numbers to create a tree, + value to add value into treap, "
"- value to erase all nodes with value. 'q' to quit. " )
lowercase :str = input()
while args != "q":
lowercase :Tuple = interact_treap(lowerCamelCase, lowerCamelCase )
print(lowerCamelCase )
lowercase :List[Any] = input()
print("good by!" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 158 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_UpperCAmelCase : str = {
"facebook/mask2former-swin-small-coco-instance": (
"https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
_UpperCAmelCase : Dict = logging.get_logger(__name__)
class __lowerCAmelCase ( lowerCAmelCase):
_a = '''mask2former'''
_a = ['''swin''']
_a = {'''hidden_size''': '''hidden_dim'''}
def __init__( self: List[str] , _lowerCAmelCase: Optional[Dict] = None , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 10_24 , _lowerCAmelCase: str = "relu" , _lowerCAmelCase: int = 6 , _lowerCAmelCase: int = 10 , _lowerCAmelCase: int = 8 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: int = 20_48 , _lowerCAmelCase: bool = False , _lowerCAmelCase: bool = False , _lowerCAmelCase: int = 4 , _lowerCAmelCase: int = 2_55 , _lowerCAmelCase: int = 1_00 , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: float = 2.0 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: int = 1_25_44 , _lowerCAmelCase: float = 3.0 , _lowerCAmelCase: float = 0.75 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: float = 1.0 , _lowerCAmelCase: bool = True , _lowerCAmelCase: List[int] = [4, 8, 16, 32] , _lowerCAmelCase: bool = None , **_lowerCAmelCase: List[str] , ):
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." )
lowercase :Optional[int] = CONFIG_MAPPING["swin"](
image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowerCAmelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
lowercase :List[str] = backbone_config.pop("model_type" )
lowercase :Tuple = CONFIG_MAPPING[backbone_model_type]
lowercase :int = config_class.from_dict(_lowerCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. "
F"Supported model types: {','.join(self.backbones_supported )}" )
lowercase :Optional[Any] = backbone_config
lowercase :Union[str, Any] = feature_size
lowercase :Any = mask_feature_size
lowercase :List[Any] = hidden_dim
lowercase :Optional[int] = encoder_feedforward_dim
lowercase :Dict = activation_function
lowercase :Tuple = encoder_layers
lowercase :List[str] = decoder_layers
lowercase :Optional[Any] = num_attention_heads
lowercase :Optional[Any] = dropout
lowercase :Any = dim_feedforward
lowercase :List[Any] = pre_norm
lowercase :List[Any] = enforce_input_projection
lowercase :Optional[int] = common_stride
lowercase :List[Any] = ignore_value
lowercase :Optional[int] = num_queries
lowercase :List[str] = no_object_weight
lowercase :Dict = class_weight
lowercase :Union[str, Any] = mask_weight
lowercase :List[Any] = dice_weight
lowercase :Dict = train_num_points
lowercase :Optional[int] = oversample_ratio
lowercase :List[Any] = importance_sample_ratio
lowercase :Dict = init_std
lowercase :Union[str, Any] = init_xavier_std
lowercase :Optional[Any] = use_auxiliary_loss
lowercase :Any = feature_strides
lowercase :int = output_auxiliary_logits
lowercase :Dict = decoder_layers
super().__init__(**_lowerCAmelCase )
@classmethod
def SCREAMING_SNAKE_CASE ( cls: Tuple , _lowerCAmelCase: PretrainedConfig , **_lowerCAmelCase: str ):
return cls(
backbone_config=_lowerCAmelCase , **_lowerCAmelCase , )
def SCREAMING_SNAKE_CASE ( self: int ):
lowercase :str = copy.deepcopy(self.__dict__ )
lowercase :Optional[Any] = self.backbone_config.to_dict()
lowercase :Union[str, Any] = self.__class__.model_type
return output
| 158 | 1 |
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] ):
"""simple docstring"""
if not is_accelerate_available():
return method
UpperCAmelCase_: Union[str, Any] = version.parse(accelerate.__version__ ).base_version
if version.parse(lowerCAmelCase__ ) < version.parse("""0.17.0""" ):
return method
def wrapper(self: List[Any] , *lowerCAmelCase__: Tuple , **lowerCAmelCase__: Any ):
if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ):
self._hf_hook.pre_forward(self )
return method(self , *lowerCAmelCase__ , **lowerCAmelCase__ )
return wrapper
| 147 |
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class _a :
def __init__(self, SCREAMING_SNAKE_CASE_ = "cpu", SCREAMING_SNAKE_CASE_ = "openai/clip-vit-large-patch14" ) -> None:
UpperCAmelCase_: Optional[Any] = device
UpperCAmelCase_: Optional[Any] = CLIPTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Tuple = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3]
UpperCAmelCase_: Optional[Any] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1]
UpperCAmelCase_: Optional[Any] = torchvision.transforms.Normalize(self.image_mean, self.image_std )
UpperCAmelCase_: Tuple = torchvision.transforms.Resize(224 )
UpperCAmelCase_: Any = torchvision.transforms.CenterCrop(224 )
def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
UpperCAmelCase_: Dict = self.resize(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Optional[int] = self.center_crop(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Tuple = self.normalize(SCREAMING_SNAKE_CASE_ )
return images
def __call__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> List[str]:
UpperCAmelCase_: Dict = self.tokenizer(text=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Tuple = self.preprocess_img(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: int = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class _a ( nn.Module ):
def __init__(self, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0.0_1, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="image", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, ) -> None:
super().__init__()
UpperCAmelCase_: List[Any] = None
UpperCAmelCase_: List[str] = device if device else get_device()
if vqgan:
UpperCAmelCase_: int = vqgan
else:
UpperCAmelCase_: Optional[Any] = load_vqgan(self.device, conf_path=SCREAMING_SNAKE_CASE_, ckpt_path=SCREAMING_SNAKE_CASE_ )
self.vqgan.eval()
if clip:
UpperCAmelCase_: List[str] = clip
else:
UpperCAmelCase_: Any = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" )
self.clip.to(self.device )
UpperCAmelCase_: Optional[int] = ProcessorGradientFlow(device=self.device )
UpperCAmelCase_: Optional[int] = iterations
UpperCAmelCase_: List[Any] = lr
UpperCAmelCase_: str = log
UpperCAmelCase_: Tuple = make_grid
UpperCAmelCase_: List[str] = return_val
UpperCAmelCase_: Dict = quantize
UpperCAmelCase_: int = self.vqgan.decoder.z_shape
def __snake_case (self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=True ) -> List[Any]:
UpperCAmelCase_: Tuple = []
if output_path is None:
UpperCAmelCase_: Optional[int] = """./animation.gif"""
if input_path is None:
UpperCAmelCase_: Tuple = self.save_path
UpperCAmelCase_: List[Any] = sorted(glob(input_path + """/*""" ) )
if not len(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
"""No images found in save path, aborting (did you pass save_intermediate=True to the generate"""
""" function?)""" )
if len(SCREAMING_SNAKE_CASE_ ) == 1:
print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" )
UpperCAmelCase_: Dict = total_duration / len(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: str = [frame_duration] * len(SCREAMING_SNAKE_CASE_ )
if extend_frames:
UpperCAmelCase_: List[str] = 1.5
UpperCAmelCase_: List[Any] = 3
for file_name in paths:
if file_name.endswith(""".png""" ):
images.append(imageio.imread(SCREAMING_SNAKE_CASE_ ) )
imageio.mimsave(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, duration=SCREAMING_SNAKE_CASE_ )
print(f'gif saved to {output_path}' )
def __snake_case (self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ) -> Optional[int]:
if not (path or img):
raise ValueError("""Input either path or tensor""" )
if img is not None:
raise NotImplementedError
UpperCAmelCase_: List[Any] = preprocess(Image.open(SCREAMING_SNAKE_CASE_ ), target_image_size=256 ).to(self.device )
UpperCAmelCase_: Union[str, Any] = preprocess_vqgan(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_ , *UpperCAmelCase_: str = self.vqgan.encode(SCREAMING_SNAKE_CASE_ )
return z
def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
UpperCAmelCase_: List[Any] = self.latent.detach().requires_grad_()
UpperCAmelCase_: Optional[int] = base_latent + transform_vector
if self.quantize:
UpperCAmelCase_ , *UpperCAmelCase_: Optional[Any] = self.vqgan.quantize(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase_: Tuple = trans_latent
return self.vqgan.decode(SCREAMING_SNAKE_CASE_ )
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> List[str]:
UpperCAmelCase_: Any = self.clip_preprocessor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_, return_tensors="""pt""", padding=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: str = self.clip(**SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Dict = clip_outputs.logits_per_image
if weights is not None:
UpperCAmelCase_: Any = similarity_logits * weights
return similarity_logits.sum()
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any:
UpperCAmelCase_: Dict = self._get_clip_similarity(pos_prompts["""prompts"""], SCREAMING_SNAKE_CASE_, weights=(1 / pos_prompts["""weights"""]) )
if neg_prompts:
UpperCAmelCase_: Tuple = self._get_clip_similarity(neg_prompts["""prompts"""], SCREAMING_SNAKE_CASE_, weights=neg_prompts["""weights"""] )
else:
UpperCAmelCase_: Any = torch.tensor([1], device=self.device )
UpperCAmelCase_: List[str] = -torch.log(SCREAMING_SNAKE_CASE_ ) + torch.log(SCREAMING_SNAKE_CASE_ )
return loss
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
UpperCAmelCase_: Tuple = torch.randn_like(self.latent, requires_grad=SCREAMING_SNAKE_CASE_, device=self.device )
UpperCAmelCase_: str = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
UpperCAmelCase_: Optional[int] = self._add_vector(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Any = loop_post_process(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: int = self._get_CLIP_loss(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
print("""CLIP loss""", SCREAMING_SNAKE_CASE_ )
if self.log:
wandb.log({"""CLIP Loss""": clip_loss} )
clip_loss.backward(retain_graph=SCREAMING_SNAKE_CASE_ )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict:
wandb.init(reinit=SCREAMING_SNAKE_CASE_, project="""face-editor""" )
wandb.config.update({"""Positive Prompts""": positive_prompts} )
wandb.config.update({"""Negative Prompts""": negative_prompts} )
wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} )
if image_path:
UpperCAmelCase_: str = Image.open(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Optional[Any] = image.resize((256, 256) )
wandb.log("""Original Image""", wandb.Image(SCREAMING_SNAKE_CASE_ ) )
def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
if not prompts:
return []
UpperCAmelCase_: Tuple = []
UpperCAmelCase_: str = []
if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase_: Optional[Any] = [prompt.strip() for prompt in prompts.split("""|""" )]
for prompt in prompts:
if isinstance(SCREAMING_SNAKE_CASE_, (tuple, list) ):
UpperCAmelCase_: str = prompt[0]
UpperCAmelCase_: List[str] = float(prompt[1] )
elif ":" in prompt:
UpperCAmelCase_ , UpperCAmelCase_: int = prompt.split(""":""" )
UpperCAmelCase_: int = float(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase_: str = prompt
UpperCAmelCase_: Dict = 1.0
processed_prompts.append(SCREAMING_SNAKE_CASE_ )
weights.append(SCREAMING_SNAKE_CASE_ )
return {
"prompts": processed_prompts,
"weights": torch.tensor(SCREAMING_SNAKE_CASE_, device=self.device ),
}
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, ) -> Optional[Any]:
if image_path:
UpperCAmelCase_: Optional[int] = self._get_latent(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase_: str = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
assert pos_prompts, "You must provide at least one positive prompt."
UpperCAmelCase_: List[Any] = self.process_prompts(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Dict = self.process_prompts(SCREAMING_SNAKE_CASE_ )
if save_final and save_path is None:
UpperCAmelCase_: Optional[int] = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) )
if not os.path.exists(SCREAMING_SNAKE_CASE_ ):
os.makedirs(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase_: List[str] = save_path + """_""" + get_timestamp()
os.makedirs(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Optional[int] = save_path
UpperCAmelCase_: Optional[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print("""Original Image""" )
show_pil(custom_to_pil(SCREAMING_SNAKE_CASE_ ) )
UpperCAmelCase_: Tuple = loop_post_process(SCREAMING_SNAKE_CASE_ )
for iter, transformed_img in enumerate(self._optimize_CLIP(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ):
if show_intermediate:
show_pil(SCREAMING_SNAKE_CASE_ )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, f'iter_{iter:03d}.png' ) )
if self.log:
wandb.log({"""Image""": wandb.Image(SCREAMING_SNAKE_CASE_ )} )
if show_final:
show_pil(SCREAMING_SNAKE_CASE_ )
if save_final:
transformed_img.save(os.path.join(self.save_path, f'iter_{iter:03d}_final.png' ) )
| 147 | 1 |
'''simple docstring'''
from statistics import mean
import numpy as np
def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : Union[str, Any] = 0
# Number of processes finished
snake_case_ : Tuple = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
snake_case_ : List[Any] = [0] * no_of_process
# List to include calculation results
snake_case_ : Tuple = [0] * no_of_process
# Sort by arrival time.
snake_case_ : str = [burst_time[i] for i in np.argsort(lowerCamelCase_ )]
snake_case_ : List[Any] = [process_name[i] for i in np.argsort(lowerCamelCase_ )]
arrival_time.sort()
while no_of_process > finished_process_count:
snake_case_ : Optional[int] = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
snake_case_ : Dict = arrival_time[i]
snake_case_ : Union[str, Any] = 0
# Index showing the location of the process being performed
snake_case_ : Optional[int] = 0
# Saves the current response ratio.
snake_case_ : Optional[Any] = 0
for i in range(0 , lowerCamelCase_ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
snake_case_ : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
snake_case_ : List[Any] = temp
snake_case_ : Optional[int] = i
# Calculate the turn around time
snake_case_ : List[Any] = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
snake_case_ : int = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] ):
'''simple docstring'''
snake_case_ : Optional[Any] = [0] * no_of_process
for i in range(0 , lowerCamelCase_ ):
snake_case_ : Union[str, Any] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
__A : Any = 5
__A : Optional[int] = ['A', 'B', 'C', 'D', 'E']
__A : str = [1, 2, 3, 4, 5]
__A : Union[str, Any] = [1, 2, 3, 4, 5]
__A : Dict = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
__A : Optional[Any] = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}')
| 370 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __UpperCamelCase ( unittest.TestCase ):
def __init__( self :List[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Union[str, Any]=3 ,_UpperCamelCase :Any=1_8 ,_UpperCamelCase :Optional[Any]=3_0 ,_UpperCamelCase :List[str]=4_0_0 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :List[Any]=True ,):
snake_case_ : List[str] = size if size is not None else {"""height""": 1_8, """width""": 1_8}
snake_case_ : Union[str, Any] = parent
snake_case_ : str = batch_size
snake_case_ : List[Any] = num_channels
snake_case_ : Tuple = image_size
snake_case_ : int = min_resolution
snake_case_ : int = max_resolution
snake_case_ : Union[str, Any] = do_resize
snake_case_ : Optional[Any] = size
snake_case_ : Any = apply_ocr
def a__ ( self :Union[str, Any] ):
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class __UpperCamelCase ( lowercase__ , unittest.TestCase ):
lowercase : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self :List[Any] ):
snake_case_ : Union[str, Any] = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self :int ):
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self :Any ):
snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCamelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(_UpperCamelCase ,"""size""" ) )
self.assertTrue(hasattr(_UpperCamelCase ,"""apply_ocr""" ) )
def a__ ( self :int ):
snake_case_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""height""": 1_8, """width""": 1_8} )
snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 )
self.assertEqual(image_processor.size ,{"""height""": 4_2, """width""": 4_2} )
def a__ ( self :Optional[Any] ):
pass
def a__ ( self :Union[str, Any] ):
# Initialize image_processing
snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase ,Image.Image )
# Test not batched input
snake_case_ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" )
self.assertEqual(
encoding.pixel_values.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
self.assertIsInstance(encoding.words ,_UpperCamelCase )
self.assertIsInstance(encoding.boxes ,_UpperCamelCase )
# Test batched
snake_case_ : List[Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
def a__ ( self :Tuple ):
# Initialize image_processing
snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,numpify=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase ,np.ndarray )
# Test not batched input
snake_case_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
# Test batched
snake_case_ : Any = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
def a__ ( self :Optional[Any] ):
# Initialize image_processing
snake_case_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,torchify=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase ,torch.Tensor )
# Test not batched input
snake_case_ : Tuple = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
# Test batched
snake_case_ : Union[str, Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
def a__ ( self :List[Any] ):
# with apply_OCR = True
snake_case_ : Any = LayoutLMvaImageProcessor()
from datasets import load_dataset
snake_case_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" ,split="""test""" )
snake_case_ : str = Image.open(ds[0]["""file"""] ).convert("""RGB""" )
snake_case_ : Dict = image_processing(_UpperCamelCase ,return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) )
self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
snake_case_ : Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231
snake_case_ : Any = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words ,_UpperCamelCase )
self.assertListEqual(encoding.boxes ,_UpperCamelCase )
# with apply_OCR = False
snake_case_ : Dict = LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase )
snake_case_ : Optional[int] = image_processing(_UpperCamelCase ,return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) )
| 8 | 0 |
def UpperCamelCase ( __lowerCamelCase : str ):
return "".join(chr(ord(__lowerCamelCase ) - 32 ) if "a" <= char <= "z" else char for char in word )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 59 |
from math import sqrt
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(__UpperCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase_ ( __UpperCAmelCase : int = 1_00_01 ) -> int:
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = 1
while count != nth and number < 3:
number += 1
if is_prime(__UpperCAmelCase ):
count += 1
while count != nth:
number += 2
if is_prime(__UpperCAmelCase ):
count += 1
return number
if __name__ == "__main__":
print(f'''{solution() = }''')
| 225 | 0 |
import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _a , _a=1_3 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=9_9 , _a=3_2 , _a=5 , _a=4 , _a=3_7 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=1_6 , _a=2 , _a=0.02 , _a=4 , ) -> Dict:
_a : List[Any] = parent
_a : int = batch_size
_a : Union[str, Any] = seq_length
_a : Optional[int] = is_training
_a : int = use_attention_mask
_a : List[str] = use_token_type_ids
_a : Tuple = use_labels
_a : Any = vocab_size
_a : Dict = hidden_size
_a : int = num_hidden_layers
_a : List[Any] = num_attention_heads
_a : int = intermediate_size
_a : Tuple = hidden_act
_a : Tuple = hidden_dropout_prob
_a : Dict = attention_probs_dropout_prob
_a : Optional[Any] = max_position_embeddings
_a : Optional[Any] = type_vocab_size
_a : Dict = type_sequence_label_size
_a : str = initializer_range
_a : List[Any] = num_choices
def __lowercase ( self ) -> Dict:
_a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a : Optional[Any] = None
if self.use_attention_mask:
_a : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
_a : List[str] = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_a , )
return config, input_ids, attention_mask
def __lowercase ( self ) -> Tuple:
_a : Union[str, Any] = self.prepare_config_and_inputs()
_a , _a , _a : Union[str, Any] = config_and_inputs
_a : Dict = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class UpperCAmelCase_ ( __lowercase , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : str = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __lowercase ( self ) -> Optional[Any]:
_a : Optional[int] = FlaxDistilBertModelTester(self )
@slow
def __lowercase ( self ) -> Any:
for model_class_name in self.all_model_classes:
_a : List[Any] = model_class_name.from_pretrained('''distilbert-base-uncased''' )
_a : List[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(_a )
@require_flax
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def __lowercase ( self ) -> Tuple:
_a : Any = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
_a : Dict = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
_a : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_a : Union[str, Any] = model(_a , attention_mask=_a )[0]
_a : List[str] = (1, 1_1, 7_6_8)
self.assertEqual(output.shape , _a )
_a : Dict = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _a , atol=1e-4 ) )
| 15 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __UpperCAmelCase ( __a : Dict=None ) -> str:
"""simple docstring"""
if subparsers is not None:
_a : Union[str, Any] = subparsers.add_parser('''test''' )
else:
_a : List[str] = argparse.ArgumentParser('''Accelerate test command''' )
parser.add_argument(
'''--config_file''' ,default=__a ,help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) ,)
if subparsers is not None:
parser.set_defaults(func=__a )
return parser
def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] )
if args.config_file is None:
_a : List[Any] = script_name
else:
_a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}"""
_a : str = ['''accelerate-launch'''] + test_args.split()
_a : str = execute_subprocess_async(__a ,env=os.environ.copy() )
if result.returncode == 0:
print('''Test is a success! You are ready for your distributed training!''' )
def __UpperCAmelCase ( ) -> List[Any]:
"""simple docstring"""
_a : Optional[int] = test_command_parser()
_a : List[Any] = parser.parse_args()
test_command(__a )
if __name__ == "__main__":
main()
| 15 | 1 |
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def UpperCamelCase ( __lowercase : NDArray[floataa] ,__lowercase : NDArray[floataa] ,__lowercase : list[int] ,__lowercase : int ,):
'''simple docstring'''
A_ , A_ : Any = coefficient_matrix.shape
A_ , A_ : Optional[int] = constant_matrix.shape
if rowsa != colsa:
A_ : Optional[Any] = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}'''
raise ValueError(__lowercase )
if colsa != 1:
A_ : str = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}'''
raise ValueError(__lowercase )
if rowsa != rowsa:
A_ : str = (
'Coefficient and constant matrices dimensions must be nxn and nx1 but '
f'''received {rowsa}x{colsa} and {rowsa}x{colsa}'''
)
raise ValueError(__lowercase )
if len(__lowercase ) != rowsa:
A_ : Tuple = (
'Number of initial values must be equal to number of rows in coefficient '
f'''matrix but received {len(__lowercase )} and {rowsa}'''
)
raise ValueError(__lowercase )
if iterations <= 0:
raise ValueError('Iterations must be at least 1' )
A_ : NDArray[floataa] = np.concatenate(
(coefficient_matrix, constant_matrix) ,axis=1 )
A_ , A_ : Union[str, Any] = table.shape
strictly_diagonally_dominant(__lowercase )
# Iterates the whole matrix for given number of times
for _ in range(__lowercase ):
A_ : Optional[Any] = []
for row in range(__lowercase ):
A_ : Any = 0
for col in range(__lowercase ):
if col == row:
A_ : Tuple = table[row][col]
elif col == cols - 1:
A_ : str = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
A_ : Any = (temp + val) / denom
new_val.append(__lowercase )
A_ : List[Any] = new_val
return [float(__lowercase ) for i in new_val]
def UpperCamelCase ( __lowercase : NDArray[floataa] ):
'''simple docstring'''
A_ , A_ : Union[str, Any] = table.shape
A_ : Union[str, Any] = True
for i in range(0 ,__lowercase ):
A_ : Any = 0
for j in range(0 ,cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError('Coefficient matrix is not strictly diagonally dominant' )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 140 |
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_UpperCAmelCase = 2
class UpperCAmelCase :
'''simple docstring'''
def __init__( self , *, # begin keyword-only arguments
lowercase="<s>" , lowercase="<pad>" , lowercase="</s>" , lowercase="<unk>" , lowercase=None , ):
"""simple docstring"""
A_ , A_ , A_ , A_ : Tuple = bos, unk, pad, eos
A_ : Optional[Any] = []
A_ : Dict = []
A_ : List[Any] = {}
A_ : int = self.add_symbol(lowercase )
A_ : Union[str, Any] = self.add_symbol(lowercase )
A_ : Union[str, Any] = self.add_symbol(lowercase )
A_ : Any = self.add_symbol(lowercase )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(lowercase )
A_ : Tuple = len(self.symbols )
def __eq__( self , lowercase ):
"""simple docstring"""
return self.indices == other.indices
def __getitem__( self , lowercase ):
"""simple docstring"""
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self ):
"""simple docstring"""
return len(self.symbols )
def __contains__( self , lowercase ):
"""simple docstring"""
return sym in self.indices
@classmethod
def lowerCAmelCase_ ( cls , lowercase ):
"""simple docstring"""
A_ : int = cls()
d.add_from_file(lowercase )
return d
def lowerCAmelCase_ ( self , lowercase , lowercase=1 , lowercase=False ):
"""simple docstring"""
if word in self.indices and not overwrite:
A_ : List[Any] = self.indices[word]
A_ : List[str] = self.count[idx] + n
return idx
else:
A_ : int = len(self.symbols )
A_ : Optional[Any] = idx
self.symbols.append(lowercase )
self.count.append(lowercase )
return idx
def lowerCAmelCase_ ( self , lowercase ):
"""simple docstring"""
return 0
def lowerCAmelCase_ ( self , lowercase ):
"""simple docstring"""
if isinstance(lowercase , lowercase ):
try:
with open(lowercase , 'r' , encoding='utf-8' ) as fd:
self.add_from_file(lowercase )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowercase ) )
return
A_ : Any = f.readlines()
A_ : List[Any] = self._load_meta(lowercase )
for line in lines[indices_start_line:]:
try:
A_ , A_ : int = line.rstrip().rsplit(' ' , 1 )
if field == "#fairseq:overwrite":
A_ : Optional[int] = True
A_ , A_ : str = line.rsplit(' ' , 1 )
else:
A_ : Optional[int] = False
A_ : Optional[int] = int(lowercase )
A_ : Tuple = line
if word in self and not overwrite:
raise RuntimeError(
'Duplicate word found when loading Dictionary: \'{}\'. '
'Duplicate words can overwrite earlier ones by adding the '
'#fairseq:overwrite flag at the end of the corresponding row '
'in the dictionary file. If using the Camembert model, please '
'download an updated copy of the model file.'.format(lowercase ) )
self.add_symbol(lowercase , n=lowercase , overwrite=lowercase )
except ValueError:
raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' )
def UpperCamelCase ( __lowercase : Any ):
'''simple docstring'''
A_ : Optional[Any] = dict((re.sub(r'@@$' ,'' ,__lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$' ,'</w>' ,__lowercase ), v) for k, v in d.items() )
A_ : Optional[Any] = '<s> <pad> </s> <unk>'.split()
# restore the special tokens
for k in keep_keys:
del da[f'''{k}</w>''']
A_ : Union[str, Any] = d[k] # restore
return da
def UpperCamelCase ( __lowercase : Any ,__lowercase : str ):
'''simple docstring'''
if not os.path.exists(__lowercase ):
raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''' )
os.makedirs(__lowercase ,exist_ok=__lowercase )
print(f'''Writing results to {pytorch_dump_folder_path}''' )
# handle various types of models
A_ : Optional[Any] = os.path.join(__lowercase ,'checkpoint.pt' )
if not os.path.isfile(__lowercase ):
raise ValueError(f'''path to the file {checkpoint_file} does not exist!''' )
A_ : Any = torch.load(__lowercase ,map_location='cpu' )
A_ : str = chkpt['cfg']['model']
# dicts
A_ : Any = os.path.join(__lowercase ,'dict.txt' )
if not os.path.isfile(__lowercase ):
raise ValueError(f'''path to the file {dict_file} does not exist!''' )
A_ : Optional[int] = Dictionary.load(__lowercase )
A_ : Union[str, Any] = rewrite_dict_keys(src_dict.indices )
A_ : List[Any] = len(__lowercase )
A_ : Tuple = os.path.join(__lowercase ,VOCAB_FILES_NAMES['vocab_file'] )
print(f'''Generating {src_vocab_file} of {src_vocab_size} records''' )
with open(__lowercase ,'w' ,encoding='utf-8' ) as f:
f.write(json.dumps(__lowercase ,ensure_ascii=__lowercase ,indent=__lowercase ) )
# merges_file (bpecodes)
A_ : List[Any] = os.path.join(__lowercase ,'bpecodes' )
if not os.path.isfile(__lowercase ):
raise ValueError(f'''path to the file {bpecodes_file} does not exist!''' )
A_ : Optional[Any] = os.path.join(__lowercase ,VOCAB_FILES_NAMES['merges_file'] )
shutil.copyfile(__lowercase ,__lowercase )
# model config
A_ : Dict = os.path.join(__lowercase ,'config.json' )
A_ : List[Any] = {
'activation_dropout': args['activation_dropout'],
'architectures': ['BioGptForCausalLM'],
'attention_probs_dropout_prob': args['attention_dropout'],
'bos_token_id': 0,
'eos_token_id': 2,
'hidden_act': args['activation_fn'],
'hidden_dropout_prob': args['dropout'],
'hidden_size': args['decoder_embed_dim'],
'initializer_range': 0.02,
'intermediate_size': args['decoder_ffn_embed_dim'],
'layer_norm_eps': 1e-1_2,
'layerdrop': args['decoder_layerdrop'],
'max_position_embeddings': args['max_target_positions'],
'model_type': 'biogpt',
'num_attention_heads': args['decoder_attention_heads'],
'num_hidden_layers': args['decoder_layers'],
'pad_token_id': 1,
'scale_embedding': not args['no_scale_embedding'],
'tie_word_embeddings': args['share_decoder_input_output_embed'],
'vocab_size': src_vocab_size,
}
# good hparam defaults to start with
print(f'''Generating {biogpt_model_config_file}''' )
with open(__lowercase ,'w' ,encoding='utf-8' ) as f:
f.write(json.dumps(__lowercase ,ensure_ascii=__lowercase ,indent=__lowercase ) )
# tokenizer config
A_ : List[Any] = os.path.join(__lowercase ,__lowercase )
A_ : Dict = {
'bos_token': '<s>',
'eos_token': '</s>',
'model_max_length': 10_24,
'pad_token': '<pad>',
'special_tokens_map_file': None,
'tokenizer_class': 'BioGptTokenizer',
'unk_token': '<unk>',
}
print(f'''Generating {biogpt_tokenizer_config_file}''' )
with open(__lowercase ,'w' ,encoding='utf-8' ) as f:
f.write(json.dumps(__lowercase ,ensure_ascii=__lowercase ,indent=__lowercase ) )
# model
A_ : Any = chkpt['model']
# remove unneeded keys
A_ : List[Any] = [
'decoder.version',
]
for k in ignore_keys:
model_state_dict.pop(__lowercase ,__lowercase )
A_ : int = list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('output_projection.weight' ):
A_ : Union[str, Any] = model_state_dict.pop(__lowercase )
else:
A_ : str = model_state_dict.pop(__lowercase )
A_ : Optional[int] = BioGptConfig.from_pretrained(__lowercase )
A_ : List[Any] = BioGptForCausalLM(__lowercase )
# check that it loads ok
model_new.load_state_dict(__lowercase )
# save
A_ : List[str] = os.path.join(__lowercase ,__lowercase )
print(f'''Generating {pytorch_weights_dump_path}''' )
torch.save(__lowercase ,__lowercase )
print('Conversion is done!' )
if __name__ == "__main__":
_UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--biogpt_checkpoint_path""",
default=None,
type=str,
required=True,
help=(
"""Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"""
""" bpecodes, etc."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
_UpperCAmelCase = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 140 | 1 |
import argparse
import glob
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from torch import nn
from torch.utils.data import DataLoader
from transformers import MBartTokenizer, TaForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import (
ROUGE_KEYS,
LegacySeqaSeqDataset,
SeqaSeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
check_output_dir,
flatten_list,
freeze_embeds,
freeze_params,
get_git_info,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
lowerCAmelCase_ = logging.getLogger(__name__)
class _lowerCAmelCase ( UpperCAmelCase_ ):
'''simple docstring'''
a_ : Any ="""summarization"""
a_ : Optional[Any] =["""loss"""]
a_ : List[Any] =ROUGE_KEYS
a_ : str ="""rouge2"""
def __init__( self : str , UpperCamelCase : List[Any] , **UpperCamelCase : str ):
'''simple docstring'''
if hparams.sortish_sampler and hparams.gpus > 1:
_snake_case : List[Any] = False
elif hparams.max_tokens_per_batch is not None:
if hparams.gpus > 1:
raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' )
if hparams.sortish_sampler:
raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' )
super().__init__(UpperCamelCase , num_labels=UpperCamelCase , mode=self.mode , **UpperCamelCase )
use_task_specific_params(self.model , 'summarization' )
save_git_info(self.hparams.output_dir )
_snake_case : Any = Path(self.output_dir ) / 'metrics.json'
_snake_case : Optional[int] = Path(self.output_dir ) / 'hparams.pkl'
pickle_save(self.hparams , self.hparams_save_path )
_snake_case : int = 0
_snake_case : Optional[int] = defaultdict(UpperCamelCase )
_snake_case : int = self.config.model_type
_snake_case : Union[str, Any] = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size
_snake_case : dict = {
"data_dir": self.hparams.data_dir,
"max_source_length": self.hparams.max_source_length,
"prefix": self.model.config.prefix or "",
}
_snake_case : str = {
'train': self.hparams.n_train,
'val': self.hparams.n_val,
'test': self.hparams.n_test,
}
_snake_case : Any = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
_snake_case : int = {
'train': self.hparams.max_target_length,
'val': self.hparams.val_max_target_length,
'test': self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], f"""target_lens: {self.target_lens}"""
assert self.target_lens["train"] <= self.target_lens["test"], f"""target_lens: {self.target_lens}"""
if self.hparams.freeze_embeds:
freeze_embeds(self.model )
if self.hparams.freeze_encoder:
freeze_params(self.model.get_encoder() )
assert_all_frozen(self.model.get_encoder() )
_snake_case : List[str] = get_git_info()['repo_sha']
_snake_case : List[Any] = hparams.num_workers
_snake_case : List[Any] = None # default to config
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , UpperCamelCase ):
_snake_case : List[str] = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
_snake_case : Tuple = self.decoder_start_token_id
_snake_case : Optional[int] = (
SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset
)
_snake_case : int = False
_snake_case : int = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
if self.hparams.eval_max_gen_length is not None:
_snake_case : List[str] = self.hparams.eval_max_gen_length
else:
_snake_case : Tuple = self.model.config.max_length
_snake_case : int = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Dict[str, torch.Tensor] ):
'''simple docstring'''
_snake_case : List[str] = {
k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items()
}
save_json(UpperCamelCase , Path(self.output_dir ) / 'text_batch.json' )
save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' )
_snake_case : str = True
return readable_batch
def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : int , **UpperCamelCase : Any ):
'''simple docstring'''
return self.model(UpperCamelCase , **UpperCamelCase )
def UpperCamelCase_ ( self : str , UpperCamelCase : List[int] ):
'''simple docstring'''
_snake_case : List[Any] = self.tokenizer.batch_decode(
UpperCamelCase , skip_special_tokens=UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase )
return lmap(str.strip , UpperCamelCase )
def UpperCamelCase_ ( self : str , UpperCamelCase : dict ):
'''simple docstring'''
_snake_case : Tuple = self.tokenizer.pad_token_id
_snake_case , _snake_case : str = batch['input_ids'], batch['attention_mask']
_snake_case : int = batch['labels']
if isinstance(self.model , UpperCamelCase ):
_snake_case : Union[str, Any] = self.model._shift_right(UpperCamelCase )
else:
_snake_case : List[str] = shift_tokens_right(UpperCamelCase , UpperCamelCase )
if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero
_snake_case : Any = decoder_input_ids
self.save_readable_batch(UpperCamelCase )
_snake_case : Dict = self(UpperCamelCase , attention_mask=UpperCamelCase , decoder_input_ids=UpperCamelCase , use_cache=UpperCamelCase )
_snake_case : Optional[int] = outputs['logits']
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
_snake_case : Union[str, Any] = nn.CrossEntropyLoss(ignore_index=UpperCamelCase )
assert lm_logits.shape[-1] == self.vocab_size
_snake_case : Any = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) )
else:
_snake_case : int = nn.functional.log_softmax(UpperCamelCase , dim=-1 )
_snake_case , _snake_case : List[Any] = label_smoothed_nll_loss(
UpperCamelCase , UpperCamelCase , self.hparams.label_smoothing , ignore_index=UpperCamelCase )
return (loss,)
@property
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
return self.tokenizer.pad_token_id
def UpperCamelCase_ ( self : str , UpperCamelCase : Tuple , UpperCamelCase : List[Any] ):
'''simple docstring'''
_snake_case : Optional[int] = self._step(UpperCamelCase )
_snake_case : Optional[int] = dict(zip(self.loss_names , UpperCamelCase ) )
# tokens per batch
_snake_case : str = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum()
_snake_case : Optional[Any] = batch['input_ids'].shape[0]
_snake_case : int = batch['input_ids'].eq(self.pad ).sum()
_snake_case : str = batch['input_ids'].eq(self.pad ).float().mean()
# TODO(SS): make a wandb summary metric for this
return {"loss": loss_tensors[0], "log": logs}
def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[str] , UpperCamelCase : int ):
'''simple docstring'''
return self._generative_step(UpperCamelCase )
def UpperCamelCase_ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Dict="val" ):
'''simple docstring'''
self.step_count += 1
_snake_case : Tuple = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names}
_snake_case : List[str] = losses['loss']
_snake_case : Dict = {
k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len']
}
_snake_case : str = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
)
_snake_case : torch.FloatTensor = torch.tensor(UpperCamelCase ).type_as(UpperCamelCase )
generative_metrics.update({k: v.item() for k, v in losses.items()} )
losses.update(UpperCamelCase )
_snake_case : Any = {f"""{prefix}_avg_{k}""": x for k, x in losses.items()}
_snake_case : int = self.step_count
self.metrics[prefix].append(UpperCamelCase ) # callback writes this to self.metrics_save_path
_snake_case : Any = flatten_list([x['preds'] for x in outputs] )
return {
"log": all_metrics,
"preds": preds,
f"""{prefix}_loss""": loss,
f"""{prefix}_{self.val_metric}""": metric_tensor,
}
def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : Dict ):
'''simple docstring'''
return calculate_rouge(UpperCamelCase , UpperCamelCase )
def UpperCamelCase_ ( self : List[str] , UpperCamelCase : dict ):
'''simple docstring'''
_snake_case : List[Any] = time.time()
# parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
_snake_case : List[str] = self.model.generate(
batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=UpperCamelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , )
_snake_case : Optional[Any] = (time.time() - ta) / batch['input_ids'].shape[0]
_snake_case : List[str] = self.ids_to_clean_text(UpperCamelCase )
_snake_case : List[str] = self.ids_to_clean_text(batch['labels'] )
_snake_case : List[Any] = self._step(UpperCamelCase )
_snake_case : List[Any] = dict(zip(self.loss_names , UpperCamelCase ) )
_snake_case : Dict = self.calc_generative_metrics(UpperCamelCase , UpperCamelCase )
_snake_case : str = np.mean(lmap(UpperCamelCase , UpperCamelCase ) )
base_metrics.update(gen_time=UpperCamelCase , gen_len=UpperCamelCase , preds=UpperCamelCase , target=UpperCamelCase , **UpperCamelCase )
return base_metrics
def UpperCamelCase_ ( self : Any , UpperCamelCase : Any , UpperCamelCase : List[str] ):
'''simple docstring'''
return self._generative_step(UpperCamelCase )
def UpperCamelCase_ ( self : Any , UpperCamelCase : Tuple ):
'''simple docstring'''
return self.validation_epoch_end(UpperCamelCase , prefix='test' )
def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] ):
'''simple docstring'''
_snake_case : int = self.n_obs[type_path]
_snake_case : Any = self.target_lens[type_path]
_snake_case : str = self.dataset_class(
self.tokenizer , type_path=UpperCamelCase , n_obs=UpperCamelCase , max_target_length=UpperCamelCase , **self.dataset_kwargs , )
return dataset
def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : bool = False ):
'''simple docstring'''
_snake_case : List[Any] = self.get_dataset(UpperCamelCase )
if self.hparams.sortish_sampler and type_path != "test" and type_path != "val":
_snake_case : Optional[Any] = dataset.make_sortish_sampler(UpperCamelCase , distributed=self.hparams.gpus > 1 )
return DataLoader(
UpperCamelCase , batch_size=UpperCamelCase , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase , num_workers=self.num_workers , sampler=UpperCamelCase , )
elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val":
_snake_case : str = dataset.make_dynamic_sampler(
self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 )
return DataLoader(
UpperCamelCase , batch_sampler=UpperCamelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , )
else:
return DataLoader(
UpperCamelCase , batch_size=UpperCamelCase , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase , num_workers=self.num_workers , sampler=UpperCamelCase , )
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
_snake_case : List[str] = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=UpperCamelCase )
return dataloader
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size )
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size )
@staticmethod
def UpperCamelCase_ ( UpperCamelCase : List[Any] , UpperCamelCase : str ):
'''simple docstring'''
BaseTransformer.add_model_specific_args(UpperCamelCase , UpperCamelCase )
add_generic_args(UpperCamelCase , UpperCamelCase )
parser.add_argument(
'--max_source_length' , default=10_24 , type=UpperCamelCase , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--max_target_length' , default=56 , type=UpperCamelCase , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--val_max_target_length' , default=1_42 , type=UpperCamelCase , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--test_max_target_length' , default=1_42 , type=UpperCamelCase , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument('--freeze_encoder' , action='store_true' )
parser.add_argument('--freeze_embeds' , action='store_true' )
parser.add_argument('--sortish_sampler' , action='store_true' , default=UpperCamelCase )
parser.add_argument('--overwrite_output_dir' , action='store_true' , default=UpperCamelCase )
parser.add_argument('--max_tokens_per_batch' , type=UpperCamelCase , default=UpperCamelCase )
parser.add_argument('--logger_name' , type=UpperCamelCase , choices=['default', 'wandb', 'wandb_shared'] , default='default' )
parser.add_argument('--n_train' , type=UpperCamelCase , default=-1 , required=UpperCamelCase , help='# examples. -1 means use all.' )
parser.add_argument('--n_val' , type=UpperCamelCase , default=5_00 , required=UpperCamelCase , help='# examples. -1 means use all.' )
parser.add_argument('--n_test' , type=UpperCamelCase , default=-1 , required=UpperCamelCase , help='# examples. -1 means use all.' )
parser.add_argument(
'--task' , type=UpperCamelCase , default='summarization' , required=UpperCamelCase , help='# examples. -1 means use all.' )
parser.add_argument('--label_smoothing' , type=UpperCamelCase , default=0.0 , required=UpperCamelCase )
parser.add_argument('--src_lang' , type=UpperCamelCase , default='' , required=UpperCamelCase )
parser.add_argument('--tgt_lang' , type=UpperCamelCase , default='' , required=UpperCamelCase )
parser.add_argument('--eval_beams' , type=UpperCamelCase , default=UpperCamelCase , required=UpperCamelCase )
parser.add_argument(
'--val_metric' , type=UpperCamelCase , default=UpperCamelCase , required=UpperCamelCase , choices=['bleu', 'rouge2', 'loss', None] )
parser.add_argument('--eval_max_gen_length' , type=UpperCamelCase , default=UpperCamelCase , help='never generate more than n tokens' )
parser.add_argument('--save_top_k' , type=UpperCamelCase , default=1 , required=UpperCamelCase , help='How many checkpoints to save' )
parser.add_argument(
'--early_stopping_patience' , type=UpperCamelCase , default=-1 , required=UpperCamelCase , help=(
'-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So'
' val_check_interval will effect it.'
) , )
return parser
class _lowerCAmelCase ( UpperCAmelCase_ ):
'''simple docstring'''
a_ : Tuple ="""translation"""
a_ : str =["""loss"""]
a_ : Optional[Any] =["""bleu"""]
a_ : Dict ="""bleu"""
def __init__( self : Any , UpperCamelCase : Tuple , **UpperCamelCase : str ):
'''simple docstring'''
super().__init__(UpperCamelCase , **UpperCamelCase )
_snake_case : Optional[int] = hparams.src_lang
_snake_case : Union[str, Any] = hparams.tgt_lang
def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : List[Any] ):
'''simple docstring'''
return calculate_bleu(UpperCamelCase , UpperCamelCase )
def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: int=None )-> SummarizationModule:
Path(args.output_dir ).mkdir(exist_ok=lowerCAmelCase )
check_output_dir(lowerCAmelCase , expected_items=3 )
if model is None:
if "summarization" in args.task:
_snake_case : SummarizationModule = SummarizationModule(lowerCAmelCase )
else:
_snake_case : SummarizationModule = TranslationModule(lowerCAmelCase )
_snake_case : Optional[Any] = Path(args.data_dir ).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir ).startswith('/tmp' )
or str(args.output_dir ).startswith('/var' )
):
_snake_case : List[Any] = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
_snake_case : int = os.environ.get('WANDB_PROJECT' , lowerCAmelCase )
_snake_case : Dict = WandbLogger(name=model.output_dir.name , project=lowerCAmelCase )
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
_snake_case : Any = WandbLogger(name=model.output_dir.name , project=F"""hf_{dataset}""" )
if args.early_stopping_patience >= 0:
_snake_case : Optional[Any] = get_early_stopping_callback(model.val_metric , args.early_stopping_patience )
else:
_snake_case : Any = False
_snake_case : Any = args.val_metric == 'loss'
_snake_case : pl.Trainer = generic_train(
lowerCAmelCase , lowerCAmelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback(
args.output_dir , model.val_metric , args.save_top_k , lowerCAmelCase ) , early_stopping_callback=lowerCAmelCase , logger=lowerCAmelCase , )
pickle_save(model.hparams , model.output_dir / 'hparams.pkl' )
if not args.do_predict:
return model
_snake_case : int = ''
_snake_case : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=lowerCAmelCase ) )
if checkpoints:
_snake_case : Any = checkpoints[-1]
_snake_case : Optional[int] = checkpoints[-1]
trainer.logger.log_hyperparams(model.hparams )
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
lowerCAmelCase_ = pl.Trainer.add_argparse_args(parser)
lowerCAmelCase_ = SummarizationModule.add_model_specific_args(parser, os.getcwd())
lowerCAmelCase_ = parser.parse_args()
main(args)
| 260 |
def lowerCamelCase_ ( lowerCAmelCase: int )-> bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 260 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class lowerCAmelCase_ :
__lowerCamelCase : int
__lowerCamelCase : Node | None = None
__lowerCamelCase : Node | None = None
def __a():
'''simple docstring'''
_lowerCAmelCase = Node(1 )
_lowerCAmelCase = Node(2 )
_lowerCAmelCase = Node(3 )
_lowerCAmelCase = Node(4 )
_lowerCAmelCase = Node(5 )
return tree
def __a(SCREAMING_SNAKE_CASE_ : Node | None ):
'''simple docstring'''
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def __a(SCREAMING_SNAKE_CASE_ : Node | None ):
'''simple docstring'''
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def __a(SCREAMING_SNAKE_CASE_ : Node | None ):
'''simple docstring'''
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def __a(SCREAMING_SNAKE_CASE_ : Node | None ):
'''simple docstring'''
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def __a(SCREAMING_SNAKE_CASE_ : Node | None ):
'''simple docstring'''
_lowerCAmelCase = []
if root is None:
return output
_lowerCAmelCase = deque([root] )
while process_queue:
_lowerCAmelCase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def __a(SCREAMING_SNAKE_CASE_ : Node | None , SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
_lowerCAmelCase = []
def populate_output(SCREAMING_SNAKE_CASE_ : Node | None , SCREAMING_SNAKE_CASE_ : int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return output
def __a(SCREAMING_SNAKE_CASE_ : Node | None , SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
_lowerCAmelCase = []
def populate_output(SCREAMING_SNAKE_CASE_ : Node | None , SCREAMING_SNAKE_CASE_ : int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return output
def __a(SCREAMING_SNAKE_CASE_ : Node | None ):
'''simple docstring'''
if root is None:
return []
_lowerCAmelCase = []
_lowerCAmelCase = 0
_lowerCAmelCase = height(SCREAMING_SNAKE_CASE_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
_lowerCAmelCase = 1
else:
output.append(get_nodes_from_right_to_left(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
_lowerCAmelCase = 0
return output
def __a(): # Main function for testing.
