code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowercase__ ( _UpperCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : NestedDataStructureLike[PathLike] , UpperCAmelCase_ : Optional[NamedSplit] = None , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Tuple , ): super().__init__( UpperCAmelCase_ , split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , num_proc=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = path_or_paths if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE__ = Text( cache_dir=UpperCAmelCase_ , data_files=UpperCAmelCase_ , features=UpperCAmelCase_ , **UpperCAmelCase_ , ) def A_ ( self : Dict ): if self.streaming: SCREAMING_SNAKE_CASE__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None self.builder.download_and_prepare( download_config=UpperCAmelCase_ , download_mode=UpperCAmelCase_ , verification_mode=UpperCAmelCase_ , base_path=UpperCAmelCase_ , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE__ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase_ , in_memory=self.keep_in_memory ) return dataset
176
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = GPTaTokenizer UpperCamelCase__ = GPTaTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = {'''add_prefix_space''': True} UpperCamelCase__ = False def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] a = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) a = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] a = {"""unk_token""": """<unk>"""} a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__magic_name__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__magic_name__ ) ) def lowerCamelCase__ ( self :Dict , **__magic_name__ :List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def lowerCamelCase__ ( self :List[str] , **__magic_name__ :Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__magic_name__ ) def lowerCamelCase__ ( self :Dict , __magic_name__ :List[str] ): '''simple docstring''' a = """lower newer""" a = """lower newer""" return input_text, output_text def lowerCamelCase__ ( self :int ): '''simple docstring''' a = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a = """lower newer""" a = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] a = tokenizer.tokenize(__magic_name__ , add_prefix_space=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) a = tokens + [tokenizer.unk_token] a = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def lowerCamelCase__ ( self :int ): '''simple docstring''' if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer(add_prefix_space=__magic_name__ ) a = """lower newer""" # Testing tokenization a = tokenizer.tokenize(__magic_name__ , add_prefix_space=__magic_name__ ) a = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) # Testing conversion to ids without special tokens a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) a = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) # Testing conversion to ids with special tokens a = self.get_rust_tokenizer(add_prefix_space=__magic_name__ ) a = tokenizer.encode(__magic_name__ , add_prefix_space=__magic_name__ ) a = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) # Testing the unknown token a = tokens + [rust_tokenizer.unk_token] a = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def lowerCamelCase__ ( self :Optional[int] , *__magic_name__ :Tuple , **__magic_name__ :str ): '''simple docstring''' pass def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Union[str, Any]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): a = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) # Simple input a = """This is a simple input""" a = ["""This is a simple input 1""", """This is a simple input 2"""] a = ("""This is a simple input""", """This is a pair""") a = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__magic_name__ , tokenizer_r.encode , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" ) # Simple input self.assertRaises(__magic_name__ , tokenizer_r.encode_plus , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" ) # Simple input self.assertRaises( __magic_name__ , tokenizer_r.batch_encode_plus , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" , ) # Pair input self.assertRaises(__magic_name__ , tokenizer_r.encode , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" ) # Pair input self.assertRaises(__magic_name__ , tokenizer_r.encode_plus , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" ) # Pair input self.assertRaises( __magic_name__ , tokenizer_r.batch_encode_plus , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" , ) def lowerCamelCase__ ( self :str ): '''simple docstring''' a = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input a = """This is a simple input""" a = ["""This is a simple input looooooooong""", """This is a simple input"""] a = ("""This is a simple input""", """This is a pair""") a = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] a = tokenizer.pad_token_id a = tokenizer(__magic_name__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) a = tokenizer(__magic_name__ , padding=__magic_name__ , truncate=__magic_name__ , return_tensors="""np""" ) a = tokenizer(*__magic_name__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) a = tokenizer(__magic_name__ , padding=__magic_name__ , truncate=__magic_name__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = """$$$""" a = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__magic_name__ , add_bos_token=__magic_name__ ) a = """This is a simple input""" a = ["""This is a simple input 1""", """This is a simple input 2"""] a = tokenizer.bos_token_id a = tokenizer(__magic_name__ ) a = tokenizer(__magic_name__ ) self.assertEqual(out_s.input_ids[0] , __magic_name__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) a = tokenizer.decode(out_s.input_ids ) a = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __magic_name__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' pass def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = [self.get_tokenizer(do_lower_case=__magic_name__ , add_bos_token=__magic_name__ )] for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): a = """Encode this.""" a = """This one too please.""" a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) encoded_sequence += tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) a = tokenizer.encode_plus( __magic_name__ , __magic_name__ , add_special_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , ) a = encoded_sequence_dict["""input_ids"""] a = encoded_sequence_dict["""special_tokens_mask"""] self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) ) a = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__magic_name__ ) ] a = [x for x in filtered_sequence if x is not None] self.assertEqual(__magic_name__ , __magic_name__ ) @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=__magic_name__ ) a = """A photo of a cat""" a = tokenizer.encode( __magic_name__ , ) self.assertEqual(__magic_name__ , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("""test_opt""" ) a = AutoTokenizer.from_pretrained("""./test_opt""" ) a = tokenizer.encode( __magic_name__ , ) self.assertEqual(__magic_name__ , [2, 250, 1345, 9, 10, 4758] ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , use_slow=__magic_name__ ) a = """A photo of a cat""" a = tokenizer.encode( __magic_name__ , ) # Same as above self.assertEqual(__magic_name__ , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("""This test is failing because of a bug in the fast tokenizer""" ) def lowerCamelCase__ ( self :str ): '''simple docstring''' a = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=__magic_name__ ) a = """bos""" a = tokenizer.get_vocab()["""bos"""] a = """A photo of a cat""" a = tokenizer.encode( __magic_name__ , ) # We changed the bos token self.assertEqual(__magic_name__ , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("""./tok""" ) a = AutoTokenizer.from_pretrained("""./tok""" ) self.assertTrue(tokenizer.is_fast ) a = tokenizer.encode( __magic_name__ , ) self.assertEqual(__magic_name__ , [3_1957, 250, 1345, 9, 10, 4758] )