'''simple docstring'''
_lowerCAmelCase = make_tree()
print(F'''In-order Traversal: {inorder(SCREAMING_SNAKE_CASE_ )}''' )
print(F'''Pre-order Traversal: {preorder(SCREAMING_SNAKE_CASE_ )}''' )
print(F'''Post-order Traversal: {postorder(SCREAMING_SNAKE_CASE_ )}''' , "\n" )
print(F'''Height of Tree: {height(SCREAMING_SNAKE_CASE_ )}''' , "\n" )
print("Complete Level Order Traversal: " )
print(level_order(SCREAMING_SNAKE_CASE_ ) , "\n" )
print("Level-wise order Traversal: " )
for level in range(1 , height(SCREAMING_SNAKE_CASE_ ) + 1 ):
print(F'''Level {level}:''' , get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE_ , level=SCREAMING_SNAKE_CASE_ ) )
print("\nZigZag order Traversal: " )
print(zigzag(SCREAMING_SNAKE_CASE_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 158 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=False ):
'''simple docstring'''
_lowerCAmelCase = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("module.cls_token", "vit.embeddings.cls_token"),
("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("module.pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("module.norm.weight", "layernorm.weight"),
("module.norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str]=False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
_lowerCAmelCase = ""
else:
_lowerCAmelCase = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCAmelCase = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' )
_lowerCAmelCase = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_lowerCAmelCase = in_proj_weight[
: config.hidden_size, :
]
_lowerCAmelCase = in_proj_bias[: config.hidden_size]
_lowerCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCAmelCase = in_proj_weight[
-config.hidden_size :, :
]
_lowerCAmelCase = in_proj_bias[-config.hidden_size :]
def __a(SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
_lowerCAmelCase = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
_lowerCAmelCase = [
"module.fc.fc1.weight",
"module.fc.fc1.bias",
"module.fc.bn1.weight",
"module.fc.bn1.bias",
"module.fc.bn1.running_mean",
"module.fc.bn1.running_var",
"module.fc.bn1.num_batches_tracked",
"module.fc.fc2.weight",
"module.fc.fc2.bias",
"module.fc.bn2.weight",
"module.fc.bn2.bias",
"module.fc.bn2.running_mean",
"module.fc.bn2.running_var",
"module.fc.bn2.num_batches_tracked",
"module.fc.fc3.weight",
"module.fc.fc3.bias",
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
_lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = val
def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple ):
'''simple docstring'''
_lowerCAmelCase = ViTMSNConfig()
_lowerCAmelCase = 1000
_lowerCAmelCase = "datasets/huggingface/label-files"
_lowerCAmelCase = "imagenet-1k-id2label.json"
_lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , "r" ) )
_lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
_lowerCAmelCase = idalabel
_lowerCAmelCase = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
_lowerCAmelCase = 384
_lowerCAmelCase = 1536
_lowerCAmelCase = 6
elif "l16" in checkpoint_url:
_lowerCAmelCase = 1024
_lowerCAmelCase = 4096
_lowerCAmelCase = 24
_lowerCAmelCase = 16
_lowerCAmelCase = 0.1
elif "b4" in checkpoint_url:
_lowerCAmelCase = 4
elif "l7" in checkpoint_url:
_lowerCAmelCase = 7
_lowerCAmelCase = 1024
_lowerCAmelCase = 4096
_lowerCAmelCase = 24
_lowerCAmelCase = 16
_lowerCAmelCase = 0.1
_lowerCAmelCase = ViTMSNModel(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["target_encoder"]
_lowerCAmelCase = ViTImageProcessor(size=config.image_size )
remove_projection_head(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ )
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
model.eval()
_lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
_lowerCAmelCase = ViTImageProcessor(
size=config.image_size , image_mean=SCREAMING_SNAKE_CASE_ , image_std=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" )
# forward pass
torch.manual_seed(2 )
_lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
_lowerCAmelCase = torch.tensor([[-1.0915, -1.4876, -1.1809]] )
elif "b16" in checkpoint_url:
_lowerCAmelCase = torch.tensor([[14.2889, -18.9045, 11.7281]] )
elif "l16" in checkpoint_url:
_lowerCAmelCase = torch.tensor([[41.5028, -22.8681, 45.6475]] )
elif "b4" in checkpoint_url:
_lowerCAmelCase = torch.tensor([[-4.3868, 5.2932, -0.4137]] )
else:
_lowerCAmelCase = torch.tensor([[-0.1792, -0.6465, 2.4263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 158 | 1 |
"""simple docstring"""
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , a__ , a__=7 , a__=3 , a__=30 , a__=4_00 , a__=True , a__=None , a__=True , a__=[0.5, 0.5, 0.5] , a__=[0.5, 0.5, 0.5] , a__=True , a__=1 / 2_55 , a__=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
_lowerCamelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33}
_lowerCamelCase = parent
_lowerCamelCase = batch_size
_lowerCamelCase = num_channels
_lowerCamelCase = min_resolution
_lowerCamelCase = max_resolution
_lowerCamelCase = do_resize
_lowerCamelCase = size
_lowerCamelCase = do_normalize
_lowerCamelCase = image_mean
_lowerCamelCase = image_std
_lowerCamelCase = do_rescale
_lowerCamelCase = rescale_factor
_lowerCamelCase = do_pad
def snake_case_ ( self ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case_ ( self , a__ , a__=False ):
if not batched:
_lowerCamelCase = image_inputs[0]
if isinstance(a__ , Image.Image ):
_lowerCamelCase , _lowerCamelCase = image.size
else:
_lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2]
if w < h:
_lowerCamelCase = int(self.size['shortest_edge'] * h / w )
_lowerCamelCase = self.size['shortest_edge']
elif w > h:
_lowerCamelCase = self.size['shortest_edge']
_lowerCamelCase = int(self.size['shortest_edge'] * w / h )
else:
_lowerCamelCase = self.size['shortest_edge']
_lowerCamelCase = self.size['shortest_edge']
else:
_lowerCamelCase = []
for image in image_inputs:
_lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_lowerCamelCase = max(a__ , key=lambda a__ : item[0] )[0]
_lowerCamelCase = max(a__ , key=lambda a__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __a ( lowerCAmelCase__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE__ : int = DeformableDetrImageProcessor if is_vision_available() else None
def snake_case_ ( self ):
_lowerCamelCase = DeformableDetrImageProcessingTester(self )
@property
def snake_case_ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case_ ( self ):
_lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a__ , 'image_mean' ) )
self.assertTrue(hasattr(a__ , 'image_std' ) )
self.assertTrue(hasattr(a__ , 'do_normalize' ) )
self.assertTrue(hasattr(a__ , 'do_resize' ) )
self.assertTrue(hasattr(a__ , 'do_rescale' ) )
self.assertTrue(hasattr(a__ , 'do_pad' ) )
self.assertTrue(hasattr(a__ , 'size' ) )
def snake_case_ ( self ):
_lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} )
self.assertEqual(image_processor.do_pad , a__ )
_lowerCamelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=a__ )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , a__ )
def snake_case_ ( self ):
pass
def snake_case_ ( self ):
# Initialize image_processing
_lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , Image.Image )
# Test not batched input
_lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ , batched=a__ )
_lowerCamelCase = image_processing(a__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case_ ( self ):
# Initialize image_processing
_lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , np.ndarray )
# Test not batched input
_lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCamelCase = image_processing(a__ , return_tensors='pt' ).pixel_values
_lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ , batched=a__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case_ ( self ):
# Initialize image_processing
_lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , torch.Tensor )
# Test not batched input
_lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCamelCase = image_processing(a__ , return_tensors='pt' ).pixel_values
_lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ , batched=a__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def snake_case_ ( self ):
# prepare image and target
_lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
_lowerCamelCase = json.loads(f.read() )
_lowerCamelCase = {'image_id': 3_97_69, 'annotations': target}
# encode them
_lowerCamelCase = DeformableDetrImageProcessor()
_lowerCamelCase = image_processing(images=a__ , annotations=a__ , return_tensors='pt' )
# verify pixel values
_lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , a__ )
_lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a__ , atol=1e-4 ) )
# verify area
_lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a__ ) )
# verify boxes
_lowerCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , a__ )
_lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a__ , atol=1e-3 ) )
# verify image_id
_lowerCamelCase = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a__ ) )
# verify is_crowd
_lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a__ ) )
# verify class_labels
_lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a__ ) )
# verify orig_size
_lowerCamelCase = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a__ ) )
# verify size
_lowerCamelCase = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a__ ) )
@slow
def snake_case_ ( self ):
# prepare image, target and masks_path
_lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
_lowerCamelCase = json.loads(f.read() )
_lowerCamelCase = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target}
_lowerCamelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
_lowerCamelCase = DeformableDetrImageProcessor(format='coco_panoptic' )
_lowerCamelCase = image_processing(images=a__ , annotations=a__ , masks_path=a__ , return_tensors='pt' )
# verify pixel values
_lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , a__ )
_lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a__ , atol=1e-4 ) )
# verify area
_lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a__ ) )
# verify boxes
_lowerCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , a__ )
_lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a__ , atol=1e-3 ) )
# verify image_id
_lowerCamelCase = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a__ ) )
# verify is_crowd
_lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a__ ) )
# verify class_labels
_lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a__ ) )
# verify masks
_lowerCamelCase = 82_28_73
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , a__ )
# verify orig_size
_lowerCamelCase = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a__ ) )
# verify size
_lowerCamelCase = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a__ ) )
| 80 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
A_ : List[str] ={"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Optional[int] =["""SpeechEncoderDecoderModel"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Optional[int] =["""FlaxSpeechEncoderDecoderModel"""]
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
A_ : str =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 80 | 1 |
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
UpperCamelCase__ = logging.getLogger(__name__)
def lowerCAmelCase_ ( ) -> int:
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(
description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." )
parser.add_argument("--file_path", type=__A, default="data/dump.txt", help="The path to the data." )
parser.add_argument("--tokenizer_type", type=__A, default="bert", choices=["bert", "roberta", "gpt2"] )
parser.add_argument("--tokenizer_name", type=__A, default="bert-base-uncased", help="The tokenizer to use." )
parser.add_argument("--dump_file", type=__A, default="data/dump", help="The dump file prefix." )
UpperCAmelCase__ = parser.parse_args()
logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" )
if args.tokenizer_type == "bert":
UpperCAmelCase__ = BertTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `[CLS]`
UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `[SEP]`
elif args.tokenizer_type == "roberta":
UpperCAmelCase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `<s>`
UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `</s>`
elif args.tokenizer_type == "gpt2":
UpperCAmelCase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase__ = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>`
UpperCAmelCase__ = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>`
logger.info(f"""Loading text from {args.file_path}""" )
with open(args.file_path, "r", encoding="utf8" ) as fp:
UpperCAmelCase__ = fp.readlines()
logger.info("Start encoding" )
logger.info(f"""{len(__A )} examples to process.""" )
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = 10_000
UpperCAmelCase__ = time.time()
for text in data:
UpperCAmelCase__ = f"""{bos} {text.strip()} {sep}"""
UpperCAmelCase__ = tokenizer.encode(__A, add_special_tokens=__A )
rslt.append(__A )
iter += 1
if iter % interval == 0:
UpperCAmelCase__ = time.time()
logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" )
UpperCAmelCase__ = time.time()
logger.info("Finished binarization" )
logger.info(f"""{len(__A )} examples processed.""" )
UpperCAmelCase__ = f"""{args.dump_file}.{args.tokenizer_name}.pickle"""
UpperCAmelCase__ = tokenizer.vocab_size
if vocab_size < (1 << 16):
UpperCAmelCase__ = [np.uintaa(__A ) for d in rslt]
else:
UpperCAmelCase__ = [np.intaa(__A ) for d in rslt]
random.shuffle(rslt_ )
logger.info(f"""Dump to {dp_file}""" )
with open(__A, "wb" ) as handle:
pickle.dump(rslt_, __A, protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 65 |
from collections import deque
from .hash_table import HashTable
class snake_case_ ( __A ):
'''simple docstring'''
def __init__( self : int , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Tuple:
super().__init__(*_UpperCamelCase , **_UpperCamelCase )
def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) ->Tuple:
snake_case_ = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(_UpperCamelCase )
snake_case_ = self.values[key]
def snake_case__( self : List[Any] ) ->str:
return (
sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=None ) ->str:
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0
):
return key
return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
| 8 | 0 |
from __future__ import annotations
class __magic_name__ :
def __init__( self : Optional[int] , lowerCamelCase__ : Optional[int] = 0 ) -> str:
'''simple docstring'''
UpperCamelCase__ : Union[str, Any] = key
def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase__ : str = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content]
def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] ) -> List[Any]:
'''simple docstring'''
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase__ : int = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content]
def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int = 0 ) -> Optional[int]:
'''simple docstring'''
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase__ : Optional[int] = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
UpperCamelCase__ : Union[str, Any] = ''''''
for ch in content:
ans += chr(ord(_UpperCAmelCase ) ^ key )
return ans
def UpperCAmelCase__ ( self : str , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int = 0 ) -> str:
'''simple docstring'''
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase__ : Dict = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
UpperCamelCase__ : Any = ''''''
for ch in content:
ans += chr(ord(_UpperCAmelCase ) ^ key )
return ans
def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] = 0 ) -> Any:
'''simple docstring'''
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
try:
with open(_UpperCAmelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(_UpperCAmelCase , _UpperCAmelCase ) )
except OSError:
return False
return True
def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
try:
with open(_UpperCAmelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(_UpperCAmelCase , _UpperCAmelCase ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 352 |
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase__ , UpperCamelCase__ : Dict = image.size
UpperCamelCase__ , UpperCamelCase__ : List[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
UpperCamelCase__ : Any = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
UpperCamelCase__ : Union[str, Any] = np.array(SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0
UpperCamelCase__ : Optional[int] = image[None].transpose(0 , 3 , 1 , 2 )
UpperCamelCase__ : int = torch.from_numpy(SCREAMING_SNAKE_CASE )
return 2.0 * image - 1.0
class __magic_name__ ( __lowerCAmelCase):
def __init__( self : Dict , lowerCamelCase__ : VQModel , lowerCamelCase__ : UNetaDModel , lowerCamelCase__ : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] , ) -> Tuple:
'''simple docstring'''
super().__init__()
self.register_modules(vqvae=lowerCamelCase__ , unet=lowerCamelCase__ , scheduler=lowerCamelCase__ )
@torch.no_grad()
def __call__( self : int , lowerCamelCase__ : Union[torch.Tensor, PIL.Image.Image] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : Optional[int] = 100 , lowerCamelCase__ : Optional[float] = 0.0 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]:
'''simple docstring'''
if isinstance(lowerCamelCase__ , PIL.Image.Image ):
UpperCamelCase__ : int = 1
elif isinstance(lowerCamelCase__ , torch.Tensor ):
UpperCamelCase__ : Dict = image.shape[0]
else:
raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCamelCase__ )}" )
if isinstance(lowerCamelCase__ , PIL.Image.Image ):
UpperCamelCase__ : Any = preprocess(lowerCamelCase__ )
UpperCamelCase__ , UpperCamelCase__ : Tuple = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
UpperCamelCase__ : Any = (batch_size, self.unet.config.in_channels // 2, height, width)
UpperCamelCase__ : Union[str, Any] = next(self.unet.parameters() ).dtype
UpperCamelCase__ : Any = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device , dtype=lowerCamelCase__ )
UpperCamelCase__ : Any = image.to(device=self.device , dtype=lowerCamelCase__ )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device )
UpperCamelCase__ : str = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
UpperCamelCase__ : int = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
UpperCamelCase__ : Dict = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
UpperCamelCase__ : Optional[int] = {}
if accepts_eta:
UpperCamelCase__ : Union[str, Any] = eta
for t in self.progress_bar(lowerCamelCase__ ):
# concat latents and low resolution image in the channel dimension.
UpperCamelCase__ : Any = torch.cat([latents, image] , dim=1 )
UpperCamelCase__ : List[str] = self.scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ )
# predict the noise residual
UpperCamelCase__ : Dict = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample
# compute the previous noisy sample x_t -> x_t-1
UpperCamelCase__ : Tuple = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
# decode the image latents with the VQVAE
UpperCamelCase__ : Tuple = self.vqvae.decode(lowerCamelCase__ ).sample
UpperCamelCase__ : Tuple = torch.clamp(lowerCamelCase__ , -1.0 , 1.0 )
UpperCamelCase__ : Any = image / 2 + 0.5
UpperCamelCase__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCamelCase__ : List[str] = self.numpy_to_pil(lowerCamelCase__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCamelCase__ )
| 51 | 0 |
import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[Any] ,A : List[str] ,A : Tuple=13 ,A : List[Any]=7 ,A : Optional[int]=True ,A : Tuple=True ,A : List[Any]=True ,A : Optional[int]=True ,A : str=99 ,A : Tuple=32 ,A : List[str]=5 ,A : Dict=4 ,A : int=37 ,A : Optional[int]="gelu" ,A : Optional[int]=0.1 ,A : Any=0.1 ,A : int=5_12 ,A : List[str]=16 ,A : List[str]=2 ,A : int=0.02 ,A : Union[str, Any]=4 ,):
__A = parent
__A = batch_size
__A = seq_length
__A = is_training
__A = use_attention_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = num_choices
def UpperCamelCase_ ( self : Tuple ):
__A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__A = None
if self.use_attention_mask:
__A = random_attention_mask([self.batch_size, self.seq_length] )
__A = DistilBertConfig(
vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=A ,)
return config, input_ids, attention_mask
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.prepare_config_and_inputs()
__A , __A , __A = config_and_inputs
__A = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase_ ( self : int ):
__A = FlaxDistilBertModelTester(self )
@slow
def UpperCamelCase_ ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
__A = model_class_name.from_pretrained("distilbert-base-uncased" )
__A = model(np.ones((1, 1) ) )
self.assertIsNotNone(A )
@require_flax
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self : str ):
__A = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" )
__A = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__A = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__A = model(A ,attention_mask=A )[0]
__A = (1, 11, 7_68)
self.assertEqual(output.shape ,A )
__A = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,A ,atol=1E-4 ) )
| 15 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
__A = args.pruning_method
__A = args.threshold
__A = args.model_name_or_path.rstrip("/" )
__A = args.target_model_path
print(F'''Load fine-pruned model from {model_name_or_path}''' )
__A = torch.load(os.path.join(a_ , "pytorch_model.bin" ) )
__A = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
__A = tensor
print(F'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
__A = tensor
print(F'''Copied layer {name}''' )
elif "bias" in name:
__A = tensor
print(F'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
__A = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A = TopKBinarizer.apply(a_ , a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A = ThresholdBinarizer.apply(a_ , a_ , a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A , __A = -0.1, 1.1
__A = torch.sigmoid(a_ )
__A = s * (r - l) + l
__A = s_bar.clamp(min=0.0 , max=1.0 )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
else:
raise ValueError("Unknown pruning method" )
if target_model_path is None:
__A = os.path.join(
os.path.dirname(a_ ) , F'''bertarized_{os.path.basename(a_ )}''' )
if not os.path.isdir(a_ ):
shutil.copytree(a_ , a_ )
print(F'''\nCreated folder {target_model_path}''' )
torch.save(a_ , os.path.join(a_ , "pytorch_model.bin" ) )
print("\nPruned model saved! See you later!" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser()
parser.add_argument(
'--pruning_method',
choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'],
type=str,
required=True,
help=(
'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,'
' sigmoied_threshold = Soft movement pruning)'
),
)
parser.add_argument(
'--threshold',
type=float,
required=False,
help=(
'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.'
'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.'
'Not needed for `l0`'
),
)
parser.add_argument(
'--model_name_or_path',
type=str,
required=True,
help='Folder containing the model that was previously fine-pruned',
)
parser.add_argument(
'--target_model_path',
default=None,
type=str,
required=False,
help='Folder containing the model that was previously fine-pruned',
)
SCREAMING_SNAKE_CASE :str = parser.parse_args()
main(args)
| 15 | 1 |
import os
import unittest
from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer
from transformers.testing_utils import require_jieba, tooslow
from ...test_tokenization_common import TokenizerTesterMixin
@require_jieba
class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase__ : Union[str, Any] = CpmAntTokenizer
UpperCamelCase__ : Optional[Any] = False
def _A ( self ):
'''simple docstring'''
super().setUp()
__SCREAMING_SNAKE_CASE = [
'<d>',
'</d>',
'<s>',
'</s>',
'</_>',
'<unk>',
'<pad>',
'</n>',
'我',
'是',
'C',
'P',
'M',
'A',
'n',
't',
]
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
@tooslow
def _A ( self ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' )
__SCREAMING_SNAKE_CASE = '今天天气真好!'
__SCREAMING_SNAKE_CASE = ['今天', '天气', '真', '好', '!']
__SCREAMING_SNAKE_CASE = tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
__SCREAMING_SNAKE_CASE = '今天天气真好!'
__SCREAMING_SNAKE_CASE = [tokenizer.bos_token] + tokens
__SCREAMING_SNAKE_CASE = [6, 9_802, 14_962, 2_082, 831, 244]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A )
__SCREAMING_SNAKE_CASE = tokenizer.decode(_A )
self.assertEqual(_A , _A )
| 118 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ : Optional[int] =logging.get_logger(__name__)
def __lowercase ( a__ , a__=False ) -> Tuple:
__SCREAMING_SNAKE_CASE = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
('cls_token', 'deit.embeddings.cls_token'),
('dist_token', 'deit.embeddings.distillation_token'),
('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'),
('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'),
('pos_embed', 'deit.embeddings.position_embeddings'),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
('pre_logits.fc.weight', 'pooler.dense.weight'),
('pre_logits.fc.bias', 'pooler.dense.bias'),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
__SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
('norm.weight', 'deit.layernorm.weight'),
('norm.bias', 'deit.layernorm.bias'),
('head.weight', 'cls_classifier.weight'),
('head.bias', 'cls_classifier.bias'),
('head_dist.weight', 'distillation_classifier.weight'),
('head_dist.bias', 'distillation_classifier.bias'),
] )
return rename_keys
def __lowercase ( a__ , a__ , a__=False ) -> Tuple:
for i in range(config.num_hidden_layers ):
if base_model:
__SCREAMING_SNAKE_CASE = ''
else:
__SCREAMING_SNAKE_CASE = 'deit.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__SCREAMING_SNAKE_CASE = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" )
__SCREAMING_SNAKE_CASE = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
__SCREAMING_SNAKE_CASE = in_proj_weight[
: config.hidden_size, :
]
__SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size]
__SCREAMING_SNAKE_CASE = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__SCREAMING_SNAKE_CASE = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__SCREAMING_SNAKE_CASE = in_proj_weight[
-config.hidden_size :, :
]
__SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :]
def __lowercase ( a__ , a__ , a__ ) -> str:
__SCREAMING_SNAKE_CASE = dct.pop(a__ )
__SCREAMING_SNAKE_CASE = val
def __lowercase ( ) -> List[Any]:
__SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw )
return im
@torch.no_grad()
def __lowercase ( a__ , a__ ) -> Dict:
__SCREAMING_SNAKE_CASE = DeiTConfig()
# all deit models have fine-tuned heads
__SCREAMING_SNAKE_CASE = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
__SCREAMING_SNAKE_CASE = 10_00
__SCREAMING_SNAKE_CASE = 'huggingface/label-files'
__SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json'
__SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) )
__SCREAMING_SNAKE_CASE = {int(a__ ): v for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE = idalabel
__SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE = int(deit_name[-6:-4] )
__SCREAMING_SNAKE_CASE = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith('tiny' ):
__SCREAMING_SNAKE_CASE = 1_92
__SCREAMING_SNAKE_CASE = 7_68
__SCREAMING_SNAKE_CASE = 12
__SCREAMING_SNAKE_CASE = 3
elif deit_name[9:].startswith('small' ):
__SCREAMING_SNAKE_CASE = 3_84
__SCREAMING_SNAKE_CASE = 15_36
__SCREAMING_SNAKE_CASE = 12
__SCREAMING_SNAKE_CASE = 6
if deit_name[9:].startswith('base' ):
pass
elif deit_name[4:].startswith('large' ):
__SCREAMING_SNAKE_CASE = 10_24
__SCREAMING_SNAKE_CASE = 40_96
__SCREAMING_SNAKE_CASE = 24
__SCREAMING_SNAKE_CASE = 16
# load original model from timm
__SCREAMING_SNAKE_CASE = timm.create_model(a__ , pretrained=a__ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
__SCREAMING_SNAKE_CASE = timm_model.state_dict()
__SCREAMING_SNAKE_CASE = create_rename_keys(a__ , a__ )
for src, dest in rename_keys:
rename_key(a__ , a__ , a__ )
read_in_q_k_v(a__ , a__ , a__ )
# load HuggingFace model
__SCREAMING_SNAKE_CASE = DeiTForImageClassificationWithTeacher(a__ ).eval()
model.load_state_dict(a__ )
# Check outputs on an image, prepared by DeiTImageProcessor
__SCREAMING_SNAKE_CASE = int(
(2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
__SCREAMING_SNAKE_CASE = DeiTImageProcessor(size=a__ , crop_size=config.image_size )
__SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors='pt' )
__SCREAMING_SNAKE_CASE = encoding['pixel_values']
__SCREAMING_SNAKE_CASE = model(a__ )
__SCREAMING_SNAKE_CASE = timm_model(a__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(a__ , outputs.logits , atol=1E-3 )
Path(a__ ).mkdir(exist_ok=a__ )
print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(a__ )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(a__ )
if __name__ == "__main__":
lowerCAmelCase__ : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--deit_name''',
default='''vit_deit_base_distilled_patch16_224''',
type=str,
help='''Name of the DeiT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
lowerCAmelCase__ : str =parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 118 | 1 |
"""simple docstring"""
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
__A : Any = "\\n Text data.\n Second line of data."
__A : str = "file"
@pytest.fixture(scope='''session''' )
def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
_UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''')
_UpperCAmelCase = bytes(_SCREAMING_SNAKE_CASE , '''utf-8''' )
with zstd.open(_SCREAMING_SNAKE_CASE , '''wb''' ) as f:
f.write(_SCREAMING_SNAKE_CASE )
return path
@pytest.fixture
def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , '''w''' ) as f:
f.write(_SCREAMING_SNAKE_CASE )
return FILE_PATH
@pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] )
def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
_UpperCAmelCase = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path}
_UpperCAmelCase = input_paths[compression_format]
_UpperCAmelCase = tmp_path / '''cache'''
_UpperCAmelCase = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE ) as f:
_UpperCAmelCase = f.read()
with open(_SCREAMING_SNAKE_CASE ) as f:
_UpperCAmelCase = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize('''default_extracted''' , [True, False] )
@pytest.mark.parametrize('''default_cache_dir''' , [True, False] )
def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
_UpperCAmelCase = '''custom_cache'''
_UpperCAmelCase = '''custom_extracted_dir'''
_UpperCAmelCase = tmp_path / '''custom_extracted_path'''
if default_extracted:
_UpperCAmelCase = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''')
else:
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , _SCREAMING_SNAKE_CASE )
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
_UpperCAmelCase = xz_file
_UpperCAmelCase = (
DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE )
)
_UpperCAmelCase = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE )
assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected
def lowercase ( _SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
_UpperCAmelCase = str(Path(_SCREAMING_SNAKE_CASE ).resolve() )
assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file
# relative path
_UpperCAmelCase = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = str(tmp_path.resolve() / '''__missing_file__.txt''' )
with pytest.raises(_SCREAMING_SNAKE_CASE ):
cached_path(_SCREAMING_SNAKE_CASE )
# relative path
_UpperCAmelCase = '''./__missing_file__.txt'''
with pytest.raises(_SCREAMING_SNAKE_CASE ):
cached_path(_SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = get_from_cache(f'tmp://{tmpfs_file}' )
with open(_SCREAMING_SNAKE_CASE ) as f:
_UpperCAmelCase = f.read()
assert output_file_content == FILE_CONTENT
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE )
def lowercase ( ):
'''simple docstring'''
with pytest.raises(_SCREAMING_SNAKE_CASE ):
cached_path('''https://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
_UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(_SCREAMING_SNAKE_CASE ):
http_get('''https://huggingface.co''' , temp_file=_SCREAMING_SNAKE_CASE )
with pytest.raises(_SCREAMING_SNAKE_CASE ):
http_head('''https://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
_UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(_SCREAMING_SNAKE_CASE ):
ftp_get('''ftp://huggingface.co''' , temp_file=_SCREAMING_SNAKE_CASE )
with pytest.raises(_SCREAMING_SNAKE_CASE ):
ftp_head('''ftp://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
_UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(_SCREAMING_SNAKE_CASE ):
fsspec_get('''s3://huggingface.co''' , temp_file=_SCREAMING_SNAKE_CASE )
with pytest.raises(_SCREAMING_SNAKE_CASE ):
fsspec_head('''s3://huggingface.co''' )
| 260 |
"""simple docstring"""
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
__A : str = sys.version_info >= (3, 10)
def lowercase ( _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Tuple=None ):
'''simple docstring'''
return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE )
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = 42
UpperCamelCase__ = 42
UpperCamelCase__ = 42
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = field(default="""toto""" , metadata={"""help""": """help message"""})
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = False
UpperCamelCase__ = True
UpperCamelCase__ = None
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = """titi"""
UpperCamelCase__ = """toto"""
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = """titi"""
UpperCamelCase__ = """toto"""
UpperCamelCase__ = 42
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = "toto"
def lowercase__ ( self : Tuple )->Optional[int]:
_UpperCAmelCase = BasicEnum(self.foo )
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = "toto"
def lowercase__ ( self : List[str] )->List[Any]:
_UpperCAmelCase = MixedTypeEnum(self.foo )
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = None
UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """help message"""})
UpperCamelCase__ = None
UpperCamelCase__ = list_field(default=[])
UpperCamelCase__ = list_field(default=[])
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = list_field(default=[])
UpperCamelCase__ = list_field(default=[1, 2, 3])
UpperCamelCase__ = list_field(default=["""Hallo""", """Bonjour""", """Hello"""])
UpperCamelCase__ = list_field(default=[0.1, 0.2, 0.3])
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = field()
UpperCamelCase__ = field()
UpperCamelCase__ = field()
def lowercase__ ( self : int )->str:
_UpperCAmelCase = BasicEnum(self.required_enum )
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = field()
UpperCamelCase__ = None
UpperCamelCase__ = field(default="""toto""" , metadata={"""help""": """help message"""})
UpperCamelCase__ = list_field(default=["""Hallo""", """Bonjour""", """Hello"""])
if is_python_no_less_than_3_10:
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = False
UpperCamelCase__ = True
UpperCamelCase__ = None
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = None
UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """help message"""})
UpperCamelCase__ = None
UpperCamelCase__ = list_field(default=[])
UpperCamelCase__ = list_field(default=[])
class _a ( unittest.TestCase):
"""simple docstring"""
def lowercase__ ( self : int , __UpperCamelCase : argparse.ArgumentParser , __UpperCamelCase : argparse.ArgumentParser )->Dict:
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
_UpperCAmelCase = {k: v for k, v in vars(__UpperCamelCase ).items() if k != '''container'''}
_UpperCAmelCase = {k: v for k, v in vars(__UpperCamelCase ).items() if k != '''container'''}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get('''choices''' , __UpperCamelCase ) and yy.get('''choices''' , __UpperCamelCase ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx['''type'''](__UpperCamelCase ) , yy['''type'''](__UpperCamelCase ) )
del xx["type"], yy["type"]
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : int )->str:
_UpperCAmelCase = HfArgumentParser(__UpperCamelCase )
_UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=__UpperCamelCase , required=__UpperCamelCase )
expected.add_argument('''--bar''' , type=__UpperCamelCase , required=__UpperCamelCase )
expected.add_argument('''--baz''' , type=__UpperCamelCase , required=__UpperCamelCase )
expected.add_argument('''--flag''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' )
self.argparsersEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5''']
((_UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(__UpperCamelCase , look_for_args_file=__UpperCamelCase )
self.assertFalse(example.flag )
def lowercase__ ( self : Dict )->List[Any]:
_UpperCAmelCase = HfArgumentParser(__UpperCamelCase )
_UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=4_2 , type=__UpperCamelCase )
expected.add_argument('''--baz''' , default='''toto''' , type=__UpperCamelCase , help='''help message''' )
self.argparsersEqual(__UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : Tuple )->List[str]:
_UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' )
expected.add_argument('''--baz''' , type=__UpperCamelCase , default=__UpperCamelCase , const=__UpperCamelCase , nargs='''?''' )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument('''--no_baz''' , action='''store_false''' , default=__UpperCamelCase , dest='''baz''' )
expected.add_argument('''--opt''' , type=__UpperCamelCase , default=__UpperCamelCase )
_UpperCAmelCase = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__UpperCamelCase )
for dataclass_type in dataclass_types:
_UpperCAmelCase = HfArgumentParser(__UpperCamelCase )
self.argparsersEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = parser.parse_args([] )
self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) )
_UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] )
self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) )
_UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] )
self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) )
_UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] )
self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) )
_UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] )
self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , baz=__UpperCamelCase , opt=__UpperCamelCase ) )
def lowercase__ ( self : Optional[Any] )->str:
_UpperCAmelCase = HfArgumentParser(__UpperCamelCase )
_UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , )
self.argparsersEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
_UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
_UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
_UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
_UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 4_2 )
_UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def lowercase__ ( self : List[str] )->List[str]:
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = "toto"
_UpperCAmelCase = HfArgumentParser(__UpperCamelCase )
_UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , )
self.argparsersEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
_UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
_UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 4_2 )
def lowercase__ ( self : int )->int:
_UpperCAmelCase = HfArgumentParser(__UpperCamelCase )
_UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=__UpperCamelCase )
expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=__UpperCamelCase )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__UpperCamelCase )
expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=__UpperCamelCase )
self.argparsersEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = parser.parse_args([] )
self.assertEqual(
__UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , )
_UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() )
self.assertEqual(__UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) )
def lowercase__ ( self : Union[str, Any] )->Tuple:
_UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=__UpperCamelCase , type=__UpperCamelCase )
expected.add_argument('''--bar''' , default=__UpperCamelCase , type=__UpperCamelCase , help='''help message''' )
expected.add_argument('''--baz''' , default=__UpperCamelCase , type=__UpperCamelCase )
expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=__UpperCamelCase )
expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=__UpperCamelCase )
_UpperCAmelCase = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__UpperCamelCase )
for dataclass_type in dataclass_types:
_UpperCAmelCase = HfArgumentParser(__UpperCamelCase )
self.argparsersEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = parser.parse_args([] )
self.assertEqual(__UpperCamelCase , Namespace(foo=__UpperCamelCase , bar=__UpperCamelCase , baz=__UpperCamelCase , ces=[] , des=[] ) )
_UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() )
self.assertEqual(__UpperCamelCase , Namespace(foo=1_2 , bar=3.1_4 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) )
def lowercase__ ( self : Any )->int:
_UpperCAmelCase = HfArgumentParser(__UpperCamelCase )
_UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--required_list''' , nargs='''+''' , type=__UpperCamelCase , required=__UpperCamelCase )
expected.add_argument('''--required_str''' , type=__UpperCamelCase , required=__UpperCamelCase )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__UpperCamelCase , )
self.argparsersEqual(__UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : str )->List[Any]:
_UpperCAmelCase = HfArgumentParser(__UpperCamelCase )
_UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=__UpperCamelCase , required=__UpperCamelCase )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__UpperCamelCase , )
expected.add_argument('''--opt''' , type=__UpperCamelCase , default=__UpperCamelCase )
expected.add_argument('''--baz''' , default='''toto''' , type=__UpperCamelCase , help='''help message''' )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__UpperCamelCase )
self.argparsersEqual(__UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : Optional[Any] )->Optional[int]:
_UpperCAmelCase = HfArgumentParser(__UpperCamelCase )
_UpperCAmelCase = {
'''foo''': 1_2,
'''bar''': 3.1_4,
'''baz''': '''42''',
'''flag''': True,
}
_UpperCAmelCase = parser.parse_dict(__UpperCamelCase )[0]
_UpperCAmelCase = BasicExample(**__UpperCamelCase )
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : Union[str, Any] )->List[str]:
_UpperCAmelCase = HfArgumentParser(__UpperCamelCase )
_UpperCAmelCase = {
'''foo''': 1_2,
'''bar''': 3.1_4,
'''baz''': '''42''',
'''flag''': True,
'''extra''': 4_2,
}
self.assertRaises(__UpperCamelCase , parser.parse_dict , __UpperCamelCase , allow_extra_keys=__UpperCamelCase )
def lowercase__ ( self : Optional[Any] )->Optional[int]:
_UpperCAmelCase = HfArgumentParser(__UpperCamelCase )
_UpperCAmelCase = {
'''foo''': 1_2,
'''bar''': 3.1_4,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = os.path.join(__UpperCamelCase , '''temp_json''' )
os.mkdir(__UpperCamelCase )
with open(temp_local_path + '''.json''' , '''w+''' ) as f:
json.dump(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0]
_UpperCAmelCase = BasicExample(**__UpperCamelCase )
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : Union[str, Any] )->Any:
_UpperCAmelCase = HfArgumentParser(__UpperCamelCase )
_UpperCAmelCase = {
'''foo''': 1_2,
'''bar''': 3.1_4,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = os.path.join(__UpperCamelCase , '''temp_yaml''' )
os.mkdir(__UpperCamelCase )
with open(temp_local_path + '''.yaml''' , '''w+''' ) as f:
yaml.dump(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0]
_UpperCAmelCase = BasicExample(**__UpperCamelCase )
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : int )->List[str]:
_UpperCAmelCase = HfArgumentParser(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
| 260 | 1 |
"""simple docstring"""
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
a_ = logging.get_logger(__name__)
@add_end_docstrings(SCREAMING_SNAKE_CASE__ )
class __snake_case ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
def __init__( self , **__lowerCamelCase ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
requires_backends(self , '''vision''' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , __lowerCamelCase , **__lowerCamelCase ):
'''simple docstring'''
return super().__call__(__lowerCamelCase , **__lowerCamelCase )
def UpperCamelCase__( self , **__lowerCamelCase ):
'''simple docstring'''
__A : Union[str, Any] = {}
if "candidate_labels" in kwargs:
__A : Tuple = kwargs['''candidate_labels''']
if "hypothesis_template" in kwargs:
__A : List[str] = kwargs['''hypothesis_template''']
return preprocess_params, {}, {}
def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase="This is a photo of {}." ):
'''simple docstring'''
__A : Optional[int] = load_image(__lowerCamelCase )
__A : Optional[int] = self.image_processor(images=[image] , return_tensors=self.framework )
__A : int = candidate_labels
__A : int = [hypothesis_template.format(__lowerCamelCase ) for x in candidate_labels]
__A : Dict = self.tokenizer(__lowerCamelCase , return_tensors=self.framework , padding=__lowerCamelCase )
__A : int = [text_inputs]
return inputs
def UpperCamelCase__( self , __lowerCamelCase ):
'''simple docstring'''
__A : Optional[int] = model_inputs.pop('''candidate_labels''' )
__A : str = model_inputs.pop('''text_inputs''' )
if isinstance(text_inputs[0] , __lowerCamelCase ):
__A : Union[str, Any] = text_inputs[0]
else:
# Batching case.
__A : str = text_inputs[0][0]
__A : List[str] = self.model(**__lowerCamelCase , **__lowerCamelCase )
__A : Dict = {
'''candidate_labels''': candidate_labels,
'''logits''': outputs.logits_per_image,
}
return model_outputs
def UpperCamelCase__( self , __lowerCamelCase ):
'''simple docstring'''
__A : Optional[int] = model_outputs.pop('''candidate_labels''' )
__A : int = model_outputs['''logits'''][0]
if self.framework == "pt":
__A : Union[str, Any] = logits.softmax(dim=-1 ).squeeze(-1 )
__A : Dict = probs.tolist()
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
__A : List[Any] = [scores]
elif self.framework == "tf":
__A : List[Any] = stable_softmax(__lowerCamelCase , axis=-1 )
__A : str = probs.numpy().tolist()
else:
raise ValueError(F"""Unsupported framework: {self.framework}""" )
__A : str = [
{'''score''': score, '''label''': candidate_label}
for score, candidate_label in sorted(zip(__lowerCamelCase , __lowerCamelCase ) , key=lambda __lowerCamelCase : -x[0] )
]
return result
| 362 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a_ = {
"""configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ["""VivitImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
"""VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""VivitModel""",
"""VivitPreTrainedModel""",
"""VivitForVideoClassification""",
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 291 | 0 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def _UpperCamelCase ( ) -> Any:
'''simple docstring'''
UpperCamelCase__ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=__A )
UpperCamelCase__ = parser.add_subparsers(help="accelerate command helpers" )
# Register commands
get_config_parser(subparsers=__A )
env_command_parser(subparsers=__A )
launch_command_parser(subparsers=__A )
tpu_command_parser(subparsers=__A )
test_command_parser(subparsers=__A )
# Let's go
UpperCamelCase__ = parser.parse_args()
if not hasattr(__A , "func" ):
parser.print_help()
exit(1 )
# Run
args.func(__A )
if __name__ == "__main__":
main()
| 80 |
'''simple docstring'''
from math import factorial, pi
def _UpperCamelCase ( __A , __A = 30 ) -> float:
'''simple docstring'''
if not isinstance(__A , (int, float) ):
raise ValueError("maclaurin_sin() requires either an int or float for theta" )
if not isinstance(__A , __A ) or accuracy <= 0:
raise ValueError("maclaurin_sin() requires a positive int for accuracy" )
UpperCamelCase__ = float(__A )
UpperCamelCase__ = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__A ) )
def _UpperCamelCase ( __A , __A = 30 ) -> float:
'''simple docstring'''
if not isinstance(__A , (int, float) ):
raise ValueError("maclaurin_cos() requires either an int or float for theta" )
if not isinstance(__A , __A ) or accuracy <= 0:
raise ValueError("maclaurin_cos() requires a positive int for accuracy" )
UpperCamelCase__ = float(__A )
UpperCamelCase__ = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(1_0))
print(maclaurin_sin(-1_0))
print(maclaurin_sin(1_0, 1_5))
print(maclaurin_sin(-1_0, 1_5))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(1_0, 1_5))
print(maclaurin_cos(-1_0, 1_5))
| 80 | 1 |
import warnings
from .generation import TFGenerationMixin
class lowerCAmelCase ( lowercase_ ):
# warning at import time
warnings.warn(
'Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will '
'be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.' , lowercase_ , )
| 201 |
import math
def _A ( __magic_name__ ):
lowercase__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(__magic_name__ )
def _A ( __magic_name__ = 1 / 1_2345 ):
lowercase__ = 0
lowercase__ = 0
lowercase__ = 3
while True:
lowercase__ = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(__magic_name__ ):
lowercase__ = int(__magic_name__ )
total_partitions += 1
if check_partition_perfect(__magic_name__ ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(__magic_name__ )
integer += 1
if __name__ == "__main__":
print(F"""{solution() = }""")
| 201 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase__ = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["PLBartTokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"PLBART_PRETRAINED_MODEL_ARCHIVE_LIST",
"PLBartForCausalLM",
"PLBartForConditionalGeneration",
"PLBartForSequenceClassification",
"PLBartModel",
"PLBartPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 0 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
snake_case_ : Optional[Any] = "pt"
elif is_tf_available():
snake_case_ : Union[str, Any] = "tf"
else:
snake_case_ : str = "jax"
class __snake_case ( a , unittest.TestCase ):
UpperCAmelCase__ : List[Any] = ByTaTokenizer
UpperCAmelCase__ : int = False
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
super().setUp()
UpperCAmelCase_ = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname)
@cached_property
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
return ByTaTokenizer.from_pretrained('''google/byt5-small''')
def lowerCamelCase ( self : List[str] , **_snake_case : Union[str, Any]):
"""simple docstring"""
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case)
def lowerCamelCase ( self : Dict , _snake_case : int , _snake_case : Tuple=False , _snake_case : Dict=20 , _snake_case : Optional[Any]=5):
"""simple docstring"""
UpperCAmelCase_ = []
for i in range(len(_snake_case)):
try:
UpperCAmelCase_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_snake_case)
except UnicodeDecodeError:
pass
toks.append((i, tok))
UpperCAmelCase_ = list(filter(lambda _snake_case: re.match(r'''^[ a-zA-Z]+$''' , t[1]) , _snake_case))
UpperCAmelCase_ = list(filter(lambda _snake_case: [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_snake_case) , _snake_case))
if max_length is not None and len(_snake_case) > max_length:
UpperCAmelCase_ = toks[:max_length]
if min_length is not None and len(_snake_case) < min_length and len(_snake_case) > 0:
while len(_snake_case) < min_length:
UpperCAmelCase_ = toks + toks
# toks_str = [t[1] for t in toks]
UpperCAmelCase_ = [t[0] for t in toks]
# Ensure consistency
UpperCAmelCase_ = tokenizer.decode(_snake_case , clean_up_tokenization_spaces=_snake_case)
if " " not in output_txt and len(_snake_case) > 1:
UpperCAmelCase_ = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_snake_case)
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_snake_case)
)
if with_prefix_space:
UpperCAmelCase_ = ''' ''' + output_txt
UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case)
return output_txt, output_ids
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.ta_base_tokenizer
UpperCAmelCase_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''])
UpperCAmelCase_ = tokenizer(['''hi''', '''I went to the gym''', ''''''])
self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''])
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.ta_base_tokenizer
UpperCAmelCase_ = '''Unicode €.'''
UpperCAmelCase_ = tokenizer(_snake_case)
UpperCAmelCase_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded['''input_ids'''] , _snake_case)
# decoding
UpperCAmelCase_ = tokenizer.decode(_snake_case)
self.assertEqual(_snake_case , '''Unicode €.</s>''')
UpperCAmelCase_ = tokenizer('''e è é ê ë''')
UpperCAmelCase_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded['''input_ids'''] , _snake_case)
# decoding
UpperCAmelCase_ = tokenizer.decode(_snake_case)
self.assertEqual(_snake_case , '''e è é ê ë</s>''')
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''')) , '''e è é ê ë</s>''')
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = self.ta_base_tokenizer
UpperCAmelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
# fmt: off
UpperCAmelCase_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
UpperCAmelCase_ = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case)
self.assertIsInstance(_snake_case , _snake_case)
if FRAMEWORK != "jax":
UpperCAmelCase_ = list(batch.input_ids.numpy()[0])
else:
UpperCAmelCase_ = list(batch.input_ids.tolist()[0])
self.assertListEqual(_snake_case , _snake_case)
self.assertEqual((2, 37) , batch.input_ids.shape)
self.assertEqual((2, 37) , batch.attention_mask.shape)
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = self.ta_base_tokenizer
UpperCAmelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
UpperCAmelCase_ = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case)
# check if input_ids are returned and no decoder_input_ids
self.assertIn('''input_ids''' , _snake_case)
self.assertIn('''attention_mask''' , _snake_case)
self.assertNotIn('''decoder_input_ids''' , _snake_case)
self.assertNotIn('''decoder_attention_mask''' , _snake_case)
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.ta_base_tokenizer
UpperCAmelCase_ = [
'''Summary of the text.''',
'''Another summary.''',
]
UpperCAmelCase_ = tokenizer(
text_target=_snake_case , max_length=32 , padding='''max_length''' , truncation=_snake_case , return_tensors=_snake_case)
self.assertEqual(32 , targets['''input_ids'''].shape[1])
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ = self.ta_base_tokenizer
UpperCAmelCase_ = ['''A long paragraph for summarization. </s>''']
UpperCAmelCase_ = ['''Summary of the text. </s>''']
# fmt: off
UpperCAmelCase_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
UpperCAmelCase_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
UpperCAmelCase_ = tokenizer(_snake_case , text_target=_snake_case)
self.assertEqual(_snake_case , batch['''input_ids'''][0])
self.assertEqual(_snake_case , batch['''labels'''][0])
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}"""):
self.assertNotEqual(tokenizer.model_max_length , 42)
# Now let's start the test
UpperCAmelCase_ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}"""):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = ''' He is very happy, UNwant\u00E9d,running'''
UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case)
tokenizer.save_pretrained(_snake_case)
UpperCAmelCase_ = tokenizer.__class__.from_pretrained(_snake_case)
UpperCAmelCase_ = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case)
self.assertListEqual(_snake_case , _snake_case)
shutil.rmtree(_snake_case)
UpperCAmelCase_ = self.get_tokenizers(model_max_length=42)
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}"""):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = ''' He is very happy, UNwant\u00E9d,running'''
tokenizer.add_tokens(['''bim''', '''bambam'''])
UpperCAmelCase_ = tokenizer.additional_special_tokens
additional_special_tokens.append('''new_additional_special_token''')
tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens})
UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case)
tokenizer.save_pretrained(_snake_case)
UpperCAmelCase_ = tokenizer.__class__.from_pretrained(_snake_case)
UpperCAmelCase_ = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case)
self.assertListEqual(_snake_case , _snake_case)
self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens)
self.assertEqual(after_tokenizer.model_max_length , 42)
UpperCAmelCase_ = tokenizer.__class__.from_pretrained(_snake_case , model_max_length=43)
self.assertEqual(tokenizer.model_max_length , 43)
shutil.rmtree(_snake_case)
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_snake_case)
with open(os.path.join(_snake_case , '''special_tokens_map.json''') , encoding='''utf-8''') as json_file:
UpperCAmelCase_ = json.load(_snake_case)
with open(os.path.join(_snake_case , '''tokenizer_config.json''') , encoding='''utf-8''') as json_file:
UpperCAmelCase_ = json.load(_snake_case)
UpperCAmelCase_ = [F"""<extra_id_{i}>""" for i in range(125)]
UpperCAmelCase_ = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
UpperCAmelCase_ = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
with open(os.path.join(_snake_case , '''special_tokens_map.json''') , '''w''' , encoding='''utf-8''') as outfile:
json.dump(_snake_case , _snake_case)
with open(os.path.join(_snake_case , '''tokenizer_config.json''') , '''w''' , encoding='''utf-8''') as outfile:
json.dump(_snake_case , _snake_case)
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
UpperCAmelCase_ = tokenizer_class.from_pretrained(
_snake_case , )
self.assertIn(
'''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens)
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''])) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
UpperCAmelCase_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_snake_case)]
UpperCAmelCase_ = tokenizer_class.from_pretrained(
_snake_case , additional_special_tokens=_snake_case , )
self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens)
self.assertEqual(
['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''])) , )
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_snake_case)
UpperCAmelCase_ = tokenizer_class.from_pretrained(_snake_case)
self.assertTrue(tokenizer.decode([255]) == '''''')
def lowerCamelCase ( self : int):
"""simple docstring"""
pass
def lowerCamelCase ( self : Optional[int]):
"""simple docstring"""
pass
def lowerCamelCase ( self : Dict):
"""simple docstring"""
pass
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
pass
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizers(fast=_snake_case , do_lower_case=_snake_case)
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}"""):
UpperCAmelCase_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>''']
UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case)
self.assertIsInstance(_snake_case , _snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}"""):
UpperCAmelCase_ = [
'''bos_token''',
'''eos_token''',
'''unk_token''',
'''sep_token''',
'''pad_token''',
'''cls_token''',
'''mask_token''',
]
UpperCAmelCase_ = 0
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(
_snake_case , skip_special_tokens=_snake_case)
for attr in attributes_list:
setattr(_snake_case , attr + '''_id''' , _snake_case)
self.assertEqual(getattr(_snake_case , _snake_case) , _snake_case)
self.assertEqual(getattr(_snake_case , attr + '''_id''') , _snake_case)
setattr(_snake_case , attr + '''_id''' , _snake_case)
self.assertEqual(getattr(_snake_case , _snake_case) , _snake_case)
self.assertEqual(getattr(_snake_case , attr + '''_id''') , _snake_case)
setattr(_snake_case , '''additional_special_tokens_ids''' , [])
self.assertListEqual(getattr(_snake_case , '''additional_special_tokens''') , [])
self.assertListEqual(getattr(_snake_case , '''additional_special_tokens_ids''') , [])
setattr(_snake_case , '''additional_special_tokens_ids''' , [token_id_to_test_setters])
self.assertListEqual(getattr(_snake_case , '''additional_special_tokens''') , [token_to_test_setters])
self.assertListEqual(getattr(_snake_case , '''additional_special_tokens_ids''') , [token_id_to_test_setters])
| 51 | 0 |
from functools import lru_cache
def lowerCAmelCase_( lowercase_ : int ) -> set:
_lowerCamelCase = 2
_lowerCamelCase = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(lowercase_ )
if n > 1:
factors.add(lowercase_ )
return factors
@lru_cache
def lowerCAmelCase_( lowercase_ : int ) -> int:
return len(unique_prime_factors(lowercase_ ) )
def lowerCAmelCase_( lowercase_ : list ) -> bool:
return len(set(lowercase_ ) ) in (0, 1)
def lowerCAmelCase_( lowercase_ : int ) -> list:
_lowerCamelCase = 2
while True:
# Increment each value of a generated range
_lowerCamelCase = [base + i for i in range(lowercase_ )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
_lowerCamelCase = [upf_len(lowercase_ ) for x in group]
checker.append(lowercase_ )
# If all numbers in the list are equal, return the group variable.
if equality(lowercase_ ):
return group
# Increment our base variable by 1
base += 1
def lowerCAmelCase_( lowercase_ : int = 4 ) -> int:
_lowerCamelCase = run(lowercase_ )
return results[0] if len(lowercase_ ) else None
if __name__ == "__main__":
print(solution())
| 364 |
"""simple docstring"""
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def lowerCAmelCase_( lowercase_ : List[str]="" ) -> str:
_lowerCamelCase = tempfile.mkdtemp()
return os.path.join(lowercase_ , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class lowerCamelCase_( unittest.TestCase ):
'''simple docstring'''
def snake_case__ ( self ):
_lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5
_lowerCamelCase = AgentAudio(lowerCamelCase__ )
_lowerCamelCase = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(lowerCamelCase__ ) )
# Ensure that the file contains the same value as the original tensor
_lowerCamelCase , _lowerCamelCase = sf.read(lowerCamelCase__ )
self.assertTrue(torch.allclose(lowerCamelCase__ , torch.tensor(lowerCamelCase__ ) , atol=1e-4 ) )
def snake_case__ ( self ):
_lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5
_lowerCamelCase = get_new_path(suffix='''.wav''' )
sf.write(lowerCamelCase__ , lowerCamelCase__ , 1_6_0_0_0 )
_lowerCamelCase = AgentAudio(lowerCamelCase__ )
self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) )
self.assertEqual(agent_type.to_string() , lowerCamelCase__ )
@require_vision
@require_torch
class lowerCamelCase_( unittest.TestCase ):
'''simple docstring'''
def snake_case__ ( self ):
_lowerCamelCase = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) )
_lowerCamelCase = AgentImage(lowerCamelCase__ )
_lowerCamelCase = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type._tensor , atol=1e-4 ) )
self.assertIsInstance(agent_type.to_raw() , Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowerCamelCase__ ) )
def snake_case__ ( self ):
_lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png'''
_lowerCamelCase = Image.open(lowerCamelCase__ )
_lowerCamelCase = AgentImage(lowerCamelCase__ )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowerCamelCase__ ) )
def snake_case__ ( self ):
_lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png'''
_lowerCamelCase = Image.open(lowerCamelCase__ )
_lowerCamelCase = AgentImage(lowerCamelCase__ )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowerCamelCase__ ) )
class lowerCamelCase_( unittest.TestCase ):
'''simple docstring'''
def snake_case__ ( self ):
_lowerCamelCase = '''Hey!'''
_lowerCamelCase = AgentText(lowerCamelCase__ )
self.assertEqual(lowerCamelCase__ , agent_type.to_string() )
self.assertEqual(lowerCamelCase__ , agent_type.to_raw() )
self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
| 73 | 0 |
A : int = "0.18.2"
from .configuration_utils import ConfigMixin
from .utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
logging,
)
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_onnx_objects import * # noqa F403
else:
from .pipelines import OnnxRuntimeModel
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .models import (
AutoencoderKL,
ControlNetModel,
ModelMixin,
PriorTransformer,
TaFilmDecoder,
TransformeraDModel,
UNetaDModel,
UNetaDConditionModel,
UNetaDModel,
UNetaDConditionModel,
VQModel,
)
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
)
from .pipelines import (
AudioPipelineOutput,
ConsistencyModelPipeline,
DanceDiffusionPipeline,
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
ImagePipelineOutput,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
DDIMScheduler,
DDPMParallelScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
KDPMaAncestralDiscreteScheduler,
KDPMaDiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
UnCLIPScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .schedulers import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .schedulers import DPMSolverSDEScheduler
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
AltDiffusionImgaImgPipeline,
AltDiffusionPipeline,
AudioLDMPipeline,
CycleDiffusionPipeline,
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
ImageTextPipelineOutput,
KandinskyImgaImgPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaControlnetPipeline,
KandinskyVaaImgaImgPipeline,
KandinskyVaaInpaintPipeline,
KandinskyVaaPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
KandinskyVaaPriorPipeline,
LDMTextToImagePipeline,
PaintByExamplePipeline,
SemanticStableDiffusionPipeline,
ShapEImgaImgPipeline,
ShapEPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionControlNetImgaImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImgaImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPixaPixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDMaDPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
StableDiffusionPixaPixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImgaImgPipeline,
StableUnCLIPPipeline,
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
UnCLIPImageVariationPipeline,
UnCLIPPipeline,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipelines import StableDiffusionKDiffusionPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
else:
from .pipelines import (
OnnxStableDiffusionImgaImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
else:
from .pipelines import AudioDiffusionPipeline, Mel
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .pipelines import SpectrogramDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_objects import * # noqa F403
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
FlaxStableDiffusionControlNetPipeline,
FlaxStableDiffusionImgaImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_note_seq_objects import * # noqa F403
else:
from .pipelines import MidiProcessor
| 118 |
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
A : Any = logging.getLogger(__name__)
def a__ ( __UpperCamelCase , __UpperCamelCase ):
return (preds == labels).mean()
@dataclass
class lowerCamelCase :
"""simple docstring"""
lowerCamelCase__ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
lowerCamelCase__ = field(
default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
lowerCamelCase__ = field(
default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
lowerCamelCase__ = field(
default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class lowerCamelCase :
"""simple docstring"""
lowerCamelCase__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} )
lowerCamelCase__ = field(metadata={'''help''': '''Should contain the data files for the task.'''} )
lowerCamelCase__ = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
lowerCamelCase__ = field(
default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def a__ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
SCREAMING_SNAKE_CASE_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
" --overwrite_output_dir to overcome." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s" , __UpperCamelCase )
# Set seed
set_seed(training_args.seed )
try:
SCREAMING_SNAKE_CASE_ = processors[data_args.task_name]()
SCREAMING_SNAKE_CASE_ = processor.get_labels()
SCREAMING_SNAKE_CASE_ = len(__UpperCamelCase )
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCamelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
SCREAMING_SNAKE_CASE_ = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , )
# Get datasets
SCREAMING_SNAKE_CASE_ = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
SCREAMING_SNAKE_CASE_ = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(__UpperCamelCase ) -> Dict:
SCREAMING_SNAKE_CASE_ = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(__UpperCamelCase , p.label_ids )}
# Data collator
SCREAMING_SNAKE_CASE_ = DataCollatorWithPadding(__UpperCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
SCREAMING_SNAKE_CASE_ = Trainer(
model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=__UpperCamelCase , eval_dataset=__UpperCamelCase , compute_metrics=__UpperCamelCase , data_collator=__UpperCamelCase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
SCREAMING_SNAKE_CASE_ = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
SCREAMING_SNAKE_CASE_ = trainer.evaluate()
SCREAMING_SNAKE_CASE_ = os.path.join(training_args.output_dir , "eval_results.txt" )
if trainer.is_world_master():
with open(__UpperCamelCase , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(" %s = %s" , __UpperCamelCase , __UpperCamelCase )
writer.write("%s = %s\n" % (key, value) )
results.update(__UpperCamelCase )
return results
def a__ ( __UpperCamelCase ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 118 | 1 |
'''simple docstring'''
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
snake_case__ : Optional[Any] = 10
def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[int] , lowerCamelCase_ : int ):
"""simple docstring"""
for i in range(__a , __a ):
if array[i] == target:
return i
return -1
def _lowerCamelCase ( lowerCamelCase_ : list[int] , lowerCamelCase_ : int ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = 0
UpperCAmelCase_ : List[Any] = len(__a )
while left <= right:
if right - left < precision:
return lin_search(__a , __a , __a , __a )
UpperCAmelCase_ : Tuple = (left + right) // 3 + 1
UpperCAmelCase_ : str = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
UpperCAmelCase_ : Optional[int] = one_third - 1
elif array[two_third] < target:
UpperCAmelCase_ : Tuple = two_third + 1
else:
UpperCAmelCase_ : Optional[Any] = one_third + 1
UpperCAmelCase_ : Any = two_third - 1
else:
return -1
def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[int] , lowerCamelCase_ : int ):
"""simple docstring"""
if left < right:
if right - left < precision:
return lin_search(__a , __a , __a , __a )
UpperCAmelCase_ : List[str] = (left + right) // 3 + 1
UpperCAmelCase_ : int = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(__a , one_third - 1 , __a , __a )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , __a , __a , __a )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , __a , __a )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case__ : Union[str, Any] = input('''Enter numbers separated by comma:\n''').strip()
snake_case__ : List[Any] = [int(item.strip()) for item in user_input.split(''',''')]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
snake_case__ : List[str] = int(input('''Enter the number to be found in the list:\n''').strip())
snake_case__ : List[str] = ite_ternary_search(collection, target)
snake_case__ : Tuple = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print('''Not found''')
| 355 |
'''simple docstring'''
from manim import *
class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ):
'''simple docstring'''
def _UpperCamelCase ( self ):
'''simple docstring'''
UpperCAmelCase_ : Dict = Rectangle(height=0.5 , width=0.5 )
UpperCAmelCase_ : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
UpperCAmelCase_ : List[str] = Rectangle(height=0.25 , width=0.25 )
UpperCAmelCase_ : Any = [mem.copy() for i in range(6 )]
UpperCAmelCase_ : Union[str, Any] = [mem.copy() for i in range(6 )]
UpperCAmelCase_ : Optional[int] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
UpperCAmelCase_ : Any = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
UpperCAmelCase_ : str = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 )
UpperCAmelCase_ : Any = Text('CPU' , font_size=2_4 )
UpperCAmelCase_ : Tuple = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(snake_case_ )
UpperCAmelCase_ : str = [mem.copy() for i in range(4 )]
UpperCAmelCase_ : Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
UpperCAmelCase_ : List[str] = Text('GPU' , font_size=2_4 )
UpperCAmelCase_ : Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ )
gpu.move_to([-1, -1, 0] )
self.add(snake_case_ )
UpperCAmelCase_ : str = [mem.copy() for i in range(6 )]
UpperCAmelCase_ : Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
UpperCAmelCase_ : str = Text('Model' , font_size=2_4 )
UpperCAmelCase_ : Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ )
model.move_to([3, -1.0, 0] )
self.add(snake_case_ )
UpperCAmelCase_ : str = []
UpperCAmelCase_ : Optional[Any] = []
for i, rect in enumerate(snake_case_ ):
UpperCAmelCase_ : str = fill.copy().set_fill(snake_case_ , opacity=0.8 )
target.move_to(snake_case_ )
model_arr.append(snake_case_ )
UpperCAmelCase_ : int = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(snake_case_ )
self.add(*snake_case_ , *snake_case_ )
UpperCAmelCase_ : List[Any] = [meta_mem.copy() for i in range(6 )]
UpperCAmelCase_ : List[str] = [meta_mem.copy() for i in range(6 )]
UpperCAmelCase_ : Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
UpperCAmelCase_ : Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
UpperCAmelCase_ : Optional[Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 )
UpperCAmelCase_ : Tuple = Text('Disk' , font_size=2_4 )
UpperCAmelCase_ : Union[str, Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ )
disk.move_to([-4, -1.25, 0] )
self.add(snake_case_ , snake_case_ )
UpperCAmelCase_ : List[Any] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
UpperCAmelCase_ : Any = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=1_8 , )
key_text.move_to([-5, 2.4, 0] )
self.add(snake_case_ , snake_case_ )
UpperCAmelCase_ : Dict = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=1_8 , )
blue_text.next_to(snake_case_ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(snake_case_ )
UpperCAmelCase_ : Optional[Any] = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=2_4 , )
step_a.move_to([2, 2, 0] )
self.play(Write(snake_case_ ) )
UpperCAmelCase_ : Tuple = Square(0.3 )
input.set_fill(snake_case_ , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , snake_case_ , buff=0.5 )
self.play(Write(snake_case_ ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=snake_case_ , buff=0.02 )
self.play(MoveToTarget(snake_case_ ) )
self.play(FadeOut(snake_case_ ) )
UpperCAmelCase_ : Any = Arrow(start=snake_case_ , end=snake_case_ , color=snake_case_ , buff=0.5 )
a.next_to(model_arr[0].get_left() , snake_case_ , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
UpperCAmelCase_ : List[str] = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=2_4 , )
step_a.move_to([2, 2, 0] )
self.play(Write(snake_case_ , run_time=3 ) )
UpperCAmelCase_ : List[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(snake_case_ ) , Circumscribe(model_arr[0] , color=snake_case_ , **snake_case_ ) , Circumscribe(model_cpu_arr[0] , color=snake_case_ , **snake_case_ ) , Circumscribe(gpu_rect[0] , color=snake_case_ , **snake_case_ ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
UpperCAmelCase_ : Union[str, Any] = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , snake_case_ , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
UpperCAmelCase_ : Tuple = AnimationGroup(
FadeOut(snake_case_ , run_time=0.5 ) , MoveToTarget(snake_case_ , run_time=0.5 ) , FadeIn(snake_case_ , run_time=0.5 ) , lag_ratio=0.2 )
self.play(snake_case_ )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
UpperCAmelCase_ : Any = 0.7
self.play(
Circumscribe(model_arr[i] , **snake_case_ ) , Circumscribe(cpu_left_col_base[i] , **snake_case_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=snake_case_ , **snake_case_ ) , Circumscribe(gpu_rect[0] , color=snake_case_ , **snake_case_ ) , Circumscribe(model_arr[i + 1] , color=snake_case_ , **snake_case_ ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=snake_case_ , **snake_case_ ) , Circumscribe(cpu_left_col_base[-1] , color=snake_case_ , **snake_case_ ) , Circumscribe(gpu_rect[0] , color=snake_case_ , **snake_case_ ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
UpperCAmelCase_ : Any = a_c
UpperCAmelCase_ : int = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(snake_case_ ) , FadeOut(snake_case_ , run_time=0.5 ) , )
UpperCAmelCase_ : Optional[Any] = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=2_4 )
step_a.move_to([2, 2, 0] )
self.play(Write(snake_case_ , run_time=3 ) , MoveToTarget(snake_case_ ) )
self.wait()
| 274 | 0 |
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
lowerCAmelCase = pytest.mark.integration
lowerCAmelCase = {"""comet"""}
lowerCAmelCase = importlib.util.find_spec('fairseq') is not None
lowerCAmelCase = {"""code_eval"""}
lowerCAmelCase = os.name == """nt"""
lowerCAmelCase = {"""bertscore""", """frugalscore""", """perplexity"""}
lowerCAmelCase = importlib.util.find_spec('transformers') is not None
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
@wraps(snake_case__ )
def wrapper(self , SCREAMING_SNAKE_CASE ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest('''\"test requires Fairseq\"''' )
else:
test_case(self , snake_case__ )
return wrapper
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
@wraps(snake_case__ )
def wrapper(self , SCREAMING_SNAKE_CASE ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest('''\"test requires transformers\"''' )
else:
test_case(self , snake_case__ )
return wrapper
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
@wraps(snake_case__ )
def wrapper(self , SCREAMING_SNAKE_CASE ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest('''\"test not supported on Windows\"''' )
else:
test_case(self , snake_case__ )
return wrapper
def _a ( ):
"""simple docstring"""
lowercase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
@local
class _a ( parameterized.TestCase ):
_lowercase : int = {}
_lowercase : int = None
@pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' )
@pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' )
def lowerCamelCase_ ( self: Any , UpperCamelCase_: Optional[int] ) -> List[Any]:
"""simple docstring"""
lowercase__ = '''[...]'''
lowercase__ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('''metrics''' , _a ) ).module_path )
lowercase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=_a )
# check parameters
lowercase__ = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(_a , metric_module.__name__ ):
with self.use_local_metrics():
try:
lowercase__ = doctest.testmod(_a , verbose=_a , raise_on_error=_a )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Optional[Any] ) -> Dict:
"""simple docstring"""
lowercase__ = '''[...]'''
lowercase__ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('''metrics''' , _a ) ).module_path )
# run doctest
with self.use_local_metrics():
lowercase__ = doctest.testmod(_a , verbose=_a , raise_on_error=_a )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] ) -> Optional[int]:
"""simple docstring"""
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](_a ):
yield
else:
yield
@contextmanager
def lowerCamelCase_ ( self: Dict ) -> List[Any]:
"""simple docstring"""
def load_local_metric(UpperCamelCase_: int , *UpperCamelCase_: Dict , **UpperCamelCase_: Tuple ):
return load_metric(os.path.join('''metrics''' , _a ) , *_a , **_a )
with patch('''datasets.load_metric''' ) as mock_load_metric:
lowercase__ = load_local_metric
yield
@classmethod
def lowerCamelCase_ ( cls: Union[str, Any] , UpperCamelCase_: str ) -> int:
"""simple docstring"""
def wrapper(UpperCamelCase_: Optional[Any] ):
lowercase__ = contextmanager(_a )
lowercase__ = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher('''bleurt''' )
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags
class _a ( UpperCAmelCase__ ):
def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Any] ) -> Optional[int]:
"""simple docstring"""
assert len(input_dict['''input_ids'''] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor:
lowercase__ = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher('''bertscore''' )
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
import torch
def bert_cos_score_idf(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case__ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch('''bert_score.scorer.get_model''' ), patch(
'''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf:
lowercase__ = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher('''comet''' )
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
def load_from_checkpoint(SCREAMING_SNAKE_CASE ):
class _a :
def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: List[Any] , **UpperCamelCase_: int ) -> Union[str, Any]:
"""simple docstring"""
assert len(_a ) == 2
lowercase__ = [0.19, 0.92]
return scores, sum(_a ) / len(_a )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch('''comet.download_model''' ) as mock_download_model:
lowercase__ = None
with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint:
lowercase__ = load_from_checkpoint
yield
def _a ( ):
"""simple docstring"""
lowercase__ = load_metric(os.path.join('''metrics''' , '''seqeval''' ) )
lowercase__ = '''ERROR'''
lowercase__ = f'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'
with pytest.raises(snake_case__ , match=re.escape(snake_case__ ) ):
metric.compute(predictions=[] , references=[] , scheme=snake_case__ )
| 110 |
"""simple docstring"""
from sklearn.metrics import recall_score
import datasets
lowerCAmelCase : Any = """
Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:
Recall = TP / (TP + FN)
Where TP is the true positives and FN is the false negatives.
"""
lowerCAmelCase : Any = """
Args:
- **predictions** (`list` of `int`): The predicted labels.
- **references** (`list` of `int`): The ground truth labels.
- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.
- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.
- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.
- `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.
- `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.
- `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.
- `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.
- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .
- `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.
- `0`: If there is a zero division, the return value is `0`.
- `1`: If there is a zero division, the return value is `1`.
Returns:
- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.
Examples:
Example 1-A simple example with some errors
>>> recall_metric = datasets.load_metric('recall')
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])
>>> print(results)
{'recall': 0.6666666666666666}
Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.
>>> recall_metric = datasets.load_metric('recall')
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)
>>> print(results)
{'recall': 0.5}
Example 3-The same example as Example 1, but with `sample_weight` included.
>>> recall_metric = datasets.load_metric('recall')
>>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)
>>> print(results)
{'recall': 0.55}
Example 4-A multiclass example, using different averages.
>>> recall_metric = datasets.load_metric('recall')
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')
>>> print(results)
{'recall': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')
>>> print(results)
{'recall': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')
>>> print(results)
{'recall': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{'recall': array([1., 0., 0.])}
"""
lowerCAmelCase : Any = """
@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""int32""" ) ),
"""references""": datasets.Sequence(datasets.Value("""int32""" ) ),
}
if self.config_name == """multilabel"""
else {
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , )
def _lowerCAmelCase ( self , _a , _a , _a=None , _a=1 , _a="binary" , _a=None , _a="warn" , ):
"""simple docstring"""
lowerCamelCase = recall_score(
_a , _a , labels=_a , pos_label=_a , average=_a , sample_weight=_a , zero_division=_a , )
return {"recall": float(_a ) if score.size == 1 else score}
| 291 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : int = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : str = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Union[str, Any] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : int = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Dict = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Dict = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Tuple = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[int] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[int] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[str] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Tuple = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Dict = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Union[str, Any] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Tuple = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[Any] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : int = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Tuple = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : str = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Union[str, Any] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[str] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[int] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Any = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[Any] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Tuple = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(self ,["""sentencepiece"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[Any] = ['''sentencepiece''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(self ,["""sentencepiece"""] )
| 184 |
'''simple docstring'''
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCAmelCase_:
'''simple docstring'''
__lowercase : Optional[Union[str, Path]] = None
__lowercase : bool = False
__lowercase : bool = False
__lowercase : bool = False
__lowercase : Optional[Dict] = None
__lowercase : Optional[str] = None
__lowercase : bool = False
__lowercase : bool = False
__lowercase : bool = False
__lowercase : bool = True
__lowercase : Optional[int] = None
__lowercase : int = 1
__lowercase : Optional[Union[str, bool]] = None
__lowercase : bool = False
__lowercase : Optional[Dict] = None
__lowercase : Optional[str] = None
def UpperCAmelCase_ ( self ) -> "DownloadConfig":
return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
| 184 | 1 |
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json',
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowercase__ ( __lowerCamelCase ):
'''simple docstring'''
a : Optional[int] = "data2vec-audio"
def __init__( self, __magic_name__=32, __magic_name__=768, __magic_name__=12, __magic_name__=12, __magic_name__=3072, __magic_name__="gelu", __magic_name__=0.1, __magic_name__=0.1, __magic_name__=0.1, __magic_name__=0.0, __magic_name__=0.1, __magic_name__=0.1, __magic_name__=0.02, __magic_name__=1E-5, __magic_name__="gelu", __magic_name__=(512, 512, 512, 512, 512, 512, 512), __magic_name__=(5, 2, 2, 2, 2, 2, 2), __magic_name__=(10, 3, 3, 3, 3, 2, 2), __magic_name__=False, __magic_name__=16, __magic_name__=19, __magic_name__=5, __magic_name__=0.05, __magic_name__=10, __magic_name__=2, __magic_name__=0.0, __magic_name__=10, __magic_name__=0, __magic_name__="sum", __magic_name__=False, __magic_name__=False, __magic_name__=256, __magic_name__=(512, 512, 512, 512, 1500), __magic_name__=(5, 3, 3, 1, 1), __magic_name__=(1, 2, 3, 1, 1), __magic_name__=512, __magic_name__=0, __magic_name__=1, __magic_name__=2, __magic_name__=False, __magic_name__=3, __magic_name__=2, __magic_name__=3, __magic_name__=None, **__magic_name__, ) -> List[str]:
"""simple docstring"""
super().__init__(**__magic_name__, pad_token_id=__magic_name__, bos_token_id=__magic_name__, eos_token_id=__magic_name__ )
UpperCamelCase__ : Union[str, Any] = hidden_size
UpperCamelCase__ : Optional[Any] = feat_extract_activation
UpperCamelCase__ : int = list(__magic_name__ )
UpperCamelCase__ : Optional[Any] = list(__magic_name__ )
UpperCamelCase__ : str = list(__magic_name__ )
UpperCamelCase__ : Optional[int] = conv_bias
UpperCamelCase__ : List[str] = num_conv_pos_embeddings
UpperCamelCase__ : Optional[Any] = num_conv_pos_embedding_groups
UpperCamelCase__ : Tuple = conv_pos_kernel_size
UpperCamelCase__ : Union[str, Any] = len(self.conv_dim )
UpperCamelCase__ : Optional[Any] = num_hidden_layers
UpperCamelCase__ : Any = intermediate_size
UpperCamelCase__ : Union[str, Any] = hidden_act
UpperCamelCase__ : int = num_attention_heads
UpperCamelCase__ : List[str] = hidden_dropout
UpperCamelCase__ : Optional[Any] = attention_dropout
UpperCamelCase__ : List[Any] = activation_dropout
UpperCamelCase__ : Optional[Any] = feat_proj_dropout
UpperCamelCase__ : Tuple = final_dropout
UpperCamelCase__ : Any = layerdrop
UpperCamelCase__ : Optional[int] = layer_norm_eps
UpperCamelCase__ : Optional[int] = initializer_range
UpperCamelCase__ : Union[str, Any] = vocab_size
UpperCamelCase__ : Optional[Any] = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"
f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCamelCase__ : Optional[int] = mask_time_prob
UpperCamelCase__ : Optional[int] = mask_time_length
UpperCamelCase__ : Tuple = mask_time_min_masks
UpperCamelCase__ : Any = mask_feature_prob
UpperCamelCase__ : List[Any] = mask_feature_length
UpperCamelCase__ : List[Any] = mask_feature_min_masks
# ctc loss
UpperCamelCase__ : Optional[Any] = ctc_loss_reduction
UpperCamelCase__ : List[Any] = ctc_zero_infinity
# adapter
UpperCamelCase__ : Any = add_adapter
UpperCamelCase__ : Dict = adapter_kernel_size
UpperCamelCase__ : List[Any] = adapter_stride
UpperCamelCase__ : Any = num_adapter_layers
UpperCamelCase__ : List[Any] = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
UpperCamelCase__ : List[Any] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
UpperCamelCase__ : int = list(__magic_name__ )
UpperCamelCase__ : Union[str, Any] = list(__magic_name__ )
UpperCamelCase__ : List[str] = list(__magic_name__ )
UpperCamelCase__ : List[str] = xvector_output_dim
@property
def UpperCamelCase__ ( self ) -> int:
"""simple docstring"""
return math.prod(self.conv_stride )
| 201 |
class lowercase__ :
'''simple docstring'''
def __init__( self, __magic_name__ = "", __magic_name__ = False ) -> None:
"""simple docstring"""
# Mapping from the first character of the prefix of the node
UpperCamelCase__ : dict[str, RadixNode] = {}
# A node will be a leaf if the tree contains its word
UpperCamelCase__ : Optional[Any] = is_leaf
UpperCamelCase__ : List[str] = prefix
def UpperCamelCase__ ( self, __magic_name__ ) -> tuple[str, str, str]:
"""simple docstring"""
UpperCamelCase__ : Dict = 0
for q, w in zip(self.prefix, __magic_name__ ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def UpperCamelCase__ ( self, __magic_name__ ) -> None:
"""simple docstring"""
for word in words:
self.insert(__magic_name__ )
def UpperCamelCase__ ( self, __magic_name__ ) -> None:
"""simple docstring"""
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
UpperCamelCase__ : Union[str, Any] = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
UpperCamelCase__ : Tuple = RadixNode(prefix=__magic_name__, is_leaf=__magic_name__ )
else:
UpperCamelCase__ : Any = self.nodes[word[0]]
UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = incoming_node.match(
__magic_name__ )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(__magic_name__ )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
UpperCamelCase__ : Tuple = remaining_prefix
UpperCamelCase__ : Tuple = self.nodes[matching_string[0]]
UpperCamelCase__ : List[Any] = RadixNode(__magic_name__, __magic_name__ )
UpperCamelCase__ : str = aux_node
if remaining_word == "":
UpperCamelCase__ : Any = True
else:
self.nodes[matching_string[0]].insert(__magic_name__ )
def UpperCamelCase__ ( self, __magic_name__ ) -> bool:
"""simple docstring"""
UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0], __magic_name__ )
if not incoming_node:
return False
else:
UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Dict = incoming_node.match(
__magic_name__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(__magic_name__ )
def UpperCamelCase__ ( self, __magic_name__ ) -> bool:
"""simple docstring"""
UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0], __magic_name__ )
if not incoming_node:
return False
else:
UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = incoming_node.match(
__magic_name__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(__magic_name__ )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
UpperCamelCase__ : Optional[Any] = list(self.nodes.values() )[0]
UpperCamelCase__ : Union[str, Any] = merging_node.is_leaf
self.prefix += merging_node.prefix
UpperCamelCase__ : int = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
UpperCamelCase__ : Any = False
# If there is 1 edge, we merge it with its child
else:
UpperCamelCase__ : Union[str, Any] = list(incoming_node.nodes.values() )[0]
UpperCamelCase__ : List[str] = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
UpperCamelCase__ : int = merging_node.nodes
return True
def UpperCamelCase__ ( self, __magic_name__ = 0 ) -> None:
"""simple docstring"""
if self.prefix != "":
print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' )
for value in self.nodes.values():
value.print_tree(height + 1 )
def lowerCAmelCase_ ( ) -> bool:
UpperCamelCase__ : Optional[int] = '''banana bananas bandana band apple all beast'''.split()
UpperCamelCase__ : Optional[int] = RadixNode()
root.insert_many(__UpperCAmelCase )
assert all(root.find(__UpperCAmelCase ) for word in words )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def lowerCAmelCase_ ( ) -> None:
assert test_trie()
def lowerCAmelCase_ ( ) -> None:
UpperCamelCase__ : int = RadixNode()
UpperCamelCase__ : Any = '''banana bananas bandanas bandana band apple all beast'''.split()
root.insert_many(__UpperCAmelCase )
print('''Words:''' , __UpperCAmelCase )
print('''Tree:''' )
root.print_tree()
if __name__ == "__main__":
main()
| 201 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''microsoft/swin-tiny-patch4-window7-224''': (
'''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'''
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class lowercase ( __a , __a ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """swin"""
__SCREAMING_SNAKE_CASE = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__(self , __a=224 , __a=4 , __a=3 , __a=96 , __a=[2, 2, 6, 2] , __a=[3, 6, 12, 24] , __a=7 , __a=4.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=0.02 , __a=1E-5 , __a=32 , __a=None , __a=None , **__a , ) -> Any:
"""simple docstring"""
super().__init__(**UpperCamelCase__ )
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = len(UpperCamelCase__ )
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = window_size
UpperCAmelCase__ = mlp_ratio
UpperCAmelCase__ = qkv_bias
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = use_absolute_embeddings
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCAmelCase__ = int(embed_dim * 2 ** (len(UpperCamelCase__ ) - 1) )
UpperCAmelCase__ = ['stem'] + [F"stage{idx}" for idx in range(1 , len(UpperCamelCase__ ) + 1 )]
UpperCAmelCase__ , UpperCAmelCase__ = get_aligned_output_features_output_indices(
out_features=UpperCamelCase__ , out_indices=UpperCamelCase__ , stage_names=self.stage_names )
class lowercase ( __a ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = version.parse("""1.11""" )
@property
def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def UpperCamelCase__ (self ) -> float:
"""simple docstring"""
return 1E-4
| 369 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 335 | 0 |
from functools import lru_cache
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> set:
_snake_case : Optional[int] = 2
_snake_case : Union[str, Any] = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(lowerCamelCase__ )
if n > 1:
factors.add(lowerCamelCase__ )
return factors
@lru_cache
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int:
return len(unique_prime_factors(lowerCamelCase__ ) )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] ) -> bool:
return len(set(lowerCamelCase__ ) ) in (0, 1)
def lowercase ( SCREAMING_SNAKE_CASE__ : Dict ) -> list:
_snake_case : Tuple = 2
while True:
# Increment each value of a generated range
_snake_case : int = [base + i for i in range(lowerCamelCase__ )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
_snake_case : int = [upf_len(lowerCamelCase__ ) for x in group]
checker.append(lowerCamelCase__ )
# If all numbers in the list are equal, return the group variable.
if equality(lowerCamelCase__ ):
return group
# Increment our base variable by 1
base += 1
def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] = 4 ) -> int:
_snake_case : int = run(lowerCamelCase__ )
return results[0] if len(lowerCamelCase__ ) else None
if __name__ == "__main__":
print(solution())
| 317 |
import qiskit
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> qiskit.result.counts.Counts:
__lowerCamelCase : Optional[int] = qiskit.Aer.get_backend('aer_simulator' )
# Create a Quantum Circuit acting on the q register
__lowerCamelCase : List[str] = qiskit.QuantumCircuit(lowerCamelCase__ , lowerCamelCase__ )
# Map the quantum measurement to the classical bits
circuit.measure([0] , [0] )
# Execute the circuit on the simulator
__lowerCamelCase : List[Any] = qiskit.execute(lowerCamelCase__ , lowerCamelCase__ , shots=1_0_0_0 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(lowerCamelCase__ )
if __name__ == "__main__":
print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
| 73 | 0 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def UpperCamelCase__ ( lowerCAmelCase ):
"""simple docstring"""
_lowerCAmelCase = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class UpperCAmelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ):
_lowercase: Dict = StableDiffusionLatentUpscalePipeline
_lowercase: Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'''height''',
'''width''',
'''cross_attention_kwargs''',
'''negative_prompt_embeds''',
'''prompt_embeds''',
}
_lowercase: Any = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''}
_lowercase: Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_lowercase: Union[str, Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
_lowercase: Optional[int] = frozenset([] )
_lowercase: Optional[Any] = True
@property
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
_lowerCAmelCase = 1
_lowerCAmelCase = 4
_lowerCAmelCase = (16, 16)
_lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__snake_case )
return image
def lowercase__ ( self : str ) -> Optional[Any]:
torch.manual_seed(0 )
_lowerCAmelCase = UNetaDConditionModel(
act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=__snake_case , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
"""KDownBlock2D""",
"""KCrossAttnDownBlock2D""",
"""KCrossAttnDownBlock2D""",
"""KCrossAttnDownBlock2D""",
) , in_channels=8 , mid_block_type=__snake_case , only_cross_attention=__snake_case , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , )
_lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
"""DownEncoderBlock2D""",
"""DownEncoderBlock2D""",
"""DownEncoderBlock2D""",
"""DownEncoderBlock2D""",
] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
_lowerCAmelCase = EulerDiscreteScheduler(prediction_type="""sample""" )
_lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""quick_gelu""" , projection_dim=5_12 , )
_lowerCAmelCase = CLIPTextModel(__snake_case )
_lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase = {
"""unet""": model.eval(),
"""vae""": vae.eval(),
"""scheduler""": scheduler,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def lowercase__ ( self : Tuple , __snake_case : Optional[int] , __snake_case : List[str]=0 ) -> List[Any]:
if str(__snake_case ).startswith("""mps""" ):
_lowerCAmelCase = torch.manual_seed(__snake_case )
else:
_lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
_lowerCAmelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": self.dummy_image.cpu(),
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def lowercase__ ( self : List[str] ) -> List[Any]:
_lowerCAmelCase = """cpu"""
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = self.pipeline_class(**__snake_case )
pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
_lowerCAmelCase = self.get_dummy_inputs(__snake_case )
_lowerCAmelCase = pipe(**__snake_case ).images
_lowerCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 2_56, 2_56, 3) )
_lowerCAmelCase = np.array(
[0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] )
_lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__snake_case , 1E-3 )
def lowercase__ ( self : str ) -> Any:
super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 )
def lowercase__ ( self : List[Any] ) -> str:
super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 )
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def lowercase__ ( self : int ) -> Optional[Any]:
super().test_inference_batch_single_identical(expected_max_diff=7E-3 )
def lowercase__ ( self : Tuple ) -> Any:
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 )
def lowercase__ ( self : List[str] ) -> str:
super().test_save_load_local(expected_max_difference=3E-3 )
def lowercase__ ( self : List[str] ) -> Any:
super().test_save_load_optional_components(expected_max_difference=3E-3 )
def lowercase__ ( self : Optional[int] ) -> str:
_lowerCAmelCase = [
"""DDIMScheduler""",
"""DDPMScheduler""",
"""PNDMScheduler""",
"""HeunDiscreteScheduler""",
"""EulerAncestralDiscreteScheduler""",
"""KDPM2DiscreteScheduler""",
"""KDPM2AncestralDiscreteScheduler""",
"""DPMSolverSDEScheduler""",
]
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = self.pipeline_class(**__snake_case )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=__snake_case )
pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
_lowerCAmelCase = self.get_dummy_inputs(__snake_case )
_lowerCAmelCase = 2
_lowerCAmelCase = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
_lowerCAmelCase = getattr(__snake_case , scheduler_enum.name )
_lowerCAmelCase = scheduler_cls.from_config(pipe.scheduler.config )
_lowerCAmelCase = pipe(**__snake_case )[0]
outputs.append(__snake_case )
assert check_same_shape(__snake_case )
@require_torch_gpu
@slow
class UpperCAmelCase ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> int:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : List[str] ) -> Optional[int]:
_lowerCAmelCase = torch.manual_seed(33 )
_lowerCAmelCase = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa )
pipe.to("""cuda""" )
_lowerCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained(
"""stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa )
upscaler.to("""cuda""" )
_lowerCAmelCase = """a photo of an astronaut high resolution, unreal engine, ultra realistic"""
_lowerCAmelCase = pipe(__snake_case , generator=__snake_case , output_type="""latent""" ).images
_lowerCAmelCase = upscaler(
prompt=__snake_case , image=__snake_case , num_inference_steps=20 , guidance_scale=0 , generator=__snake_case , output_type="""np""" , ).images[0]
_lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" )
assert np.abs((expected_image - image).mean() ) < 5E-2
def lowercase__ ( self : Optional[int] ) -> List[Any]:
_lowerCAmelCase = torch.manual_seed(33 )
_lowerCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained(
"""stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa )
upscaler.to("""cuda""" )
_lowerCAmelCase = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas"""
_lowerCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" )
_lowerCAmelCase = upscaler(
prompt=__snake_case , image=__snake_case , num_inference_steps=20 , guidance_scale=0 , generator=__snake_case , output_type="""np""" , ).images[0]
_lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" )
assert np.abs((expected_image - image).max() ) < 5E-2
| 220 |
'''simple docstring'''
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
def get_masked_lm_array(lowerCAmelCase ):
_lowerCAmelCase = f"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"
_lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase )
if "kernel" in name:
_lowerCAmelCase = array.transpose()
return torch.from_numpy(lowerCAmelCase )
def get_encoder_array(lowerCAmelCase ):
_lowerCAmelCase = f"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"
_lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase )
if "kernel" in name:
_lowerCAmelCase = array.transpose()
return torch.from_numpy(lowerCAmelCase )
def get_encoder_layer_array(lowerCAmelCase , lowerCAmelCase ):
_lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"
_lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase )
if "kernel" in name:
_lowerCAmelCase = array.transpose()
return torch.from_numpy(lowerCAmelCase )
def get_encoder_attention_layer_array(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
_lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"
_lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase )
_lowerCAmelCase = array.reshape(lowerCAmelCase )
if "kernel" in name:
_lowerCAmelCase = array.transpose()
return torch.from_numpy(lowerCAmelCase )
print(f"Loading model based on config from {config_path}..." )
_lowerCAmelCase = BertConfig.from_json_file(lowerCAmelCase )
_lowerCAmelCase = BertForMaskedLM(lowerCAmelCase )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
_lowerCAmelCase = model.bert.encoder.layer[layer_index]
# Self-attention
_lowerCAmelCase = layer.attention.self
_lowerCAmelCase = get_encoder_attention_layer_array(
lowerCAmelCase , """_query_dense/kernel""" , self_attn.query.weight.data.shape )
_lowerCAmelCase = get_encoder_attention_layer_array(
lowerCAmelCase , """_query_dense/bias""" , self_attn.query.bias.data.shape )
_lowerCAmelCase = get_encoder_attention_layer_array(
lowerCAmelCase , """_key_dense/kernel""" , self_attn.key.weight.data.shape )
_lowerCAmelCase = get_encoder_attention_layer_array(
lowerCAmelCase , """_key_dense/bias""" , self_attn.key.bias.data.shape )
_lowerCAmelCase = get_encoder_attention_layer_array(
lowerCAmelCase , """_value_dense/kernel""" , self_attn.value.weight.data.shape )
_lowerCAmelCase = get_encoder_attention_layer_array(
lowerCAmelCase , """_value_dense/bias""" , self_attn.value.bias.data.shape )
# Self-attention Output
_lowerCAmelCase = layer.attention.output
_lowerCAmelCase = get_encoder_attention_layer_array(
lowerCAmelCase , """_output_dense/kernel""" , self_output.dense.weight.data.shape )
_lowerCAmelCase = get_encoder_attention_layer_array(
lowerCAmelCase , """_output_dense/bias""" , self_output.dense.bias.data.shape )
_lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_attention_layer_norm/gamma""" )
_lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_attention_layer_norm/beta""" )
# Intermediate
_lowerCAmelCase = layer.intermediate
_lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_intermediate_dense/kernel""" )
_lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_intermediate_dense/bias""" )
# Output
_lowerCAmelCase = layer.output
_lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_dense/kernel""" )
_lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_dense/bias""" )
_lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_layer_norm/gamma""" )
_lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_layer_norm/beta""" )
# Embeddings
_lowerCAmelCase = get_encoder_array("""_position_embedding_layer/embeddings""" )
_lowerCAmelCase = get_encoder_array("""_type_embedding_layer/embeddings""" )
_lowerCAmelCase = get_encoder_array("""_embedding_norm_layer/gamma""" )
_lowerCAmelCase = get_encoder_array("""_embedding_norm_layer/beta""" )
# LM Head
_lowerCAmelCase = model.cls.predictions.transform
_lowerCAmelCase = get_masked_lm_array("""dense/kernel""" )
_lowerCAmelCase = get_masked_lm_array("""dense/bias""" )
_lowerCAmelCase = get_masked_lm_array("""layer_norm/gamma""" )
_lowerCAmelCase = get_masked_lm_array("""layer_norm/beta""" )
_lowerCAmelCase = get_masked_lm_array("""embedding_table""" )
# Pooling
_lowerCAmelCase = BertPooler(config=lowerCAmelCase )
_lowerCAmelCase = get_encoder_array("""_pooler_layer/kernel""" )
_lowerCAmelCase = get_encoder_array("""_pooler_layer/bias""" )
# Export final model
model.save_pretrained(lowerCAmelCase )
# Integration test - should load without any errors ;)
_lowerCAmelCase = BertForMaskedLM.from_pretrained(lowerCAmelCase )
print(new_model.eval() )
print("""Model conversion was done sucessfully!""" )
if __name__ == "__main__":
A__ : str =argparse.ArgumentParser()
parser.add_argument(
'''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.'''