228
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input a__ : List[str] = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE : str = get_sagemaker_input() else: SCREAMING_SNAKE_CASE : Optional[Any] = get_cluster_input() return config def UpperCAmelCase_( a__=None ): """simple docstring""" if subparsers is not None: SCREAMING_SNAKE_CASE : Optional[Any] = subparsers.add_parser('''config''' , description=a__ ) else: SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser('''Accelerate config command''' , description=a__ ) parser.add_argument( '''--config_file''' , default=a__ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a__ ) return parser def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE : int = args.config_file else: if not os.path.isdir(a__ ): os.makedirs(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(a__ ) else: config.to_yaml_file(a__ ) print(F"""accelerate configuration saved at {config_file}""" ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = config_command_parser() SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() config_command(a__ ) if __name__ == "__main__": main()
366
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ ="""deit""" def __init__( self : Union[str, Any] , _a : int=768 , _a : Dict=12 , _a : int=12 , _a : List[str]=3072 , _a : Dict="gelu" , _a : Tuple=0.0 , _a : List[str]=0.0 , _a : Union[str, Any]=0.02 , _a : Optional[Any]=1e-12 , _a : int=224 , _a : Optional[Any]=16 , _a : Optional[Any]=3 , _a : List[Any]=True , _a : Dict=16 , **_a : List[str] , ) -> Dict: super().__init__(**_a ) __lowerCamelCase : Union[str, Any] = hidden_size __lowerCamelCase : Dict = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : str = intermediate_size __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : str = attention_probs_dropout_prob __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : List[Any] = image_size __lowerCamelCase : List[Any] = patch_size __lowerCamelCase : str = num_channels __lowerCamelCase : Any = qkv_bias __lowerCamelCase : int = encoder_stride class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ =version.parse("""1.11""" ) @property def _lowercase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _lowercase ( self : Dict ) -> float: return 1e-4
208
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
208
1
def UpperCamelCase ( snake_case__ : str ) -> List[Any]: UpperCamelCase : List[str] = 0 # if input_string is "aba" than new_input_string become "a|b|a" UpperCamelCase : List[str] = '' UpperCamelCase : List[Any] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a__ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring UpperCamelCase , UpperCamelCase : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i UpperCamelCase : Dict = [1 for i in range(len(a__ ) )] # for each character in new_string find corresponding palindromic string UpperCamelCase : Optional[Any] = 0 for j in range(len(a__ ) ): UpperCamelCase : Union[str, Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a__ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 UpperCamelCase : List[Any] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: UpperCamelCase : Dict = j - k + 1 # noqa: E741 UpperCamelCase : Optional[Any] = j + k - 1 # update max_length and start position if max_length < length[j]: UpperCamelCase : Any = length[j] UpperCamelCase : int = j # create that string UpperCamelCase : Optional[Any] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
371
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') __UpperCAmelCase , __UpperCAmelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') __UpperCAmelCase = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: __UpperCAmelCase = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __UpperCAmelCase = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
103
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Tuple =Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix SCREAMING_SNAKE_CASE_: List[Any] =float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements SCREAMING_SNAKE_CASE_: List[Any] =[[0.0, 0.0], [0.0, 0.0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =matrix[1][1], matrix[0][0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =-matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowerCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule SCREAMING_SNAKE_CASE_: Dict =float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix SCREAMING_SNAKE_CASE_: List[Any] =[ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] SCREAMING_SNAKE_CASE_: Optional[int] =(d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) SCREAMING_SNAKE_CASE_: Tuple =-( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) SCREAMING_SNAKE_CASE_: Union[str, Any] =(d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) SCREAMING_SNAKE_CASE_: List[str] =-( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) SCREAMING_SNAKE_CASE_: Dict =(d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) SCREAMING_SNAKE_CASE_: Dict =-( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) SCREAMING_SNAKE_CASE_: Optional[int] =(d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) SCREAMING_SNAKE_CASE_: Dict =-( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) SCREAMING_SNAKE_CASE_: Tuple =(d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) SCREAMING_SNAKE_CASE_: Tuple =array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): SCREAMING_SNAKE_CASE_: Optional[int] =cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix SCREAMING_SNAKE_CASE_: Dict =array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_lowerCamelCase ) # Calculate the inverse of the matrix return [[float(d(_lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
173
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """char""" __lowercase = """bpe""" __lowercase = """wp""" __lowerCAmelCase : Union[str, Any] =(DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = ["""image_processor""", """char_tokenizer"""] __lowercase = """ViTImageProcessor""" __lowercase = """MgpstrTokenizer""" def __init__( self :int , lowercase_ :int=None , lowercase_ :List[str]=None , **lowercase_ :List[Any] )-> Optional[Any]: A__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) A__ = kwargs.pop("feature_extractor" ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) A__ = tokenizer A__ = AutoTokenizer.from_pretrained("gpt2" ) A__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(lowercase_ , lowercase_ ) def __call__( self :Optional[Any] , lowercase_ :Any=None , lowercase_ :Tuple=None , lowercase_ :List[str]=None , **lowercase_ :Union[str, Any] )-> Optional[Any]: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: A__ = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None: A__ = self.char_tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is None: return inputs elif images is None: return encodings else: A__ = encodings["input_ids"] return inputs def UpperCAmelCase_ ( self :List[str] , lowercase_ :int )-> int: A__, A__, A__ = sequences A__ = char_preds.size(0 ) A__, A__ = self._decode_helper(lowercase_ , "char" ) A__, A__ = self._decode_helper(lowercase_ , "bpe" ) A__, A__ = self._decode_helper(lowercase_ , "wp" ) A__ = [] A__ = [] for i in range(lowercase_ ): A__ = [char_scores[i], bpe_scores[i], wp_scores[i]] A__ = [char_strs[i], bpe_strs[i], wp_strs[i]] A__ = scores.index(max(lowercase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) A__ = {} A__ = final_strs A__ = final_scores A__ = char_strs A__ = bpe_strs A__ = wp_strs return out def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :List[str] , lowercase_ :str )-> Optional[Any]: if format == DecodeType.CHARACTER: A__ = self.char_decode A__ = 1 A__ = "[s]" elif format == DecodeType.BPE: A__ = self.bpe_decode A__ = 2 A__ = "#" elif format == DecodeType.WORDPIECE: A__ = self.wp_decode A__ = 1_02 A__ = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) A__, A__ = [], [] A__ = pred_logits.size(0 ) A__ = pred_logits.size(1 ) A__, A__ = pred_logits.topk(1 , dim=-1 , largest=lowercase_ , sorted=lowercase_ ) A__ = preds_index.view(-1 , lowercase_ )[:, 1:] A__ = decoder(lowercase_ ) A__, A__ = torch.nn.functional.softmax(lowercase_ , dim=2 ).max(dim=2 ) A__ = preds_max_prob[:, 1:] for index in range(lowercase_ ): A__ = preds_str[index].find(lowercase_ ) A__ = preds_str[index][:pred_eos] A__ = preds_index[index].cpu().tolist() A__ = pred_index.index(lowercase_ ) if eos_token in pred_index else -1 A__ = preds_max_prob[index][: pred_eos_index + 1] A__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowercase_ ) conf_scores.append(lowercase_ ) return dec_strs, conf_scores def UpperCAmelCase_ ( self :Dict , lowercase_ :Optional[Any] )-> int: A__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(lowercase_ )] return decode_strs def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Optional[Any] )-> List[str]: return self.bpe_tokenizer.batch_decode(lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :List[str] )-> Union[str, Any]: A__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(lowercase_ )] return decode_strs
237
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class A__ ( unittest.TestCase ): def A ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =SamImageProcessor() _SCREAMING_SNAKE_CASE =SamProcessor(_a ) processor.save_pretrained(self.tmpdirname ) def A ( self : Tuple , **_a : Any ) -> List[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor def A ( self : Dict ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A ( self : Any ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : Any ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def A ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =SamProcessor(image_processor=_a ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='np' ) _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def A ( self : int ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =SamProcessor(image_processor=_a ) _SCREAMING_SNAKE_CASE =[torch.ones((1, 3, 5, 5) )] _SCREAMING_SNAKE_CASE =[[1764, 2646]] _SCREAMING_SNAKE_CASE =[[683, 1024]] _SCREAMING_SNAKE_CASE =processor.post_process_masks(_a , _a , _a ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _SCREAMING_SNAKE_CASE =processor.post_process_masks( _a , torch.tensor(_a ) , torch.tensor(_a ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np _SCREAMING_SNAKE_CASE =[np.ones((1, 3, 5, 5) )] _SCREAMING_SNAKE_CASE =processor.post_process_masks(_a , np.array(_a ) , np.array(_a ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _SCREAMING_SNAKE_CASE =[[1, 0], [0, 1]] with self.assertRaises(_a ): _SCREAMING_SNAKE_CASE =processor.post_process_masks(_a , np.array(_a ) , np.array(_a ) ) @require_vision @require_tf class A__ ( unittest.TestCase ): def A ( self : Optional[int] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =SamImageProcessor() _SCREAMING_SNAKE_CASE =SamProcessor(_a ) processor.save_pretrained(self.tmpdirname ) def A ( self : List[Any] , **_a : Any ) -> Dict: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor def A ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A ( self : str ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : Optional[Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def A ( self : str ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =SamProcessor(image_processor=_a ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='np' ) _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def A ( self : Dict ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =SamProcessor(image_processor=_a ) _SCREAMING_SNAKE_CASE =[tf.ones((1, 3, 5, 5) )] _SCREAMING_SNAKE_CASE =[[1764, 2646]] _SCREAMING_SNAKE_CASE =[[683, 1024]] _SCREAMING_SNAKE_CASE =processor.post_process_masks(_a , _a , _a , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _SCREAMING_SNAKE_CASE =processor.post_process_masks( _a , tf.convert_to_tensor(_a ) , tf.convert_to_tensor(_a ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np _SCREAMING_SNAKE_CASE =[np.ones((1, 3, 5, 5) )] _SCREAMING_SNAKE_CASE =processor.post_process_masks( _a , np.array(_a ) , np.array(_a ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _SCREAMING_SNAKE_CASE =[[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): _SCREAMING_SNAKE_CASE =processor.post_process_masks( _a , np.array(_a ) , np.array(_a ) , return_tensors='tf' ) @require_vision @require_torchvision class A__ ( unittest.TestCase ): def A ( self : int ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =SamImageProcessor() _SCREAMING_SNAKE_CASE =SamProcessor(_a ) processor.save_pretrained(self.tmpdirname ) def A ( self : Union[str, Any] , **_a : Tuple ) -> Optional[int]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor def A ( self : str ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A ( self : List[str] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def A ( self : Any ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =SamProcessor(image_processor=_a ) _SCREAMING_SNAKE_CASE =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) _SCREAMING_SNAKE_CASE =[tf.convert_to_tensor(_a )] _SCREAMING_SNAKE_CASE =[torch.tensor(_a )] _SCREAMING_SNAKE_CASE =[[1764, 2646]] _SCREAMING_SNAKE_CASE =[[683, 1024]] _SCREAMING_SNAKE_CASE =processor.post_process_masks( _a , _a , _a , return_tensors='tf' ) _SCREAMING_SNAKE_CASE =processor.post_process_masks( _a , _a , _a , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def A ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =SamProcessor(image_processor=_a ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='pt' )['pixel_values'].numpy() _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='pt' )['pixel_values'].numpy() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='tf' )['pixel_values'].numpy() _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(_a , _a ) ) self.assertTrue(np.allclose(_a , _a ) ) self.assertTrue(np.allclose(_a , _a ) )
364
'''simple docstring''' from ..utils import DummyObject, requires_backends class A__ ( metaclass=A__ ): A__ = ['note_seq'] def __init__( self : List[str] , *_a : Any , **_a : Dict ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['note_seq'] ) @classmethod def A ( cls : Any , *_a : str , **_a : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['note_seq'] ) @classmethod def A ( cls : int , *_a : Optional[Any] , **_a : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['note_seq'] )
114
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE ): lowercase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) lowercase = SeqaSeqDataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , type_path='train' , **__SCREAMING_SNAKE_CASE ) lowercase = tok.pad_token_id def get_lens(__SCREAMING_SNAKE_CASE ): lowercase = tqdm( DataLoader(__SCREAMING_SNAKE_CASE , batch_size=512 , num_workers=8 , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowercase = [] for batch in dl: lowercase = batch['input_ids'].ne(__SCREAMING_SNAKE_CASE ).sum(1 ).tolist() lowercase = batch['labels'].ne(__SCREAMING_SNAKE_CASE ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): max_lens.append(max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) else: max_lens.extend(__SCREAMING_SNAKE_CASE ) return max_lens lowercase = get_lens(__SCREAMING_SNAKE_CASE ) lowercase = SeqaSeqDataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , type_path='val' , **__SCREAMING_SNAKE_CASE ) lowercase = get_lens(__SCREAMING_SNAKE_CASE ) pickle_save(__SCREAMING_SNAKE_CASE , train_ds.len_file ) pickle_save(__SCREAMING_SNAKE_CASE , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