)
parser.add_argument(
'''--bert_config_file''',
type=str,
required=True,
help='''The config json file corresponding to the BERT model. This specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''',
type=str,
required=True,
help='''Path to the output PyTorch model.''',
)
A__ : Dict =parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 220 | 1 |
def __lowerCamelCase ( __a :int = 1_0_0_0_0_0_0 ) -> int:
"""simple docstring"""
A__ = limit + 1
A__ = [0] * limit
for first_term in range(1 , __a ):
for n in range(__a , __a , __a ):
A__ = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
A__ = sum(1 for x in frequency[1:limit] if x == 1_0 )
return count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 274 |
import argparse
from collections import defaultdict
import yaml
A : str = '''docs/source/en/_toctree.yml'''
def __lowerCamelCase ( __a :str ) -> List[Any]:
"""simple docstring"""
A__ = defaultdict(__a )
A__ = []
A__ = []
for doc in doc_list:
if "local" in doc:
counts[doc["local"]] += 1
if doc["title"].lower() == "overview":
overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} )
else:
new_doc_list.append(__a )
A__ = new_doc_list
A__ = [key for key, value in counts.items() if value > 1]
A__ = []
for duplicate_key in duplicates:
A__ = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} )
if len(__a ) > 1:
raise ValueError(
F'{duplicate_key} is present several times in the documentation table of content at '
"""`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """
"""others.""" )
# Only add this once
new_doc.append({"""local""": duplicate_key, """title""": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] )
A__ = sorted(__a , key=lambda __a : s["title"].lower() )
# "overview" gets special treatment and is always first
if len(__a ) > 1:
raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" )
overview_doc.extend(__a )
# Sort
return overview_doc
def __lowerCamelCase ( __a :Any=False ) -> List[str]:
"""simple docstring"""
with open(__a , encoding="""utf-8""" ) as f:
A__ = yaml.safe_load(f.read() )
# Get to the API doc
A__ = 0
while content[api_idx]["title"] != "API":
api_idx += 1
A__ = content[api_idx]["""sections"""]
# Then to the model doc
A__ = 0
while api_doc[scheduler_idx]["title"] != "Schedulers":
scheduler_idx += 1
A__ = api_doc[scheduler_idx]["""sections"""]
A__ = clean_doc_toc(__a )
A__ = False
if new_scheduler_doc != scheduler_doc:
A__ = True
if overwrite:
A__ = new_scheduler_doc
if diff:
if overwrite:
A__ = api_doc
with open(__a , """w""" , encoding="""utf-8""" ) as f:
f.write(yaml.dump(__a , allow_unicode=__a ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
def __lowerCamelCase ( __a :Optional[int]=False ) -> Dict:
"""simple docstring"""
with open(__a , encoding="""utf-8""" ) as f:
A__ = yaml.safe_load(f.read() )
# Get to the API doc
A__ = 0
while content[api_idx]["title"] != "API":
api_idx += 1
A__ = content[api_idx]["""sections"""]
# Then to the model doc
A__ = 0
while api_doc[pipeline_idx]["title"] != "Pipelines":
pipeline_idx += 1
A__ = False
A__ = api_doc[pipeline_idx]["""sections"""]
A__ = []
# sort sub pipeline docs
for pipeline_doc in pipeline_docs:
if "section" in pipeline_doc:
A__ = pipeline_doc["""section"""]
A__ = clean_doc_toc(__a )
if overwrite:
A__ = new_sub_pipeline_doc
new_pipeline_docs.append(__a )
# sort overall pipeline doc
A__ = clean_doc_toc(__a )
if new_pipeline_docs != pipeline_docs:
A__ = True
if overwrite:
A__ = new_pipeline_docs
if diff:
if overwrite:
A__ = api_doc
with open(__a , """w""" , encoding="""utf-8""" ) as f:
f.write(yaml.dump(__a , allow_unicode=__a ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
if __name__ == "__main__":
A : Tuple = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
A : Optional[Any] = parser.parse_args()
check_scheduler_doc(args.fix_and_overwrite)
check_pipeline_doc(args.fix_and_overwrite)
| 274 | 1 |
'''simple docstring'''
from math import factorial
def UpperCAmelCase_ ( __lowercase : int = 100 ) -> int:
'''simple docstring'''
return sum(map(__lowercase , str(factorial(__lowercase ) ) ) )
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 369 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
__SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) # pylint: disable=invalid-name
__SCREAMING_SNAKE_CASE :List[str] = '''
Examples:
```py
>>> from PIL import Image
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from diffusers.utils import export_to_gif, load_image
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> repo = "openai/shap-e-img2img"
>>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)
>>> pipe = pipe.to(device)
>>> guidance_scale = 3.0
>>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"
>>> image = load_image(image_url).convert("RGB")
>>> images = pipe(
... image,
... guidance_scale=guidance_scale,
... num_inference_steps=64,
... frame_size=256,
... ).images
>>> gif_path = export_to_gif(images[0], "corgi_3d.gif")
```
'''
@dataclass
class A_ ( lowerCAmelCase_ ):
_lowerCamelCase : Union[PIL.Image.Image, np.ndarray]
class A_ ( lowerCAmelCase_ ):
def __init__( self : Any , snake_case_ : PriorTransformer , snake_case_ : CLIPVisionModel , snake_case_ : CLIPImageProcessor , snake_case_ : HeunDiscreteScheduler , snake_case_ : ShapERenderer , ):
super().__init__()
self.register_modules(
prior=snake_case_ , image_encoder=snake_case_ , image_processor=snake_case_ , scheduler=snake_case_ , renderer=snake_case_ , )
def lowercase ( self : List[Any] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] ):
if latents is None:
_UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ )
else:
if latents.shape != shape:
raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' )
_UpperCAmelCase = latents.to(snake_case_ )
_UpperCAmelCase = latents * scheduler.init_noise_sigma
return latents
def lowercase ( self : Optional[Any] , snake_case_ : Union[str, Any]=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
_UpperCAmelCase = torch.device(f'cuda:{gpu_id}' )
_UpperCAmelCase = [self.image_encoder, self.prior]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(snake_case_ , snake_case_ )
@property
def lowercase ( self : List[Any] ):
if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ):
return self.device
for module in self.image_encoder.modules():
if (
hasattr(snake_case_ , "_hf_hook" )
and hasattr(module._hf_hook , "execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
def lowercase ( self : Optional[Any] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : int , snake_case_ : List[str] , ):
if isinstance(snake_case_ , snake_case_ ) and isinstance(image[0] , torch.Tensor ):
_UpperCAmelCase = torch.cat(snake_case_ , axis=0 ) if image[0].ndim == 4 else torch.stack(snake_case_ , axis=0 )
if not isinstance(snake_case_ , torch.Tensor ):
_UpperCAmelCase = self.image_processor(snake_case_ , return_tensors="pt" ).pixel_values[0].unsqueeze(0 )
_UpperCAmelCase = image.to(dtype=self.image_encoder.dtype , device=snake_case_ )
_UpperCAmelCase = self.image_encoder(snake_case_ )["last_hidden_state"]
_UpperCAmelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
_UpperCAmelCase = image_embeds.repeat_interleave(snake_case_ , dim=0 )
if do_classifier_free_guidance:
_UpperCAmelCase = torch.zeros_like(snake_case_ )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] )
return image_embeds
@torch.no_grad()
@replace_example_docstring(snake_case_ )
def __call__( self : str , snake_case_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , snake_case_ : int = 1 , snake_case_ : int = 2_5 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : Optional[torch.FloatTensor] = None , snake_case_ : float = 4.0 , snake_case_ : int = 6_4 , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ):
if isinstance(snake_case_ , PIL.Image.Image ):
_UpperCAmelCase = 1
elif isinstance(snake_case_ , torch.Tensor ):
_UpperCAmelCase = image.shape[0]
elif isinstance(snake_case_ , snake_case_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ):
_UpperCAmelCase = len(snake_case_ )
else:
raise ValueError(
f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(snake_case_ )}' )
_UpperCAmelCase = self._execution_device
_UpperCAmelCase = batch_size * num_images_per_prompt
_UpperCAmelCase = guidance_scale > 1.0
_UpperCAmelCase = self._encode_image(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# prior
self.scheduler.set_timesteps(snake_case_ , device=snake_case_ )
_UpperCAmelCase = self.scheduler.timesteps
_UpperCAmelCase = self.prior.config.num_embeddings
_UpperCAmelCase = self.prior.config.embedding_dim
_UpperCAmelCase = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , snake_case_ , snake_case_ , snake_case_ , self.scheduler , )
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
_UpperCAmelCase = latents.reshape(latents.shape[0] , snake_case_ , snake_case_ )
for i, t in enumerate(self.progress_bar(snake_case_ ) ):
# expand the latents if we are doing classifier free guidance
_UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_UpperCAmelCase = self.scheduler.scale_model_input(snake_case_ , snake_case_ )
_UpperCAmelCase = self.prior(
snake_case_ , timestep=snake_case_ , proj_embedding=snake_case_ , ).predicted_image_embedding
# remove the variance
_UpperCAmelCase , _UpperCAmelCase = noise_pred.split(
scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
_UpperCAmelCase , _UpperCAmelCase = noise_pred.chunk(2 )
_UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
_UpperCAmelCase = self.scheduler.step(
snake_case_ , timestep=snake_case_ , sample=snake_case_ , ).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=snake_case_ )
_UpperCAmelCase = []
for i, latent in enumerate(snake_case_ ):
print()
_UpperCAmelCase = self.renderer.decode(
latent[None, :] , snake_case_ , size=snake_case_ , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , )
images.append(snake_case_ )
_UpperCAmelCase = torch.stack(snake_case_ )
if output_type not in ["np", "pil"]:
raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' )
_UpperCAmelCase = images.cpu().numpy()
if output_type == "pil":
_UpperCAmelCase = [self.numpy_to_pil(snake_case_ ) for image in images]
# Offload last model to CPU
if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=snake_case_ )
| 156 | 0 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
A : int = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class _lowercase ( lowercase__):
"""simple docstring"""
def __init__( self : int , *__lowerCamelCase : Any , __lowerCamelCase : List[str]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=None , **__lowerCamelCase : List[Any] ):
'''simple docstring'''
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Any = eval_examples
lowerCamelCase__ : Optional[int] = post_process_function
lowerCamelCase__ : List[Any] = quant_trainer_args
lowerCamelCase__ : Dict = 128 # default number of calibration samples
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict=None ):
'''simple docstring'''
if calib_dataset is None and self.calib_dataset is None:
raise ValueError("Trainer: calibration requires an calib_dataset." )
lowerCamelCase__ : Optional[int] = calib_dataset if calib_dataset is not None else self.calib_dataset
lowerCamelCase__ : Union[str, Any] = self._remove_unused_columns(__lowerCamelCase , description="Calibration" )
return DataLoader(
__lowerCamelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__lowerCamelCase , )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[int]=None ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.train_dataset if calib_dataset is None else calib_dataset
lowerCamelCase__ : str = self.get_calib_dataloader(__lowerCamelCase )
lowerCamelCase__ : List[str] = self.model
quant_trainer.configure_model(__lowerCamelCase , self.quant_trainer_args , calib=__lowerCamelCase )
model.eval()
quant_trainer.enable_calibration(__lowerCamelCase )
logger.info("***** Running calibration *****" )
logger.info(f" Num examples = {self.calib_num}" )
logger.info(f" Batch size = {calib_dataloader.batch_size}" )
for step, inputs in enumerate(__lowerCamelCase ):
# Prediction step
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.prediction_step(__lowerCamelCase , __lowerCamelCase , prediction_loss_only=__lowerCamelCase )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(__lowerCamelCase , self.quant_trainer_args )
lowerCamelCase__ : Optional[int] = model
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : str = "eval" ):
'''simple docstring'''
lowerCamelCase__ : Any = self.eval_dataset if eval_dataset is None else eval_dataset
lowerCamelCase__ : List[Any] = self.get_eval_dataloader(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
lowerCamelCase__ : Union[str, Any] = self.compute_metrics
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
lowerCamelCase__ : int = eval_loop(
__lowerCamelCase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , )
finally:
lowerCamelCase__ : Union[str, Any] = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
lowerCamelCase__ : Union[str, Any] = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions )
lowerCamelCase__ : str = self.compute_metrics(__lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"{metric_key_prefix}_" ):
lowerCamelCase__ : Optional[int] = metrics.pop(__lowerCamelCase )
self.log(__lowerCamelCase )
else:
lowerCamelCase__ : Tuple = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
lowerCamelCase__ : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCamelCase )
return metrics
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : int=None , __lowerCamelCase : str = "test" ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.get_test_dataloader(__lowerCamelCase )
# Temporarily disable metric computation, we will do it in the loop here.
lowerCamelCase__ : str = self.compute_metrics
lowerCamelCase__ : Optional[int] = None
lowerCamelCase__ : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
lowerCamelCase__ : str = eval_loop(
__lowerCamelCase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , )
finally:
lowerCamelCase__ : List[Any] = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
lowerCamelCase__ : Union[str, Any] = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions , "predict" )
lowerCamelCase__ : Dict = self.compute_metrics(__lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"{metric_key_prefix}_" ):
lowerCamelCase__ : int = metrics.pop(__lowerCamelCase )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : List[Any]="./" ):
'''simple docstring'''
lowerCamelCase__ : int = self.eval_dataset
lowerCamelCase__ : Optional[int] = self.get_eval_dataloader(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = next(iter(__lowerCamelCase ) )
# saving device - to make it consistent
lowerCamelCase__ : Optional[Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
# convert to tuple
lowerCamelCase__ : Any = tuple(v.to(__lowerCamelCase ) for k, v in batch.items() )
logger.info("Converting model to be onnx compatible" )
from pytorch_quantization.nn import TensorQuantizer
lowerCamelCase__ : Tuple = True
lowerCamelCase__ : Union[str, Any] = self.model.to(__lowerCamelCase )
model.eval()
model.float()
lowerCamelCase__ : int = model.module if hasattr(__lowerCamelCase , "module" ) else model
quant_trainer.configure_model(__lowerCamelCase , self.quant_trainer_args )
lowerCamelCase__ : List[Any] = os.path.join(__lowerCamelCase , "model.onnx" )
logger.info(f"exporting model to {output_model_file}" )
lowerCamelCase__ : Any = {0: "batch_size", 1: "seq_len"}
torch.onnx.export(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , export_params=__lowerCamelCase , opset_version=13 , do_constant_folding=__lowerCamelCase , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={
"input_ids": axes,
"attention_mask": axes,
"token_type_ids": axes,
"output_start_logits": axes,
"output_end_logits": axes,
} , verbose=__lowerCamelCase , )
logger.info("onnx export finished" )
| 184 |
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
A : Optional[int] = [
"Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the"
" final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe"
" depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.",
"The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal"
" accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's"
" founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the"
" body.",
"Amnesty International releases its annual report on the death penalty. The report catalogs the use of"
" state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the"
" world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital"
" punishment.",
]
A : List[Any] = [
"Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ."
" Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz"
" had informed his Lufthansa training school of an episode of severe depression, airline says .",
"Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ."
" Israel and the United States opposed the move, which could open the door to war crimes investigations against"
" Israelis .",
"Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to"
" death . Organization claims that governments around the world are using the threat of terrorism to advance"
" executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death"
" sentences up by 28% .",
]
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Dict = calculate_rouge(_A , _A , bootstrap_aggregation=_A , rouge_keys=["rouge2", "rougeL"] )
assert isinstance(_A , _A )
lowerCamelCase__ : List[Any] = calculate_rouge(_A , _A , bootstrap_aggregation=_A , rouge_keys=["rouge2"] )
assert (
pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean()
)
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Any = "rougeLsum"
lowerCamelCase__ : List[str] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=[k] )[k]
lowerCamelCase__ : str = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=[k] )[k]
assert score > score_no_sep
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : int = ["rouge1", "rouge2", "rougeL"]
lowerCamelCase__ : Union[str, Any] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=_A )
lowerCamelCase__ : Any = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=_A )
assert score_sep == score_no_sep
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[Any] = [
"Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.",
"Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .",
]
lowerCamelCase__ : Tuple = [
"Margot Frank, died in 1945, a month earlier than previously thought.",
"Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of"
" the final seconds on board Flight 9525.",
]
assert calculate_rouge(_A , _A , newline_sep=_A ) == calculate_rouge(_A , _A , newline_sep=_A )
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : List[str] = [
"\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" "
]
lowerCamelCase__ : str = [
" Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ."
]
lowerCamelCase__ : Union[str, Any] = calculate_rouge(_A , _A , rouge_keys=["rougeLsum"] , newline_sep=_A )["rougeLsum"]
lowerCamelCase__ : List[str] = calculate_rouge(_A , _A , rouge_keys=["rougeLsum"] )["rougeLsum"]
assert new_score > prev_score
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Tuple = Path("examples/seq2seq/test_data/wmt_en_ro" )
lowerCamelCase__ : Any = calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) )
assert isinstance(_A , _A )
lowerCamelCase__ : str = calculate_rouge_path(
data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=_A )
assert isinstance(_A , _A )
| 184 | 1 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def A ( a_ ,a_=None ) -> Dict:
__UpperCamelCase : List[str] =None
if token is not None:
__UpperCamelCase : Optional[Any] ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'}
__UpperCamelCase : Union[str, Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'
__UpperCamelCase : List[Any] =requests.get(a_ ,headers=a_ ).json()
__UpperCamelCase : List[str] ={}
try:
job_links.update({job['name']: job['html_url'] for job in result['jobs']} )
__UpperCamelCase : Dict =math.ceil((result['total_count'] - 100) / 100 )
for i in range(a_ ):
__UpperCamelCase : int =requests.get(url + F'&page={i + 2}' ,headers=a_ ).json()
job_links.update({job['name']: job['html_url'] for job in result['jobs']} )
return job_links
except Exception:
print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' )
return {}
def A ( a_ ,a_=None ) -> Dict:
__UpperCamelCase : str =None
if token is not None:
__UpperCamelCase : Any ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'}
__UpperCamelCase : str =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'
__UpperCamelCase : Tuple =requests.get(a_ ,headers=a_ ).json()
__UpperCamelCase : Optional[Any] ={}
try:
artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} )
__UpperCamelCase : Dict =math.ceil((result['total_count'] - 100) / 100 )
for i in range(a_ ):
__UpperCamelCase : Optional[Any] =requests.get(url + F'&page={i + 2}' ,headers=a_ ).json()
artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} )
return artifacts
except Exception:
print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' )
return {}
def A ( a_ ,a_ ,a_ ,a_ ) -> List[str]:
__UpperCamelCase : Dict =None
if token is not None:
__UpperCamelCase : int ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'}
__UpperCamelCase : Optional[Any] =requests.get(a_ ,headers=a_ ,allow_redirects=a_ )
__UpperCamelCase : Optional[int] =result.headers['Location']
__UpperCamelCase : Tuple =requests.get(a_ ,allow_redirects=a_ )
__UpperCamelCase : Any =os.path.join(a_ ,F'{artifact_name}.zip' )
with open(a_ ,'wb' ) as fp:
fp.write(response.content )
def A ( a_ ,a_=None ) -> List[Any]:
__UpperCamelCase : str =[]
__UpperCamelCase : List[Any] =[]
__UpperCamelCase : Optional[int] =None
with zipfile.ZipFile(a_ ) as z:
for filename in z.namelist():
if not os.path.isdir(a_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(a_ ) as f:
for line in f:
__UpperCamelCase : str =line.decode('UTF-8' ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
__UpperCamelCase : Tuple =line[: line.index(': ' )]
__UpperCamelCase : str =line[line.index(': ' ) + len(': ' ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith('FAILED ' ):
# `test` is the test method that failed
__UpperCamelCase : Any =line[len('FAILED ' ) :]
failed_tests.append(a_ )
elif filename == "job_name.txt":
__UpperCamelCase : Optional[Any] =line
if len(a_ ) != len(a_ ):
raise ValueError(
F'`errors` and `failed_tests` should have the same number of elements. Got {len(a_ )} for `errors` '
F'and {len(a_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'
' problem.' )
__UpperCamelCase : List[Any] =None
if job_name and job_links:
__UpperCamelCase : Union[str, Any] =job_links.get(a_ ,a_ )
# A list with elements of the form (line of error, error, failed test)
__UpperCamelCase : str =[x + [y] + [job_link] for x, y in zip(a_ ,a_ )]
return result
def A ( a_ ,a_=None ) -> List[Any]:
__UpperCamelCase : Tuple =[]
__UpperCamelCase : Optional[int] =[os.path.join(a_ ,a_ ) for p in os.listdir(a_ ) if p.endswith('.zip' )]
for p in paths:
errors.extend(get_errors_from_single_artifact(a_ ,job_links=a_ ) )
return errors
def A ( a_ ,a_=None ) -> Optional[int]:
__UpperCamelCase : Dict =Counter()
counter.update([x[1] for x in logs] )
__UpperCamelCase : Dict =counter.most_common()
__UpperCamelCase : str ={}
for error, count in counts:
if error_filter is None or error not in error_filter:
__UpperCamelCase : str ={'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]}
__UpperCamelCase : Optional[int] =dict(sorted(r.items() ,key=lambda a_ : item[1]["count"] ,reverse=a_ ) )
return r
def A ( a_ ) -> List[Any]:
__UpperCamelCase : Dict =test.split('::' )[0]
if test.startswith('tests/models/' ):
__UpperCamelCase : Dict =test.split('/' )[2]
else:
__UpperCamelCase : int =None
return test
def A ( a_ ,a_=None ) -> Union[str, Any]:
__UpperCamelCase : int =[(x[0], x[1], get_model(x[2] )) for x in logs]
__UpperCamelCase : Tuple =[x for x in logs if x[2] is not None]
__UpperCamelCase : Union[str, Any] ={x[2] for x in logs}
__UpperCamelCase : Optional[int] ={}
for test in tests:
__UpperCamelCase : int =Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
__UpperCamelCase : str =counter.most_common()
__UpperCamelCase : Optional[int] ={error: count for error, count in counts if (error_filter is None or error not in error_filter)}
__UpperCamelCase : int =sum(error_counts.values() )
if n_errors > 0:
__UpperCamelCase : List[str] ={'count': n_errors, 'errors': error_counts}
__UpperCamelCase : int =dict(sorted(r.items() ,key=lambda a_ : item[1]["count"] ,reverse=a_ ) )
return r
def A ( a_ ) -> str:
__UpperCamelCase : List[str] ='| no. | error | status |'
__UpperCamelCase : Tuple ='|-:|:-|:-|'
__UpperCamelCase : Tuple =[header, sep]
for error in reduced_by_error:
__UpperCamelCase : Tuple =reduced_by_error[error]['count']
__UpperCamelCase : int =F'| {count} | {error[:100]} | |'
lines.append(a_ )
return "\n".join(a_ )
def A ( a_ ) -> List[Any]:
__UpperCamelCase : List[Any] ='| model | no. of errors | major error | count |'
__UpperCamelCase : int ='|-:|-:|-:|-:|'
__UpperCamelCase : int =[header, sep]
for model in reduced_by_model:
__UpperCamelCase : Tuple =reduced_by_model[model]['count']
__UpperCamelCase , __UpperCamelCase : int =list(reduced_by_model[model]['errors'].items() )[0]
__UpperCamelCase : Optional[Any] =F'| {model} | {count} | {error[:60]} | {_count} |'
lines.append(a_ )
return "\n".join(a_ )
if __name__ == "__main__":
A_ :List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
parser.add_argument(
'''--output_dir''',
type=str,
required=True,
help='''Where to store the downloaded artifacts and other result files.''',
)
parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''')
A_ :List[Any] = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
A_ :Optional[Any] = get_job_links(args.workflow_run_id, token=args.token)
A_ :int = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
A_ :int = k.find(''' / ''')
A_ :Tuple = k[index + len(''' / ''') :]
A_ :List[str] = v
with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
A_ :Dict = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
A_ :Union[str, Any] = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
A_ :Dict = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
A_ :List[str] = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
A_ :Dict = reduce_by_error(errors)
A_ :List[str] = reduce_by_model(errors)
A_ :Optional[int] = make_github_table(reduced_by_error)
A_ :Any = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
| 245 |
import math
import tensorflow as tf
from packaging import version
def A ( a_ ) -> Optional[Any]:
__UpperCamelCase : Dict =tf.convert_to_tensor(a_ )
__UpperCamelCase : str =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) ,x.dtype ) ))
return x * cdf
def A ( a_ ) -> Union[str, Any]:
__UpperCamelCase : str =tf.convert_to_tensor(a_ )
__UpperCamelCase : Union[str, Any] =tf.cast(math.pi ,x.dtype )
__UpperCamelCase : List[str] =tf.cast(0.044_715 ,x.dtype )
__UpperCamelCase : Optional[int] =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(a_ ,3 )) ))
return x * cdf
def A ( a_ ) -> Any:
__UpperCamelCase : str =tf.convert_to_tensor(a_ )
return x * tf.tanh(tf.math.softplus(a_ ) )
def A ( a_ ) -> Dict:
__UpperCamelCase : int =tf.convert_to_tensor(a_ )
__UpperCamelCase : Optional[int] =tf.cast(0.044_715 ,x.dtype )
__UpperCamelCase : List[str] =tf.cast(0.7_978_845_608 ,x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def A ( a_ ) -> List[str]:
__UpperCamelCase : List[Any] =tf.convert_to_tensor(a_ )
__UpperCamelCase : Optional[int] =tf.cast(1.702 ,x.dtype )
return x * tf.math.sigmoid(coeff * x )
def A ( a_ ) -> Tuple:
return tf.clip_by_value(_gelu(a_ ) ,-10 ,10 )
def A ( a_ ,a_=-1 ) -> Any:
__UpperCamelCase , __UpperCamelCase : List[Any] =tf.split(a_ ,2 ,axis=a_ )
return a * tf.math.sigmoid(a_ )
if version.parse(tf.version.VERSION) >= version.parse('''2.4'''):
def A ( a_ ) -> Tuple:
return tf.keras.activations.gelu(a_ ,approximate=a_ )
A_ :int = tf.keras.activations.gelu
A_ :Any = approximate_gelu_wrap
else:
A_ :str = _gelu
A_ :Dict = _gelu_new
A_ :str = {
'''gelu''': gelu,
'''gelu_10''': gelu_aa,
'''gelu_fast''': gelu_fast,
'''gelu_new''': gelu_new,
'''glu''': glu,
'''mish''': mish,
'''quick_gelu''': quick_gelu,
'''relu''': tf.keras.activations.relu,
'''sigmoid''': tf.keras.activations.sigmoid,
'''silu''': tf.keras.activations.swish,
'''swish''': tf.keras.activations.swish,
'''tanh''': tf.keras.activations.tanh,
}
def A ( a_ ) -> Dict:
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
| 245 | 1 |
"""simple docstring"""
class UpperCAmelCase_ :
def __init__( self , a ) -> None:
lowercase__ : Union[str, Any] = size
lowercase__ : Any = [0] * size
lowercase__ : str = [0] * size
@staticmethod
def _UpperCAmelCase ( a ) -> int:
return index | (index + 1)
@staticmethod
def _UpperCAmelCase ( a ) -> int:
return (index & (index + 1)) - 1
def _UpperCAmelCase ( self , a , a ) -> None:
lowercase__ : Dict = value
while index < self.size:
lowercase__ : List[Any] = self.get_prev(a ) + 1
if current_left_border == index:
lowercase__ : Union[str, Any] = value
else:
lowercase__ : Any = max(a , a , a )
lowercase__ : List[str] = self.get_next(a )
def _UpperCAmelCase ( self , a , a ) -> int:
right -= 1 # Because of right is exclusive
lowercase__ : Dict = 0
while left <= right:
lowercase__ : str = self.get_prev(a )
if left <= current_left:
lowercase__ : Any = max(a , self.tree[right] )
lowercase__ : Dict = current_left
else:
lowercase__ : Any = max(a , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 77 |
"""simple docstring"""
def _snake_case ( UpperCAmelCase_ : int = 10 ):
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or n < 0:
raise ValueError("""Invalid input""" )
A__ = 10**n
A__ = 2_8433 * (pow(2 , 783_0457 , UpperCAmelCase_ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"""{solution(1_0) = }""")
| 335 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
snake_case_ : List[str] = {
"configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : List[str] = [
"LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"LongT5EncoderModel",
"LongT5ForConditionalGeneration",
"LongT5Model",
"LongT5PreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Any = [
"FlaxLongT5ForConditionalGeneration",
"FlaxLongT5Model",
"FlaxLongT5PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
snake_case_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 369 |
import comet # From: unbabel-comet
import torch
import datasets
snake_case_ : Tuple = datasets.logging.get_logger(__name__)
snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n"
snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n"
snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
def lowerCamelCase ( self : Any):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''sources''': datasets.Value('''string''' , id='''sequence'''),
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Value('''string''' , id='''sequence'''),
}) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[
'''https://github.com/Unbabel/COMET''',
'''https://www.aclweb.org/anthology/2020.emnlp-main.213/''',
'''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''',
] , )
def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]):
"""simple docstring"""
if self.config_name == "default":
UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da'''))
else:
UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name))
def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False):
"""simple docstring"""
if gpus is None:
UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0
UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references}
UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())]
UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case)
return {"mean_score": mean_score, "scores": scores}
| 7 | 0 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .modeling_utils import ModelMixin
@dataclass
class a ( a_ ):
UpperCAmelCase_ : torch.FloatTensor
class a ( a_, a_ ):
@register_to_config
def __init__( self , _lowerCamelCase = 1_6 , _lowerCamelCase = 8_8 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = 3_2 , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = "geglu" , _lowerCamelCase = True , _lowerCamelCase = True , ):
super().__init__()
lowercase = num_attention_heads
lowercase = attention_head_dim
lowercase = num_attention_heads * attention_head_dim
lowercase = in_channels
lowercase = torch.nn.GroupNorm(num_groups=_lowerCamelCase , num_channels=_lowerCamelCase , eps=1e-6 , affine=_lowerCamelCase )
lowercase = nn.Linear(_lowerCamelCase , _lowerCamelCase )
# 3. Define transformers blocks
lowercase = nn.ModuleList(
[
BasicTransformerBlock(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , dropout=_lowerCamelCase , cross_attention_dim=_lowerCamelCase , activation_fn=_lowerCamelCase , attention_bias=_lowerCamelCase , double_self_attention=_lowerCamelCase , norm_elementwise_affine=_lowerCamelCase , )
for d in range(_lowerCamelCase )
] )
lowercase = nn.Linear(_lowerCamelCase , _lowerCamelCase )
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=1 , _lowerCamelCase=None , _lowerCamelCase = True , ):
lowercase , lowercase , lowercase , lowercase = hidden_states.shape
lowercase = batch_frames // num_frames
lowercase = hidden_states
lowercase = hidden_states[None, :].reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
lowercase = hidden_states.permute(0 , 2 , 1 , 3 , 4 )
lowercase = self.norm(_lowerCamelCase )
lowercase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _lowerCamelCase , _lowerCamelCase )
lowercase = self.proj_in(_lowerCamelCase )
# 2. Blocks
for block in self.transformer_blocks:
lowercase = block(
_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , timestep=_lowerCamelCase , cross_attention_kwargs=_lowerCamelCase , class_labels=_lowerCamelCase , )
# 3. Output
lowercase = self.proj_out(_lowerCamelCase )
lowercase = (
hidden_states[None, None, :]
.reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
.permute(0 , 3 , 4 , 1 , 2 )
.contiguous()
)
lowercase = hidden_states.reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
lowercase = hidden_states + residual
if not return_dict:
return (output,)
return TransformerTemporalModelOutput(sample=_lowerCamelCase )
| 220 |
"""simple docstring"""
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class a ( a_ ):
UpperCAmelCase_ : BigBirdConfig
UpperCAmelCase_ : jnp.dtype =jnp.floataa
UpperCAmelCase_ : bool =True
def UpperCamelCase_ ( self ):
super().setup()
lowercase = nn.Dense(5 , dtype=self.dtype )
def __call__( self , *_lowerCamelCase , **_lowerCamelCase ):
lowercase = super().__call__(*_lowerCamelCase , **_lowerCamelCase )
lowercase = self.cls(outputs[2] )
return outputs[:2] + (cls_out,)
class a ( a_ ):
UpperCAmelCase_ : str =FlaxBigBirdForNaturalQuestionsModule
def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Tuple ):
'''simple docstring'''
def cross_entropy(__snake_case : Dict , __snake_case : str , __snake_case : Any=None ):
lowercase = logits.shape[-1]
lowercase = (labels[..., None] == jnp.arange(__snake_case )[None]).astype('f4' )
lowercase = jax.nn.log_softmax(__snake_case , axis=-1 )
lowercase = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowercase = reduction(__snake_case )
return loss
lowercase = partial(__snake_case , reduction=jnp.mean )
lowercase = cross_entropy(__snake_case , __snake_case )
lowercase = cross_entropy(__snake_case , __snake_case )
lowercase = cross_entropy(__snake_case , __snake_case )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class a :
UpperCAmelCase_ : str ="google/bigbird-roberta-base"
UpperCAmelCase_ : int =3000
UpperCAmelCase_ : int =1_0500
UpperCAmelCase_ : int =128
UpperCAmelCase_ : int =3
UpperCAmelCase_ : int =1
UpperCAmelCase_ : int =5
# tx_args
UpperCAmelCase_ : float =3e-5
UpperCAmelCase_ : float =0.0
UpperCAmelCase_ : int =2_0000
UpperCAmelCase_ : float =0.00_95
UpperCAmelCase_ : str ="bigbird-roberta-natural-questions"
UpperCAmelCase_ : str ="training-expt"
UpperCAmelCase_ : str ="data/nq-training.jsonl"
UpperCAmelCase_ : str ="data/nq-validation.jsonl"
def UpperCamelCase_ ( self ):
os.makedirs(self.base_dir , exist_ok=_lowerCamelCase )
lowercase = os.path.join(self.base_dir , self.save_dir )
lowercase = self.batch_size_per_device * jax.device_count()
@dataclass
class a :
UpperCAmelCase_ : int
UpperCAmelCase_ : int =4096 # no dynamic padding on TPUs
def __call__( self , _lowerCamelCase ):
lowercase = self.collate_fn(_lowerCamelCase )
lowercase = jax.tree_util.tree_map(_lowerCamelCase , _lowerCamelCase )
return batch
def UpperCamelCase_ ( self , _lowerCamelCase ):
lowercase , lowercase = self.fetch_inputs(features['input_ids'] )
lowercase = {
'input_ids': jnp.array(_lowerCamelCase , dtype=jnp.intaa ),
'attention_mask': jnp.array(_lowerCamelCase , dtype=jnp.intaa ),
'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ),
'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ),
'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ),
}
return batch
def UpperCamelCase_ ( self , _lowerCamelCase ):
lowercase = [self._fetch_inputs(_lowerCamelCase ) for ids in input_ids]
return zip(*_lowerCamelCase )
def UpperCamelCase_ ( self , _lowerCamelCase ):
lowercase = [1 for _ in range(len(_lowerCamelCase ) )]
while len(_lowerCamelCase ) < self.max_length:
input_ids.append(self.pad_id )
attention_mask.append(0 )
return input_ids, attention_mask
def _SCREAMING_SNAKE_CASE ( __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[Any]=None ):
'''simple docstring'''
if seed is not None:
lowercase = dataset.shuffle(seed=__snake_case )
for i in range(len(__snake_case ) // batch_size ):
lowercase = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(__snake_case )
@partial(jax.pmap , axis_name='batch' )
def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : List[Any] , **__snake_case : List[Any] ):
'''simple docstring'''
def loss_fn(__snake_case : str ):
lowercase = model_inputs.pop('start_labels' )
lowercase = model_inputs.pop('end_labels' )
lowercase = model_inputs.pop('pooled_labels' )
lowercase = state.apply_fn(**__snake_case , params=__snake_case , dropout_rng=__snake_case , train=__snake_case )
lowercase , lowercase , lowercase = outputs
return state.loss_fn(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , )
lowercase , lowercase = jax.random.split(__snake_case )
lowercase = jax.value_and_grad(__snake_case )
lowercase , lowercase = grad_fn(state.params )
lowercase = jax.lax.pmean({'loss': loss} , axis_name='batch' )
lowercase = jax.lax.pmean(__snake_case , 'batch' )
lowercase = state.apply_gradients(grads=__snake_case )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name='batch' )
def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , **__snake_case : Dict ):
'''simple docstring'''
lowercase = model_inputs.pop('start_labels' )
lowercase = model_inputs.pop('end_labels' )
lowercase = model_inputs.pop('pooled_labels' )
lowercase = state.apply_fn(**__snake_case , params=state.params , train=__snake_case )
lowercase , lowercase , lowercase = outputs
lowercase = state.loss_fn(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
lowercase = jax.lax.pmean({'loss': loss} , axis_name='batch' )
return metrics
class a ( train_state.TrainState ):
UpperCAmelCase_ : Callable =struct.field(pytree_node=a_ )
@dataclass
class a :
UpperCAmelCase_ : Args
UpperCAmelCase_ : Callable
UpperCAmelCase_ : Callable
UpperCAmelCase_ : Callable
UpperCAmelCase_ : Callable
UpperCAmelCase_ : wandb
UpperCAmelCase_ : Callable =None
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ):
lowercase = model.params
lowercase = TrainState.create(
apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , loss_fn=_lowerCamelCase , )
if ckpt_dir is not None:
lowercase , lowercase , lowercase , lowercase , lowercase = restore_checkpoint(_lowerCamelCase , _lowerCamelCase )
lowercase = {
'lr': args.lr,
'init_lr': args.init_lr,
'warmup_steps': args.warmup_steps,
'num_train_steps': num_train_steps,
'weight_decay': args.weight_decay,
}
lowercase , lowercase = build_tx(**_lowerCamelCase )
lowercase = train_state.TrainState(
step=_lowerCamelCase , apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , opt_state=_lowerCamelCase , )
lowercase = args
lowercase = data_collator
lowercase = lr
lowercase = params
lowercase = jax_utils.replicate(_lowerCamelCase )
return state
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
lowercase = self.args
lowercase = len(_lowerCamelCase ) // args.batch_size
lowercase = jax.random.PRNGKey(0 )
lowercase = jax.random.split(_lowerCamelCase , jax.device_count() )
for epoch in range(args.max_epochs ):
lowercase = jnp.array(0 , dtype=jnp.floataa )
lowercase = get_batched_dataset(_lowerCamelCase , args.batch_size , seed=_lowerCamelCase )
lowercase = 0
for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc=F'Running EPOCH-{epoch}' ):
lowercase = self.data_collator(_lowerCamelCase )
lowercase , lowercase , lowercase = self.train_step_fn(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
running_loss += jax_utils.unreplicate(metrics['loss'] )
i += 1
if i % args.logging_steps == 0:
lowercase = jax_utils.unreplicate(state.step )
lowercase = running_loss.item() / i
lowercase = self.scheduler_fn(state_step - 1 )
lowercase = self.evaluate(_lowerCamelCase , _lowerCamelCase )
lowercase = {
'step': state_step.item(),
'eval_loss': eval_loss.item(),
'tr_loss': tr_loss,
'lr': lr.item(),
}
tqdm.write(str(_lowerCamelCase ) )
self.logger.log(_lowerCamelCase , commit=_lowerCamelCase )
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=_lowerCamelCase )
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ):
lowercase = get_batched_dataset(_lowerCamelCase , self.args.batch_size )
lowercase = len(_lowerCamelCase ) // self.args.batch_size
lowercase = jnp.array(0 , dtype=jnp.floataa )
lowercase = 0
for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc='Evaluating ... ' ):
lowercase = self.data_collator(_lowerCamelCase )
lowercase = self.val_step_fn(_lowerCamelCase , **_lowerCamelCase )
running_loss += jax_utils.unreplicate(metrics['loss'] )
i += 1
return running_loss / i
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ):
lowercase = jax_utils.unreplicate(_lowerCamelCase )
print(F'SAVING CHECKPOINT IN {save_dir}' , end=' ... ' )
self.model_save_fn(_lowerCamelCase , params=state.params )
with open(os.path.join(_lowerCamelCase , 'opt_state.msgpack' ) , 'wb' ) as f:
f.write(to_bytes(state.opt_state ) )
joblib.dump(self.args , os.path.join(_lowerCamelCase , 'args.joblib' ) )
joblib.dump(self.data_collator , os.path.join(_lowerCamelCase , 'data_collator.joblib' ) )
with open(os.path.join(_lowerCamelCase , 'training_state.json' ) , 'w' ) as f:
json.dump({'step': state.step.item()} , _lowerCamelCase )
print('DONE' )
def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Tuple ):
'''simple docstring'''
print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ' )
with open(os.path.join(__snake_case , 'flax_model.msgpack' ) , 'rb' ) as f:
lowercase = from_bytes(state.params , f.read() )
with open(os.path.join(__snake_case , 'opt_state.msgpack' ) , 'rb' ) as f:
lowercase = from_bytes(state.opt_state , f.read() )
lowercase = joblib.load(os.path.join(__snake_case , 'args.joblib' ) )
lowercase = joblib.load(os.path.join(__snake_case , 'data_collator.joblib' ) )
with open(os.path.join(__snake_case , 'training_state.json' ) , 'r' ) as f:
lowercase = json.load(__snake_case )
lowercase = training_state['step']
print('DONE' )
return params, opt_state, step, args, data_collator
def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : str , __snake_case : Any , __snake_case : Any ):
'''simple docstring'''
lowercase = num_train_steps - warmup_steps
lowercase = optax.linear_schedule(init_value=__snake_case , end_value=__snake_case , transition_steps=__snake_case )
lowercase = optax.linear_schedule(init_value=__snake_case , end_value=1e-7 , transition_steps=__snake_case )
lowercase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[int] ):
'''simple docstring'''
def weight_decay_mask(__snake_case : Tuple ):
lowercase = traverse_util.flatten_dict(__snake_case )
lowercase = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()}
return traverse_util.unflatten_dict(__snake_case )
lowercase = scheduler_fn(__snake_case , __snake_case , __snake_case , __snake_case )
lowercase = optax.adamw(learning_rate=__snake_case , weight_decay=__snake_case , mask=__snake_case )
return tx, lr
| 220 | 1 |
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
__snake_case : List[Any] = ['''pixel_values''']
def __init__( self : Tuple , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Dict[str, int]] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 2_55 , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : str , ):
super().__init__(**lowerCAmelCase__ )
lowerCAmelCase_ : Tuple = size if size is not None else {"shortest_edge": 2_56}
lowerCAmelCase_ : List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
lowerCAmelCase_ : Optional[int] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24}
lowerCAmelCase_ : Dict = get_size_dict(lowerCAmelCase__ , param_name="""crop_size""" )
lowerCAmelCase_ : Tuple = do_resize
lowerCAmelCase_ : Optional[int] = size
lowerCAmelCase_ : List[Any] = resample
lowerCAmelCase_ : str = do_center_crop
lowerCAmelCase_ : List[Any] = crop_size
lowerCAmelCase_ : Dict = do_rescale
lowerCAmelCase_ : Union[str, Any] = rescale_factor
lowerCAmelCase_ : Any = do_normalize
lowerCAmelCase_ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase_ : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def A ( self : str , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ):
lowerCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
lowerCAmelCase_ : Union[str, Any] = get_resize_output_image_size(lowerCAmelCase__ , size=size["""shortest_edge"""] , default_to_square=lowerCAmelCase__ )
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def A ( self : int , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Union[str, Any] , ):
lowerCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(lowerCAmelCase__ , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def A ( self : Any , UpperCAmelCase : np.ndarray , UpperCAmelCase : float , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Union[str, Any] ):
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def A ( self : Optional[int] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : int , ):
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def A ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[float] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase : List[Any] , ):
lowerCAmelCase_ : str = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase_ : Any = size if size is not None else self.size
lowerCAmelCase_ : Dict = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
lowerCAmelCase_ : Dict = resample if resample is not None else self.resample
lowerCAmelCase_ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCAmelCase_ : Dict = crop_size if crop_size is not None else self.crop_size
lowerCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ , param_name="""crop_size""" )
lowerCAmelCase_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase_ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase_ : str = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase_ : List[Any] = image_std if image_std is not None else self.image_std
lowerCAmelCase_ : int = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
lowerCAmelCase_ : List[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
lowerCAmelCase_ : int = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_center_crop:
lowerCAmelCase_ : Optional[int] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
if do_rescale:
lowerCAmelCase_ : str = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
lowerCAmelCase_ : Optional[Any] = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
lowerCAmelCase_ : Optional[int] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
lowerCAmelCase_ : List[str] = {"pixel_values": images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Tuple] = None ):
lowerCAmelCase_ : Any = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(lowerCAmelCase__ ):
lowerCAmelCase_ : List[str] = target_sizes.numpy()
lowerCAmelCase_ : Any = []
for idx in range(len(lowerCAmelCase__ ) ):
lowerCAmelCase_ : Tuple = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowerCAmelCase__ )
lowerCAmelCase_ : Optional[Any] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase__ )
else:
lowerCAmelCase_ : Dict = logits.argmax(dim=1 )
lowerCAmelCase_ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 367 |
from datetime import datetime as dt
import os
from github import Github
__UpperCAmelCase = [
'good first issue',
'good second issue',
'good difficult issue',
'feature request',
'new model',
'wip',
]
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] )
lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" )
lowerCAmelCase_ : Any = repo.get_issues(state="""open""" )
for issue in open_issues:
lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ )
lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 28 | 0 |
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, deprecate
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class __snake_case ( lowerCAmelCase_ ):
__lowerCamelCase : torch.FloatTensor
__lowerCamelCase : Optional[torch.FloatTensor] = None
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=0.999 , __lowerCAmelCase="cosine" , )-> Union[str, Any]:
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(__lowerCAmelCase ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__lowerCAmelCase ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
UpperCAmelCase : Dict =[]
for i in range(__lowerCAmelCase ):
UpperCAmelCase : Optional[Any] =i / num_diffusion_timesteps
UpperCAmelCase : Optional[int] =(i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) )
return torch.tensor(__lowerCAmelCase , dtype=torch.floataa )
class __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ):
__lowerCamelCase : Tuple = 1
@register_to_config
def __init__( self , snake_case__ = 1000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = True , snake_case__ = True , snake_case__ = 0 , snake_case__ = "epsilon" , snake_case__ = 1.0 , **snake_case__ , ) -> Optional[Any]:
'''simple docstring'''
if kwargs.get('''set_alpha_to_one''' , _snake_case ) is not None:
UpperCAmelCase : str =(
'''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.'''
)
deprecate('''set_alpha_to_one''' , '''1.0.0''' , _snake_case , standard_warn=_snake_case )
UpperCAmelCase : Dict =kwargs['''set_alpha_to_one''']
if trained_betas is not None:
UpperCAmelCase : Optional[int] =torch.tensor(_snake_case , dtype=torch.floataa )
elif beta_schedule == "linear":
UpperCAmelCase : Any =torch.linspace(_snake_case , _snake_case , _snake_case , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
UpperCAmelCase : str =(
torch.linspace(beta_start**0.5 , beta_end**0.5 , _snake_case , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
UpperCAmelCase : Optional[Any] =betas_for_alpha_bar(_snake_case )
else:
raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' )
UpperCAmelCase : str =1.0 - self.betas
UpperCAmelCase : List[str] =torch.cumprod(self.alphas , dim=0 )
# At every step in inverted ddim, we are looking into the next alphas_cumprod
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
# in this case, self.step() just output the predicted noise
# or whether we use the final alpha of the "non-previous" one.
UpperCAmelCase : str =torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1]
# standard deviation of the initial noise distribution
UpperCAmelCase : Any =1.0
# setable values
UpperCAmelCase : Tuple =None
UpperCAmelCase : Tuple =torch.from_numpy(np.arange(0 , _snake_case ).copy().astype(np.intaa ) )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> str:
'''simple docstring'''
return sample
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple:
'''simple docstring'''
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:'''
f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle'''
f''' maximal {self.config.num_train_timesteps} timesteps.''' )
UpperCAmelCase : Optional[Any] =num_inference_steps
UpperCAmelCase : Union[str, Any] =self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
UpperCAmelCase : List[Any] =(np.arange(0 , _snake_case ) * step_ratio).round().copy().astype(np.intaa )
UpperCAmelCase : str =torch.from_numpy(_snake_case ).to(_snake_case )
self.timesteps += self.config.steps_offset
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 0.0 , snake_case__ = False , snake_case__ = None , snake_case__ = True , ) -> str:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =timestep + self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
# change original implementation to exactly match noise levels for analogous forward process
UpperCAmelCase : Any =self.alphas_cumprod[timestep]
UpperCAmelCase : Any =(
self.alphas_cumprod[prev_timestep]
if prev_timestep < self.config.num_train_timesteps
else self.final_alpha_cumprod
)
UpperCAmelCase : Dict =1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
UpperCAmelCase : Optional[Any] =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
UpperCAmelCase : str =model_output
elif self.config.prediction_type == "sample":
UpperCAmelCase : Any =model_output
UpperCAmelCase : Optional[int] =(sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
elif self.config.prediction_type == "v_prediction":
UpperCAmelCase : List[Any] =(alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
UpperCAmelCase : Tuple =(alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or'''
''' `v_prediction`''' )
# 4. Clip or threshold "predicted x_0"
if self.config.clip_sample:
UpperCAmelCase : Optional[int] =pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
UpperCAmelCase : Optional[int] =(1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
UpperCAmelCase : Tuple =alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=_snake_case , pred_original_sample=_snake_case )
def __len__( self ) -> int:
'''simple docstring'''
return self.config.num_train_timesteps
| 348 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
__lowerCAmelCase : List[Any] = logging.get_logger(__name__)
__lowerCAmelCase : int = {
"artists_file": "artists.json",
"lyrics_file": "lyrics.json",
"genres_file": "genres.json",
}
__lowerCAmelCase : List[Any] = {
"artists_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json",
},
"genres_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json",
},
"lyrics_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json",
},
}
__lowerCAmelCase : Dict = {
"jukebox": 512,
}
class __lowerCAmelCase ( lowerCAmelCase_ ):
"""simple docstring"""
A__ : Tuple = VOCAB_FILES_NAMES
A__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
A__ : List[str] = PRETRAINED_LYRIC_TOKENS_SIZES
A__ : Optional[int] = ['''input_ids''', '''attention_mask''']
def __init__( self : List[Any] , _snake_case : List[str] , _snake_case : Any , _snake_case : Tuple , _snake_case : Dict=["v3", "v2", "v2"] , _snake_case : Tuple=512 , _snake_case : Any=5 , _snake_case : List[Any]="<|endoftext|>" , **_snake_case : Union[str, Any] , ):
__lowercase : Dict = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else unk_token
super().__init__(
unk_token=_snake_case , n_genres=_snake_case , version=_snake_case , max_n_lyric_tokens=_snake_case , **_snake_case , )
__lowercase : List[str] = version
__lowercase : Union[str, Any] = max_n_lyric_tokens
__lowercase : Dict = n_genres
with open(_snake_case , encoding='''utf-8''' ) as vocab_handle:
__lowercase : str = json.load(_snake_case )
with open(_snake_case , encoding='''utf-8''' ) as vocab_handle:
__lowercase : Optional[int] = json.load(_snake_case )
with open(_snake_case , encoding='''utf-8''' ) as vocab_handle:
__lowercase : Optional[int] = json.load(_snake_case )
__lowercase : Dict = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'''
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
__lowercase : int = oov.replace(r'''\-\'''' , r'''\-+\'''' )
__lowercase : Union[str, Any] = regex.compile(_snake_case )
__lowercase : int = {v: k for k, v in self.artists_encoder.items()}
__lowercase : Tuple = {v: k for k, v in self.genres_encoder.items()}
__lowercase : Dict = {v: k for k, v in self.lyrics_encoder.items()}
@property
def snake_case_ ( self : Tuple ):
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def snake_case_ ( self : Optional[Any] ):
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def snake_case_ ( self : int , _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict ):
__lowercase : Union[str, Any] = [self.artists_encoder.get(_snake_case , 0 ) for artist in list_artists]
for genres in range(len(_snake_case ) ):
__lowercase : Union[str, Any] = [self.genres_encoder.get(_snake_case , 0 ) for genre in list_genres[genres]]
__lowercase : str = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
__lowercase : int = [[self.lyrics_encoder.get(_snake_case , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def snake_case_ ( self : Dict , _snake_case : Any ):
return list(_snake_case )
def snake_case_ ( self : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : List[str] , **_snake_case : Optional[int] ):
__lowercase , __lowercase , __lowercase : Optional[int] = self.prepare_for_tokenization(_snake_case , _snake_case , _snake_case )
__lowercase : List[Any] = self._tokenize(_snake_case )
return artist, genre, lyrics
def snake_case_ ( self : str , _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : bool = False ):
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
__lowercase : Union[str, Any] = artists[idx].lower()
__lowercase : str = [genres[idx].lower()]
else:
__lowercase : Any = self._normalize(artists[idx] ) + '''.v2'''
__lowercase : Tuple = [
self._normalize(_snake_case ) + '''.v2''' for genre in genres[idx].split('''_''' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
__lowercase : Optional[int] = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' )
__lowercase : Dict = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'''
__lowercase : List[Any] = {vocab[index]: index + 1 for index in range(len(_snake_case ) )}
__lowercase : List[str] = 0
__lowercase : Any = len(_snake_case ) + 1
__lowercase : str = self.vocab
__lowercase : Union[str, Any] = {v: k for k, v in self.vocab.items()}
__lowercase : Dict = ''''''
else:
__lowercase : Tuple = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' )
__lowercase : List[Any] = self._run_strip_accents(_snake_case )
__lowercase : Tuple = lyrics.replace('''\\''' , '''\n''' )
__lowercase : str = self.out_of_vocab.sub('''''' , _snake_case ), [], []
return artists, genres, lyrics
def snake_case_ ( self : Optional[int] , _snake_case : List[str] ):
__lowercase : Any = unicodedata.normalize('''NFD''' , _snake_case )
__lowercase : Optional[int] = []
for char in text:
__lowercase : Union[str, Any] = unicodedata.category(_snake_case )
if cat == "Mn":
continue
output.append(_snake_case )
return "".join(_snake_case )
def snake_case_ ( self : Optional[int] , _snake_case : str ):
__lowercase : List[str] = (
[chr(_snake_case ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )]
+ [chr(_snake_case ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )]
+ [chr(_snake_case ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )]
+ ['''.''']
)
__lowercase : Optional[Any] = frozenset(_snake_case )
__lowercase : Union[str, Any] = re.compile(r'''_+''' )
__lowercase : Optional[int] = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] )
__lowercase : int = pattern.sub('''_''' , _snake_case ).strip('''_''' )
return text
def snake_case_ ( self : List[Any] , _snake_case : List[str] ):
return " ".join(_snake_case )
def snake_case_ ( self : List[str] , _snake_case : Any , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : bool = False ):
# Convert to TensorType
if not isinstance(_snake_case , _snake_case ):
__lowercase : Optional[Any] = TensorType(_snake_case )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' )
import tensorflow as tf
__lowercase : int = tf.constant
__lowercase : Optional[int] = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' )
import torch
__lowercase : Union[str, Any] = torch.tensor
__lowercase : Dict = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' )
import jax.numpy as jnp # noqa: F811
__lowercase : Union[str, Any] = jnp.array
__lowercase : Optional[int] = _is_jax
else:
__lowercase : Tuple = np.asarray
__lowercase : str = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
__lowercase : Union[str, Any] = [inputs]
if not is_tensor(_snake_case ):
__lowercase : int = as_tensor(_snake_case )
except: # noqa E722
raise ValueError(
'''Unable to create tensor, you should probably activate truncation and/or padding '''
'''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' )
return inputs
def __call__( self : str , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Tuple="" , _snake_case : Tuple="pt" ):
__lowercase : List[str] = [0, 0, 0]
__lowercase : List[str] = [artist] * len(self.version )
__lowercase : List[Any] = [genres] * len(self.version )
__lowercase , __lowercase , __lowercase : Tuple = self.tokenize(_snake_case , _snake_case , _snake_case )
__lowercase , __lowercase , __lowercase : List[str] = self._convert_token_to_id(_snake_case , _snake_case , _snake_case )
__lowercase : Optional[Any] = [-INFINITY] * len(full_tokens[-1] )
__lowercase : int = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_snake_case )
for i in range(len(self.version ) )
]
return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} )
def snake_case_ ( self : Optional[int] , _snake_case : str , _snake_case : Optional[str] = None ):
if not os.path.isdir(_snake_case ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__lowercase : int = os.path.join(
_snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] )
with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=_snake_case ) )
__lowercase : int = os.path.join(
_snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] )
with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=_snake_case ) )
__lowercase : Union[str, Any] = os.path.join(
_snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] )
with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_snake_case ) )
return (artists_file, genres_file, lyrics_file)
def snake_case_ ( self : str , _snake_case : Tuple , _snake_case : str , _snake_case : Dict ):
__lowercase : List[str] = self.artists_decoder.get(_snake_case )
__lowercase : Optional[Any] = [self.genres_decoder.get(_snake_case ) for genre in genres_index]
__lowercase : Dict = [self.lyrics_decoder.get(_snake_case ) for character in lyric_index]
return artist, genres, lyrics
| 156 | 0 |
'''simple docstring'''
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class __magic_name__ ( lowerCAmelCase ):
def __init__( self , snake_case , snake_case = None , snake_case = None , snake_case = True , snake_case = None , snake_case = False , snake_case = None , snake_case = True , snake_case = "arrow" , **snake_case , ) -> Tuple:
'''simple docstring'''
super().__init__(
split=snake_case , features=snake_case , cache_dir=snake_case , keep_in_memory=snake_case , streaming=snake_case , **snake_case , )
_UpperCAmelCase : Optional[int] =load_from_cache_file
_UpperCAmelCase : Union[str, Any] =file_format
_UpperCAmelCase : int =Spark(
df=snake_case , features=snake_case , cache_dir=snake_case , working_dir=snake_case , **snake_case , )
def lowerCAmelCase ( self) -> Dict:
'''simple docstring'''
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split)
_UpperCAmelCase : Tuple =None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=snake_case , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split)
| 242 |
'''simple docstring'''
from string import ascii_uppercase
lowercase ={str(ord(c) - 55): c for c in ascii_uppercase}
def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int ):
'''simple docstring'''
if isinstance(__lowerCamelCase , __lowerCamelCase ):
raise TypeError('int() can\'t convert non-string with explicit base' )
if num < 0:
raise ValueError('parameter must be positive int' )
if isinstance(__lowerCamelCase , __lowerCamelCase ):
raise TypeError('\'str\' object cannot be interpreted as an integer' )
if isinstance(__lowerCamelCase , __lowerCamelCase ):
raise TypeError('\'float\' object cannot be interpreted as an integer' )
if base in (0, 1):
raise ValueError('base must be >= 2' )
if base > 3_6:
raise ValueError('base must be <= 36' )
_UpperCAmelCase : Union[str, Any] =''
_UpperCAmelCase : Optional[int] =0
_UpperCAmelCase : str =0
while div != 1:
_UpperCAmelCase , _UpperCAmelCase : int =divmod(__lowerCamelCase , __lowerCamelCase )
if base >= 1_1 and 9 < mod < 3_6:
_UpperCAmelCase : str =ALPHABET_VALUES[str(__lowerCamelCase )]
else:
_UpperCAmelCase : Any =str(__lowerCamelCase )
new_value += actual_value
_UpperCAmelCase : Union[str, Any] =num // base
_UpperCAmelCase : Dict =div
if div == 0:
return str(new_value[::-1] )
elif div == 1:
new_value += str(__lowerCamelCase )
return str(new_value[::-1] )
return new_value[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for base in range(2, 37):
for num in range(1000):
assert int(decimal_to_any(num, base), base) == num, (
num,
base,
decimal_to_any(num, base),
int(decimal_to_any(num, base), base),
)
| 242 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ : str = logging.get_logger(__name__)
UpperCAmelCase__ : str = {
"""facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""",
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class a__ ( UpperCAmelCase ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] ="""wav2vec2"""
def __init__( self : Dict , UpperCAmelCase__ : Optional[int]=3_2 , UpperCAmelCase__ : int=7_6_8 , UpperCAmelCase__ : Tuple=1_2 , UpperCAmelCase__ : str=1_2 , UpperCAmelCase__ : int=3_0_7_2 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Union[str, Any]=1e-5 , UpperCAmelCase__ : Union[str, Any]="group" , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase__ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase__ : int=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : int=1_2_8 , UpperCAmelCase__ : Any=1_6 , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Union[str, Any]=0.05 , UpperCAmelCase__ : Any=1_0 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : List[str]=1_0 , UpperCAmelCase__ : str=0 , UpperCAmelCase__ : List[str]=3_2_0 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Any=1_0_0 , UpperCAmelCase__ : List[str]=2_5_6 , UpperCAmelCase__ : Dict=2_5_6 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : str="sum" , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Dict=2_5_6 , UpperCAmelCase__ : Tuple=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase__ : Union[str, Any]=(5, 3, 3, 1, 1) , UpperCAmelCase__ : Union[str, Any]=(1, 2, 3, 1, 1) , UpperCAmelCase__ : List[str]=5_1_2 , UpperCAmelCase__ : List[Any]=0 , UpperCAmelCase__ : str=1 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Any=None , **UpperCAmelCase__ : List[str] , ) ->str:
"""simple docstring"""
super().__init__(**UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Tuple = hidden_size
SCREAMING_SNAKE_CASE : Tuple = feat_extract_norm
SCREAMING_SNAKE_CASE : Tuple = feat_extract_activation
SCREAMING_SNAKE_CASE : str = list(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : List[Any] = list(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : List[str] = list(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Optional[int] = conv_bias
SCREAMING_SNAKE_CASE : List[str] = num_conv_pos_embeddings
SCREAMING_SNAKE_CASE : str = num_conv_pos_embedding_groups
SCREAMING_SNAKE_CASE : List[str] = len(self.conv_dim )
SCREAMING_SNAKE_CASE : int = num_hidden_layers
SCREAMING_SNAKE_CASE : List[str] = intermediate_size
SCREAMING_SNAKE_CASE : Dict = hidden_act
SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads
SCREAMING_SNAKE_CASE : int = hidden_dropout
SCREAMING_SNAKE_CASE : Union[str, Any] = attention_dropout
SCREAMING_SNAKE_CASE : int = activation_dropout
SCREAMING_SNAKE_CASE : Dict = feat_proj_dropout
SCREAMING_SNAKE_CASE : List[str] = final_dropout
SCREAMING_SNAKE_CASE : Optional[Any] = layerdrop
SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps
SCREAMING_SNAKE_CASE : List[str] = initializer_range
SCREAMING_SNAKE_CASE : List[str] = vocab_size
SCREAMING_SNAKE_CASE : Dict = do_stable_layer_norm
SCREAMING_SNAKE_CASE : Tuple = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"
f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
SCREAMING_SNAKE_CASE : Optional[Any] = apply_spec_augment
SCREAMING_SNAKE_CASE : Dict = mask_time_prob
SCREAMING_SNAKE_CASE : Tuple = mask_time_length
SCREAMING_SNAKE_CASE : Any = mask_time_min_masks
SCREAMING_SNAKE_CASE : Dict = mask_feature_prob
SCREAMING_SNAKE_CASE : Tuple = mask_feature_length
SCREAMING_SNAKE_CASE : List[Any] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
SCREAMING_SNAKE_CASE : List[str] = num_codevectors_per_group
SCREAMING_SNAKE_CASE : Optional[int] = num_codevector_groups
SCREAMING_SNAKE_CASE : Optional[Any] = contrastive_logits_temperature
SCREAMING_SNAKE_CASE : List[str] = feat_quantizer_dropout
SCREAMING_SNAKE_CASE : Optional[int] = num_negatives
SCREAMING_SNAKE_CASE : List[str] = codevector_dim
SCREAMING_SNAKE_CASE : Dict = proj_codevector_dim
SCREAMING_SNAKE_CASE : int = diversity_loss_weight
# ctc loss
SCREAMING_SNAKE_CASE : int = ctc_loss_reduction
SCREAMING_SNAKE_CASE : int = ctc_zero_infinity
# adapter
SCREAMING_SNAKE_CASE : List[Any] = add_adapter
SCREAMING_SNAKE_CASE : int = adapter_kernel_size
SCREAMING_SNAKE_CASE : List[Any] = adapter_stride
SCREAMING_SNAKE_CASE : List[str] = num_adapter_layers
SCREAMING_SNAKE_CASE : str = output_hidden_size or hidden_size
SCREAMING_SNAKE_CASE : Dict = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
SCREAMING_SNAKE_CASE : List[Any] = list(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : int = list(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Optional[int] = list(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE : Any = xvector_output_dim
@property
def _lowercase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 245 |
# Usage:
# ./gen-card-facebook-wmt19.py
import os
from pathlib import Path
def __lowercase ( _A , _A , _A ) -> int:
SCREAMING_SNAKE_CASE : Optional[Any] = {
"""en""": """Machine learning is great, isn't it?""",
"""ru""": """Машинное обучение - это здорово, не так ли?""",
"""de""": """Maschinelles Lernen ist großartig, oder?""",
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
SCREAMING_SNAKE_CASE : int = {
"""ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""],
"""en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""],
"""en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""],
"""de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""],
}
SCREAMING_SNAKE_CASE : List[Any] = F"{src_lang}-{tgt_lang}"
SCREAMING_SNAKE_CASE : List[str] = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n"
os.makedirs(_A , exist_ok=_A )
SCREAMING_SNAKE_CASE : int = os.path.join(_A , """README.md""" )
print(F"Generating {path}" )
with open(_A , """w""" , encoding="""utf-8""" ) as f:
f.write(_A )
# make sure we are under the root of the project
UpperCAmelCase__ : List[str] = Path(__file__).resolve().parent.parent.parent
UpperCAmelCase__ : Dict = repo_dir / """model_cards"""
for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = model_name.split("""-""")
UpperCAmelCase__ : Tuple = model_cards_dir / """facebook""" / model_name
write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
| 245 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> int:
'''simple docstring'''
snake_case : int = abs(SCREAMING_SNAKE_CASE__ )
snake_case : str = 0
while n > 0:
res += n % 10
n //= 10
return res
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> int:
'''simple docstring'''
snake_case : List[str] = abs(SCREAMING_SNAKE_CASE__ )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> int:
'''simple docstring'''
return sum(int(SCREAMING_SNAKE_CASE__ ) for c in str(abs(SCREAMING_SNAKE_CASE__ ) ) )
def _UpperCamelCase ( ) -> None:
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> None:
snake_case : int = F'{func.__name__}({value})'
snake_case : Optional[int] = timeit(F'__main__.{call}' , setup='''import __main__''' )
print(F'{call:56} = {func(SCREAMING_SNAKE_CASE__ )} -- {timing:.4f} seconds' )
for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 83 |
'''simple docstring'''
from collections.abc import Generator
def _UpperCamelCase ( ) -> Generator[int, None, None]:
'''simple docstring'''
snake_case ,snake_case : Tuple = 0, 1
while True:
snake_case ,snake_case : List[Any] = b, a + b
yield b
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = 1000 ) -> int:
'''simple docstring'''
snake_case : Optional[int] = 1
snake_case : List[Any] = fibonacci_generator()
while len(str(next(SCREAMING_SNAKE_CASE__ ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 83 | 1 |
"""simple docstring"""
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class lowercase:
'''simple docstring'''
def __init__( self: Any, a_: Union[str, Any], a_: Dict=13, a_: Optional[Any]=32, a_: Any=2, a_: Any=3, a_: Optional[Any]=16, a_: List[str]=[1, 2, 1], a_: int=[2, 2, 4], a_: Dict=2, a_: Optional[int]=2.0, a_: Union[str, Any]=True, a_: Optional[Any]=0.0, a_: Optional[int]=0.0, a_: Union[str, Any]=0.1, a_: str="gelu", a_: int=False, a_: Union[str, Any]=True, a_: Dict=0.02, a_: List[Any]=1E-5, a_: int=True, a_: Union[str, Any]=None, a_: Optional[int]=True, a_: List[Any]=10, a_: Tuple=8, a_: Optional[Any]=["stage1", "stage2", "stage3"], a_: Union[str, Any]=[1, 2, 3], ):
'''simple docstring'''
_snake_case : str = parent
_snake_case : Optional[int] = batch_size
_snake_case : Any = image_size
_snake_case : int = patch_size
_snake_case : Union[str, Any] = num_channels
_snake_case : int = embed_dim
_snake_case : Optional[Any] = depths
_snake_case : Tuple = num_heads
_snake_case : Union[str, Any] = window_size
_snake_case : List[Any] = mlp_ratio
_snake_case : Union[str, Any] = qkv_bias
_snake_case : List[Any] = hidden_dropout_prob
_snake_case : Dict = attention_probs_dropout_prob
_snake_case : Union[str, Any] = drop_path_rate
_snake_case : str = hidden_act
_snake_case : Union[str, Any] = use_absolute_embeddings
_snake_case : Optional[Any] = patch_norm
_snake_case : Any = layer_norm_eps
_snake_case : Union[str, Any] = initializer_range
_snake_case : Union[str, Any] = is_training
_snake_case : Optional[Any] = scope
_snake_case : Union[str, Any] = use_labels
_snake_case : Union[str, Any] = type_sequence_label_size
_snake_case : str = encoder_stride
_snake_case : List[Any] = out_features
_snake_case : Tuple = out_indices
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : Tuple = None
if self.use_labels:
_snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size )
_snake_case : List[str] = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
return MaskFormerSwinConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, )
def UpperCamelCase_ ( self: str, a_: List[str], a_: List[str], a_: str ):
'''simple docstring'''
_snake_case : str = MaskFormerSwinModel(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Any = model(a_ )
_snake_case : List[str] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_snake_case : List[str] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase_ ( self: Dict, a_: Tuple, a_: Tuple, a_: Any ):
'''simple docstring'''
_snake_case : int = MaskFormerSwinBackbone(config=a_ )
model.to(a_ )
model.eval()
_snake_case : str = model(a_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ), len(config.out_features ) )
self.parent.assertListEqual(model.channels, [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(a_ ):
_snake_case : Optional[Any] = ["""stem"""]
_snake_case : Tuple = MaskFormerSwinBackbone(config=a_ )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Any = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case : List[Any] = config_and_inputs
_snake_case : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowercase__ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {}
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : List[Any] = MaskFormerSwinModelTester(self )
_snake_case : List[str] = ConfigTester(self, config_class=a_, embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
"""`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"""
""" `nn.DataParallel`"""
) )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*a_ )
@unittest.skip("""Swin does not use inputs_embeds""" )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
@unittest.skip("""Swin does not support feedforward chunking""" )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Optional[int] = model_class(a_ )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
_snake_case : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a_, nn.Linear ) )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Tuple = model_class(a_ )
_snake_case : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : Union[str, Any] = [*signature.parameters.keys()]
_snake_case : List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
@unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int, a_: str, a_: Dict, a_: Union[str, Any], a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : Any = model_class(a_ )
model.to(a_ )
model.eval()
with torch.no_grad():
_snake_case : Optional[Any] = model(**self._prepare_for_class(a_, a_ ) )
_snake_case : Optional[Any] = outputs.hidden_states
_snake_case : Any = getattr(
self.model_tester, """expected_num_hidden_layers""", len(self.model_tester.depths ) + 1 )
self.assertEqual(len(a_ ), a_ )
# Swin has a different seq_length
_snake_case : int = (
config.patch_size
if isinstance(config.patch_size, collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_snake_case : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Any = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_snake_case : Tuple = True
self.check_hidden_states_output(a_, a_, a_, a_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case : Optional[Any] = True
self.check_hidden_states_output(a_, a_, a_, a_ )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : str = 3
_snake_case : List[str] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_snake_case : List[Any] = (
config.patch_size
if isinstance(config.patch_size, collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_snake_case : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_snake_case : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_snake_case : Any = True
self.check_hidden_states_output(a_, a_, a_, (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case : Dict = True
self.check_hidden_states_output(a_, a_, a_, (padded_height, padded_width) )
@unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(a_: List[str] ):
_snake_case : Union[str, Any] = 0
return t
def check_equivalence(a_: List[Any], a_: List[Any], a_: List[str], a_: List[str]={} ):
with torch.no_grad():
_snake_case : Any = model(**a_, return_dict=a_, **a_ )
_snake_case : int = model(**a_, return_dict=a_, **a_ ).to_tuple()
def recursive_check(a_: Union[str, Any], a_: Tuple ):
if isinstance(a_, (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(a_, a_ ):
recursive_check(a_, a_ )
elif isinstance(a_, a_ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values() ):
recursive_check(a_, a_ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(a_ ), set_nan_tensor_to_zero(a_ ), atol=1E-5 ), msg=(
"""Tuple and dict output are not equal. Difference:"""
f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:"
f" {torch.isnan(a_ ).any()} and `inf`: {torch.isinf(a_ )}. Dict has"
f" `nan`: {torch.isnan(a_ ).any()} and `inf`: {torch.isinf(a_ )}."
), )
recursive_check(a_, a_ )
for model_class in self.all_model_classes:
_snake_case : Tuple = model_class(a_ )
model.to(a_ )
model.eval()
_snake_case : int = self._prepare_for_class(a_, a_ )
_snake_case : str = self._prepare_for_class(a_, a_ )
check_equivalence(a_, a_, a_ )
_snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ )
check_equivalence(a_, a_, a_ )
_snake_case : Tuple = self._prepare_for_class(a_, a_ )
_snake_case : str = self._prepare_for_class(a_, a_ )
check_equivalence(a_, a_, a_, {"""output_hidden_states""": True} )
_snake_case : int = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : Optional[int] = self._prepare_for_class(a_, a_, return_labels=a_ )
check_equivalence(a_, a_, a_, {"""output_hidden_states""": True} )
@require_torch
class lowercase( unittest.TestCase , __a ):
'''simple docstring'''
lowercase__ = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowercase__ = MaskFormerSwinConfig
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : List[Any] = MaskFormerSwinModelTester(self )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Tuple = inputs_dict["""pixel_values"""].shape[0]
for backbone_class in self.all_model_classes:
_snake_case : Any = backbone_class(a_ )
backbone.to(a_ )
backbone.eval()
_snake_case : Union[str, Any] = backbone(**a_ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps, a_ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels ):
self.assertTrue(feature_map.shape[:2], (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
_snake_case : List[str] = backbone(**a_, output_hidden_states=a_ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ), len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:], backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
_snake_case , _snake_case , _snake_case : Any = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels), (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
_snake_case : Dict = backbone(**a_, output_attentions=a_ )
self.assertIsNotNone(outputs.attentions )
| 64 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A :
"""simple docstring"""
def __init__( self : Union[str, Any],lowercase_ : Any,lowercase_ : Union[str, Any]=1_3,lowercase_ : Tuple=3_0,lowercase_ : List[Any]=2,lowercase_ : Optional[int]=3,lowercase_ : Union[str, Any]=True,lowercase_ : Tuple=True,lowercase_ : Any=3_2,lowercase_ : List[str]=2,lowercase_ : Optional[int]=4,lowercase_ : Union[str, Any]=3_7,lowercase_ : Tuple="gelu",lowercase_ : str=0.1,lowercase_ : Tuple=0.1,lowercase_ : Union[str, Any]=1_0,lowercase_ : int=0.02,lowercase_ : List[Any]=3,lowercase_ : Any=None,)-> Dict:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
A__ = (image_size // patch_size) ** 2
A__ = num_patches + 1
def snake_case__ ( self : int )-> List[str]:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size],self.type_sequence_label_size )
A__ = self.get_config()
return config, pixel_values, labels
def snake_case__ ( self : Tuple )-> List[Any]:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=lowercase_,initializer_range=self.initializer_range,)
def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : Union[str, Any],lowercase_ : Tuple )-> Optional[Any]:
'''simple docstring'''
A__ = TFViTModel(config=lowercase_ )
A__ = model(lowercase_,training=lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
A__ = self.image_size // 2
A__ = pixel_values[:, :, :image_size, :image_size]
A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ )
A__ = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, seq_length, self.hidden_size) )
def snake_case__ ( self : List[Any],lowercase_ : List[Any],lowercase_ : List[Any],lowercase_ : List[Any] )-> Dict:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFViTForImageClassification(lowercase_ )
A__ = model(lowercase_,labels=lowercase_,training=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
A__ = self.image_size // 2
A__ = pixel_values[:, :, :image_size, :image_size]
A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A__ = 1
A__ = TFViTForImageClassification(lowercase_ )
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A__ = model(lowercase_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) )
def snake_case__ ( self : Any )-> Optional[Any]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
lowerCamelCase = (
{'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification}
if is_tf_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def snake_case__ ( self : int )-> List[Any]:
'''simple docstring'''
A__ = TFViTModelTester(self )
A__ = ConfigTester(self,config_class=lowercase_,has_text_modality=lowercase_,hidden_size=3_7 )
def snake_case__ ( self : Any )-> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='ViT does not use inputs_embeds' )
def snake_case__ ( self : Optional[Any] )-> str:
'''simple docstring'''
pass
@unittest.skip(reason='ViT does not use inputs_embeds' )
def snake_case__ ( self : Any )-> int:
'''simple docstring'''
pass
def snake_case__ ( self : str )-> Dict:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(lowercase_ )
self.assertIsInstance(model.get_input_embeddings(),(tf.keras.layers.Layer) )
A__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase_,tf.keras.layers.Layer ) )
def snake_case__ ( self : int )-> List[str]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(lowercase_ )
A__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['pixel_values']
self.assertListEqual(arg_names[:1],lowercase_ )
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def snake_case__ ( self : Optional[Any] )-> Optional[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase_ )
@slow
def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
A__ = TFViTModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(lowercase_ )
def _snake_case( ) -> str:
'''simple docstring'''
A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def snake_case__ ( self : List[Any] )-> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None
@slow
def snake_case__ ( self : Any )-> Dict:
'''simple docstring'''
A__ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' )
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=lowercase_,return_tensors='tf' )
# forward pass
A__ = model(**lowercase_ )
# verify the logits
A__ = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape,lowercase_ )
A__ = tf.constant([-0.2_744, 0.8_215, -0.0_836] )
tf.debugging.assert_near(outputs.logits[0, :3],lowercase_,atol=1E-4 )
| 7 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
lowercase__ = TypeVar("""T""")
class lowerCAmelCase__ ( Generic[T] ):
'''simple docstring'''
def __init__( self , lowercase ):
_lowerCamelCase : List[str] = data
_lowerCamelCase : Node[T] | None = None
def __str__( self ):
return F'''{self.data}'''
class lowerCAmelCase__ ( Generic[T] ):
'''simple docstring'''
def __init__( self ):
_lowerCamelCase : Node[T] | None = None
def __iter__( self ):
_lowerCamelCase : List[Any] = self.top
while node:
yield node.data
_lowerCamelCase : int = node.next
def __str__( self ):
return "->".join([str(lowercase ) for item in self] )
def __len__( self ):
return len(tuple(iter(self ) ) )
def A_ ( self ):
return self.top is None
def A_ ( self , lowercase ):
_lowerCamelCase : Optional[int] = Node(lowercase )
if not self.is_empty():
_lowerCamelCase : Dict = self.top
_lowerCamelCase : Optional[Any] = node
def A_ ( self ):
if self.is_empty():
raise IndexError('pop from empty stack' )
assert isinstance(self.top , lowercase )
_lowerCamelCase : Dict = self.top
_lowerCamelCase : int = self.top.next
return pop_node.data
def A_ ( self ):
if self.is_empty():
raise IndexError('peek from empty stack' )
assert self.top is not None
return self.top.data
def A_ ( self ):
_lowerCamelCase : Dict = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 367 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
lowercase__ = {
"""E""": 12.70,
"""T""": 9.06,
"""A""": 8.17,
"""O""": 7.51,
"""I""": 6.97,
"""N""": 6.75,
"""S""": 6.33,
"""H""": 6.09,
"""R""": 5.99,
"""D""": 4.25,
"""L""": 4.03,
"""C""": 2.78,
"""U""": 2.76,
"""M""": 2.41,
"""W""": 2.36,
"""F""": 2.23,
"""G""": 2.02,
"""Y""": 1.97,
"""P""": 1.93,
"""B""": 1.29,
"""V""": 0.98,
"""K""": 0.77,
"""J""": 0.15,
"""X""": 0.15,
"""Q""": 0.10,
"""Z""": 0.07,
}
lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ"""
lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def _snake_case ( lowercase__ ):
_lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def _snake_case ( lowercase__ ):
return x[0]
def _snake_case ( lowercase__ ):
_lowerCamelCase : List[Any] = get_letter_count(lowercase__ )
_lowerCamelCase : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(lowercase__ )
_lowerCamelCase : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ )
_lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] )
_lowerCamelCase : Any = list(freq_to_letter_str.items() )
freq_pairs.sort(key=lowercase__ , reverse=lowercase__ )
_lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(lowercase__ )
def _snake_case ( lowercase__ ):
_lowerCamelCase : str = get_frequency_order(lowercase__ )
_lowerCamelCase : Union[str, Any] = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase_ = [
'small',
'small-base',
'medium',
'medium-base',
'intermediate',
'intermediate-base',
'large',
'large-base',
'xlarge',
'xlarge-base',
]
lowerCAmelCase_ = {
'vocab_file': {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt',
'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt',
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt',
'funnel-transformer/medium-base': (
'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt'
),
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt',
'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt',
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt',
'funnel-transformer/xlarge-base': (
'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json',
'funnel-transformer/small-base': (
'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json'
),
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json',
'funnel-transformer/medium-base': (
'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json'
),
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json',
'funnel-transformer/large-base': (
'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json'
),
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json',
'funnel-transformer/xlarge-base': (
'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json'
),
},
}
lowerCAmelCase_ = {F'''funnel-transformer/{name}''': 512 for name in _model_names}
lowerCAmelCase_ = {F'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names}
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : str = VOCAB_FILES_NAMES
lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase : int = PRETRAINED_INIT_CONFIGURATION
lowerCAmelCase : Dict = FunnelTokenizer
lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase : int = 2
def __init__( self : Optional[int] ,_snake_case : Dict=None ,_snake_case : List[str]=None ,_snake_case : Optional[Any]=True ,_snake_case : Optional[int]="<unk>" ,_snake_case : Dict="<sep>" ,_snake_case : Any="<pad>" ,_snake_case : str="<cls>" ,_snake_case : Optional[Any]="<mask>" ,_snake_case : int="<s>" ,_snake_case : Dict="</s>" ,_snake_case : Optional[int]=True ,_snake_case : List[str]=True ,_snake_case : Dict=None ,_snake_case : str="##" ,**_snake_case : Optional[Any] ,) -> Any:
"""simple docstring"""
super().__init__(
_snake_case ,tokenizer_file=_snake_case ,do_lower_case=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,clean_text=_snake_case ,tokenize_chinese_chars=_snake_case ,strip_accents=_snake_case ,wordpieces_prefix=_snake_case ,**_snake_case ,)
lowercase__ : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' ,_snake_case ) != do_lower_case
or normalizer_state.get('''strip_accents''' ,_snake_case ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' ,_snake_case ) != tokenize_chinese_chars
):
lowercase__ : List[str] = getattr(_snake_case ,normalizer_state.pop('''type''' ) )
lowercase__ : List[str] = do_lower_case
lowercase__ : Any = strip_accents
lowercase__ : Union[str, Any] = tokenize_chinese_chars
lowercase__ : Union[str, Any] = normalizer_class(**_snake_case )
lowercase__ : List[str] = do_lower_case
def UpperCAmelCase ( self : int ,_snake_case : Tuple ,_snake_case : Tuple=None ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase ( self : Tuple ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
lowercase__ : Optional[int] = [self.sep_token_id]
lowercase__ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self : Tuple ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
lowercase__ : str = self._tokenizer.model.save(_snake_case ,name=_snake_case )
return tuple(_snake_case )
| 16 |
'''simple docstring'''
import json
import os
import tempfile
import datasets
from utils import generate_example_dataset, get_duration
_lowerCamelCase : List[str] = 5_0000
_lowerCamelCase : Optional[int] = 5000
_lowerCamelCase ,_lowerCamelCase : int = os.path.split(__file__)
_lowerCamelCase : str = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json"))
@get_duration
def __lowerCamelCase ( A__ , A__ ) -> Any:
"""simple docstring"""
for i in range(A__ ):
UpperCamelCase = dataset[i]
@get_duration
def __lowerCamelCase ( A__ , A__ , A__ ) -> int:
"""simple docstring"""
for i in range(0 , len(A__ ) , A__ ):
UpperCamelCase = dataset[i : i + batch_size]
@get_duration
def __lowerCamelCase ( A__ , A__ , A__ ) -> List[Any]:
"""simple docstring"""
with dataset.formatted_as(type=A__ ):
for i in range(A__ ):
UpperCamelCase = dataset[i]
@get_duration
def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> int:
"""simple docstring"""
with dataset.formatted_as(type=A__ ):
for i in range(0 , A__ , A__ ):
UpperCamelCase = dataset[i : i + batch_size]
def __lowerCamelCase ( ) -> List[str]:
"""simple docstring"""
UpperCamelCase = {'num examples': SPEED_TEST_N_EXAMPLES}
UpperCamelCase = [
(read, {'length': SMALL_TEST}),
(read, {'length': SPEED_TEST_N_EXAMPLES}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}),
(read_formatted, {'type': 'numpy', 'length': SMALL_TEST}),
(read_formatted, {'type': 'pandas', 'length': SMALL_TEST}),
(read_formatted, {'type': 'torch', 'length': SMALL_TEST}),
(read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}),
]
UpperCamelCase = [
(read, {'length': SMALL_TEST}),
(read, {'length': SPEED_TEST_N_EXAMPLES}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}),
(read_formatted, {'type': 'numpy', 'length': SMALL_TEST}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}),
]
with tempfile.TemporaryDirectory() as tmp_dir:
print('generating dataset' )
UpperCamelCase = datasets.Features(
{'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} )
UpperCamelCase = generate_example_dataset(
os.path.join(A__ , 'dataset.arrow' ) , A__ , num_examples=A__ , seq_shapes={'list': (100,)} , )
print('first set of iterations' )
for func, kwargs in functions:
print(func.__name__ , str(A__ ) )
UpperCamelCase = func(A__ , **A__ )
print('shuffling dataset' )
UpperCamelCase = dataset.shuffle()
print('Second set of iterations (after shuffling' )
for func, kwargs in functions_shuffled:
print('shuffled ' , func.__name__ , str(A__ ) )
UpperCamelCase = func(
A__ , **A__ )
with open(A__ , 'wb' ) as f:
f.write(json.dumps(A__ ).encode('utf-8' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_iterating()
| 28 | 0 |
"""simple docstring"""
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput
class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = 1
@register_to_config
def __init__( self : Union[str, Any] , lowercase_ : int = 1000 , lowercase_ : Optional[Union[np.ndarray, List[float]]] = None):
'''simple docstring'''
self.set_timesteps(lowercase_)