195
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError('Input value must be an \'int\' type' ) lowercase = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
195
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Dict = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
370
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict: _snake_case = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = StableDiffusionLatentUpscalePipeline __lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } __lowercase = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} __lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase = frozenset([] ) __lowercase = True @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = 1 _snake_case = 4 _snake_case = (16, 16) _snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase_ ) return image def lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=lowerCAmelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=lowerCAmelCase_ , only_cross_attention=lowerCAmelCase_ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) _snake_case = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) _snake_case = EulerDiscreteScheduler(prediction_type='sample' ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='quick_gelu' , projection_dim=5_12 , ) _snake_case = CLIPTextModel(lowerCAmelCase_ ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ): """simple docstring""" if str(lowerCAmelCase_ ).startswith('mps' ): _snake_case = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) _snake_case = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) _snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowerCAmelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 2 _snake_case = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _snake_case = getattr(lowerCAmelCase_ , scheduler_enum.name ) _snake_case = scheduler_cls.from_config(pipe.scheduler.config ) _snake_case = pipe(**lowerCAmelCase_ )[0] outputs.append(lowerCAmelCase_ ) assert check_same_shape(lowerCAmelCase_ ) @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): """simple docstring""" _snake_case = torch.manual_seed(33 ) _snake_case = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) _snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _snake_case = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' _snake_case = pipe(lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type='latent' ).images _snake_case = upscaler( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowerCAmelCase_ , output_type='np' , ).images[0] _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def lowerCamelCase ( self ): """simple docstring""" _snake_case = torch.manual_seed(33 ) _snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _snake_case = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) _snake_case = upscaler( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowerCAmelCase_ , output_type='np' , ).images[0] _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
160
0
def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ): _A : Dict = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Dict ): _A : Tuple = 0 while b > 0: if b & 1: _A : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
11
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __A =logging.get_logger(__name__) def lowerCamelCase_ ( ): # Get the sagemaker specific mp parameters from smp_options variable. lowerCamelCase_ = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowerCamelCase_ = json.loads(lowerCamelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowerCamelCase_ = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowerCamelCase_ = json.loads(lowerCamelCase__ ) if not mpi_options.get("sagemaker_mpi_enabled" , lowerCamelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , lowercase , ) @cached_property def SCREAMING_SNAKE_CASE_( self ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: lowerCamelCase_ = torch.device("cpu" ) lowerCamelCase_ = 0 elif is_sagemaker_model_parallel_available(): lowerCamelCase_ = smp.local_rank() lowerCamelCase_ = torch.device("cuda" , lowercase ) lowerCamelCase_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowerCamelCase_ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowerCamelCase_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 if device.type == "cuda": torch.cuda.set_device(lowercase ) return device @property def SCREAMING_SNAKE_CASE_( self ) -> Tuple: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE_( self ) -> Dict: return False
19
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } __SCREAMING_SNAKE_CASE = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models A : Any = "lm_head" A : str = getattr(lowercase_ , lowercase_ ) if weight_type is not None: A : str = getattr(lowercase_ , lowercase_ ).shape else: A : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": A : Optional[int] = value elif weight_type == "weight_g": A : Dict = value elif weight_type == "weight_v": A : Union[str, Any] = value elif weight_type == "bias": A : Any = value else: A : Any = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : Tuple = [] A : int = fairseq_model.state_dict() A : Optional[int] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): A : Any = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == "group" , ) A : List[str] = True else: for key, mapped_key in MAPPING.items(): A : str = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A : int = True if "*" in mapped_key: A : str = name.split(lowercase_ )[0].split("." )[-2] A : Dict = mapped_key.replace("*" , lowercase_ ) if "weight_g" in name: A : List[Any] = "weight_g" elif "weight_v" in name: A : List[str] = "weight_v" elif "bias" in name: A : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj A : int = "weight" else: A : List[str] = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : List[str] = full_name.split("conv_layers." )[-1] A : List[str] = name.split("." ) A : int = int(items[0] ) A : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) A : Optional[int] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) A : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase_ ) @torch.no_grad() def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ): if config_path is not None: A : Union[str, Any] = UniSpeechConfig.from_pretrained(lowercase_ ) else: A : Union[str, Any] = UniSpeechConfig() if is_finetuned: if dict_path: A : Tuple = Dictionary.load_from_json(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A : List[Any] = target_dict.pad_index A : List[str] = target_dict.bos_index A : List[str] = target_dict.eos_index A : Any = len(target_dict.symbols ) A : Union[str, Any] = os.path.join(lowercase_ , "vocab.json" ) if not os.path.isdir(lowercase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase_ ) ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) A : Union[str, Any] = target_dict.indices # fairseq has the <pad> and <s> switched A : Dict = 42 A : Optional[Any] = 43 with open(lowercase_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowercase_ , lowercase_ ) A : Tuple = WavaVecaPhonemeCTCTokenizer( lowercase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowercase_ , ) A : int = True if config.feat_extract_norm == "layer" else False A : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) A : Any = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) A : List[str] = UniSpeechForCTC(lowercase_ ) else: A : Dict = UniSpeechForPreTraining(lowercase_ ) if is_finetuned: A , A , A : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: A , A , A : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A : List[str] = model[0].eval() recursively_load_weights(lowercase_ , lowercase_ , lowercase_ ) hf_unispeech.save_pretrained(lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
357
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
256
0
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self ) -> Tuple: lowerCAmelCase_ :Dict = [] def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> List[str]: self.events.append("""on_init_end""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Any: self.events.append("""on_train_begin""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Tuple: self.events.append("""on_train_end""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Any: self.events.append("""on_epoch_begin""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Optional[Any]: self.events.append("""on_epoch_end""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Optional[Any]: self.events.append("""on_step_begin""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Any: self.events.append("""on_step_end""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Any: self.events.append("""on_evaluate""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> int: self.events.append("""on_predict""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Union[str, Any]: self.events.append("""on_save""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Dict: self.events.append("""on_log""" ) def __lowerCAmelCase ( self , __A , __A , __A , **__A ) -> Optional[Any]: self.events.append("""on_prediction_step""" ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Optional[int] = tempfile.mkdtemp() def __lowerCAmelCase ( self ) -> Union[str, Any]: shutil.rmtree(self.output_dir ) def __lowerCAmelCase ( self , __A=0 , __A=0 , __A=64 , __A=64 , __A=None , __A=False , **__A ) -> Optional[int]: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowerCAmelCase_ :Optional[Any] = RegressionDataset(length=__A ) lowerCAmelCase_ :str = RegressionDataset(length=__A ) lowerCAmelCase_ :Dict = RegressionModelConfig(a=__A , b=__A ) lowerCAmelCase_ :Dict = RegressionPreTrainedModel(__A ) lowerCAmelCase_ :Any = TrainingArguments(self.output_dir , disable_tqdm=__A , report_to=[] , **__A ) return Trainer( __A , __A , train_dataset=__A , eval_dataset=__A , callbacks=__A , ) def __lowerCAmelCase ( self , __A , __A ) -> List[Any]: self.assertEqual(len(__A ) , len(__A ) ) # Order doesn't matter lowerCAmelCase_ :Optional[int] = sorted(__A , key=lambda __A : cb.__name__ if isinstance(__A , __A ) else cb.__class__.__name__ ) lowerCAmelCase_ :List[Any] = sorted(__A , key=lambda __A : cb.__name__ if isinstance(__A , __A ) else cb.__class__.__name__ ) for cba, cba in zip(__A , __A ): if isinstance(__A , __A ) and isinstance(__A , __A ): self.assertEqual(__A , __A ) elif isinstance(__A , __A ) and not isinstance(__A , __A ): self.assertEqual(__A , cba.__class__ ) elif not isinstance(__A , __A ) and isinstance(__A , __A ): self.assertEqual(cba.__class__ , __A ) else: self.assertEqual(__A , __A ) def __lowerCAmelCase ( self , __A ) -> int: lowerCAmelCase_ :Optional[int] = ["""on_init_end""", """on_train_begin"""] lowerCAmelCase_ :Any = 0 lowerCAmelCase_ :Optional[Any] = len(trainer.get_eval_dataloader() ) lowerCAmelCase_ :List[Any] = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(__A ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Union[str, Any] = self.get_trainer() lowerCAmelCase_ :Optional[int] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) # Callbacks passed at init are added to the default callbacks lowerCAmelCase_ :Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowerCAmelCase_ :List[Any] = self.get_trainer(disable_tqdm=__A ) lowerCAmelCase_ :Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Dict = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowerCAmelCase_ :Optional[int] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__A ) expected_callbacks.remove(__A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) lowerCAmelCase_ :int = self.get_trainer() lowerCAmelCase_ :Tuple = trainer.pop_callback(__A ) self.assertEqual(cb.__class__ , __A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) trainer.add_callback(__A ) expected_callbacks.insert(0 , __A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) # We can also add, pop, or remove by instance lowerCAmelCase_ :str = self.get_trainer() lowerCAmelCase_ :Optional[int] = trainer.callback_handler.callbacks[0] trainer.remove_callback(__A ) expected_callbacks.remove(__A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) lowerCAmelCase_ :int = self.get_trainer() lowerCAmelCase_ :Tuple = trainer.callback_handler.callbacks[0] lowerCAmelCase_ :Dict = trainer.pop_callback(__A ) self.assertEqual(__A , __A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) trainer.add_callback(__A ) expected_callbacks.insert(0 , __A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __A ) def __lowerCAmelCase ( self ) -> Optional[Any]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=__A ) lowerCAmelCase_ :Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowerCAmelCase_ :Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(__A , self.get_expected_events(__A ) ) # Independent log/save/eval lowerCAmelCase_ :Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowerCAmelCase_ :Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__A , self.get_expected_events(__A ) ) lowerCAmelCase_ :Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowerCAmelCase_ :Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(__A , self.get_expected_events(__A ) ) lowerCAmelCase_ :Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() lowerCAmelCase_ :List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__A , self.get_expected_events(__A ) ) lowerCAmelCase_ :Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() lowerCAmelCase_ :Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__A , self.get_expected_events(__A ) ) # A bit of everything lowerCAmelCase_ :Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowerCAmelCase_ :Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__A , self.get_expected_events(__A ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: lowerCAmelCase_ :Optional[int] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(__A ) in warn_mock.call_args[0][0]
84
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Tuple = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __snake_case ( UpperCamelCase_ ): _a = '''xlm-roberta-xl''' def __init__( self : int , A_ : List[str]=2_5_0_8_8_0 , A_ : List[str]=2_5_6_0 , A_ : Optional[int]=3_6 , A_ : List[Any]=3_2 , A_ : Optional[int]=1_0_2_4_0 , A_ : Dict="gelu" , A_ : int=0.1 , A_ : Optional[Any]=0.1 , A_ : int=5_1_4 , A_ : Any=1 , A_ : Optional[Any]=0.02 , A_ : str=1e-05 , A_ : Dict=1 , A_ : Any=0 , A_ : Tuple=2 , A_ : str="absolute" , A_ : str=True , A_ : List[str]=None , **A_ : Dict , ): super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_) lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Tuple = hidden_dropout_prob lowerCAmelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Dict = type_vocab_size lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[Any] = position_embedding_type lowerCAmelCase_ : Optional[Any] = use_cache lowerCAmelCase_ : List[str] = classifier_dropout class __snake_case ( UpperCamelCase_ ): @property def UpperCAmelCase__ ( self : List[str]): if self.task == "multiple-choice": lowerCAmelCase_ : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase_ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