# standard deviation of the initial noise distribution
SCREAMING_SNAKE_CASE_ : int = 1.0
# For now we only support F-PNDM, i.e. the runge-kutta method
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
# mainly at formula (9), (12), (13) and the Algorithm 2.
SCREAMING_SNAKE_CASE_ : List[str] = 4
# running values
SCREAMING_SNAKE_CASE_ : List[str] = []
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : int , lowercase_ : Union[str, torch.device] = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = num_inference_steps
SCREAMING_SNAKE_CASE_ : int = torch.linspace(1 , 0 , num_inference_steps + 1)[:-1]
SCREAMING_SNAKE_CASE_ : Dict = torch.cat([steps, torch.tensor([0.0])])
if self.config.trained_betas is not None:
SCREAMING_SNAKE_CASE_ : Any = torch.tensor(self.config.trained_betas , dtype=torch.floataa)
else:
SCREAMING_SNAKE_CASE_ : List[Any] = torch.sin(steps * math.pi / 2) ** 2
SCREAMING_SNAKE_CASE_ : List[str] = (1.0 - self.betas**2) ** 0.5
SCREAMING_SNAKE_CASE_ : Optional[Any] = (torch.atana(self.betas , self.alphas) / math.pi * 2)[:-1]
SCREAMING_SNAKE_CASE_ : List[Any] = timesteps.to(lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = []
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : torch.FloatTensor , lowercase_ : int , lowercase_ : torch.FloatTensor , lowercase_ : bool = True , ):
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
'''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''')
SCREAMING_SNAKE_CASE_ : List[str] = (self.timesteps == timestep).nonzero().item()
SCREAMING_SNAKE_CASE_ : Dict = timestep_index + 1
SCREAMING_SNAKE_CASE_ : Optional[Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
self.ets.append(lowercase_)
if len(self.ets) == 1:
SCREAMING_SNAKE_CASE_ : List[Any] = self.ets[-1]
elif len(self.ets) == 2:
SCREAMING_SNAKE_CASE_ : Any = (3 * self.ets[-1] - self.ets[-2]) / 2
elif len(self.ets) == 3:
SCREAMING_SNAKE_CASE_ : List[Any] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
else:
SCREAMING_SNAKE_CASE_ : Optional[Any] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
SCREAMING_SNAKE_CASE_ : Any = self._get_prev_sample(lowercase_ , lowercase_ , lowercase_ , lowercase_)
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : torch.FloatTensor , *lowercase_ : List[Any] , **lowercase_ : Any):
'''simple docstring'''
return sample
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.alphas[timestep_index]
SCREAMING_SNAKE_CASE_ : Optional[int] = self.betas[timestep_index]
SCREAMING_SNAKE_CASE_ : Tuple = self.alphas[prev_timestep_index]
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.betas[prev_timestep_index]
SCREAMING_SNAKE_CASE_ : Optional[int] = (sample - sigma * ets) / max(lowercase_ , 1e-8)
SCREAMING_SNAKE_CASE_ : Dict = next_alpha * pred + ets * next_sigma
return prev_sample
def __len__( self : str):
'''simple docstring'''
return self.config.num_train_timesteps
| 367 |
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCAmelCase_ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), """src"""))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="""ignore""", category=FutureWarning)
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__a )
def _A (__a ) -> Any:
"""simple docstring"""
from transformers.testing_utils import pytest_terminal_summary_main
SCREAMING_SNAKE_CASE_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(__a , id=__a )
| 318 | 0 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class _lowerCamelCase ( unittest.TestCase ):
def _lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ : str = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase__ : List[str] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""]
# fmt: on
lowerCAmelCase__ : Optional[int] = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) )
lowerCAmelCase__ : Union[str, Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""]
lowerCAmelCase__ : Optional[Any] = {"""unk_token""": """<unk>"""}
lowerCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCAmelCase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(UpperCamelCase ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(UpperCamelCase ) )
lowerCAmelCase__ : List[Any] = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073],
"""image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
lowerCAmelCase__ : List[str] = os.path.join(self.tmpdirname , UpperCamelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(UpperCamelCase , UpperCamelCase )
def _lowerCAmelCase ( self : Optional[Any] , **UpperCamelCase : Tuple ) -> str:
"""simple docstring"""
return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase )
def _lowerCAmelCase ( self : List[str] , **UpperCamelCase : List[Any] ) -> Optional[Any]:
"""simple docstring"""
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase )
def _lowerCAmelCase ( self : List[Any] , **UpperCamelCase : Tuple ) -> Optional[int]:
"""simple docstring"""
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase )
def _lowerCAmelCase ( self : Dict ) -> Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ : Union[str, Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
lowerCAmelCase__ : Optional[int] = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _lowerCAmelCase ( self : Dict ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ : Dict = self.get_tokenizer()
lowerCAmelCase__ : int = self.get_rust_tokenizer()
lowerCAmelCase__ : List[Any] = self.get_image_processor()
lowerCAmelCase__ : Any = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowerCAmelCase__ : List[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase )
lowerCAmelCase__ : str = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowerCAmelCase__ : int = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase )
self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , UpperCamelCase )
self.assertIsInstance(processor_fast.image_processor , UpperCamelCase )
def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ : str = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowerCAmelCase__ : List[Any] = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 )
lowerCAmelCase__ : Union[str, Any] = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCamelCase )
def _lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ : Any = self.get_image_processor()
lowerCAmelCase__ : Union[str, Any] = self.get_tokenizer()
lowerCAmelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase )
lowerCAmelCase__ : str = self.prepare_image_inputs()
lowerCAmelCase__ : Optional[int] = image_processor(UpperCamelCase , return_tensors="""np""" )
lowerCAmelCase__ : Optional[Any] = processor(images=UpperCamelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def _lowerCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
lowerCAmelCase__ : List[Any] = self.get_image_processor()
lowerCAmelCase__ : Any = self.get_tokenizer()
lowerCAmelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase )
lowerCAmelCase__ : Tuple = """lower newer"""
lowerCAmelCase__ : Optional[Any] = processor(text=UpperCamelCase )
lowerCAmelCase__ : int = tokenizer(UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _lowerCAmelCase ( self : List[Any] ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ : str = self.get_image_processor()
lowerCAmelCase__ : str = self.get_tokenizer()
lowerCAmelCase__ : List[str] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase )
lowerCAmelCase__ : Union[str, Any] = """lower newer"""
lowerCAmelCase__ : Any = self.prepare_image_inputs()
lowerCAmelCase__ : Dict = processor(text=UpperCamelCase , images=UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(UpperCamelCase ):
processor()
def _lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ : Optional[int] = self.get_image_processor()
lowerCAmelCase__ : List[str] = self.get_tokenizer()
lowerCAmelCase__ : List[str] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase )
lowerCAmelCase__ : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase__ : Tuple = processor.batch_decode(UpperCamelCase )
lowerCAmelCase__ : Optional[int] = tokenizer.batch_decode(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def _lowerCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
lowerCAmelCase__ : Dict = self.get_image_processor()
lowerCAmelCase__ : str = self.get_tokenizer()
lowerCAmelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase )
lowerCAmelCase__ : Dict = """lower newer"""
lowerCAmelCase__ : str = self.prepare_image_inputs()
lowerCAmelCase__ : Dict = processor(text=UpperCamelCase , images=UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 242 |
"""simple docstring"""
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
_A = logging.get_logger(__name__)
class _lowerCamelCase :
def __init__( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : int ) -> str:
"""simple docstring"""
lowerCAmelCase__ : List[Any] = question_encoder
lowerCAmelCase__ : Optional[int] = generator
lowerCAmelCase__ : Optional[int] = self.question_encoder
def _lowerCAmelCase ( self : Dict , UpperCamelCase : Optional[Any] ) -> str:
"""simple docstring"""
if os.path.isfile(UpperCamelCase ):
raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" )
os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase )
lowerCAmelCase__ : Dict = os.path.join(UpperCamelCase , """question_encoder_tokenizer""" )
lowerCAmelCase__ : List[Any] = os.path.join(UpperCamelCase , """generator_tokenizer""" )
self.question_encoder.save_pretrained(UpperCamelCase )
self.generator.save_pretrained(UpperCamelCase )
@classmethod
def _lowerCAmelCase ( cls : Union[str, Any] , UpperCamelCase : List[str] , **UpperCamelCase : List[str] ) -> Dict:
"""simple docstring"""
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
lowerCAmelCase__ : Dict = kwargs.pop("""config""" , UpperCamelCase )
if config is None:
lowerCAmelCase__ : int = RagConfig.from_pretrained(UpperCamelCase )
lowerCAmelCase__ : List[str] = AutoTokenizer.from_pretrained(
UpperCamelCase , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" )
lowerCAmelCase__ : List[str] = AutoTokenizer.from_pretrained(
UpperCamelCase , config=config.generator , subfolder="""generator_tokenizer""" )
return cls(question_encoder=UpperCamelCase , generator=UpperCamelCase )
def __call__( self : Dict , *UpperCamelCase : List[Any] , **UpperCamelCase : Union[str, Any] ) -> int:
"""simple docstring"""
return self.current_tokenizer(*UpperCamelCase , **UpperCamelCase )
def _lowerCAmelCase ( self : Dict , *UpperCamelCase : Tuple , **UpperCamelCase : Optional[int] ) -> Dict:
"""simple docstring"""
return self.generator.batch_decode(*UpperCamelCase , **UpperCamelCase )
def _lowerCAmelCase ( self : List[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[Any] ) -> str:
"""simple docstring"""
return self.generator.decode(*UpperCamelCase , **UpperCamelCase )
def _lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ : Optional[Any] = self.question_encoder
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ : Optional[int] = self.generator
def _lowerCAmelCase ( self : List[str] , UpperCamelCase : List[str] , UpperCamelCase : Optional[List[str]] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : str = "longest" , UpperCamelCase : str = None , UpperCamelCase : bool = True , **UpperCamelCase : Union[str, Any] , ) -> BatchEncoding:
"""simple docstring"""
warnings.warn(
"""`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """
"""regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """
"""context manager to prepare your targets. See the documentation of your specific tokenizer for more """
"""details""" , UpperCamelCase , )
if max_length is None:
lowerCAmelCase__ : Any = self.current_tokenizer.model_max_length
lowerCAmelCase__ : Tuple = self(
UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors=UpperCamelCase , max_length=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , **UpperCamelCase , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
lowerCAmelCase__ : Tuple = self.current_tokenizer.model_max_length
lowerCAmelCase__ : Tuple = self(
text_target=UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors=UpperCamelCase , padding=UpperCamelCase , max_length=UpperCamelCase , truncation=UpperCamelCase , **UpperCamelCase , )
lowerCAmelCase__ : Any = labels["""input_ids"""]
return model_inputs
| 242 | 1 |
import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path
import pytest
import transformers
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertConfig,
BertTokenizer,
BertTokenizerFast,
CTRLTokenizer,
GPTaTokenizer,
GPTaTokenizerFast,
PreTrainedTokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
TOKENIZER_MAPPING,
get_tokenizer_config,
tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tokenizers,
slow,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class _lowercase ( unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase_ (self ):
"""simple docstring"""
a = 0
@slow
def UpperCamelCase_ (self ):
"""simple docstring"""
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
a = AutoTokenizer.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) )
self.assertGreater(len(lowerCamelCase_ ) , 0 )
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
a = AutoTokenizer.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) )
self.assertGreater(len(lowerCamelCase_ ) , 0 )
def UpperCamelCase_ (self ):
"""simple docstring"""
a = AutoTokenizer.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 12 )
def UpperCamelCase_ (self ):
"""simple docstring"""
a = AutoTokenizer.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 20 )
def UpperCamelCase_ (self ):
"""simple docstring"""
a = AutoConfig.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
# Check that tokenizer_type ≠ model_type
a = AutoTokenizer.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 12 )
def UpperCamelCase_ (self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(lowerCamelCase_ , "vocab.txt" ) )
a = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type="bert" , use_fast=lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.json" , os.path.join(lowerCamelCase_ , "vocab.json" ) )
shutil.copy("./tests/fixtures/merges.txt" , os.path.join(lowerCamelCase_ , "merges.txt" ) )
a = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type="gpt2" , use_fast=lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
@require_tokenizers
def UpperCamelCase_ (self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(lowerCamelCase_ , "vocab.txt" ) )
a = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type="bert" )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.json" , os.path.join(lowerCamelCase_ , "vocab.json" ) )
shutil.copy("./tests/fixtures/merges.txt" , os.path.join(lowerCamelCase_ , "merges.txt" ) )
a = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type="gpt2" )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def UpperCamelCase_ (self ):
"""simple docstring"""
with pytest.raises(lowerCamelCase_ ):
AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx" )
@require_tokenizers
def UpperCamelCase_ (self ):
"""simple docstring"""
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
a = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" )
self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) )
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , lowerCamelCase_ )
else:
self.assertEqual(tokenizer.do_lower_case , lowerCamelCase_ )
self.assertEqual(tokenizer.model_max_length , 512 )
@require_tokenizers
def UpperCamelCase_ (self ):
"""simple docstring"""
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaisesRegex(
lowerCamelCase_ , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ):
a = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" )
def UpperCamelCase_ (self ):
"""simple docstring"""
a = TOKENIZER_MAPPING.values()
a = []
for slow_tok, fast_tok in tokenizers:
if slow_tok is not None:
tokenizer_names.append(slow_tok.__name__ )
if fast_tok is not None:
tokenizer_names.append(fast_tok.__name__ )
for tokenizer_name in tokenizer_names:
# must find the right class
tokenizer_class_from_name(lowerCamelCase_ )
@require_tokenizers
def UpperCamelCase_ (self ):
"""simple docstring"""
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=lowerCamelCase_ ) , lowerCamelCase_ )
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) , lowerCamelCase_ )
@require_tokenizers
def UpperCamelCase_ (self ):
"""simple docstring"""
a = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=lowerCamelCase_ )
a = 'Hello, world. How are you?'
a = tokenizer.tokenize(lowerCamelCase_ )
self.assertEqual("[UNK]" , tokens[0] )
a = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=lowerCamelCase_ )
a = tokenizer.tokenize(lowerCamelCase_ )
self.assertEqual("[UNK]" , tokens[0] )
@require_tokenizers
def UpperCamelCase_ (self ):
"""simple docstring"""
a = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" )
self.assertEqual(type(lowerCamelCase_ ) , lowerCamelCase_ )
self.assertEqual(tokenizer.model_max_length , 512 )
self.assertEqual(tokenizer.vocab_size , 30000 )
self.assertEqual(tokenizer.unk_token , "[UNK]" )
self.assertEqual(tokenizer.padding_side , "right" )
self.assertEqual(tokenizer.truncation_side , "right" )
def UpperCamelCase_ (self ):
"""simple docstring"""
a = AutoTokenizer.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(lowerCamelCase_ )
a = AutoTokenizer.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , tokenizer.__class__ )
self.assertEqual(tokenizera.vocab_size , 12 )
def UpperCamelCase_ (self ):
"""simple docstring"""
a = AutoTokenizer.from_pretrained("ctrl" )
# There is no fast CTRL so this always gives us a slow tokenizer.
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def UpperCamelCase_ (self ):
"""simple docstring"""
a = get_tokenizer_config("bert-base-cased" )
a = config.pop("_commit_hash" , lowerCamelCase_ )
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
self.assertEqual(lowerCamelCase_ , {"do_lower_case": False} )
# This model does not have a tokenizer_config so we get back an empty dict.
a = get_tokenizer_config(lowerCamelCase_ )
self.assertDictEqual(lowerCamelCase_ , {} )
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
a = AutoTokenizer.from_pretrained(lowerCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(lowerCamelCase_ )
a = get_tokenizer_config(lowerCamelCase_ )
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
self.assertEqual(config["tokenizer_class"] , "BertTokenizer" )
def UpperCamelCase_ (self ):
"""simple docstring"""
try:
AutoConfig.register("custom" , lowerCamelCase_ )
AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCamelCase_ ):
AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ )
a = CustomTokenizer.from_pretrained(lowerCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(lowerCamelCase_ )
a = AutoTokenizer.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
@require_tokenizers
def UpperCamelCase_ (self ):
"""simple docstring"""
try:
AutoConfig.register("custom" , lowerCamelCase_ )
# Can register in two steps
AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) )
AutoTokenizer.register(lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
del TOKENIZER_MAPPING._extra_content[CustomConfig]
# Can register in one step
AutoTokenizer.register(
lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCamelCase_ ):
AutoTokenizer.register(lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ )
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
# and that model does not have a tokenizer.json
with tempfile.TemporaryDirectory() as tmp_dir:
a = BertTokenizerFast.from_pretrained(lowerCamelCase_ )
bert_tokenizer.save_pretrained(lowerCamelCase_ )
a = CustomTokenizerFast.from_pretrained(lowerCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(lowerCamelCase_ )
a = AutoTokenizer.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
a = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def UpperCamelCase_ (self ):
"""simple docstring"""
with self.assertRaises(lowerCamelCase_ ):
a = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(lowerCamelCase_ ):
a = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCamelCase_ )
a = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCamelCase_ )
self.assertTrue(tokenizer.special_attribute_present )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(lowerCamelCase_ )
a = AutoTokenizer.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast" )
# Test we can also load the slow version
a = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(lowerCamelCase_ )
a = AutoTokenizer.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
else:
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" )
@require_tokenizers
def UpperCamelCase_ (self ):
"""simple docstring"""
class _lowercase ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
__A = False
class _lowercase ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
__A = NewTokenizer
__A = False
try:
AutoConfig.register("custom" , lowerCamelCase_ )
AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ )
AutoTokenizer.register(lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ )
# If remote code is not set, the default is to use local
a = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertFalse(tokenizer.special_attribute_present )
a = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=lowerCamelCase_ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote code is disabled, we load the local one.
a = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCamelCase_ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertFalse(tokenizer.special_attribute_present )
a = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub
a = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCamelCase_ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertTrue(tokenizer.special_attribute_present )
a = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertTrue(tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def UpperCamelCase_ (self ):
"""simple docstring"""
a = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=lowerCamelCase_ )
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
# Test we can also load the slow version
a = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
else:
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
def UpperCamelCase_ (self ):
"""simple docstring"""
with self.assertRaisesRegex(
lowerCamelCase_ , "bert-base is not a local folder and is not a valid model identifier" ):
a = AutoTokenizer.from_pretrained("bert-base" )
def UpperCamelCase_ (self ):
"""simple docstring"""
with self.assertRaisesRegex(
lowerCamelCase_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
a = AutoTokenizer.from_pretrained(lowerCamelCase_ , revision="aaaaaa" )
def UpperCamelCase_ (self ):
"""simple docstring"""
a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
with RequestCounter() as counter:
a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 359 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def a( A : Optional[Any] ) -> Tuple:
"""simple docstring"""
a = 384
a = 7
if "tiny" in model_name:
a = 96
a = (2, 2, 6, 2)
a = (3, 6, 12, 24)
elif "small" in model_name:
a = 96
a = (2, 2, 18, 2)
a = (3, 6, 12, 24)
elif "base" in model_name:
a = 128
a = (2, 2, 18, 2)
a = (4, 8, 16, 32)
a = 12
a = 512
elif "large" in model_name:
a = 192
a = (2, 2, 18, 2)
a = (6, 12, 24, 48)
a = 12
a = 768
# set label information
a = 150
a = "huggingface/label-files"
a = "ade20k-id2label.json"
a = json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) )
a = {int(A ): v for k, v in idalabel.items()}
a = {v: k for k, v in idalabel.items()}
a = SwinConfig(
embed_dim=A , depths=A , num_heads=A , window_size=A , out_features=["stage1", "stage2", "stage3", "stage4"] , )
a = UperNetConfig(
backbone_config=A , auxiliary_in_channels=A , num_labels=A , idalabel=A , labelaid=A , )
return config
def a( A : Optional[Any] ) -> Tuple:
"""simple docstring"""
a = []
# fmt: off
# stem
rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def a( A : List[str] , A : List[str] , A : Dict ) -> Any:
"""simple docstring"""
a = dct.pop(A )
a = val
def a( A : str , A : List[str] ) -> List[Any]:
"""simple docstring"""
a = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
a = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
a = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' )
a = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
a = in_proj_weight[:dim, :]
a = in_proj_bias[: dim]
a = in_proj_weight[
dim : dim * 2, :
]
a = in_proj_bias[
dim : dim * 2
]
a = in_proj_weight[
-dim :, :
]
a = in_proj_bias[-dim :]
# fmt: on
def a( A : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
a , a = x.shape
a = x.reshape(A , 4 , in_channel // 4 )
a = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(A , A )
return x
def a( A : int ) -> Dict:
"""simple docstring"""
a , a = x.shape
a = x.reshape(A , in_channel // 4 , 4 )
a = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(A , A )
return x
def a( A : List[Any] ) -> Dict:
"""simple docstring"""
a = x.shape[0]
a = x.reshape(4 , in_channel // 4 )
a = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(A )
return x
def a( A : Optional[Any] ) -> List[str]:
"""simple docstring"""
a = x.shape[0]
a = x.reshape(in_channel // 4 , 4 )
a = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(A )
return x
def a( A : Any , A : int , A : Dict ) -> Union[str, Any]:
"""simple docstring"""
a = {
"upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth",
"upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth",
"upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth",
"upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth",
}
a = model_name_to_url[model_name]
a = torch.hub.load_state_dict_from_url(A , map_location="cpu" , file_name=A )[
"state_dict"
]
for name, param in state_dict.items():
print(A , param.shape )
a = get_upernet_config(A )
a = UperNetForSemanticSegmentation(A )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
a = state_dict.pop(A )
if "bn" in key:
a = key.replace("bn" , "batch_norm" )
a = val
# rename keys
a = create_rename_keys(A )
for src, dest in rename_keys:
rename_key(A , A , A )
read_in_q_k_v(A , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
a = reverse_correct_unfold_reduction_order(A )
if "norm" in key:
a = reverse_correct_unfold_norm_order(A )
model.load_state_dict(A )
# verify on image
a = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
a = Image.open(requests.get(A , stream=A ).raw ).convert("RGB" )
a = SegformerImageProcessor()
a = processor(A , return_tensors="pt" ).pixel_values
with torch.no_grad():
a = model(A )
a = outputs.logits
print(logits.shape )
print("First values of logits:" , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
a = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] )
elif model_name == "upernet-swin-small":
a = torch.tensor(
[[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] )
elif model_name == "upernet-swin-base":
a = torch.tensor(
[[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] )
elif model_name == "upernet-swin-large":
a = torch.tensor(
[[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] )
print("Logits:" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(A )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(A )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
_lowercase: Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-swin-tiny",
type=str,
choices=[F"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]],
help="Name of the Swin + UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
_lowercase: int = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 71 | 0 |
'''simple docstring'''
from __future__ import annotations
def A__ ( UpperCAmelCase_ ):
return len(set(UpperCAmelCase_ ) ) == len(UpperCAmelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 83 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class lowercase__ ( lowercase ):
def __init__( self : Any ,lowerCamelCase__ : str ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ):
'''simple docstring'''
_UpperCamelCase : str = dataset
_UpperCamelCase : Optional[Any] = process
_UpperCamelCase : Optional[Any] = params
def __len__( self : Tuple ):
'''simple docstring'''
return len(self.dataset )
def __getitem__( self : Tuple ,lowerCamelCase__ : List[str] ):
'''simple docstring'''
_UpperCamelCase : Union[str, Any] = self.dataset[i]
_UpperCamelCase : Dict = self.process(lowerCamelCase__ ,**self.params )
return processed
class lowercase__ ( lowercase ):
def __init__( self : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int]=None ):
'''simple docstring'''
_UpperCamelCase : Optional[int] = loader
_UpperCamelCase : Tuple = infer
_UpperCamelCase : List[str] = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
_UpperCamelCase : Any = None
_UpperCamelCase : Union[str, Any] = loader_batch_size
# Internal bookkeeping
_UpperCamelCase : Optional[Any] = None
_UpperCamelCase : str = None
def __len__( self : List[str] ):
'''simple docstring'''
return len(self.loader )
def __iter__( self : int ):
'''simple docstring'''
_UpperCamelCase : Union[str, Any] = iter(self.loader )
return self
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
if isinstance(self._loader_batch_data ,torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
_UpperCamelCase : Union[str, Any] = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
_UpperCamelCase : Union[str, Any] = {}
for k, element in self._loader_batch_data.items():
if isinstance(lowerCamelCase__ ,lowerCamelCase__ ):
# Convert ModelOutput to tuple first
_UpperCamelCase : str = element.to_tuple()
if isinstance(element[0] ,torch.Tensor ):
_UpperCamelCase : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] ,np.ndarray ):
_UpperCamelCase : str = tuple(np.expand_dims(el[self._loader_batch_index] ,0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCamelCase__ ,lowerCamelCase__ ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] ,torch.Tensor ):
_UpperCamelCase : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] ,np.ndarray ):
_UpperCamelCase : Tuple = tuple(np.expand_dims(el[self._loader_batch_index] ,0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
_UpperCamelCase : Optional[int] = None
elif isinstance(element[self._loader_batch_index] ,torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_UpperCamelCase : int = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] ,np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_UpperCamelCase : Optional[Any] = np.expand_dims(element[self._loader_batch_index] ,0 )
else:
# This is typically a list, so no need to `unsqueeze`.
_UpperCamelCase : Union[str, Any] = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
_UpperCamelCase : Optional[int] = self._loader_batch_data.__class__(lowerCamelCase__ )
self._loader_batch_index += 1
return result
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
_UpperCamelCase : Tuple = next(self.iterator )
_UpperCamelCase : List[str] = self.infer(lowerCamelCase__ ,**self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(lowerCamelCase__ ,torch.Tensor ):
_UpperCamelCase : List[Any] = processed
else:
_UpperCamelCase : List[Any] = list(processed.keys() )[0]
_UpperCamelCase : Optional[int] = processed[key]
if isinstance(lowerCamelCase__ ,lowerCamelCase__ ):
_UpperCamelCase : int = len(lowerCamelCase__ )
else:
_UpperCamelCase : List[str] = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_UpperCamelCase : int = observed_batch_size
# Setting internal index to unwrap the batch
_UpperCamelCase : Dict = processed
_UpperCamelCase : str = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class lowercase__ ( lowercase ):
def __init__( self : str ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Any=None ):
'''simple docstring'''
super().__init__(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ )
def __iter__( self : Dict ):
'''simple docstring'''
_UpperCamelCase : str = iter(self.loader )
_UpperCamelCase : List[str] = None
return self
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
if self.subiterator is None:
_UpperCamelCase : Tuple = self.infer(next(self.iterator ) ,**self.params )
try:
# Try to return next item
_UpperCamelCase : Optional[Any] = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
_UpperCamelCase : List[Any] = self.infer(next(self.iterator ) ,**self.params )
_UpperCamelCase : int = next(self.subiterator )
return processed
class lowercase__ ( lowercase ):
def __iter__( self : List[str] ):
'''simple docstring'''
_UpperCamelCase : Dict = iter(self.loader )
return self
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
_UpperCamelCase : Dict = False
_UpperCamelCase : Tuple = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
_UpperCamelCase : Dict = self.loader_batch_item()
_UpperCamelCase : List[str] = item.pop('is_last' )
accumulator.append(lowerCamelCase__ )
if is_last:
return accumulator
while not is_last:
_UpperCamelCase : List[Any] = self.infer(next(self.iterator ) ,**self.params )
if self.loader_batch_size is not None:
if isinstance(lowerCamelCase__ ,torch.Tensor ):
_UpperCamelCase : str = processed
else:
_UpperCamelCase : Any = list(processed.keys() )[0]
_UpperCamelCase : Tuple = processed[key]
if isinstance(lowerCamelCase__ ,lowerCamelCase__ ):
_UpperCamelCase : Dict = len(lowerCamelCase__ )
else:
_UpperCamelCase : Tuple = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_UpperCamelCase : Any = observed_batch_size
_UpperCamelCase : List[Any] = processed
_UpperCamelCase : int = 0
while self._loader_batch_index < self.loader_batch_size:
_UpperCamelCase : List[Any] = self.loader_batch_item()
_UpperCamelCase : Optional[Any] = item.pop('is_last' )
accumulator.append(lowerCamelCase__ )
if is_last:
return accumulator
else:
_UpperCamelCase : Any = processed
_UpperCamelCase : List[Any] = item.pop('is_last' )
accumulator.append(lowerCamelCase__ )
return accumulator
class lowercase__ ( lowercase ):
def __init__( self : Tuple ,lowerCamelCase__ : Dataset ,lowerCamelCase__ : str ):
'''simple docstring'''
_UpperCamelCase : int = dataset
_UpperCamelCase : str = key
def __len__( self : Dict ):
'''simple docstring'''
return len(self.dataset )
def __getitem__( self : Tuple ,lowerCamelCase__ : Tuple ):
'''simple docstring'''
return self.dataset[i][self.key]
class lowercase__ ( lowercase ):
def __init__( self : List[Any] ,lowerCamelCase__ : Dataset ,lowerCamelCase__ : str ,lowerCamelCase__ : str ):
'''simple docstring'''
_UpperCamelCase : int = dataset
_UpperCamelCase : Optional[Any] = keya
_UpperCamelCase : str = keya
def __len__( self : List[Any] ):
'''simple docstring'''
return len(self.dataset )
def __getitem__( self : List[str] ,lowerCamelCase__ : Optional[int] ):
'''simple docstring'''
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 83 | 1 |
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase_ ( _A ,unittest.TestCase ):
'''simple docstring'''
a__ = ConsistencyModelPipeline
a__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
a__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
a__ = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
] )
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]:
A : int = UNetaDModel.from_pretrained(
"diffusers/consistency-models-test" , subfolder="test_unet" , )
return unet
@property
def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict:
A : str = UNetaDModel.from_pretrained(
"diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , )
return unet
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : Dict=False ) -> List[Any]:
if class_cond:
A : Tuple = self.dummy_cond_unet
else:
A : Optional[int] = self.dummy_uncond_unet
# Default to CM multistep sampler
A : int = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
A : Union[str, Any] = {
"unet": unet,
"scheduler": scheduler,
}
return components
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any=0 ) -> Dict:
if str(__lowerCamelCase ).startswith("mps" ):
A : Optional[Any] = torch.manual_seed(__lowerCamelCase )
else:
A : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
A : List[str] = {
"batch_size": 1,
"num_inference_steps": None,
"timesteps": [22, 0],
"generator": generator,
"output_type": "np",
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[Any]:
A : int = "cpu" # ensure determinism for the device-dependent torch.Generator
A : Optional[Any] = self.get_dummy_components()
A : Union[str, Any] = ConsistencyModelPipeline(**__lowerCamelCase )
A : Any = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
A : Optional[int] = self.get_dummy_inputs(__lowerCamelCase )
A : int = pipe(**__lowerCamelCase ).images
assert image.shape == (1, 32, 32, 3)
A : Any = image[0, -3:, -3:, -1]
A : Union[str, Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict:
A : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator
A : str = self.get_dummy_components(class_cond=__lowerCamelCase )
A : Union[str, Any] = ConsistencyModelPipeline(**__lowerCamelCase )
A : int = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
A : List[str] = self.get_dummy_inputs(__lowerCamelCase )
A : Tuple = 0
A : str = pipe(**__lowerCamelCase ).images
assert image.shape == (1, 32, 32, 3)
A : Any = image[0, -3:, -3:, -1]
A : Any = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict:
A : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator
A : int = self.get_dummy_components()
A : Union[str, Any] = ConsistencyModelPipeline(**__lowerCamelCase )
A : int = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
A : Any = self.get_dummy_inputs(__lowerCamelCase )
A : Dict = 1
A : List[str] = None
A : str = pipe(**__lowerCamelCase ).images
assert image.shape == (1, 32, 32, 3)
A : str = image[0, -3:, -3:, -1]
A : Dict = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[Any]:
A : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator
A : str = self.get_dummy_components(class_cond=__lowerCamelCase )
A : Union[str, Any] = ConsistencyModelPipeline(**__lowerCamelCase )
A : str = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
A : Optional[Any] = self.get_dummy_inputs(__lowerCamelCase )
A : str = 1
A : List[str] = None
A : Any = 0
A : Any = pipe(**__lowerCamelCase ).images
assert image.shape == (1, 32, 32, 3)
A : Any = image[0, -3:, -3:, -1]
A : Optional[Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self : Tuple , __lowerCamelCase : Any=0 , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[Any]="cpu" , __lowerCamelCase : Dict=torch.floataa , __lowerCamelCase : Union[str, Any]=(1, 3, 64, 64) ) -> Dict:
A : Any = torch.manual_seed(__lowerCamelCase )
A : List[str] = {
"num_inference_steps": None,
"timesteps": [22, 0],
"class_labels": 0,
"generator": generator,
"output_type": "np",
}
if get_fixed_latents:
A : Optional[Any] = self.get_fixed_latents(seed=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase , shape=__lowerCamelCase )
A : Dict = latents
return inputs
def SCREAMING_SNAKE_CASE__ ( self : int , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[Any]="cpu" , __lowerCamelCase : int=torch.floataa , __lowerCamelCase : Optional[int]=(1, 3, 64, 64) ) -> Optional[Any]:
if type(__lowerCamelCase ) == str:
A : List[str] = torch.device(__lowerCamelCase )
A : Dict = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
A : Dict = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase )
return latents
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]:
A : Union[str, Any] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" )
A : Union[str, Any] = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
A : Optional[Any] = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase )
pipe.to(torch_device=__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
A : Optional[Any] = self.get_inputs()
A : List[str] = pipe(**__lowerCamelCase ).images
assert image.shape == (1, 64, 64, 3)
A : Dict = image[0, -3:, -3:, -1]
A : Optional[int] = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]:
A : str = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" )
A : Optional[Any] = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
A : Union[str, Any] = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase )
pipe.to(torch_device=__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
A : List[str] = self.get_inputs()
A : List[str] = 1
A : Tuple = None
A : Optional[int] = pipe(**__lowerCamelCase ).images
assert image.shape == (1, 64, 64, 3)
A : str = image[0, -3:, -3:, -1]
A : Optional[int] = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
@require_torch_a
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any:
A : Dict = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" )
A : int = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
A : List[Any] = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase )
pipe.to(torch_device=__lowerCamelCase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
A : Dict = self.get_inputs(get_fixed_latents=__lowerCamelCase , device=__lowerCamelCase )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowerCamelCase , enable_math=__lowerCamelCase , enable_mem_efficient=__lowerCamelCase ):
A : Optional[Any] = pipe(**__lowerCamelCase ).images
assert image.shape == (1, 64, 64, 3)
A : int = image[0, -3:, -3:, -1]
A : List[Any] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@require_torch_a
def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict:
A : Tuple = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" )
A : Dict = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
A : Optional[int] = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase )
pipe.to(torch_device=__lowerCamelCase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
A : Tuple = self.get_inputs(get_fixed_latents=__lowerCamelCase , device=__lowerCamelCase )
A : List[Any] = 1
A : Dict = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowerCamelCase , enable_math=__lowerCamelCase , enable_mem_efficient=__lowerCamelCase ):
A : Optional[int] = pipe(**__lowerCamelCase ).images
assert image.shape == (1, 64, 64, 3)
A : Dict = image[0, -3:, -3:, -1]
A : List[Any] = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 256 |
from queue import Queue
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from ..models.auto import AutoTokenizer
class lowerCamelCase_ :
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : Any ) -> Optional[Any]:
raise NotImplementedError()
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[Any]:
raise NotImplementedError()
class lowerCamelCase_ ( _A ):
'''simple docstring'''
def __init__( self : Optional[Any] , __lowerCamelCase : "AutoTokenizer" , __lowerCamelCase : bool = False , **__lowerCamelCase : Optional[Any] ) -> Optional[int]:
A : str = tokenizer
A : Tuple = skip_prompt
A : Optional[Any] = decode_kwargs
# variables used in the streaming process
A : Any = []
A : Tuple = 0
A : List[str] = True
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : Optional[Any] ) -> int:
if len(value.shape ) > 1 and value.shape[0] > 1:
raise ValueError("TextStreamer only supports batch size 1" )
elif len(value.shape ) > 1:
A : List[str] = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
A : Tuple = False
return
# Add the new token to the cache and decodes the entire thing.
self.token_cache.extend(value.tolist() )
A : str = self.tokenizer.decode(self.token_cache , **self.decode_kwargs )
# After the symbol for a new line, we flush the cache.
if text.endswith("\n" ):
A : int = text[self.print_len :]
A : Union[str, Any] = []
A : Any = 0
# If the last token is a CJK character, we print the characters.
elif len(__lowerCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ):
A : Optional[int] = text[self.print_len :]
self.print_len += len(__lowerCamelCase )
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words,
# which may change with the subsequent token -- there are probably smarter ways to do this!)
else:
A : Union[str, Any] = text[self.print_len : text.rfind(" " ) + 1]
self.print_len += len(__lowerCamelCase )
self.on_finalized_text(__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]:
# Flush the cache, if it exists
if len(self.token_cache ) > 0:
A : Optional[int] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs )
A : Optional[Any] = text[self.print_len :]
A : Optional[int] = []
A : List[str] = 0
else:
A : List[Any] = ""
A : Union[str, Any] = True
self.on_finalized_text(__lowerCamelCase , stream_end=__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : bool = False ) -> List[str]:
print(__lowerCamelCase , flush=__lowerCamelCase , end="" if not stream_end else None )
def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : int ) -> Dict:
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4_e_0_0 and cp <= 0X9_f_f_f)
or (cp >= 0X3_4_0_0 and cp <= 0X4_d_b_f) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_a_6_d_f) #
or (cp >= 0X2_a_7_0_0 and cp <= 0X2_b_7_3_f) #
or (cp >= 0X2_b_7_4_0 and cp <= 0X2_b_8_1_f) #
or (cp >= 0X2_b_8_2_0 and cp <= 0X2_c_e_a_f) #
or (cp >= 0Xf_9_0_0 and cp <= 0Xf_a_f_f)
or (cp >= 0X2_f_8_0_0 and cp <= 0X2_f_a_1_f) #
): #
return True
return False
class lowerCamelCase_ ( _A ):
'''simple docstring'''
def __init__( self : Any , __lowerCamelCase : "AutoTokenizer" , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[float] = None , **__lowerCamelCase : Dict ) -> Any:
super().__init__(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
A : Tuple = Queue()
A : Dict = None
A : List[str] = timeout
def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : bool = False ) -> Any:
self.text_queue.put(__lowerCamelCase , timeout=self.timeout )
if stream_end:
self.text_queue.put(self.stop_signal , timeout=self.timeout )
def __iter__( self : int ) -> Tuple:
return self
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict:
A : int = self.text_queue.get(timeout=self.timeout )
if value == self.stop_signal:
raise StopIteration()
else:
return value
| 256 | 1 |
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 309 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class lowerCamelCase__:
UpperCAmelCase__ : int
UpperCAmelCase__ : TreeNode | None = None
UpperCAmelCase__ : TreeNode | None = None
UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess')
def lowerCamelCase__ ( A__ : TreeNode | None ):
'''simple docstring'''
if root is None:
return 0
# Validation
def count_nodes(A__ : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(A__ : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(A__ ) != count_coins(A__ ):
raise ValueError("""The nodes number should be same as the number of coins""" )
# Main calculation
def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__lowerCamelCase, __lowerCamelCase = get_distrib(node.left )
__lowerCamelCase, __lowerCamelCase = get_distrib(node.right )
__lowerCamelCase = 1 - left_distrib_excess
__lowerCamelCase = 1 - right_distrib_excess
__lowerCamelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(A__ )
+ abs(A__ )
)
__lowerCamelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(A__ , A__ )
return get_distrib(A__ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
def __A ( _lowercase ) -> Optional[int]:
'''simple docstring'''
try:
_A = float(_lowercase )
except ValueError:
raise ValueError('''Please enter a valid number''' )
_A = decimal - int(_lowercase )
if fractional_part == 0:
return int(_lowercase ), 1
else:
_A = len(str(_lowercase ).split('''.''' )[1] )
_A = int(decimal * (10**number_of_frac_digits) )
_A = 10**number_of_frac_digits
_A ,_A = denominator, numerator
while True:
_A = dividend % divisor
if remainder == 0:
break
_A ,_A = divisor, remainder
_A ,_A = numerator / divisor, denominator / divisor
return int(_lowercase ), int(_lowercase )
if __name__ == "__main__":
print(f'{decimal_to_fraction(2) = }')
print(f'{decimal_to_fraction(89.0) = }')
print(f'{decimal_to_fraction("67") = }')
print(f'{decimal_to_fraction("45.0") = }')
print(f'{decimal_to_fraction(1.5) = }')
print(f'{decimal_to_fraction("6.25") = }')
print(f'{decimal_to_fraction("78td") = }')
| 367 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class SCREAMING_SNAKE_CASE ( snake_case ):
"""simple docstring"""
A_ = "facebook/bart-large-mnli"
A_ = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
A_ = "text_classifier"
A_ = AutoTokenizer
A_ = AutoModelForSequenceClassification
A_ = ["text", ["text"]]
A_ = ["text"]
def __A ( self: int ) -> str:
super().setup()
_A = self.model.config
_A = -1
for idx, label in config.idalabel.items():
if label.lower().startswith('''entail''' ):
_A = int(__A )
if self.entailment_id == -1:
raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' )
def __A ( self: Union[str, Any] , __A: Union[str, Any] , __A: List[str] ) -> int:
_A = labels
return self.pre_processor(
[text] * len(__A ) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , )
def __A ( self: str , __A: List[Any] ) -> Union[str, Any]:
_A = outputs.logits
_A = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 75 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class _lowerCamelCase ( _lowercase ):
"""simple docstring"""
snake_case = "megatron-bert"
def __init__( self , _SCREAMING_SNAKE_CASE=2_9056 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=24 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-12 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , )->int:
'''simple docstring'''
super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
A_ : List[Any] = vocab_size
A_ : Optional[int] = hidden_size
A_ : int = num_hidden_layers
A_ : Dict = num_attention_heads
A_ : List[str] = hidden_act
A_ : Dict = intermediate_size
A_ : List[str] = hidden_dropout_prob
A_ : int = attention_probs_dropout_prob
A_ : Union[str, Any] = max_position_embeddings
A_ : Union[str, Any] = type_vocab_size
A_ : Optional[int] = initializer_range
A_ : int = layer_norm_eps
A_ : Optional[int] = position_embedding_type
A_ : Dict = use_cache
| 186 |
'''simple docstring'''
import numpy
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Optional[int] = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 )