103
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Dict = logging.get_logger(__name__) def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Tuple = SwinConfig( embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), window_size=12, out_features=["stage2", "stage3", "stage4"], ) __UpperCAmelCase : Dict = DetaConfig( backbone_config=_UpperCAmelCase, num_queries=900, encoder_ffn_dim=2048, decoder_ffn_dim=2048, num_feature_levels=5, assign_first_stage=_UpperCAmelCase, with_box_refine=_UpperCAmelCase, two_stage=_UpperCAmelCase, ) # set labels __UpperCAmelCase : str = "huggingface/label-files" if "o365" in model_name: __UpperCAmelCase : List[Any] = 366 __UpperCAmelCase : List[str] = "object365-id2label.json" else: __UpperCAmelCase : str = 91 __UpperCAmelCase : Any = "coco-detection-id2label.json" __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase, _UpperCAmelCase, repo_type="dataset" ) ), "r" ) ) __UpperCAmelCase : Tuple = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : Any = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Optional[int] = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Dict = dct.pop(_UpperCAmelCase ) __UpperCAmelCase : Optional[int] = val def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCAmelCase : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCAmelCase : Dict = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) __UpperCAmelCase : Optional[Any] = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : str = in_proj_weight[:dim, :] __UpperCAmelCase : str = in_proj_bias[: dim] __UpperCAmelCase : Tuple = in_proj_weight[ dim : dim * 2, : ] __UpperCAmelCase : Optional[Any] = in_proj_bias[ dim : dim * 2 ] __UpperCAmelCase : List[str] = in_proj_weight[ -dim :, : ] __UpperCAmelCase : Dict = in_proj_bias[-dim :] # fmt: on def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): # transformer decoder self-attention layers __UpperCAmelCase : Union[str, Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCAmelCase : List[Any] = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) __UpperCAmelCase : Any = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : int = in_proj_weight[:hidden_size, :] __UpperCAmelCase : List[str] = in_proj_bias[:hidden_size] __UpperCAmelCase : Optional[Any] = in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCAmelCase : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] __UpperCAmelCase : List[Any] = in_proj_weight[-hidden_size:, :] __UpperCAmelCase : Any = in_proj_bias[-hidden_size:] def __UpperCamelCase ( ): __UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : Tuple = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : List[Any] = get_deta_config(_UpperCAmelCase ) # load original state dict if model_name == "deta-swin-large": __UpperCAmelCase : str = hf_hub_download(repo_id="nielsr/deta-checkpoints", filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : int = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365", filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F"Model name {model_name} not supported" ) __UpperCAmelCase : Dict = torch.load(_UpperCAmelCase, map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(_UpperCAmelCase, param.shape ) # rename keys __UpperCAmelCase : List[Any] = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_swin_q_k_v(_UpperCAmelCase, config.backbone_config ) read_in_decoder_q_k_v(_UpperCAmelCase, _UpperCAmelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCAmelCase : Dict = state_dict.pop(_UpperCAmelCase ) __UpperCAmelCase : List[str] = val if "input_proj" in key: __UpperCAmelCase : Union[str, Any] = state_dict.pop(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCAmelCase : Any = state_dict.pop(_UpperCAmelCase ) __UpperCAmelCase : str = val # finally, create HuggingFace model and load state dict __UpperCAmelCase : Tuple = DetaForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = "cuda" if torch.cuda.is_available() else "cpu" model.to(_UpperCAmelCase ) # load image processor __UpperCAmelCase : List[str] = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : int = processor(images=_UpperCAmelCase, return_tensors="pt" ) __UpperCAmelCase : Tuple = encoding["pixel_values"] __UpperCAmelCase : Dict = model(pixel_values.to(_UpperCAmelCase ) ) # verify logits print("Logits:", outputs.logits[0, :3, :3] ) print("Boxes:", outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCAmelCase : int = torch.tensor( [[-7.6_308, -2.8_485, -5.3_737], [-7.2_037, -4.5_505, -4.8_027], [-7.2_943, -4.2_611, -4.6_617]] ) __UpperCAmelCase : Tuple = torch.tensor([[0.4_987, 0.4_969, 0.9_999], [0.2_549, 0.5_498, 0.4_805], [0.5_498, 0.2_757, 0.0_569]] ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : List[str] = torch.tensor( [[-8.0_122, -3.5_720, -4.9_717], [-8.1_547, -3.6_886, -4.6_389], [-7.6_610, -3.6_194, -5.0_134]] ) __UpperCAmelCase : Dict = torch.tensor([[0.2_523, 0.5_549, 0.4_881], [0.7_715, 0.4_149, 0.4_601], [0.5_503, 0.2_753, 0.0_575]] ) assert torch.allclose(outputs.logits[0, :3, :3], expected_logits.to(_UpperCAmelCase ), atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes.to(_UpperCAmelCase ), atol=1E-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F"jozhang97/{model_name}" ) processor.push_to_hub(F"jozhang97/{model_name}" ) if __name__ == "__main__": lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCAmelCase__ : Tuple = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
37
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase ): if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True __UpperCAmelCase : List[str] = 4 __UpperCAmelCase : int = (1 << p) - 1 for _ in range(p - 2 ): __UpperCAmelCase : Optional[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
37
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def __lowercase ( a__ ) -> Optional[int]: if not is_accelerate_available(): return method __SCREAMING_SNAKE_CASE = version.parse(accelerate.__version__ ).base_version if version.parse(__lowerCamelCase ) < version.parse('0.17.0' ): return method def wrapper(self , *a__ , **a__ ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *__lowerCamelCase , **__lowerCamelCase ) return wrapper
257
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class a ( lowercase__ ): """simple docstring""" def __init__( self : Any , __lowercase : Optional[NestedDataStructureLike[PathLike]] = None , __lowercase : Optional[NamedSplit] = None , __lowercase : Optional[Features] = None , __lowercase : str = None , __lowercase : bool = False , __lowercase : bool = False , __lowercase : Optional[int] = None , **__lowercase : List[str] , ) -> Tuple: __UpperCAmelCase : Any = path_or_paths __UpperCAmelCase : Dict = split if split or isinstance(__lowercase , __lowercase ) else """train""" __UpperCAmelCase : Optional[int] = features __UpperCAmelCase : str = cache_dir __UpperCAmelCase : str = keep_in_memory __UpperCAmelCase : Optional[int] = streaming __UpperCAmelCase : Dict = num_proc __UpperCAmelCase : Tuple = kwargs @abstractmethod def UpperCAmelCase ( self : List[Any] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class a ( lowercase__ ): """simple docstring""" def __init__( self : List[str] , __lowercase : Optional[Features] = None , __lowercase : str = None , __lowercase : bool = False , __lowercase : bool = False , __lowercase : Optional[int] = None , **__lowercase : Optional[Any] , ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = features __UpperCAmelCase : str = cache_dir __UpperCAmelCase : Optional[int] = keep_in_memory __UpperCAmelCase : Dict = streaming __UpperCAmelCase : Optional[Any] = num_proc __UpperCAmelCase : Union[str, Any] = kwargs @abstractmethod def UpperCAmelCase ( self : List[str] ) -> Union[Dataset, IterableDataset]: pass