# Real output values provided.
lowerCamelCase_ : Dict = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
lowerCamelCase_ : Optional[Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
lowerCamelCase_ : Optional[int] = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def UpperCAmelCase__ (self , A , A , A ):
for iteration in range(1 , iterations + 1 ):
lowerCamelCase_ : Any = self.feedforward()
self.back_propagation()
if give_loss:
lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F"""Iteration {iteration} Loss: {loss}""" )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Optional[int] = input_arr
lowerCamelCase_ : List[Any] = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
lowerCamelCase_ : Optional[int] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def lowercase_ ( ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork(
input_array=_lowercase , output_array=_lowercase )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 318 | 0 |
def _snake_case ( _snake_case : Dict , _snake_case : List[str] ) -> list[str]:
'''simple docstring'''
return [sentence[i : i + ngram_size] for i in range(len(SCREAMING_SNAKE_CASE__ ) - ngram_size + 1 )]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 367 |
"""simple docstring"""
from collections import deque
class lowercase_ :
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = process_name # process name
_A = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
_A = arrival_time
_A = burst_time # remaining burst time
_A = 0 # total time of the process wait in ready queue
_A = 0 # time from arrival time to completion time
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : list[int] , _UpperCAmelCase : deque[Process] , _UpperCAmelCase : int , ):
# total number of mlfq's queues
_A = number_of_queues
# time slice of queues that round robin algorithm applied
_A = time_slices
# unfinished process is in this ready_queue
_A = queue
# current time
_A = current_time
# finished process is in this sequence queue
_A = deque()
def lowerCAmelCase_ ( self : Dict ):
_A = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : list[Process] ):
_A = []
for i in range(len(_UpperCAmelCase ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : list[Process] ):
_A = []
for i in range(len(_UpperCAmelCase ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : list[Process] ):
_A = []
for i in range(len(_UpperCAmelCase ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : deque[Process] ):
return [q.burst_time for q in queue]
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Process ):
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : deque[Process] ):
_A = deque() # sequence deque of finished process
while len(_UpperCAmelCase ) != 0:
_A = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(_UpperCAmelCase )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
_A = 0
# set the process's turnaround time because it is finished
_A = self.current_time - cp.arrival_time
# set the completion time
_A = self.current_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : deque[Process] , _UpperCAmelCase : int ):
_A = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(_UpperCAmelCase ) ):
_A = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(_UpperCAmelCase )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
_A = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(_UpperCAmelCase )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
_A = 0
# set the finish time
_A = self.current_time
# update the process' turnaround time because it is finished
_A = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def lowerCAmelCase_ ( self : str ):
# all queues except last one have round_robin algorithm
for i in range(self.number_of_queues - 1 ):
_A , _A = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
a = Process('''P1''', 0, 53)
a = Process('''P2''', 0, 17)
a = Process('''P3''', 0, 68)
a = Process('''P4''', 0, 24)
a = 3
a = [17, 25]
a = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])})
a = Process('''P1''', 0, 53)
a = Process('''P2''', 0, 17)
a = Process('''P3''', 0, 68)
a = Process('''P4''', 0, 24)
a = 3
a = [17, 25]
a = deque([Pa, Pa, Pa, Pa])
a = MLFQ(number_of_queues, time_slices, queue, 0)
a = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
F'''waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print completion times of processes(P1, P2, P3, P4)
print(
F'''completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
F'''turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print sequence of finished processes
print(
F'''sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}'''
)
| 271 | 0 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __snake_case ( ctypes.Structure ):
# _fields is a specific attr expected by ctypes
UpperCAmelCase__ : str = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)]
def A () -> Dict:
"""simple docstring"""
if os.name == "nt":
UpperCAmelCase_ = CursorInfo()
UpperCAmelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(__A , ctypes.byref(__A ) )
UpperCAmelCase_ = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(__A , ctypes.byref(__A ) )
elif os.name == "posix":
sys.stdout.write('''\033[?25l''' )
sys.stdout.flush()
def A () -> Any:
"""simple docstring"""
if os.name == "nt":
UpperCAmelCase_ = CursorInfo()
UpperCAmelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(__A , ctypes.byref(__A ) )
UpperCAmelCase_ = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(__A , ctypes.byref(__A ) )
elif os.name == "posix":
sys.stdout.write('''\033[?25h''' )
sys.stdout.flush()
@contextmanager
def A () -> Dict:
"""simple docstring"""
try:
hide_cursor()
yield
finally:
show_cursor()
| 51 |
import re
def A ( a_ ) -> bool:
__UpperCamelCase : Any =re.compile(
r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' )
return bool(re.search(a_ ,a_ ) )
if __name__ == "__main__":
A_ :List[str] = '''0094702343221'''
print(is_sri_lankan_phone_number(phone))
| 71 | 0 |
"""simple docstring"""
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class snake_case ( unittest.TestCase ):
def lowercase_ ( self : Dict)-> Dict:
'''simple docstring'''
__lowerCAmelCase: Union[str, Any] = ["a", "b", "c"]
# Defaults to last layer if both are None
__lowerCAmelCase: int = get_aligned_output_features_output_indices(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__)
self.assertEqual(UpperCamelCase__ , ["c"])
self.assertEqual(UpperCamelCase__ , [2])
# Out indices set to match out features
__lowerCAmelCase: str = get_aligned_output_features_output_indices(["a", "c"] , UpperCamelCase__ , UpperCamelCase__)
self.assertEqual(UpperCamelCase__ , ["a", "c"])
self.assertEqual(UpperCamelCase__ , [0, 2])
# Out features set to match out indices
__lowerCAmelCase: Dict = get_aligned_output_features_output_indices(UpperCamelCase__ , [0, 2] , UpperCamelCase__)
self.assertEqual(UpperCamelCase__ , ["a", "c"])
self.assertEqual(UpperCamelCase__ , [0, 2])
# Out features selected from negative indices
__lowerCAmelCase: str = get_aligned_output_features_output_indices(UpperCamelCase__ , [-3, -1] , UpperCamelCase__)
self.assertEqual(UpperCamelCase__ , ["a", "c"])
self.assertEqual(UpperCamelCase__ , [-3, -1])
def lowercase_ ( self : Any)-> Dict:
'''simple docstring'''
with self.assertRaises(UpperCamelCase__):
verify_out_features_out_indices(["a", "b"] , (0, 1) , UpperCamelCase__)
# Out features must be a list
with self.assertRaises(UpperCamelCase__):
verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"])
# Out features must be a subset of stage names
with self.assertRaises(UpperCamelCase__):
verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"])
# Out indices must be a list or tuple
with self.assertRaises(UpperCamelCase__):
verify_out_features_out_indices(UpperCamelCase__ , 0 , ["a", "b"])
# Out indices must be a subset of stage names
with self.assertRaises(UpperCamelCase__):
verify_out_features_out_indices(UpperCamelCase__ , (0, 1) , ["a"])
# Out features and out indices must be the same length
with self.assertRaises(UpperCamelCase__):
verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"])
# Out features should match out indices
with self.assertRaises(UpperCamelCase__):
verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"])
# Out features and out indices should be in order
with self.assertRaises(UpperCamelCase__):
verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"])
# Check passes with valid inputs
verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"])
def lowercase_ ( self : Optional[Any])-> str:
'''simple docstring'''
__lowerCAmelCase: str = BackboneMixin()
__lowerCAmelCase: List[Any] = ["a", "b", "c"]
__lowerCAmelCase: Dict = ["a", "c"]
__lowerCAmelCase: int = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ["a", "c"])
self.assertEqual(backbone.out_indices , [0, 2])
# Check out features and indices are updated correctly
__lowerCAmelCase: Union[str, Any] = ["a", "b"]
self.assertEqual(backbone.out_features , ["a", "b"])
self.assertEqual(backbone.out_indices , [0, 1])
__lowerCAmelCase: Tuple = [-3, -1]
self.assertEqual(backbone.out_features , ["a", "c"])
self.assertEqual(backbone.out_indices , [-3, -1])
| 354 |
"""simple docstring"""
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
__A = get_logger(__name__)
class snake_case :
SCREAMING_SNAKE_CASE_ : List[Any] = """dummy_data"""
SCREAMING_SNAKE_CASE_ : List[Any] = """datasets"""
SCREAMING_SNAKE_CASE_ : Any = False
def __init__( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Union[Version, str] , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[List[Callable]] = None , )-> Optional[Any]:
'''simple docstring'''
__lowerCAmelCase: Optional[Any] = 0
__lowerCAmelCase: Tuple = dataset_name
__lowerCAmelCase: Optional[Any] = cache_dir
__lowerCAmelCase: Optional[int] = use_local_dummy_data
__lowerCAmelCase: Optional[Any] = config
# download_callbacks take a single url as input
__lowerCAmelCase: List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowerCAmelCase: Union[str, Any] = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowerCAmelCase: List[str] = str(UpperCamelCase__)
# to be downloaded
__lowerCAmelCase: Dict = None
__lowerCAmelCase: Dict = None
@property
def lowercase_ ( self : List[str])-> str:
'''simple docstring'''
if self._dummy_file is None:
__lowerCAmelCase: Tuple = self.download_dummy_data()
return self._dummy_file
@property
def lowercase_ ( self : Dict)-> Optional[Any]:
'''simple docstring'''
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" , self.config.name , self.version_name)
# structure is dummy / version_name
return os.path.join("dummy" , self.version_name)
@property
def lowercase_ ( self : List[str])-> Any:
'''simple docstring'''
return os.path.join(self.dummy_data_folder , "dummy_data.zip")
def lowercase_ ( self : Optional[Any])-> List[str]:
'''simple docstring'''
__lowerCAmelCase: Dict = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowerCAmelCase: str = cached_path(
UpperCamelCase__ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase__ , force_extract=UpperCamelCase__)
return os.path.join(UpperCamelCase__ , self.dummy_file_name)
@property
def lowercase_ ( self : Dict)-> List[Any]:
'''simple docstring'''
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file)
@property
def lowercase_ ( self : Optional[Any])-> Tuple:
'''simple docstring'''
if self._bucket_url is None:
__lowerCAmelCase: int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/"))
return self._bucket_url
@property
def lowercase_ ( self : str)-> Optional[int]:
'''simple docstring'''
if os.path.isdir(self.dummy_file):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , "/").split("/")[:-1])
def lowercase_ ( self : List[Any] , UpperCamelCase__ : int , *UpperCamelCase__ : List[str])-> Optional[int]:
'''simple docstring'''
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowerCAmelCase: List[Any] = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowerCAmelCase: str = self.dummy_file_name
# special case when data_url is a dict
if isinstance(UpperCamelCase__ , UpperCamelCase__):
return self.create_dummy_data_dict(UpperCamelCase__ , UpperCamelCase__)
elif isinstance(UpperCamelCase__ , (list, tuple)):
return self.create_dummy_data_list(UpperCamelCase__ , UpperCamelCase__)
else:
return self.create_dummy_data_single(UpperCamelCase__ , UpperCamelCase__)
def lowercase_ ( self : Dict , UpperCamelCase__ : Dict , *UpperCamelCase__ : int)-> Dict:
'''simple docstring'''
return self.download_and_extract(UpperCamelCase__)
def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any])-> str:
'''simple docstring'''
return self.download_and_extract(UpperCamelCase__)
def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : List[Any] , *UpperCamelCase__ : int , **UpperCamelCase__ : str)-> List[str]:
'''simple docstring'''
return path
def lowercase_ ( self : Optional[Any])-> Any:
'''simple docstring'''
return {}
def lowercase_ ( self : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : int)-> Optional[Any]:
'''simple docstring'''
__lowerCAmelCase: Optional[int] = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(UpperCamelCase__ , UpperCamelCase__):
for single_url in single_urls:
download_callback(UpperCamelCase__)
else:
__lowerCAmelCase: Union[str, Any] = single_urls
download_callback(UpperCamelCase__)
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(UpperCamelCase__ , UpperCamelCase__):
__lowerCAmelCase: Dict = [os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(Path(UpperCamelCase__).name)) for x in single_urls]
else:
__lowerCAmelCase: Any = single_urls
__lowerCAmelCase: Optional[int] = os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(Path(UpperCamelCase__).name))
__lowerCAmelCase: Dict = value
# make sure that values are unique
if all(isinstance(UpperCamelCase__ , UpperCamelCase__) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len(
dummy_data_dict.values()):
# append key to value to make its name unique
__lowerCAmelCase: Any = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def lowercase_ ( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any])-> int:
'''simple docstring'''
__lowerCAmelCase: Tuple = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowerCAmelCase: Any = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , UpperCamelCase__)) for url in data_url)
__lowerCAmelCase: str = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed") for url in data_url)
if data_url and (is_tf_records or is_pubmed_records):
__lowerCAmelCase: Optional[int] = [data_url[0]] * len(UpperCamelCase__)
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(UpperCamelCase__)
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCAmelCase: Optional[Any] = os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(single_url.split("/")[-1]))
dummy_data_list.append(UpperCamelCase__)
return dummy_data_list
def lowercase_ ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any])-> Optional[int]:
'''simple docstring'''
for download_callback in self.download_callbacks:
download_callback(UpperCamelCase__)
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCAmelCase: List[Any] = os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(data_url.split("/")[-1]))
if os.path.exists(UpperCamelCase__) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def lowercase_ ( self : List[str])-> Dict:
'''simple docstring'''
pass
def lowercase_ ( self : Union[str, Any])-> Tuple:
'''simple docstring'''
pass
def lowercase_ ( self : Dict , UpperCamelCase__ : str)-> int:
'''simple docstring'''
def _iter_archive_members(UpperCamelCase__ : str):
# this preserves the order of the members inside the ZIP archive
__lowerCAmelCase: Optional[Any] = Path(self.dummy_file).parent
__lowerCAmelCase: Optional[int] = path.relative_to(UpperCamelCase__)
with ZipFile(self.local_path_to_dummy_data) as zip_file:
__lowerCAmelCase: Optional[int] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix()):
yield dummy_parent_path.joinpath(UpperCamelCase__)
__lowerCAmelCase: str = Path(UpperCamelCase__)
__lowerCAmelCase: Optional[Any] = _iter_archive_members(UpperCamelCase__) if self.use_local_dummy_data else path.rglob("*")
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__")):
yield file_path.relative_to(UpperCamelCase__).as_posix(), file_path.open("rb")
def lowercase_ ( self : str , UpperCamelCase__ : str)-> str:
'''simple docstring'''
if not isinstance(UpperCamelCase__ , UpperCamelCase__):
__lowerCAmelCase: Dict = [paths]
for path in paths:
if os.path.isfile(UpperCamelCase__):
if os.path.basename(UpperCamelCase__).startswith((".", "__")):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(UpperCamelCase__):
if os.path.basename(UpperCamelCase__).startswith((".", "__")):
continue
dirnames.sort()
for filename in sorted(UpperCamelCase__):
if filename.startswith((".", "__")):
continue
yield os.path.join(UpperCamelCase__ , UpperCamelCase__)
| 108 | 0 |
"""simple docstring"""
import os
def lowercase ( ) -> Union[str, Any]:
_UpperCamelCase = os.path.dirname(os.path.realpath(a__ ) )
_UpperCamelCase = os.path.join(a__ , '''triangle.txt''' )
with open(a__ ) as f:
_UpperCamelCase = f.readlines()
_UpperCamelCase = []
for line in triangle:
_UpperCamelCase = []
for number in line.strip().split(''' ''' ):
numbers_from_line.append(int(a__ ) )
a.append(a__ )
for i in range(1 , len(a__ ) ):
for j in range(len(a[i] ) ):
_UpperCamelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0
_UpperCamelCase = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(a__ , a__ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 256 |
"""simple docstring"""
def lowercase ( a__ : str ) -> list[int]:
_UpperCamelCase = [0 for i in range(len(a__ ) )]
# initialize interval's left pointer and right pointer
_UpperCamelCase , _UpperCamelCase = 0, 0
for i in range(1 , len(a__ ) ):
# case when current index is inside the interval
if i <= right_pointer:
_UpperCamelCase = min(right_pointer - i + 1 , z_result[i - left_pointer] )
_UpperCamelCase = min_edge
while go_next(a__ , a__ , a__ ):
z_result[i] += 1
# if new index's result gives us more right interval,
# we've to update left_pointer and right_pointer
if i + z_result[i] - 1 > right_pointer:
_UpperCamelCase , _UpperCamelCase = i, i + z_result[i] - 1
return z_result
def lowercase ( a__ : int , a__ : list[int] , a__ : str ) -> bool:
return i + z_result[i] < len(a__ ) and s[z_result[i]] == s[i + z_result[i]]
def lowercase ( a__ : str , a__ : str ) -> int:
_UpperCamelCase = 0
# concatenate 'pattern' and 'input_str' and call z_function
# with concatenated string
_UpperCamelCase = z_function(pattern + input_str )
for val in z_result:
# if value is greater then length of the pattern string
# that means this index is starting position of substring
# which is equal to pattern string
if val >= len(a__ ):
answer += 1
return answer
if __name__ == "__main__":
import doctest
doctest.testmod()
| 256 | 1 |
import argparse
import torch
from transformers import (
EncodecConfig,
EncodecFeatureExtractor,
EncodecModel,
logging,
)
# checkpoints downloaded from:
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th
# https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th
logging.set_verbosity_info()
__magic_name__: int = logging.get_logger("transformers.models.encodec")
__magic_name__: Dict = {
"quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited",
"quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size",
"quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed",
"quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg",
}
__magic_name__: List[Any] = {
"encoder.model.0.conv.conv": "encoder.layers.0.conv",
"encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv",
"encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv",
"encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv",
"encoder.model.3.conv.conv": "encoder.layers.3.conv",
"encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv",
"encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv",
"encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv",
"encoder.model.6.conv.conv": "encoder.layers.6.conv",
"encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv",
"encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv",
"encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv",
"encoder.model.9.conv.conv": "encoder.layers.9.conv",
"encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv",
"encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv",
"encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv",
"encoder.model.12.conv.conv": "encoder.layers.12.conv",
"encoder.model.13.lstm": "encoder.layers.13.lstm",
"encoder.model.15.conv.conv": "encoder.layers.15.conv",
}
__magic_name__: Optional[int] = {
"encoder.model.0.conv.norm": "encoder.layers.0.norm",
"encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm",
"encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm",
"encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm",
"encoder.model.3.conv.norm": "encoder.layers.3.norm",
"encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm",
"encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm",
"encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm",
"encoder.model.6.conv.norm": "encoder.layers.6.norm",
"encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm",
"encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm",
"encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm",
"encoder.model.9.conv.norm": "encoder.layers.9.norm",
"encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm",
"encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm",
"encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm",
"encoder.model.12.conv.norm": "encoder.layers.12.norm",
"encoder.model.15.conv.norm": "encoder.layers.15.norm",
}
__magic_name__: int = {
"decoder.model.0.conv.conv": "decoder.layers.0.conv",
"decoder.model.1.lstm": "decoder.layers.1.lstm",
"decoder.model.3.convtr.convtr": "decoder.layers.3.conv",
"decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv",
"decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv",
"decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv",
"decoder.model.6.convtr.convtr": "decoder.layers.6.conv",
"decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv",
"decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv",
"decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv",
"decoder.model.9.convtr.convtr": "decoder.layers.9.conv",
"decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv",
"decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv",
"decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv",
"decoder.model.12.convtr.convtr": "decoder.layers.12.conv",
"decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv",
"decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv",
"decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv",
"decoder.model.15.conv.conv": "decoder.layers.15.conv",
}
__magic_name__: List[str] = {
"decoder.model.0.conv.norm": "decoder.layers.0.norm",
"decoder.model.3.convtr.norm": "decoder.layers.3.norm",
"decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm",
"decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm",
"decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm",
"decoder.model.6.convtr.norm": "decoder.layers.6.norm",
"decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm",
"decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm",
"decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm",
"decoder.model.9.convtr.norm": "decoder.layers.9.norm",
"decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm",
"decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm",
"decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm",
"decoder.model.12.convtr.norm": "decoder.layers.12.norm",
"decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm",
"decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm",
"decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm",
"decoder.model.15.conv.norm": "decoder.layers.15.norm",
}
__magic_name__: Tuple = {
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_DECODER,
}
__magic_name__: List[str] = {
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_ENCODER_48K,
**MAPPING_DECODER,
**MAPPING_DECODER_48K,
}
__magic_name__: List[Any] = []
__magic_name__: str = []
def UpperCamelCase ( _A, _A, _A, _A, _A ):
"""simple docstring"""
for attribute in key.split(""".""" ):
__magic_name__ : Any = getattr(_A, _A )
if weight_type is not None:
__magic_name__ : Any = getattr(_A, _A ).shape
else:
__magic_name__ : List[str] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
__magic_name__ : List[Any] = value
elif weight_type == "weight_g":
__magic_name__ : int = value
elif weight_type == "weight_v":
__magic_name__ : Dict = value
elif weight_type == "bias":
__magic_name__ : int = value
elif weight_type == "running_mean":
__magic_name__ : Any = value
elif weight_type == "running_var":
__magic_name__ : Tuple = value
elif weight_type == "num_batches_tracked":
__magic_name__ : Tuple = value
elif weight_type == "weight_ih_l0":
__magic_name__ : Optional[int] = value
elif weight_type == "weight_hh_l0":
__magic_name__ : Tuple = value
elif weight_type == "bias_ih_l0":
__magic_name__ : Any = value
elif weight_type == "bias_hh_l0":
__magic_name__ : Optional[Any] = value
elif weight_type == "weight_ih_l1":
__magic_name__ : List[str] = value
elif weight_type == "weight_hh_l1":
__magic_name__ : Optional[int] = value
elif weight_type == "bias_ih_l1":
__magic_name__ : Optional[Any] = value
elif weight_type == "bias_hh_l1":
__magic_name__ : List[Any] = value
else:
__magic_name__ : List[str] = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
for key in ignore_keys:
if key.endswith(""".*""" ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
__magic_name__ ,__magic_name__ : List[Any] = key.split(""".*.""" )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
__magic_name__ : int = []
if model_name == "encodec_24khz" or "encodec_32khz":
__magic_name__ : str = MAPPING_24K
elif model_name == "encodec_48khz":
__magic_name__ : Optional[Any] = MAPPING_48K
else:
raise ValueError(f'Unsupported model: {model_name}' )
for name, value in orig_dict.items():
if should_ignore(_A, _A ):
logger.info(f'{name} was ignored' )
continue
__magic_name__ : Union[str, Any] = False
for key, mapped_key in MAPPING.items():
if "*" in key:
__magic_name__ ,__magic_name__ : Union[str, Any] = key.split(""".*.""" )
if prefix in name and suffix in name:
__magic_name__ : int = suffix
if key in name:
# HACK otherwise .embed gets initialized with .embed_avg too
if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ):
continue
__magic_name__ : Dict = True
if "*" in mapped_key:
__magic_name__ : Union[str, Any] = name.split(_A )[0].split(""".""" )[-2]
__magic_name__ : List[Any] = mapped_key.replace("""*""", _A )
if "weight_g" in name:
__magic_name__ : Optional[int] = """weight_g"""
elif "weight_v" in name:
__magic_name__ : Optional[Any] = """weight_v"""
elif "weight_ih_l0" in name:
__magic_name__ : List[Any] = """weight_ih_l0"""
elif "weight_hh_l0" in name:
__magic_name__ : Union[str, Any] = """weight_hh_l0"""
elif "bias_ih_l0" in name:
__magic_name__ : Tuple = """bias_ih_l0"""
elif "bias_hh_l0" in name:
__magic_name__ : Dict = """bias_hh_l0"""
elif "weight_ih_l1" in name:
__magic_name__ : str = """weight_ih_l1"""
elif "weight_hh_l1" in name:
__magic_name__ : int = """weight_hh_l1"""
elif "bias_ih_l1" in name:
__magic_name__ : Dict = """bias_ih_l1"""
elif "bias_hh_l1" in name:
__magic_name__ : Optional[int] = """bias_hh_l1"""
elif "bias" in name:
__magic_name__ : Tuple = """bias"""
elif "weight" in name:
__magic_name__ : Optional[int] = """weight"""
elif "running_mean" in name:
__magic_name__ : Union[str, Any] = """running_mean"""
elif "running_var" in name:
__magic_name__ : List[Any] = """running_var"""
elif "num_batches_tracked" in name:
__magic_name__ : Union[str, Any] = """num_batches_tracked"""
else:
__magic_name__ : Optional[int] = None
set_recursively(_A, _A, _A, _A, _A )
continue
if not is_used:
unused_weights.append(_A )
logger.warning(f'Unused weights: {unused_weights}' )
@torch.no_grad()
def UpperCamelCase ( _A, _A, _A, _A=None, _A=None, ):
"""simple docstring"""
if config_path is not None:
__magic_name__ : List[Any] = EncodecConfig.from_pretrained(_A )
else:
__magic_name__ : List[Any] = EncodecConfig()
if model_name == "encodec_24khz":
pass # config is already correct
elif model_name == "encodec_32khz":
__magic_name__ : Any = [8, 5, 4, 4]
__magic_name__ : Optional[Any] = [2.2]
__magic_name__ : Dict = 64
__magic_name__ : Tuple = 32000
__magic_name__ : List[Any] = 2048
__magic_name__ : List[Any] = False
__magic_name__ : Optional[Any] = False
__magic_name__ : Tuple = False
elif model_name == "encodec_48khz":
__magic_name__ : Tuple = [8, 5, 4, 2]
__magic_name__ : List[Any] = [3.0, 6.0, 12.0, 24.0]
__magic_name__ : int = 48000
__magic_name__ : Union[str, Any] = 2
__magic_name__ : Any = False
__magic_name__ : Optional[int] = """time_group_norm"""
__magic_name__ : int = True
__magic_name__ : int = 1.0
__magic_name__ : Optional[Any] = 0.01
else:
raise ValueError(f'Unknown model name: {model_name}' )
__magic_name__ : Union[str, Any] = EncodecModel(_A )
__magic_name__ : Union[str, Any] = EncodecFeatureExtractor(
feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, )
feature_extractor.save_pretrained(_A )
__magic_name__ : Tuple = torch.load(_A )
if "best_state" in original_checkpoint:
# we might have a training state saved, in which case discard the yaml results and just retain the weights
__magic_name__ : Union[str, Any] = original_checkpoint["""best_state"""]
recursively_load_weights(_A, _A, _A )
model.save_pretrained(_A )
if repo_id:
print("""Pushing to the hub...""" )
feature_extractor.push_to_hub(_A )
model.push_to_hub(_A )
if __name__ == "__main__":
__magic_name__: Any = argparse.ArgumentParser()
parser.add_argument(
"--model",
default="encodec_24khz",
type=str,
help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.",
)
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
__magic_name__: Optional[int] = parser.parse_args()
convert_checkpoint(
args.model,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 138 |
from decimal import Decimal, getcontext
from math import ceil, factorial
def UpperCamelCase ( _A ):
"""simple docstring"""
if not isinstance(_A, _A ):
raise TypeError("""Undefined for non-integers""" )
elif precision < 1:
raise ValueError("""Undefined for non-natural numbers""" )
__magic_name__ : Dict = precision
__magic_name__ : str = ceil(precision / 14 )
__magic_name__ : List[str] = 426880 * Decimal(10005 ).sqrt()
__magic_name__ : List[Any] = 1
__magic_name__ : Dict = 13591409
__magic_name__ : Tuple = Decimal(_A )
for k in range(1, _A ):
__magic_name__ : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_A ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
__magic_name__: Tuple = 50
print(F"""The first {n} digits of pi is: {pi(n)}""")
| 138 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available
from ...utils import OptionalDependencyNotAvailable
__a = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ["""DPTFeatureExtractor"""]
__a = ["""DPTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
"""DPT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""DPTForDepthEstimation""",
"""DPTForSemanticSegmentation""",
"""DPTModel""",
"""DPTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_dpt import DPTFeatureExtractor
from .image_processing_dpt import DPTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dpt import (
DPT_PRETRAINED_MODEL_ARCHIVE_LIST,
DPTForDepthEstimation,
DPTForSemanticSegmentation,
DPTModel,
DPTPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 66 |
'''simple docstring'''
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a_ : Optional[int] = logging.get_logger(__name__)
a_ : Optional[int] = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
a_ : List[Any] = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
a_ : Optional[int] = {"""facebook/blenderbot_small-90M""": 5_12}
def a_ ( __snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =set()
lowerCamelCase_ =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase_ =char
lowerCamelCase_ =set(__snake_case )
return pairs
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[int] =VOCAB_FILES_NAMES
lowercase : Tuple =PRETRAINED_VOCAB_FILES_MAP
lowercase : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Dict =['input_ids', 'attention_mask']
def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase="__start__", lowerCAmelCase="__end__", lowerCAmelCase="__unk__", lowerCAmelCase="__null__", **lowerCAmelCase, ):
"""simple docstring"""
super().__init__(unk_token=lowerCAmelCase, bos_token=lowerCAmelCase, eos_token=lowerCAmelCase, pad_token=lowerCAmelCase, **lowerCAmelCase )
with open(lowerCAmelCase, encoding='''utf-8''' ) as vocab_handle:
lowerCamelCase_ =json.load(lowerCAmelCase )
lowerCamelCase_ ={v: k for k, v in self.encoder.items()}
with open(lowerCAmelCase, encoding='''utf-8''' ) as merges_handle:
lowerCamelCase_ =merges_handle.read().split('''\n''' )[1:-1]
lowerCamelCase_ =[tuple(merge.split() ) for merge in merges]
lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) )
lowerCamelCase_ ={}
@property
def lowercase__ ( self ):
"""simple docstring"""
return len(self.encoder )
def lowercase__ ( self ):
"""simple docstring"""
return dict(self.encoder, **self.added_tokens_encoder )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
if token in self.cache:
return self.cache[token]
lowerCamelCase_ =re.sub('''([.,!?()])''', R''' \1''', lowerCAmelCase )
lowerCamelCase_ =re.sub('''(\')''', R''' \1 ''', lowerCAmelCase )
lowerCamelCase_ =re.sub(R'''\s{2,}''', ''' ''', lowerCAmelCase )
if "\n" in token:
lowerCamelCase_ =token.replace('''\n''', ''' __newln__''' )
lowerCamelCase_ =token.split(''' ''' )
lowerCamelCase_ =[]
for token in tokens:
if not len(lowerCAmelCase ):
continue
lowerCamelCase_ =token.lower()
lowerCamelCase_ =tuple(lowerCAmelCase )
lowerCamelCase_ =tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
lowerCamelCase_ =get_pairs(lowerCAmelCase )
if not pairs:
words.append(lowerCAmelCase )
continue
while True:
lowerCamelCase_ =min(lowerCAmelCase, key=lambda lowerCAmelCase : self.bpe_ranks.get(lowerCAmelCase, float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase_, lowerCamelCase_ =bigram
lowerCamelCase_ =[]
lowerCamelCase_ =0
while i < len(lowerCAmelCase ):
try:
lowerCamelCase_ =word.index(lowerCAmelCase, lowerCAmelCase )
new_word.extend(word[i:j] )
lowerCamelCase_ =j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(lowerCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase_ =tuple(lowerCAmelCase )
lowerCamelCase_ =new_word
if len(lowerCAmelCase ) == 1:
break
else:
lowerCamelCase_ =get_pairs(lowerCAmelCase )
lowerCamelCase_ ='''@@ '''.join(lowerCAmelCase )
lowerCamelCase_ =word[:-4]
lowerCamelCase_ =word
words.append(lowerCAmelCase )
return " ".join(lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =re.findall(R'''\S+\n?''', lowerCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(lowerCAmelCase ).split(''' ''' ) ) )
return split_tokens
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =token.lower()
return self.encoder.get(lowerCAmelCase, self.encoder.get(self.unk_token ) )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
return self.decoder.get(lowerCAmelCase, self.unk_token )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =''' '''.join(lowerCAmelCase ).replace('''@@ ''', '''''' ).strip()
return out_string
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ):
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCamelCase_ =os.path.join(
lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCamelCase_ =os.path.join(
lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(lowerCAmelCase, '''w''', encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=lowerCAmelCase, ensure_ascii=lowerCAmelCase ) + '''\n''' )
lowerCamelCase_ =0
with open(lowerCAmelCase, '''w''', encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
''' Please check that the tokenizer is not corrupted!''' )
lowerCamelCase_ =token_index
writer.write(''' '''.join(lowerCAmelCase ) + '''\n''' )
index += 1
return vocab_file, merge_file
| 75 | 0 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class a_ :
'''simple docstring'''
__a: int
__a: Node | None = None
__a: Node | None = None
def lowerCamelCase ( ) -> Node | None:
lowerCAmelCase_ = Node(1 )
lowerCAmelCase_ = Node(2 )
lowerCAmelCase_ = Node(3 )
lowerCAmelCase_ = Node(4 )
lowerCAmelCase_ = Node(5 )
return tree
def lowerCamelCase ( a_ ) -> list[int]:
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def lowerCamelCase ( a_ ) -> list[int]:
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def lowerCamelCase ( a_ ) -> list[int]:
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def lowerCamelCase ( a_ ) -> int:
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def lowerCamelCase ( a_ ) -> Sequence[Node | None]:
lowerCAmelCase_ = []
if root is None:
return output
lowerCAmelCase_ = deque([root] )
while process_queue:
lowerCAmelCase_ = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def lowerCamelCase ( a_ , a_ ) -> Sequence[Node | None]:
lowerCAmelCase_ = []
def populate_output(a_ , a_ ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(a_ , a_ )
return output
def lowerCamelCase ( a_ , a_ ) -> Sequence[Node | None]:
lowerCAmelCase_ = []
def populate_output(a_ , a_ ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(a_ , a_ )
return output
def lowerCamelCase ( a_ ) -> Sequence[Node | None] | list[Any]:
if root is None:
return []
lowerCAmelCase_ = []
lowerCAmelCase_ = 0
lowerCAmelCase_ = height(a_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(a_ , a_ ) )
lowerCAmelCase_ = 1
else:
output.append(get_nodes_from_right_to_left(a_ , a_ ) )
lowerCAmelCase_ = 0
return output
def lowerCamelCase ( ) -> None: # Main function for testing.
lowerCAmelCase_ = make_tree()
print(F'''In-order Traversal: {inorder(a_ )}''' )
print(F'''Pre-order Traversal: {preorder(a_ )}''' )
print(F'''Post-order Traversal: {postorder(a_ )}''' , '\n' )
print(F'''Height of Tree: {height(a_ )}''' , '\n' )
print('Complete Level Order Traversal: ' )
print(level_order(a_ ) , '\n' )
print('Level-wise order Traversal: ' )
for level in range(1 , height(a_ ) + 1 ):
print(F'''Level {level}:''' , get_nodes_from_left_to_right(a_ , level=a_ ) )
print('\nZigZag order Traversal: ' )
print(zigzag(a_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 352 |
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
lowerCamelCase_ = logging.get_logger(__name__)
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> None:
'''simple docstring'''
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' , lowercase_ , )
super().__init__(*lowercase_ , **lowercase_ )
| 14 | 0 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
a_ = 'pytorch_model.bin'
a_ = 'pytorch_model.bin.index.json'
a_ = 'adapter_config.json'
a_ = 'adapter_model.bin'
a_ = 'adapter_model.safetensors'
a_ = 'tf_model.h5'
a_ = 'tf_model.h5.index.json'
a_ = 'model.ckpt'
a_ = 'flax_model.msgpack'
a_ = 'flax_model.msgpack.index.json'
a_ = 'model.safetensors'
a_ = 'model.safetensors.index.json'
a_ = 'config.json'
a_ = 'preprocessor_config.json'
a_ = FEATURE_EXTRACTOR_NAME
a_ = 'generation_config.json'
a_ = 'modelcard.json'
a_ = '▁'
a_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
a_ = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
a_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
a_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def lowerCamelCase__ ( _a):
if version.parse(_a) < version.parse(_a):
if "dev" in min_version:
SCREAMING_SNAKE_CASE : Optional[Any] = (
"This example requires a source install from HuggingFace Transformers (see "
"`https://huggingface.co/docs/transformers/installation#install-from-source`),"
)
else:
SCREAMING_SNAKE_CASE : List[Any] = f"This example requires a minimum version of {min_version},"
error_message += f" but the version found is {__version__}.\n"
raise ImportError(
error_message
+ "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other "
"versions of HuggingFace Transformers.")
| 76 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class UpperCAmelCase__ :
"""simple docstring"""
def __init__( self : int ,_a : Any ,_a : Optional[int]=2 ,_a : Optional[Any]=True ,_a : Dict=False ,_a : Dict=10 ,_a : Any=3 ,_a : str=32 * 8 ,_a : Optional[int]=32 * 8 ,_a : int=4 ,_a : str=64 ,):
'''simple docstring'''
_a : Dict = parent
_a : Union[str, Any] = batch_size
_a : Tuple = is_training
_a : List[str] = use_auxiliary_loss
_a : Optional[Any] = num_queries
_a : str = num_channels
_a : List[str] = min_size
_a : int = max_size
_a : Optional[int] = num_labels
_a : List[str] = hidden_dim
_a : int = hidden_dim
def __lowercase ( self : Union[str, Any] ):
'''simple docstring'''
_a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
_a )
_a : Optional[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=_a )
_a : Union[str, Any] = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=_a ) > 0.5
).float()
_a : Tuple = (torch.rand((self.batch_size, self.num_labels) ,device=_a ) > 0.5).long()
_a : Dict = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def __lowercase ( self : Union[str, Any] ):
'''simple docstring'''
_a : int = MaskaFormerConfig(
hidden_size=self.hidden_dim ,)
_a : str = self.num_queries
_a : Union[str, Any] = self.num_labels
_a : Tuple = [1, 1, 1, 1]
_a : Dict = self.num_channels
_a : str = 64
_a : Tuple = 128
_a : Optional[Any] = self.hidden_dim
_a : Union[str, Any] = self.hidden_dim
_a : List[Any] = self.hidden_dim
return config
def __lowercase ( self : Optional[Any] ):
'''simple docstring'''
_a, _a, _a, _a, _a : Optional[Any] = self.prepare_config_and_inputs()
_a : str = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask}
return config, inputs_dict
def __lowercase ( self : List[str] ,_a : Optional[Any] ,_a : str ):
'''simple docstring'''
_a : str = output.encoder_hidden_states
_a : Any = output.pixel_decoder_hidden_states
_a : Optional[Any] = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_a ) ,config.decoder_layers )
def __lowercase ( self : List[str] ,_a : str ,_a : List[Any] ,_a : Any ,_a : Union[str, Any]=False ):
'''simple docstring'''
with torch.no_grad():
_a : str = MaskaFormerModel(config=_a )
model.to(_a )
model.eval()
_a : Any = model(pixel_values=_a ,pixel_mask=_a )
_a : Optional[Any] = model(_a ,output_hidden_states=_a )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,)
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(_a ,_a )
def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Union[str, Any] ,_a : Tuple ,_a : List[str] ,_a : Any ):
'''simple docstring'''
_a : int = MaskaFormerForUniversalSegmentation(config=_a )
model.to(_a )
model.eval()
def comm_check_on_output(_a : Any ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,)
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_a : Any = model(pixel_values=_a ,pixel_mask=_a )
_a : Optional[int] = model(_a )
comm_check_on_output(_a )
_a : List[str] = model(
pixel_values=_a ,pixel_mask=_a ,mask_labels=_a ,class_labels=_a )
comm_check_on_output(_a )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) )
@require_torch
class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
__UpperCAmelCase : Dict = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {}
__UpperCAmelCase : Dict = False
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : Dict = False
__UpperCAmelCase : List[Any] = False
def __lowercase ( self : Optional[int] ):
'''simple docstring'''
_a : Union[str, Any] = MaskaFormerModelTester(self )
_a : Dict = ConfigTester(self ,config_class=_a ,has_text_modality=_a )
def __lowercase ( self : Optional[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __lowercase ( self : Optional[int] ):
'''simple docstring'''
_a, _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a )
def __lowercase ( self : str ):
'''simple docstring'''
_a : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a )
@unittest.skip(reason='Mask2Former does not use inputs_embeds' )
def __lowercase ( self : Any ):
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' )
def __lowercase ( self : str ):
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former is not a generative model' )
def __lowercase ( self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not use token embeddings' )
def __lowercase ( self : Optional[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def __lowercase ( self : Dict ):
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def __lowercase ( self : List[Any] ):
'''simple docstring'''
pass
def __lowercase ( self : int ):
'''simple docstring'''
_a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : Union[str, Any] = model_class(_a )
_a : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a : Optional[Any] = [*signature.parameters.keys()]
_a : List[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] ,_a )
@slow
def __lowercase ( self : List[str] ):
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
_a : Dict = MaskaFormerModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def __lowercase ( self : List[Any] ):
'''simple docstring'''
_a : int = (self.model_tester.min_size,) * 2
_a : Any = {
'pixel_values': torch.randn((2, 3, *size) ,device=_a ),
'mask_labels': torch.randn((2, 10, *size) ,device=_a ),
'class_labels': torch.zeros(2 ,10 ,device=_a ).long(),
}
_a : List[Any] = self.model_tester.get_config()
_a : int = MaskaFormerForUniversalSegmentation(_a ).to(_a )
_a : str = model(**_a )
self.assertTrue(outputs.loss is not None )
def __lowercase ( self : List[str] ):
'''simple docstring'''
_a, _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a )
def __lowercase ( self : int ):
'''simple docstring'''
_a, _a : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : Any = model_class(_a ).to(_a )
_a : Optional[int] = model(**_a ,output_attentions=_a )
self.assertTrue(outputs.attentions is not None )
def __lowercase ( self : Tuple ):
'''simple docstring'''
if not self.model_tester.is_training:
return
_a : List[str] = self.all_model_classes[1]
_a, _a, _a, _a, _a : List[str] = self.model_tester.prepare_config_and_inputs()
_a : Any = model_class(_a )
model.to(_a )
model.train()
_a : Union[str, Any] = model(_a ,mask_labels=_a ,class_labels=_a ).loss
loss.backward()
def __lowercase ( self : int ):
'''simple docstring'''
_a : int = self.all_model_classes[1]
_a, _a, _a, _a, _a : List[Any] = self.model_tester.prepare_config_and_inputs()
_a : str = True
_a : str = True
_a : List[str] = model_class(_a ).to(_a )
model.train()
_a : Optional[int] = model(_a ,mask_labels=_a ,class_labels=_a )
_a : Tuple = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_a : str = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
_a : Dict = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_a : List[str] = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=_a )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__lowerCAmelCase = 1e-4
def UpperCAmelCase_ ():
"""simple docstring"""
_a : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@slow
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __lowercase ( self : Union[str, Any] ):
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def __lowercase ( self : Any ):
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def __lowercase ( self : Any ):
'''simple docstring'''
_a : List[str] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a )
_a : int = self.default_image_processor
_a : Tuple = prepare_img()
_a : Any = image_processor(_a ,return_tensors='pt' ).to(_a )
_a : Union[str, Any] = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_a ,(1, 3, 384, 384) )
with torch.no_grad():
_a : Optional[Any] = model(**_a )
_a : List[Any] = torch.tensor(
[[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_a )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) )
_a : str = torch.tensor(
[[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_a )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) )
_a : Any = torch.tensor(
[[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_a )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,_a ,atol=_a ) )
def __lowercase ( self : Tuple ):
'''simple docstring'''
_a : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval()
_a : Optional[Any] = self.default_image_processor
_a : List[Any] = prepare_img()
_a : str = image_processor(_a ,return_tensors='pt' ).to(_a )
_a : Any = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_a ,(1, 3, 384, 384) )
with torch.no_grad():
_a : Optional[int] = model(**_a )
# masks_queries_logits
_a : Dict = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
_a : Dict = [
[-8.7839, -9.0056, -8.8121],
[-7.4104, -7.0313, -6.5401],
[-6.6105, -6.3427, -6.4675],
]
_a : Optional[Any] = torch.tensor(_a ).to(_a )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,_a ,atol=_a ) )
# class_queries_logits
_a : str = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) )
_a : str = torch.tensor(
[
[1.8324, -8.0835, -4.1922],
[0.8450, -9.0050, -3.6053],
[0.3045, -7.7293, -3.0275],
] ).to(_a )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,_a ,atol=_a ) )
def __lowercase ( self : Optional[Any] ):
'''simple docstring'''
_a : Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval()
_a : Tuple = self.default_image_processor
_a : Tuple = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,)
_a : str = inputs['pixel_values'].to(_a )
_a : str = [el.to(_a ) for el in inputs['mask_labels']]
_a : Dict = [el.to(_a ) for el in inputs['class_labels']]
with torch.no_grad():
_a : List[str] = model(**_a )
self.assertTrue(outputs.loss is not None )
| 271 | 0 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
UpperCAmelCase__ : int = "char"
UpperCAmelCase__ : Dict = "bpe"
UpperCAmelCase__ : List[Any] = "wp"
a__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
UpperCAmelCase__ : Dict = ["image_processor", "char_tokenizer"]
UpperCAmelCase__ : int = "ViTImageProcessor"
UpperCAmelCase__ : Optional[int] = "MgpstrTokenizer"
def __init__( self , _a=None , _a=None , **_a ) -> Dict:
_a : Optional[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __a , )
_a : Any = kwargs.pop('''feature_extractor''' )
_a : List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
_a : List[Any] = tokenizer
_a : List[str] = AutoTokenizer.from_pretrained('''gpt2''' )
_a : Union[str, Any] = AutoTokenizer.from_pretrained('''bert-base-uncased''' )
super().__init__(__a , __a )
def __call__( self , _a=None , _a=None , _a=None , **_a ) -> Any:
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
_a : Optional[int] = self.image_processor(__a , return_tensors=__a , **__a )
if text is not None:
_a : int = self.char_tokenizer(__a , return_tensors=__a , **__a )
if text is None:
return inputs
elif images is None:
return encodings
else:
_a : Optional[int] = encodings['input_ids']
return inputs
def __lowercase ( self , _a ) -> List[str]:
_a : Union[str, Any] = sequences
_a : List[Any] = char_preds.size(0 )
_a : Union[str, Any] = self._decode_helper(__a , '''char''' )
_a : Optional[int] = self._decode_helper(__a , '''bpe''' )
_a : Any = self._decode_helper(__a , '''wp''' )
_a : int = []
_a : Tuple = []
for i in range(__a ):
_a : Tuple = [char_scores[i], bpe_scores[i], wp_scores[i]]
_a : List[str] = [char_strs[i], bpe_strs[i], wp_strs[i]]
_a : Optional[int] = scores.index(max(__a ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
_a : Optional[Any] = {}
_a : int = final_strs
_a : Dict = final_scores
_a : int = char_strs
_a : Dict = bpe_strs
_a : Optional[Any] = wp_strs
return out
def __lowercase ( self , _a , _a ) -> Any:
if format == DecodeType.CHARACTER:
_a : Dict = self.char_decode
_a : Dict = 1
_a : Optional[int] = '[s]'
elif format == DecodeType.BPE:
_a : Any = self.bpe_decode
_a : Dict = 2
_a : Any = '#'
elif format == DecodeType.WORDPIECE:
_a : Tuple = self.wp_decode
_a : Optional[int] = 1_0_2
_a : List[Any] = '[SEP]'
else:
raise ValueError(F"""Format {format} is not supported.""" )
_a : Optional[int] = [], []
_a : List[Any] = pred_logits.size(0 )
_a : List[str] = pred_logits.size(1 )
_a : Tuple = pred_logits.topk(1 , dim=-1 , largest=__a , sorted=__a )
_a : Any = preds_index.view(-1 , __a )[:, 1:]
_a : Optional[int] = decoder(__a )
_a : Optional[int] = torch.nn.functional.softmax(__a , dim=2 ).max(dim=2 )
_a : Dict = preds_max_prob[:, 1:]
for index in range(__a ):
_a : Optional[int] = preds_str[index].find(__a )
_a : str = preds_str[index][:pred_eos]
_a : Any = preds_index[index].cpu().tolist()
_a : Any = pred_index.index(__a ) if eos_token in pred_index else -1
_a : Any = preds_max_prob[index][: pred_eos_index + 1]
_a : Tuple = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__a )
conf_scores.append(__a )
return dec_strs, conf_scores
def __lowercase ( self , _a ) -> Dict:
_a : Optional[int] = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(__a )]
return decode_strs
def __lowercase ( self , _a ) -> Union[str, Any]:
return self.bpe_tokenizer.batch_decode(__a )
def __lowercase ( self , _a ) -> Any:
_a : List[str] = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(__a )]
return decode_strs
| 350 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"]
UpperCAmelCase__ : str = "ViltImageProcessor"
UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , _a=None , _a=None , **_a ) -> Any:
_a : Union[str, Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _a , )
_a : Dict = kwargs.pop('''feature_extractor''' )
_a : Optional[int] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_a , _a )
_a : int = self.image_processor
def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding:
_a : Tuple = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
# add pixel_values + pixel_mask
_a : str = self.image_processor(_a , return_tensors=_a )
encoding.update(_a )
return encoding
def __lowercase ( self , *_a , **_a ) -> Optional[Any]:
return self.tokenizer.batch_decode(*_a , **_a )
def __lowercase ( self , *_a , **_a ) -> str:
return self.tokenizer.decode(*_a , **_a )
@property
def __lowercase ( self ) -> Optional[int]:
_a : str = self.tokenizer.model_input_names
_a : Optional[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __lowercase ( self ) -> Optional[Any]:
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , )
return self.image_processor_class
@property
def __lowercase ( self ) -> Any:
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , )
return self.image_processor
| 15 | 0 |
'''simple docstring'''
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =False, False, False
@dataclass
class a__ :
lowerCamelCase : Optional[int] =None
lowerCamelCase : bool =True
lowerCamelCase : bool =True
lowerCamelCase : Optional[str] =None
# Automatically constructed
lowerCamelCase : ClassVar[str] ="dict"
lowerCamelCase : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} )
lowerCamelCase : str =field(default="Audio" , init=UpperCAmelCase__ , repr=UpperCAmelCase__ )
def __call__( self : Dict ):
"""simple docstring"""
return self.pa_type
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Union[str, bytes, dict] ):
"""simple docstring"""
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err
if isinstance(a , a ):
return {"bytes": None, "path": value}
elif isinstance(a , a ):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
__lowerCamelCase = BytesIO()
sf.write(a , value['''array'''] , value['''sampling_rate'''] , format='''wav''' )
return {"bytes": buffer.getvalue(), "path": None}
elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith('''pcm''' ):
# "PCM" only has raw audio bytes
if value.get('''sampling_rate''' ) is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' )
if value.get('''bytes''' ):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
__lowerCamelCase = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67
else:
__lowerCamelCase = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_27_67
__lowerCamelCase = BytesIO(bytes() )
sf.write(a , a , value['''sampling_rate'''] , format='''wav''' )
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get('''path''' )}
elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )}
else:
raise ValueError(
f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : dict , a : Optional[Dict[str, Union[str, bool, None]]] = None ):
"""simple docstring"""
if not self.decode:
raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' )
__lowerCamelCase , __lowerCamelCase = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None)
if path is None and file is None:
raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" )
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err
__lowerCamelCase = xsplitext(a )[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
'''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, '''
'''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' )
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
'''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, '''
'''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' )
if file is None:
__lowerCamelCase = token_per_repo_id or {}
__lowerCamelCase = path.split('''::''' )[-1]
try:
__lowerCamelCase = string_to_dict(a , config.HUB_DATASETS_URL )['''repo_id''']
__lowerCamelCase = token_per_repo_id[repo_id]
except (ValueError, KeyError):
__lowerCamelCase = None
with xopen(a , '''rb''' , use_auth_token=a ) as f:
__lowerCamelCase , __lowerCamelCase = sf.read(a )
else:
__lowerCamelCase , __lowerCamelCase = sf.read(a )
__lowerCamelCase = array.T
if self.mono:
__lowerCamelCase = librosa.to_mono(a )
if self.sampling_rate and self.sampling_rate != sampling_rate:
__lowerCamelCase = librosa.resample(a , orig_sr=a , target_sr=self.sampling_rate )
__lowerCamelCase = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
from .features import Value
if self.decode:
raise ValueError('''Cannot flatten a decoded Audio feature.''' )
return {
"bytes": Value('''binary''' ),
"path": Value('''string''' ),
}
def SCREAMING_SNAKE_CASE__ ( self : str , a : Union[pa.StringArray, pa.StructArray] ):
"""simple docstring"""
if pa.types.is_string(storage.type ):
__lowerCamelCase = pa.array([None] * len(a ) , type=pa.binary() )
__lowerCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__lowerCamelCase = pa.array([None] * len(a ) , type=pa.string() )
__lowerCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ):
__lowerCamelCase = pa.array([Audio().encode_example(a ) if x is not None else None for x in storage.to_pylist()] )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index('''bytes''' ) >= 0:
__lowerCamelCase = storage.field('''bytes''' )
else:
__lowerCamelCase = pa.array([None] * len(a ) , type=pa.binary() )
if storage.type.get_field_index('''path''' ) >= 0:
__lowerCamelCase = storage.field('''path''' )
else:
__lowerCamelCase = pa.array([None] * len(a ) , type=pa.string() )
__lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() )
return array_cast(a , self.pa_type )
def SCREAMING_SNAKE_CASE__ ( self : Dict , a : pa.StructArray ):
"""simple docstring"""
@no_op_if_value_is_null
def path_to_bytes(a : Optional[Any] ):
with xopen(a , '''rb''' ) as f:
__lowerCamelCase = f.read()
return bytes_
__lowerCamelCase = pa.array(
[
(path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
__lowerCamelCase = pa.array(
[os.path.basename(a ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , )
__lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() )
return array_cast(a , self.pa_type )
| 67 |
"""simple docstring"""
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , snake_case__ = "" , snake_case__ = False ):
"""simple docstring"""
lowerCAmelCase : dict[str, RadixNode] = {}
# A node will be a leaf if the tree contains its word
lowerCAmelCase : str = is_leaf
lowerCAmelCase : str = prefix
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
lowerCAmelCase : Dict = 0
for q, w in zip(self.prefix , snake_case__ ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
for word in words:
self.insert(snake_case__ )
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
if self.prefix == word:
lowerCAmelCase : Union[str, Any] = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
lowerCAmelCase : Optional[Any] = RadixNode(prefix=snake_case__ , is_leaf=snake_case__ )
else:
lowerCAmelCase : Tuple = self.nodes[word[0]]
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = incoming_node.match(
snake_case__ )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(snake_case__ )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
lowerCAmelCase : Optional[Any] = remaining_prefix
lowerCAmelCase : int = self.nodes[matching_string[0]]
lowerCAmelCase : List[Any] = RadixNode(snake_case__ , snake_case__ )
lowerCAmelCase : Optional[int] = aux_node
if remaining_word == "":
lowerCAmelCase : Optional[int] = True
else:
self.nodes[matching_string[0]].insert(snake_case__ )
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
lowerCAmelCase : str = self.nodes.get(word[0] , snake_case__ )
if not incoming_node:
return False
else:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = incoming_node.match(
snake_case__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(snake_case__ )
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
lowerCAmelCase : int = self.nodes.get(word[0] , snake_case__ )
if not incoming_node:
return False
else:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = incoming_node.match(
snake_case__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(snake_case__ )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
lowerCAmelCase : List[str] = list(self.nodes.values() )[0]
lowerCAmelCase : List[str] = merging_node.is_leaf
self.prefix += merging_node.prefix
lowerCAmelCase : Optional[int] = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
lowerCAmelCase : Optional[int] = False
# If there is 1 edge, we merge it with its child
else:
lowerCAmelCase : Optional[Any] = list(incoming_node.nodes.values() )[0]
lowerCAmelCase : int = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
lowerCAmelCase : Tuple = merging_node.nodes
return True
def lowercase__ ( self , snake_case__ = 0 ):
"""simple docstring"""
if self.prefix != "":
print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" )
for value in self.nodes.values():
value.print_tree(height + 1 )
def a__ ( ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = "banana bananas bandana band apple all beast".split()
lowerCAmelCase : List[str] = RadixNode()
root.insert_many(SCREAMING_SNAKE_CASE )
assert all(root.find(SCREAMING_SNAKE_CASE ) for word in words )
assert not root.find("bandanas" )
assert not root.find("apps" )
root.delete("all" )
assert not root.find("all" )
root.delete("banana" )
assert not root.find("banana" )
assert root.find("bananas" )
return True
def a__ ( ):
'''simple docstring'''
assert test_trie()
def a__ ( ):
'''simple docstring'''
lowerCAmelCase : Dict = RadixNode()
lowerCAmelCase : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split()
root.insert_many(SCREAMING_SNAKE_CASE )
print("Words:" , SCREAMING_SNAKE_CASE )
print("Tree:" )
root.print_tree()
if __name__ == "__main__":
main()
| 108 | 0 |
"""simple docstring"""
import sys
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
_lowerCAmelCase =len(__UpperCamelCase )
_lowerCAmelCase =[[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )]
_lowerCAmelCase =[[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )]
for chain_length in range(2 , __UpperCamelCase ):
for a in range(1 , n - chain_length + 1 ):
_lowerCAmelCase =a + chain_length - 1
_lowerCAmelCase =sys.maxsize
for c in range(__UpperCamelCase , __UpperCamelCase ):
_lowerCAmelCase =(
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
_lowerCAmelCase =cost
_lowerCAmelCase =c
return matrix, sol
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]:
if i == j:
print("""A""" + str(__UpperCamelCase ) , end=""" """ )
else:
print("""(""" , end=""" """ )
print_optiomal_solution(__UpperCamelCase , __UpperCamelCase , optimal_solution[i][j] )
print_optiomal_solution(__UpperCamelCase , optimal_solution[i][j] + 1 , __UpperCamelCase )
print(""")""" , end=""" """ )
def _lowerCamelCase() -> Dict:
_lowerCAmelCase =[30, 35, 15, 5, 10, 20, 25]
_lowerCAmelCase =len(__UpperCamelCase )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
_lowerCAmelCase , _lowerCAmelCase =matrix_chain_order(__UpperCamelCase )
print("""No. of Operation required: """ + str(matrix[1][n - 1] ) )
print_optiomal_solution(__UpperCamelCase , 1 , n - 1 )
if __name__ == "__main__":
main()
| 352 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''image_processor''', '''tokenizer''']
lowerCamelCase = '''CLIPImageProcessor'''
lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''')
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase =None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
_lowerCAmelCase =kwargs.pop("""feature_extractor""" )
_lowerCAmelCase =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if images is not None:
_lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
_lowerCAmelCase =image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =self.tokenizer.model_input_names
_lowerCAmelCase =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 341 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__A : Optional[int] = {
'''configuration_encodec''': [
'''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''EncodecConfig''',
],
'''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = [
'''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''EncodecModel''',
'''EncodecPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
__A : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 138 |
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str:
'''simple docstring'''
return " ".join(
''.join(word[::-1] ) if len(_UpperCAmelCase ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('''Hey wollef sroirraw'''))
| 138 | 1 |
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
__UpperCamelCase : int
__UpperCamelCase : int
__UpperCamelCase : float = 0.0
__UpperCamelCase : int = 1
__UpperCamelCase : int = 1
__UpperCamelCase : bool = True
__UpperCamelCase : bool = False
__UpperCamelCase : bool = False
__UpperCamelCase : bool = False
__UpperCamelCase : jnp.dtype = jnp.floataa
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Any = []
UpperCamelCase : str = []
for i in range(self.num_layers ):
UpperCamelCase : Dict = self.in_channels if i == 0 else self.out_channels
UpperCamelCase : str = FlaxResnetBlockaD(
in_channels=__SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = resnets
UpperCamelCase : List[str] = attentions
if self.add_downsample:
UpperCamelCase : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ):
"""simple docstring"""
UpperCamelCase : Any = ()
for resnet, attn in zip(self.resnets , self.attentions ):
UpperCamelCase : List[Any] = resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = attn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
if self.add_downsample:
UpperCamelCase : int = self.downsamplers_a(__SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
return hidden_states, output_states
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
__UpperCamelCase : int
__UpperCamelCase : int
__UpperCamelCase : float = 0.0
__UpperCamelCase : int = 1
__UpperCamelCase : bool = True
__UpperCamelCase : jnp.dtype = jnp.floataa
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Dict = []
for i in range(self.num_layers ):
UpperCamelCase : Union[str, Any] = self.in_channels if i == 0 else self.out_channels
UpperCamelCase : Optional[Any] = FlaxResnetBlockaD(
in_channels=__SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = resnets
if self.add_downsample:
UpperCamelCase : Dict = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = ()
for resnet in self.resnets:
UpperCamelCase : Optional[int] = resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
if self.add_downsample:
UpperCamelCase : Union[str, Any] = self.downsamplers_a(__SCREAMING_SNAKE_CASE )
output_states += (hidden_states,)
return hidden_states, output_states
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
__UpperCamelCase : int
__UpperCamelCase : int
__UpperCamelCase : int
__UpperCamelCase : float = 0.0
__UpperCamelCase : int = 1
__UpperCamelCase : int = 1
__UpperCamelCase : bool = True
__UpperCamelCase : bool = False
__UpperCamelCase : bool = False
__UpperCamelCase : bool = False
__UpperCamelCase : jnp.dtype = jnp.floataa
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Any = []
UpperCamelCase : Any = []
for i in range(self.num_layers ):
UpperCamelCase : Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels
UpperCamelCase : Any = self.prev_output_channel if i == 0 else self.out_channels
UpperCamelCase : int = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Any = resnets
UpperCamelCase : List[str] = attentions
if self.add_upsample:
UpperCamelCase : Dict = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ):
"""simple docstring"""
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
UpperCamelCase : Optional[Any] = res_hidden_states_tuple[-1]
UpperCamelCase : Optional[int] = res_hidden_states_tuple[:-1]
UpperCamelCase : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
UpperCamelCase : Dict = resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = attn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE )
if self.add_upsample:
UpperCamelCase : Optional[int] = self.upsamplers_a(__SCREAMING_SNAKE_CASE )
return hidden_states
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
__UpperCamelCase : int
__UpperCamelCase : int
__UpperCamelCase : int
__UpperCamelCase : float = 0.0
__UpperCamelCase : int = 1
__UpperCamelCase : bool = True
__UpperCamelCase : jnp.dtype = jnp.floataa
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Tuple = []
for i in range(self.num_layers ):
UpperCamelCase : Union[str, Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels
UpperCamelCase : Tuple = self.prev_output_channel if i == 0 else self.out_channels
UpperCamelCase : Optional[Any] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = resnets
if self.add_upsample:
UpperCamelCase : Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ):
"""simple docstring"""
for resnet in self.resnets:
# pop res hidden states
UpperCamelCase : Tuple = res_hidden_states_tuple[-1]
UpperCamelCase : List[Any] = res_hidden_states_tuple[:-1]
UpperCamelCase : Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
UpperCamelCase : int = resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE )
if self.add_upsample:
UpperCamelCase : List[Any] = self.upsamplers_a(__SCREAMING_SNAKE_CASE )
return hidden_states
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
__UpperCamelCase : int
__UpperCamelCase : float = 0.0
__UpperCamelCase : int = 1
__UpperCamelCase : int = 1
__UpperCamelCase : bool = False
__UpperCamelCase : bool = False
__UpperCamelCase : jnp.dtype = jnp.floataa
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Tuple = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
UpperCamelCase : Dict = []
for _ in range(self.num_layers ):
UpperCamelCase : Dict = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = resnets
UpperCamelCase : int = attentions
def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ):
"""simple docstring"""
UpperCamelCase : int = self.resnets[0](__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
UpperCamelCase : Union[str, Any] = attn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = resnet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=__SCREAMING_SNAKE_CASE )
return hidden_states
| 356 |
from argparse import ArgumentParser
from .env import EnvironmentCommand
def a ( ):
"""simple docstring"""
UpperCamelCase : Any = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' )
UpperCamelCase : Tuple = parser.add_subparsers(help='''diffusers-cli command helpers''' )
# Register commands
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE_ )
# Let's go
UpperCamelCase : List[Any] = parser.parse_args()
if not hasattr(SCREAMING_SNAKE_CASE_ , '''func''' ):
parser.print_help()
exit(1 )
# Run
UpperCamelCase : str = args.func(SCREAMING_SNAKE_CASE_ )
service.run()
if __name__ == "__main__":
main()
| 315 | 0 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : str ):
"""simple docstring"""
return int(input_a == input_a == 0 )
def A_ ( ):
"""simple docstring"""
print('''Truth Table of NOR Gate:''' )
print('''| Input 1 | Input 2 | Output |''' )
print(f'| 0 | 0 | {nor_gate(0, 0 )} |' )
print(f'| 0 | 1 | {nor_gate(0, 1 )} |' )
print(f'| 1 | 0 | {nor_gate(1, 0 )} |' )
print(f'| 1 | 1 | {nor_gate(1, 1 )} |' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 320 |
_lowerCamelCase : Optional[int] = 65521
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = 1
A__ = 0
for plain_chr in plain_text:
A__ = (a + ord(lowercase_ )) % MOD_ADLER
A__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def _snake_case ( A ) -> Dict:
# initialize config
if "resnet-50" in model_name:
lowerCAmelCase__ = ResNetConfig.from_pretrained('''microsoft/resnet-50''' )
elif "resnet-101" in model_name:
lowerCAmelCase__ = ResNetConfig.from_pretrained('''microsoft/resnet-101''' )
else:
raise ValueError('''Model name should include either resnet50 or resnet101''' )
lowerCAmelCase__ = DetrConfig(use_timm_backbone=A , backbone_config=A )
# set label attributes
lowerCAmelCase__ = '''panoptic''' in model_name
if is_panoptic:
lowerCAmelCase__ = 250
else:
lowerCAmelCase__ = 91
lowerCAmelCase__ = '''huggingface/label-files'''
lowerCAmelCase__ = '''coco-detection-id2label.json'''
lowerCAmelCase__ = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) )
lowerCAmelCase__ = {int(A ): v for k, v in idalabel.items()}
lowerCAmelCase__ = idalabel
lowerCAmelCase__ = {v: k for k, v in idalabel.items()}
return config, is_panoptic
def _snake_case ( A ) -> Tuple:
# here we list all keys to be renamed (original name on the left, our name on the right)
lowerCAmelCase__ = []
# stem
# fmt: off
rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') )
rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') )
rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') )
rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') )
rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') )
# stages
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
# shortcut
if layer_idx == 0:
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""",
) )
# 3 convs
for i in range(3 ):
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""",
) )
# fmt: on
for i in range(config.encoder_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(
F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""",
F"""encoder.layers.{i}.self_attn.out_proj.weight""",
) )
rename_keys.append(
(F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") )
rename_keys.append(
(F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") )
rename_keys.append(
(F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") )
rename_keys.append(
(F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") )
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""",
F"""decoder.layers.{i}.self_attn.out_proj.weight""",
) )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") )
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""",
F"""decoder.layers.{i}.encoder_attn.out_proj.weight""",
) )
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""",
F"""decoder.layers.{i}.encoder_attn.out_proj.bias""",
) )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") )
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
] )
return rename_keys
def _snake_case ( A , A , A ) -> Optional[int]:
lowerCAmelCase__ = state_dict.pop(A )
lowerCAmelCase__ = val
def _snake_case ( A , A=False ) -> str:
lowerCAmelCase__ = ''''''
if is_panoptic:
lowerCAmelCase__ = '''detr.'''