114
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
361
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = KandinskyVaaPriorPipeline A__ = ['''prompt'''] A__ = ['''prompt''', '''negative_prompt'''] A__ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] A__ = False @property def A_ ( self : Dict ) -> List[str]: '''simple docstring''' return 32 @property def A_ ( self : Any ) -> str: '''simple docstring''' return 32 @property def A_ ( self : str ) -> Optional[int]: '''simple docstring''' return self.time_input_dim @property def A_ ( self : str ) -> int: '''simple docstring''' return self.time_input_dim * 4 @property def A_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return 100 @property def A_ ( self : Tuple ) -> List[str]: '''simple docstring''' __snake_case : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def A_ ( self : Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__a ) @property def A_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } __snake_case : List[Any] = PriorTransformer(**__a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __snake_case : Any = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def A_ ( self : List[str] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __snake_case : Optional[Any] = CLIPVisionModelWithProjection(__a ) return model @property def A_ ( self : Dict ) -> List[Any]: '''simple docstring''' __snake_case : Dict = CLIPImageProcessor( crop_size=224 , do_center_crop=__a , do_normalize=__a , do_resize=__a , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor def A_ ( self : Dict ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = self.dummy_prior __snake_case : List[str] = self.dummy_image_encoder __snake_case : str = self.dummy_text_encoder __snake_case : List[str] = self.dummy_tokenizer __snake_case : List[str] = self.dummy_image_processor __snake_case : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=__a , clip_sample_range=1_0.0 , ) __snake_case : str = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def A_ ( self : List[Any] , __a : Optional[Any] , __a : Tuple=0 ) -> Any: '''simple docstring''' if str(__a ).startswith('mps' ): __snake_case : List[str] = torch.manual_seed(__a ) else: __snake_case : List[str] = torch.Generator(device=__a ).manual_seed(__a ) __snake_case : List[Any] = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def A_ ( self : str ) -> Dict: '''simple docstring''' __snake_case : str = 'cpu' __snake_case : List[str] = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**__a ) __snake_case : Optional[Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : Optional[int] = pipe(**self.get_dummy_inputs(__a ) ) __snake_case : List[str] = output.image_embeds __snake_case : str = pipe( **self.get_dummy_inputs(__a ) , return_dict=__a , )[0] __snake_case : Union[str, Any] = image[0, -10:] __snake_case : Any = image_from_tuple[0, -10:] assert image.shape == (1, 32) __snake_case : List[Any] = np.array( [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def A_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __snake_case : Union[str, Any] = torch_device == 'cpu' __snake_case : Dict = True __snake_case : Union[str, Any] = False self._test_inference_batch_single_identical( test_max_difference=__a , relax_max_difference=__a , test_mean_pixel_difference=__a , ) @skip_mps def A_ ( self : str ) -> Union[str, Any]: '''simple docstring''' __snake_case : Dict = torch_device == 'cpu' __snake_case : Optional[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=__a , test_mean_pixel_difference=__a , )
0
0
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def __a ( self ) -> Union[str, Any]: a, a : Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) a, a : int = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) a : str = controlnet_params a : Union[str, Any] = "bird" a : List[str] = jax.device_count() a : Union[str, Any] = pipe.prepare_text_inputs([prompts] * num_samples ) a : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) a : str = pipe.prepare_image_inputs([canny_image] * num_samples ) a : Union[str, Any] = jax.random.PRNGKey(0 ) a : Any = jax.random.split(lowerCAmelCase__ , jax.device_count() ) a : Dict = replicate(lowerCAmelCase__ ) a : List[str] = shard(lowerCAmelCase__ ) a : List[Any] = shard(lowerCAmelCase__ ) a : Any = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) a : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a : Optional[int] = images[0, 253:256, 253:256, -1] a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a : Dict = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __a ( self ) -> str: a, a : Any = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) a, a : Tuple = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) a : Dict = controlnet_params a : Any = "Chef in the kitchen" a : Optional[Any] = jax.device_count() a : Union[str, Any] = pipe.prepare_text_inputs([prompts] * num_samples ) a : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) a : List[Any] = pipe.prepare_image_inputs([pose_image] * num_samples ) a : Tuple = jax.random.PRNGKey(0 ) a : Union[str, Any] = jax.random.split(lowerCAmelCase__ , jax.device_count() ) a : Dict = replicate(lowerCAmelCase__ ) a : List[str] = shard(lowerCAmelCase__ ) a : Any = shard(lowerCAmelCase__ ) a : Any = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) a : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a : Union[str, Any] = images[0, 253:256, 253:256, -1] a : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a : List[Any] = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
105
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() A = logging.get_logger('''transformers.models.encodec''') A = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } A = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } A = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } A = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } A = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } A = [] A = [] def __A ( a_ :Optional[int] , a_ :str , a_ :Optional[Any] , a_ :Optional[Any] , a_ :Tuple) -> str: for attribute in key.split('''.'''): __a : Union[str, Any] = getattr(a_ , a_) if weight_type is not None: __a : Optional[Any] = getattr(a_ , a_).shape else: __a : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""") if weight_type == "weight": __a : Tuple = value elif weight_type == "weight_g": __a : List[str] = value elif weight_type == "weight_v": __a : Optional[int] = value elif weight_type == "bias": __a : List[str] = value elif weight_type == "running_mean": __a : List[str] = value elif weight_type == "running_var": __a : List[Any] = value elif weight_type == "num_batches_tracked": __a : List[Any] = value elif weight_type == "weight_ih_l0": __a : Optional[int] = value elif weight_type == "weight_hh_l0": __a : Any = value elif weight_type == "bias_ih_l0": __a : Union[str, Any] = value elif weight_type == "bias_hh_l0": __a : Optional[Any] = value elif weight_type == "weight_ih_l1": __a : Dict = value elif weight_type == "weight_hh_l1": __a : str = value elif weight_type == "bias_ih_l1": __a : Union[str, Any] = value elif weight_type == "bias_hh_l1": __a : Union[str, Any] = value else: __a : str = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""") def __A ( a_ :Dict , a_ :Any) -> Tuple: for key in ignore_keys: if key.endswith('''.*'''): if name.startswith(key[:-1]): return True elif ".*." in key: __a , __a : Union[str, Any] = key.split('''.