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" )
lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[:256, :]
lowerCAmelCase__ = in_proj_bias[:256]
lowerCAmelCase__ = in_proj_weight[256:512, :]
lowerCAmelCase__ = in_proj_bias[256:512]
lowerCAmelCase__ = in_proj_weight[-256:, :]
lowerCAmelCase__ = in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" )
lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[:256, :]
lowerCAmelCase__ = in_proj_bias[:256]
lowerCAmelCase__ = in_proj_weight[256:512, :]
lowerCAmelCase__ = in_proj_bias[256:512]
lowerCAmelCase__ = in_proj_weight[-256:, :]
lowerCAmelCase__ = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
lowerCAmelCase__ = state_dict.pop(
F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" )
lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) of cross-attention to the state dict
lowerCAmelCase__ = in_proj_weight_cross_attn[:256, :]
lowerCAmelCase__ = in_proj_bias_cross_attn[:256]
lowerCAmelCase__ = in_proj_weight_cross_attn[256:512, :]
lowerCAmelCase__ = in_proj_bias_cross_attn[256:512]
lowerCAmelCase__ = in_proj_weight_cross_attn[-256:, :]
lowerCAmelCase__ = in_proj_bias_cross_attn[-256:]
def _snake_case ( ) -> List[Any]:
lowerCAmelCase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCAmelCase__ = Image.open(requests.get(A , stream=A ).raw )
return im
@torch.no_grad()
def _snake_case ( A , A=None , A=False ) -> Tuple:
lowerCAmelCase__ , lowerCAmelCase__ = get_detr_config(A )
# load original model from torch hub
lowerCAmelCase__ = {
'''detr-resnet-50''': '''detr_resnet50''',
'''detr-resnet-101''': '''detr_resnet101''',
}
logger.info(F"""Converting model {model_name}...""" )
lowerCAmelCase__ = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=A ).eval()
lowerCAmelCase__ = detr.state_dict()
# rename keys
for src, dest in create_rename_keys(A ):
if is_panoptic:
lowerCAmelCase__ = '''detr.''' + src
rename_key(A , A , A )
# query, key and value matrices need special treatment
read_in_q_k_v(A , is_panoptic=A )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
lowerCAmelCase__ = '''detr.model.''' if is_panoptic else '''model.'''
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith('''detr''' )
and not key.startswith('''class_labels_classifier''' )
and not key.startswith('''bbox_predictor''' )
):
lowerCAmelCase__ = state_dict.pop(A )
lowerCAmelCase__ = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
lowerCAmelCase__ = state_dict.pop(A )
lowerCAmelCase__ = val
elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ):
continue
else:
lowerCAmelCase__ = state_dict.pop(A )
lowerCAmelCase__ = val
else:
if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ):
lowerCAmelCase__ = state_dict.pop(A )
lowerCAmelCase__ = val
# finally, create HuggingFace model and load state dict
lowerCAmelCase__ = DetrForSegmentation(A ) if is_panoptic else DetrForObjectDetection(A )
model.load_state_dict(A )
model.eval()
# verify our conversion on an image
lowerCAmelCase__ = '''coco_panoptic''' if is_panoptic else '''coco_detection'''
lowerCAmelCase__ = DetrImageProcessor(format=A )
lowerCAmelCase__ = processor(images=prepare_img() , return_tensors='''pt''' )
lowerCAmelCase__ = encoding['''pixel_values''']
lowerCAmelCase__ = detr(A )
lowerCAmelCase__ = model(A )
assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-3 )
assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-3 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(A ).mkdir(exist_ok=A )
model.save_pretrained(A )
processor.save_pretrained(A )
if push_to_hub:
# Upload model and image processor to the hub
logger.info('''Uploading PyTorch model and image processor to the hub...''' )
model.push_to_hub(F"""nielsr/{model_name}""" )
processor.push_to_hub(F"""nielsr/{model_name}""" )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''detr-resnet-50''',
type=str,
choices=['''detr-resnet-50''', '''detr-resnet-101'''],
help='''Name of the DETR model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''')
__UpperCAmelCase = parser.parse_args()
convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 369 |
'''simple docstring'''
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class a__ :
'''simple docstring'''
def __init__( self , lowerCamelCase_ , lowerCamelCase_=99 , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=9 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=32 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_=8 , lowerCamelCase_=0.1 , lowerCamelCase_=0.002 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=0 , lowerCamelCase_=None , lowerCamelCase_=None , ) -> str:
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = encoder_seq_length
lowerCAmelCase__ = decoder_seq_length
# For common tests
lowerCAmelCase__ = self.decoder_seq_length
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_attention_mask
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = d_ff
lowerCAmelCase__ = relative_attention_num_buckets
lowerCAmelCase__ = dropout_rate
lowerCAmelCase__ = initializer_factor
lowerCAmelCase__ = eos_token_id
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = decoder_start_token_id
lowerCAmelCase__ = None
lowerCAmelCase__ = decoder_layers
def __SCREAMING_SNAKE_CASE ( self ) -> List[str]:
return TaConfig.from_pretrained('''google/umt5-base''' )
def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , ) -> List[str]:
if attention_mask is None:
lowerCAmelCase__ = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
lowerCAmelCase__ = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
lowerCAmelCase__ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowerCamelCase_ )
if decoder_head_mask is None:
lowerCAmelCase__ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowerCamelCase_ )
if cross_attn_head_mask is None:
lowerCAmelCase__ = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=lowerCamelCase_ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def __SCREAMING_SNAKE_CASE ( self ) -> Dict:
lowerCAmelCase__ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
lowerCAmelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
lowerCAmelCase__ = input_ids.clamp(self.pad_token_id + 1 )
lowerCAmelCase__ = decoder_input_ids.clamp(self.pad_token_id + 1 )
lowerCAmelCase__ = self.get_config()
lowerCAmelCase__ = config.num_attention_heads
lowerCAmelCase__ = self.prepare_inputs_dict(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
return config, input_dict
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
lowerCAmelCase__ , lowerCAmelCase__ = self.prepare_config_and_inputs()
return config, inputs_dict
def __SCREAMING_SNAKE_CASE ( self ) -> List[str]:
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Dict:
lowerCAmelCase__ = UMTaModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
lowerCAmelCase__ = model(
input_ids=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , )
lowerCAmelCase__ = model(input_ids=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ )
lowerCAmelCase__ = result.last_hidden_state
lowerCAmelCase__ = result.past_key_values
lowerCAmelCase__ = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(lowerCamelCase_ ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> int:
lowerCAmelCase__ = UMTaModel(config=lowerCamelCase_ ).get_decoder().to(lowerCamelCase_ ).eval()
# first forward pass
lowerCAmelCase__ = model(lowerCamelCase_ , use_cache=lowerCamelCase_ )
lowerCAmelCase__ = model(lowerCamelCase_ )
lowerCAmelCase__ = model(lowerCamelCase_ , use_cache=lowerCamelCase_ )
self.parent.assertTrue(len(lowerCamelCase_ ) == len(lowerCamelCase_ ) )
self.parent.assertTrue(len(lowerCamelCase_ ) == len(lowerCamelCase_ ) + 1 )
lowerCAmelCase__ , lowerCAmelCase__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase__ = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
lowerCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase__ = model(lowerCamelCase_ )['''last_hidden_state''']
lowerCAmelCase__ = model(lowerCamelCase_ , past_key_values=lowerCamelCase_ )['''last_hidden_state''']
# select random slice
lowerCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase__ = output_from_no_past[:, -1, random_slice_idx].detach()
lowerCAmelCase__ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) )
def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , ) -> List[str]:
lowerCAmelCase__ = UMTaModel(config=lowerCamelCase_ ).to(lowerCamelCase_ ).half().eval()
lowerCAmelCase__ = model(**lowerCamelCase_ )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(lowerCamelCase_ ).any().item() )
@require_torch
class a__ ( a__ , a__ , a__ , unittest.TestCase ):
'''simple docstring'''
lowercase__ : Tuple = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
lowercase__ : List[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
lowercase__ : Dict = (
{
"conversational": UMTaForConditionalGeneration,
"feature-extraction": UMTaModel,
"summarization": UMTaForConditionalGeneration,
"text2text-generation": UMTaForConditionalGeneration,
"translation": UMTaForConditionalGeneration,
"question-answering": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
lowercase__ : Optional[int] = True
lowercase__ : Tuple = False
lowercase__ : Optional[int] = False
lowercase__ : Optional[Any] = True
lowercase__ : Optional[int] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
lowercase__ : int = [0.8, 0.9]
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
lowerCAmelCase__ = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
lowerCAmelCase__ = UMTaModel(config_and_inputs[0] ).to(lowerCamelCase_ )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
lowerCamelCase_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=lowerCamelCase_ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def __SCREAMING_SNAKE_CASE ( self ) -> List[str]:
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*lowerCamelCase_ )
def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
lowerCAmelCase__ = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
lowerCAmelCase__ = config_and_inputs[0]
lowerCAmelCase__ = UMTaForConditionalGeneration(lowerCamelCase_ ).eval()
model.to(lowerCamelCase_ )
lowerCAmelCase__ = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=lowerCamelCase_ ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCamelCase_ ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCamelCase_ ),
}
for attn_name, (name, mask) in zip(lowerCamelCase_ , head_masking.items() ):
lowerCAmelCase__ = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
lowerCAmelCase__ = torch.ones(
config.num_decoder_layers , config.num_heads , device=lowerCamelCase_ )
lowerCAmelCase__ = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=lowerCamelCase_ , return_dict_in_generate=lowerCamelCase_ , **lowerCamelCase_ , )
# We check the state of decoder_attentions and cross_attentions just from the last step
lowerCAmelCase__ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def __SCREAMING_SNAKE_CASE ( self ) -> int:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class a__ ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def __SCREAMING_SNAKE_CASE ( self ) -> Dict:
lowerCAmelCase__ = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=lowerCamelCase_ ).to(lowerCamelCase_ )
lowerCAmelCase__ = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=lowerCamelCase_ , legacy=lowerCamelCase_ )
lowerCAmelCase__ = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
lowerCAmelCase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' , padding=lowerCamelCase_ ).input_ids
# fmt: off
lowerCAmelCase__ = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
] )
# fmt: on
torch.testing.assert_allclose(lowerCamelCase_ , lowerCamelCase_ )
lowerCAmelCase__ = model.generate(input_ids.to(lowerCamelCase_ ) )
lowerCAmelCase__ = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
lowerCAmelCase__ = tokenizer.batch_decode(lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
| 228 | 0 |
from __future__ import annotations
from collections import namedtuple
def _a ( a :float , a :float , a :float ) -> tuple:
a = namedtuple('''result''' , '''name value''' )
if (voltage, current, power).count(0 ) != 1:
raise ValueError('''Only one argument must be 0''' )
elif power < 0:
raise ValueError(
'''Power cannot be negative in any electrical/electronics system''' )
elif voltage == 0:
return result('''voltage''' , power / current )
elif current == 0:
return result('''current''' , power / voltage )
elif power == 0:
return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) )
else:
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[Any] = {
'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "yolos"
def __init__( self : Any ,A : Optional[Any]=7_68 ,A : Dict=12 ,A : Any=12 ,A : str=30_72 ,A : Any="gelu" ,A : str=0.0 ,A : List[str]=0.0 ,A : Dict=0.02 ,A : int=1E-12 ,A : Tuple=[5_12, 8_64] ,A : List[Any]=16 ,A : str=3 ,A : str=True ,A : Any=1_00 ,A : Dict=True ,A : Dict=False ,A : Tuple=1 ,A : Union[str, Any]=5 ,A : Optional[Any]=2 ,A : Union[str, Any]=5 ,A : int=2 ,A : int=0.1 ,**A : List[str] ,):
super().__init__(**A )
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = initializer_range
__A = layer_norm_eps
__A = image_size
__A = patch_size
__A = num_channels
__A = qkv_bias
__A = num_detection_tokens
__A = use_mid_position_embeddings
__A = auxiliary_loss
# Hungarian matcher
__A = class_cost
__A = bbox_cost
__A = giou_cost
# Loss coefficients
__A = bbox_loss_coefficient
__A = giou_loss_coefficient
__A = eos_coefficient
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = version.parse("1.11" )
@property
def UpperCamelCase_ ( self : str ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def UpperCamelCase_ ( self : List[Any] ):
return 1E-4
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return 12
| 15 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase : Optional[int] = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE ( lowercase : str ):
'''simple docstring'''
lowerCamelCase_ = DPTConfig(embedding_type='hybrid' )
if "large" in checkpoint_url:
lowerCamelCase_ = 10_24
lowerCamelCase_ = 40_96
lowerCamelCase_ = 24
lowerCamelCase_ = 16
lowerCamelCase_ = [5, 11, 17, 23]
lowerCamelCase_ = [2_56, 5_12, 10_24, 10_24]
lowerCamelCase_ = (1, 3_84, 3_84)
if "nyu" or "midas" in checkpoint_url:
lowerCamelCase_ = 7_68
lowerCamelCase_ = [1, 1, 1, 0.5]
lowerCamelCase_ = [2_56, 5_12, 7_68, 7_68]
lowerCamelCase_ = 1_50
lowerCamelCase_ = 16
lowerCamelCase_ = (1, 3_84, 3_84)
lowerCamelCase_ = False
lowerCamelCase_ = 'project'
if "ade" in checkpoint_url:
lowerCamelCase_ = True
lowerCamelCase_ = 7_68
lowerCamelCase_ = [1, 1, 1, 0.5]
lowerCamelCase_ = 1_50
lowerCamelCase_ = 16
lowerCamelCase_ = 'huggingface/label-files'
lowerCamelCase_ = 'ade20k-id2label.json'
lowerCamelCase_ = json.load(open(cached_download(hf_hub_url(lowercase , lowercase , repo_type='dataset' ) ) , 'r' ) )
lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()}
lowerCamelCase_ = idalabel
lowerCamelCase_ = {v: k for k, v in idalabel.items()}
lowerCamelCase_ = [1, 1_50, 4_80, 4_80]
return config, expected_shape
def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase_ = ['pretrained.model.head.weight', 'pretrained.model.head.bias']
for k in ignore_keys:
state_dict.pop(lowercase , lowercase )
def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ):
'''simple docstring'''
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowerCamelCase_ = name.replace('pretrained.model' , 'dpt.encoder' )
if "pretrained.model" in name:
lowerCamelCase_ = name.replace('pretrained.model' , 'dpt.embeddings' )
if "patch_embed" in name:
lowerCamelCase_ = name.replace('patch_embed' , '' )
if "pos_embed" in name:
lowerCamelCase_ = name.replace('pos_embed' , 'position_embeddings' )
if "attn.proj" in name:
lowerCamelCase_ = name.replace('attn.proj' , 'attention.output.dense' )
if "proj" in name and "project" not in name:
lowerCamelCase_ = name.replace('proj' , 'projection' )
if "blocks" in name:
lowerCamelCase_ = name.replace('blocks' , 'layer' )
if "mlp.fc1" in name:
lowerCamelCase_ = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
lowerCamelCase_ = name.replace('mlp.fc2' , 'output.dense' )
if "norm1" in name and "backbone" not in name:
lowerCamelCase_ = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name and "backbone" not in name:
lowerCamelCase_ = name.replace('norm2' , 'layernorm_after' )
if "scratch.output_conv" in name:
lowerCamelCase_ = name.replace('scratch.output_conv' , 'head' )
if "scratch" in name:
lowerCamelCase_ = name.replace('scratch' , 'neck' )
if "layer1_rn" in name:
lowerCamelCase_ = name.replace('layer1_rn' , 'convs.0' )
if "layer2_rn" in name:
lowerCamelCase_ = name.replace('layer2_rn' , 'convs.1' )
if "layer3_rn" in name:
lowerCamelCase_ = name.replace('layer3_rn' , 'convs.2' )
if "layer4_rn" in name:
lowerCamelCase_ = name.replace('layer4_rn' , 'convs.3' )
if "refinenet" in name:
lowerCamelCase_ = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowerCamelCase_ = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" )
if "out_conv" in name:
lowerCamelCase_ = name.replace('out_conv' , 'projection' )
if "resConfUnit1" in name:
lowerCamelCase_ = name.replace('resConfUnit1' , 'residual_layer1' )
if "resConfUnit2" in name:
lowerCamelCase_ = name.replace('resConfUnit2' , 'residual_layer2' )
if "conv1" in name:
lowerCamelCase_ = name.replace('conv1' , 'convolution1' )
if "conv2" in name:
lowerCamelCase_ = name.replace('conv2' , 'convolution2' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowerCamelCase_ = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' )
if "pretrained.act_postprocess2.0.project.0" in name:
lowerCamelCase_ = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' )
if "pretrained.act_postprocess3.0.project.0" in name:
lowerCamelCase_ = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' )
if "pretrained.act_postprocess4.0.project.0" in name:
lowerCamelCase_ = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowerCamelCase_ = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' )
if "pretrained.act_postprocess1.4" in name:
lowerCamelCase_ = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' )
if "pretrained.act_postprocess2.3" in name:
lowerCamelCase_ = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' )
if "pretrained.act_postprocess2.4" in name:
lowerCamelCase_ = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' )
if "pretrained.act_postprocess3.3" in name:
lowerCamelCase_ = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' )
if "pretrained.act_postprocess4.3" in name:
lowerCamelCase_ = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' )
if "pretrained.act_postprocess4.4" in name:
lowerCamelCase_ = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' )
if "pretrained" in name:
lowerCamelCase_ = name.replace('pretrained' , 'dpt' )
if "bn" in name:
lowerCamelCase_ = name.replace('bn' , 'batch_norm' )
if "head" in name:
lowerCamelCase_ = name.replace('head' , 'head.head' )
if "encoder.norm" in name:
lowerCamelCase_ = name.replace('encoder.norm' , 'layernorm' )
if "auxlayer" in name:
lowerCamelCase_ = name.replace('auxlayer' , 'auxiliary_head.head' )
if "backbone" in name:
lowerCamelCase_ = name.replace('backbone' , 'backbone.bit.encoder' )
if ".." in name:
lowerCamelCase_ = name.replace('..' , '.' )
if "stem.conv" in name:
lowerCamelCase_ = name.replace('stem.conv' , 'bit.embedder.convolution' )
if "blocks" in name:
lowerCamelCase_ = name.replace('blocks' , 'layers' )
if "convolution" in name and "backbone" in name:
lowerCamelCase_ = name.replace('convolution' , 'conv' )
if "layer" in name and "backbone" in name:
lowerCamelCase_ = name.replace('layer' , 'layers' )
if "backbone.bit.encoder.bit" in name:
lowerCamelCase_ = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' )
if "embedder.conv" in name:
lowerCamelCase_ = name.replace('embedder.conv' , 'embedder.convolution' )
if "backbone.bit.encoder.stem.norm" in name:
lowerCamelCase_ = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' )
return name
def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : int ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase_ = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" )
lowerCamelCase_ = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase_ = in_proj_weight[: config.hidden_size, :]
lowerCamelCase_ = in_proj_bias[: config.hidden_size]
lowerCamelCase_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase_ = in_proj_weight[
-config.hidden_size :, :
]
lowerCamelCase_ = in_proj_bias[-config.hidden_size :]
def _SCREAMING_SNAKE_CASE ( ):
'''simple docstring'''
lowerCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Optional[Any] , lowercase : List[str] , lowercase : List[Any] , lowercase : Optional[int] ):
'''simple docstring'''
lowerCamelCase_ , lowerCamelCase_ = get_dpt_config(lowercase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
lowerCamelCase_ = torch.load(lowercase , map_location='cpu' )
# remove certain keys
remove_ignore_keys_(lowercase )
# rename keys
for key in state_dict.copy().keys():
lowerCamelCase_ = state_dict.pop(lowercase )
lowerCamelCase_ = val
# read in qkv matrices
read_in_q_k_v(lowercase , lowercase )
# load HuggingFace model
lowerCamelCase_ = DPTForSemanticSegmentation(lowercase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowercase )
model.load_state_dict(lowercase )
model.eval()
# Check outputs on an image
lowerCamelCase_ = 4_80 if 'ade' in checkpoint_url else 3_84
lowerCamelCase_ = DPTImageProcessor(size=lowercase )
lowerCamelCase_ = prepare_img()
lowerCamelCase_ = image_processor(lowercase , return_tensors='pt' )
# forward pass
lowerCamelCase_ = model(**lowercase ).logits if 'ade' in checkpoint_url else model(**lowercase ).predicted_depth
if show_prediction:
lowerCamelCase_ = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=lowercase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 2_55 ).show()
if pytorch_dump_folder_path is not None:
Path(lowercase ).mkdir(exist_ok=lowercase )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowercase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(lowercase )
if push_to_hub:
model.push_to_hub('ybelkada/dpt-hybrid-midas' )
image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' )
if __name__ == "__main__":
lowerCamelCase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
type=str,
help="URL of the original DPT checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=False,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
parser.add_argument(
"--model_name",
default="dpt-large",
type=str,
help="Name of the model, in case you're pushing to the hub.",
)
parser.add_argument(
"--show_prediction",
action="store_true",
)
lowerCamelCase : List[str] = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 208 |
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("1.0.0a"):
raise Exception("requires fairseq >= 1.0.0a")
logging.set_verbosity_info()
lowerCamelCase : Tuple = logging.get_logger(__name__)
lowerCamelCase : Union[str, Any] = "Hello world! cécé herlolip"
def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str , lowercase : bool ):
'''simple docstring'''
lowerCamelCase_ = FairseqRobertaModel.from_pretrained(lowercase )
roberta.eval() # disable dropout
lowerCamelCase_ = roberta.model.encoder.sentence_encoder
lowerCamelCase_ = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , )
if classification_head:
lowerCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our RoBERTa config:' , lowercase )
lowerCamelCase_ = XLMRobertaXLForSequenceClassification(lowercase ) if classification_head else XLMRobertaXLForMaskedLM(lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
lowerCamelCase_ = roberta_sent_encoder.embed_tokens.weight
lowerCamelCase_ = roberta_sent_encoder.embed_positions.weight
lowerCamelCase_ = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
lowerCamelCase_ = roberta_sent_encoder.layer_norm.weight
lowerCamelCase_ = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
lowerCamelCase_ = model.roberta.encoder.layer[i]
lowerCamelCase_ = roberta_sent_encoder.layers[i]
lowerCamelCase_ = layer.attention
lowerCamelCase_ = roberta_layer.self_attn_layer_norm.weight
lowerCamelCase_ = roberta_layer.self_attn_layer_norm.bias
# self attention
lowerCamelCase_ = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
lowerCamelCase_ = roberta_layer.self_attn.q_proj.weight
lowerCamelCase_ = roberta_layer.self_attn.q_proj.bias
lowerCamelCase_ = roberta_layer.self_attn.k_proj.weight
lowerCamelCase_ = roberta_layer.self_attn.k_proj.bias
lowerCamelCase_ = roberta_layer.self_attn.v_proj.weight
lowerCamelCase_ = roberta_layer.self_attn.v_proj.bias
# self-attention output
lowerCamelCase_ = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
lowerCamelCase_ = roberta_layer.self_attn.out_proj.weight
lowerCamelCase_ = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
lowerCamelCase_ = roberta_layer.final_layer_norm.weight
lowerCamelCase_ = roberta_layer.final_layer_norm.bias
# intermediate
lowerCamelCase_ = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
lowerCamelCase_ = roberta_layer.fca.weight
lowerCamelCase_ = roberta_layer.fca.bias
# output
lowerCamelCase_ = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
lowerCamelCase_ = roberta_layer.fca.weight
lowerCamelCase_ = roberta_layer.fca.bias
# end of layer
if classification_head:
lowerCamelCase_ = roberta.model.classification_heads['mnli'].dense.weight
lowerCamelCase_ = roberta.model.classification_heads['mnli'].dense.bias
lowerCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.weight
lowerCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
lowerCamelCase_ = roberta.model.encoder.lm_head.dense.weight
lowerCamelCase_ = roberta.model.encoder.lm_head.dense.bias
lowerCamelCase_ = roberta.model.encoder.lm_head.layer_norm.weight
lowerCamelCase_ = roberta.model.encoder.lm_head.layer_norm.bias
lowerCamelCase_ = roberta.model.encoder.lm_head.weight
lowerCamelCase_ = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
lowerCamelCase_ = roberta.encode(lowercase ).unsqueeze(0 ) # batch of size 1
lowerCamelCase_ = model(lowercase )[0]
if classification_head:
lowerCamelCase_ = roberta.model.classification_heads['mnli'](roberta.extract_features(lowercase ) )
else:
lowerCamelCase_ = roberta.model(lowercase )[0]
print(our_output.shape , their_output.shape )
lowerCamelCase_ = torch.max(torch.abs(our_output - their_output ) ).item()
print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
lowerCamelCase_ = torch.allclose(lowercase , lowercase , atol=1e-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
pathlib.Path(lowercase ).mkdir(parents=lowercase , exist_ok=lowercase )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowercase )
if __name__ == "__main__":
lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
lowerCamelCase : List[Any] = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 208 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json"
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class lowercase ( _UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = 'roformer'
def __init__( self , lowercase=50_000 , lowercase=None , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3_072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=1_536 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=0 , lowercase=False , lowercase=True , **lowercase , ) -> Dict:
super().__init__(pad_token_id=lowercase , **lowercase )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size if embedding_size is None else embedding_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = rotary_value
lowerCAmelCase = use_cache
class lowercase ( _UpperCAmelCase ):
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowerCAmelCase = {0: """batch""", 1: """sequence"""}
lowerCAmelCase = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 46 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if discount_rate < 0:
raise ValueError("""Discount rate cannot be negative""" )
if not cash_flows:
raise ValueError("""Cash flows list cannot be empty""" )
_snake_case = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) )
return round(_SCREAMING_SNAKE_CASE , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 341 | 0 |
'''simple docstring'''
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
__UpperCAmelCase =logging.get_logger(__name__)
__UpperCAmelCase ={
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"encoder.layer_norm_for_extract": "layer_norm_for_extract",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"label_embs_concat": "label_embeddings_concat",
"mask_emb": "masked_spec_embed",
"spk_proj": "speaker_proj",
}
__UpperCAmelCase =[
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"label_embeddings_concat",
"speaker_proj",
"layer_norm_for_extract",
]
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any:
"""simple docstring"""
for attribute in key.split('''.''' ):
__lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ )
if weight_type is not None:
__lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape
else:
__lowerCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__lowerCamelCase = value
elif weight_type == "weight_g":
__lowerCamelCase = value
elif weight_type == "weight_v":
__lowerCamelCase = value
elif weight_type == "bias":
__lowerCamelCase = value
else:
__lowerCamelCase = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = []
__lowerCamelCase = fairseq_model.state_dict()
__lowerCamelCase = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
__lowerCamelCase = False
if "conv_layers" in name:
load_conv_layer(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == '''group''' , )
__lowerCamelCase = True
else:
for key, mapped_key in MAPPING.items():
__lowerCamelCase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key):
# special case since naming is very similar
continue
__lowerCamelCase = True
if "*" in mapped_key:
__lowerCamelCase = name.split(UpperCamelCase__ )[0].split('''.''' )[-2]
__lowerCamelCase = mapped_key.replace('''*''' , UpperCamelCase__ )
if "weight_g" in name:
__lowerCamelCase = '''weight_g'''
elif "weight_v" in name:
__lowerCamelCase = '''weight_v'''
elif "bias" in name:
__lowerCamelCase = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__lowerCamelCase = '''weight'''
else:
__lowerCamelCase = None
set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
continue
if not is_used:
unused_weights.append(UpperCamelCase__ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any:
"""simple docstring"""
__lowerCamelCase = full_name.split('''conv_layers.''' )[-1]
__lowerCamelCase = name.split('''.''' )
__lowerCamelCase = int(items[0] )
__lowerCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(UpperCamelCase__ )
@torch.no_grad()
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True ) -> Optional[Any]:
"""simple docstring"""
if config_path is not None:
__lowerCamelCase = UniSpeechSatConfig.from_pretrained(UpperCamelCase__ )
else:
__lowerCamelCase = UniSpeechSatConfig()
__lowerCamelCase = ''''''
if is_finetuned:
__lowerCamelCase = UniSpeechSatForCTC(UpperCamelCase__ )
else:
__lowerCamelCase = UniSpeechSatForPreTraining(UpperCamelCase__ )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
__lowerCamelCase = model[0].eval()
recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ )
hf_wavavec.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
__UpperCAmelCase =argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCAmelCase =parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 366 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__UpperCAmelCase =logging.get_logger(__name__)
class a__ ( UpperCAmelCase__ ):
lowerCamelCase : Dict =["pixel_values"]
def __init__( self : List[str] , a : bool = True , a : Dict[str, int] = None , a : int = 0.9 , a : PILImageResampling = PILImageResampling.BICUBIC , a : bool = True , a : Dict[str, int] = None , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Dict , ):
"""simple docstring"""
super().__init__(**a )
__lowerCamelCase = size if size is not None else {'''shortest_edge''': 2_24}
__lowerCamelCase = get_size_dict(a , default_to_square=a )
__lowerCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
__lowerCamelCase = get_size_dict(a , param_name='''crop_size''' )
__lowerCamelCase = do_resize
__lowerCamelCase = size
__lowerCamelCase = crop_pct
__lowerCamelCase = resample
__lowerCamelCase = do_center_crop
__lowerCamelCase = crop_size
__lowerCamelCase = do_rescale
__lowerCamelCase = rescale_factor
__lowerCamelCase = do_normalize
__lowerCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__lowerCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def SCREAMING_SNAKE_CASE__ ( self : Any , a : np.ndarray , a : Dict[str, int] , a : Optional[float] = None , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : List[str] , ):
"""simple docstring"""
__lowerCamelCase = get_size_dict(a , default_to_square=a )
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
if crop_pct is not None:
if "shortest_edge" in size:
__lowerCamelCase = int(size['''shortest_edge'''] / crop_pct )
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
__lowerCamelCase = int(size['''height'''] / crop_pct )
else:
__lowerCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct ))
else:
raise ValueError('''Invalid size for resize: {}'''.format(a ) )
__lowerCamelCase = get_resize_output_image_size(a , size=a , default_to_square=a )
else:
if "shortest_edge" in size:
__lowerCamelCase = get_resize_output_image_size(a , size=size['''shortest_edge'''] , default_to_square=a )
elif "height" in size and "width" in size:
__lowerCamelCase = (size['''height'''], size['''width'''])
else:
raise ValueError('''Invalid size for resize: {}'''.format(a ) )
return resize(a , size=a , resample=a , data_format=a , **a )
def SCREAMING_SNAKE_CASE__ ( self : Dict , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict , ):
"""simple docstring"""
__lowerCamelCase = get_size_dict(a )
if "height" not in size or "width" not in size:
raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(a , size=(size['''height'''], size['''width''']) , data_format=a , **a )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : np.ndarray , a : Union[int, float] , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ):
"""simple docstring"""
return rescale(a , scale=a , data_format=a , **a )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Any , ):
"""simple docstring"""
return normalize(a , mean=a , std=a , data_format=a , **a )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : int = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : Tuple , ):
"""simple docstring"""
__lowerCamelCase = do_resize if do_resize is not None else self.do_resize
__lowerCamelCase = crop_pct if crop_pct is not None else self.crop_pct
__lowerCamelCase = resample if resample is not None else self.resample
__lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__lowerCamelCase = image_mean if image_mean is not None else self.image_mean
__lowerCamelCase = image_std if image_std is not None else self.image_std
__lowerCamelCase = size if size is not None else self.size
__lowerCamelCase = get_size_dict(a , default_to_square=a )
__lowerCamelCase = crop_size if crop_size is not None else self.crop_size
__lowerCamelCase = get_size_dict(a , param_name='''crop_size''' )
__lowerCamelCase = make_list_of_images(a )
if not valid_images(a ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_pct is None:
raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
__lowerCamelCase = [to_numpy_array(a ) for image in images]
if do_resize:
__lowerCamelCase = [self.resize(image=a , size=a , crop_pct=a , resample=a ) for image in images]
if do_center_crop:
__lowerCamelCase = [self.center_crop(image=a , size=a ) for image in images]
if do_rescale:
__lowerCamelCase = [self.rescale(image=a , scale=a ) for image in images]
if do_normalize:
__lowerCamelCase = [self.normalize(image=a , mean=a , std=a ) for image in images]
__lowerCamelCase = [to_channel_dimension_format(a , a ) for image in images]
__lowerCamelCase = {'''pixel_values''': images}
return BatchFeature(data=a , tensor_type=a )
| 237 | 0 |
import operator as op
_snake_case = "scaler.pt"
_snake_case = "pytorch_model"
_snake_case = "random_states"
_snake_case = "optimizer"
_snake_case = "scheduler"
_snake_case = "pytorch_model.bin"
_snake_case = "pytorch_model.bin.index.json"
_snake_case = "model.safetensors"
_snake_case = "model.safetensors.index.json"
_snake_case = "1.10.2"
_snake_case = "py38"
_snake_case = "4.17.0"
_snake_case = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"]
_snake_case = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"]
_snake_case = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"]
_snake_case = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"]
_snake_case = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"]
_snake_case = "2.0.1"
_snake_case = ["pdsh", "standard", "openmpi", "mvapich"]
_snake_case = ["default", "reduce-overhead", "max-autotune"]
_snake_case = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt}
# These are the args for `torch.distributed.launch` for pytorch < 1.9
_snake_case = [
"nnodes",
"nproc_per_node",
"rdzv_backend",
"rdzv_endpoint",
"rdzv_id",
"rdzv_conf",
"standalone",
"max_restarts",
"monitor_interval",
"start_method",
"role",
"module",
"m",
"no_python",
"run_path",
"log_dir",
"r",
"redirects",
"t",
"tee",
"node_rank",
"master_addr",
"master_port",
]
_snake_case = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"]
_snake_case = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
| 26 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
a = '''
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
'''
a = '''
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{\'spearmanr\': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results[\'spearmanr\'])
-0.7
>>> print(round(results[\'spearmanr_pvalue\'], 2))
0.19
'''
a = r'''\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[int] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('float' ),
'references': datasets.Value('float' ),
} ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ):
_A = spearmanr(_UpperCAmelCase , _UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 315 | 0 |
"""simple docstring"""
import fire
from utils import calculate_rouge, save_json
def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , **lowerCAmelCase_ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = [x.strip() for x in open(lowerCAmelCase_ ).readlines()]
__SCREAMING_SNAKE_CASE = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )]
__SCREAMING_SNAKE_CASE = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ )
if save_path is not None:
save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 195 |
"""simple docstring"""
def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
if digit_amount > 0:
return round(number - int(lowerCAmelCase_ ) , lowerCAmelCase_ )
return number - int(lowerCAmelCase_ )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.3_45, 1))
print(decimal_isolate(35.3_45, 2))
print(decimal_isolate(35.3_45, 3))
print(decimal_isolate(-14.7_89, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.1_23, 1))
print(decimal_isolate(-14.1_23, 2))
print(decimal_isolate(-14.1_23, 3))
| 195 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.