*.''') if prefix in name and suffix in name: return True elif key in name: return True return False def __A ( a_ :Optional[Any] , a_ :Tuple , a_ :List[str]) -> Any: __a : Tuple = [] if model_name == "encodec_24khz" or "encodec_32khz": __a : int = MAPPING_24K elif model_name == "encodec_48khz": __a : List[str] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""") for name, value in orig_dict.items(): if should_ignore(a_ , a_): logger.info(F"""{name} was ignored""") continue __a : Tuple = False for key, mapped_key in MAPPING.items(): if "*" in key: __a , __a : Optional[Any] = key.split('''.*.''') if prefix in name and suffix in name: __a : int = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''') and name.endswith('''embed_avg'''): continue __a : List[str] = True if "*" in mapped_key: __a : Optional[Any] = name.split(a_)[0].split('''.''')[-2] __a : str = mapped_key.replace('''*''' , a_) if "weight_g" in name: __a : Optional[Any] = '''weight_g''' elif "weight_v" in name: __a : Optional[Any] = '''weight_v''' elif "weight_ih_l0" in name: __a : Tuple = '''weight_ih_l0''' elif "weight_hh_l0" in name: __a : Tuple = '''weight_hh_l0''' elif "bias_ih_l0" in name: __a : List[str] = '''bias_ih_l0''' elif "bias_hh_l0" in name: __a : int = '''bias_hh_l0''' elif "weight_ih_l1" in name: __a : Optional[int] = '''weight_ih_l1''' elif "weight_hh_l1" in name: __a : List[str] = '''weight_hh_l1''' elif "bias_ih_l1" in name: __a : List[str] = '''bias_ih_l1''' elif "bias_hh_l1" in name: __a : str = '''bias_hh_l1''' elif "bias" in name: __a : Union[str, Any] = '''bias''' elif "weight" in name: __a : Any = '''weight''' elif "running_mean" in name: __a : List[Any] = '''running_mean''' elif "running_var" in name: __a : int = '''running_var''' elif "num_batches_tracked" in name: __a : int = '''num_batches_tracked''' else: __a : List[str] = None set_recursively(a_ , a_ , a_ , a_ , a_) continue if not is_used: unused_weights.append(a_) logger.warning(F"""Unused weights: {unused_weights}""") @torch.no_grad() def __A ( a_ :Dict , a_ :Optional[int] , a_ :Union[str, Any] , a_ :Any=None , a_ :Tuple=None , ) -> List[Any]: if config_path is not None: __a : List[str] = EncodecConfig.from_pretrained(a_) else: __a : List[Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __a : List[Any] = [8, 5, 4, 4] __a : int = [2.2] __a : int = 64 __a : List[Any] = 3_20_00 __a : Union[str, Any] = 20_48 __a : Optional[int] = False __a : str = False __a : Dict = False elif model_name == "encodec_48khz": __a : Any = [8, 5, 4, 2] __a : Dict = [3.0, 6.0, 1_2.0, 2_4.0] __a : List[Any] = 4_80_00 __a : Dict = 2 __a : int = False __a : List[str] = '''time_group_norm''' __a : str = True __a : Dict = 1.0 __a : Optional[Any] = 0.0_1 else: raise ValueError(F"""Unknown model name: {model_name}""") __a : Union[str, Any] = EncodecModel(a_) __a : List[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(a_) __a : List[Any] = torch.load(a_) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __a : Optional[Any] = original_checkpoint['''best_state'''] recursively_load_weights(a_ , a_ , a_) model.save_pretrained(a_) if repo_id: print('''Pushing to the hub...''') feature_extractor.push_to_hub(a_) model.push_to_hub(a_) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
160
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=snake_case ): SCREAMING_SNAKE_CASE = ['''flax''', '''transformers'''] def __init__( self ,*A ,**A ): requires_backends(self ,["""flax""", """transformers"""] ) @classmethod def _UpperCamelCase ( cls ,*A ,**A ): requires_backends(cls ,["""flax""", """transformers"""] ) @classmethod def _UpperCamelCase ( cls ,*A ,**A ): requires_backends(cls ,["""flax""", """transformers"""] ) class lowerCamelCase__ ( metaclass=snake_case ): SCREAMING_SNAKE_CASE = ['''flax''', '''transformers'''] def __init__( self ,*A ,**A ): requires_backends(self ,["""flax""", """transformers"""] ) @classmethod def _UpperCamelCase ( cls ,*A ,**A ): requires_backends(cls ,["""flax""", """transformers"""] ) @classmethod def _UpperCamelCase ( cls ,*A ,**A ): requires_backends(cls ,["""flax""", """transformers"""] ) class lowerCamelCase__ ( metaclass=snake_case ): SCREAMING_SNAKE_CASE = ['''flax''', '''transformers'''] def __init__( self ,*A ,**A ): requires_backends(self ,["""flax""", """transformers"""] ) @classmethod def _UpperCamelCase ( cls ,*A ,**A ): requires_backends(cls ,["""flax""", """transformers"""] ) @classmethod def _UpperCamelCase ( cls ,*A ,**A ): requires_backends(cls ,["""flax""", """transformers"""] ) class lowerCamelCase__ ( metaclass=snake_case ): SCREAMING_SNAKE_CASE = ['''flax''', '''transformers'''] def __init__( self ,*A ,**A ): requires_backends(self ,["""flax""", """transformers"""] ) @classmethod def _UpperCamelCase ( cls ,*A ,**A ): requires_backends(cls ,["""flax""", """transformers"""] ) @classmethod def _UpperCamelCase ( cls ,*A ,**A ): requires_backends(cls ,["""flax""", """transformers"""] )
234
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _UpperCamelCase = logging.get_logger("""transformers.models.speecht5""") _UpperCamelCase = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } _UpperCamelCase = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } _UpperCamelCase = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } _UpperCamelCase = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } _UpperCamelCase = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } _UpperCamelCase = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } _UpperCamelCase = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } _UpperCamelCase = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } _UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _UpperCamelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _UpperCamelCase = [] _UpperCamelCase = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" for attribute in key.split(""".""" ): UpperCAmelCase = getattr(_snake_case , _snake_case ) if weight_type is not None: UpperCAmelCase = getattr(_snake_case , _snake_case ).shape else: UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value elif weight_type == "running_mean": UpperCAmelCase = value elif weight_type == "running_var": UpperCAmelCase = value elif weight_type == "num_batches_tracked": UpperCAmelCase = value else: UpperCAmelCase = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _a ( _snake_case , _snake_case ): """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase , UpperCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [] if task == "s2t": UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase = MAPPING_S2T UpperCAmelCase = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase = None UpperCAmelCase = MAPPING_T2S UpperCAmelCase = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase = MAPPING_S2S UpperCAmelCase = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(_snake_case , _snake_case ): logger.info(F'''{name} was ignored''' ) continue UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase , UpperCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: UpperCAmelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(_snake_case )[0].split(""".""" )[-2] UpperCAmelCase = mapped_key.replace("""*""" , _snake_case ) if "weight_g" in name: UpperCAmelCase = """weight_g""" elif "weight_v" in name: UpperCAmelCase = """weight_v""" elif "bias" in name: UpperCAmelCase = """bias""" elif "weight" in name: UpperCAmelCase = """weight""" elif "running_mean" in name: UpperCAmelCase = """running_mean""" elif "running_var" in name: UpperCAmelCase = """running_var""" elif "num_batches_tracked" in name: UpperCAmelCase = """num_batches_tracked""" else: UpperCAmelCase = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase = name.split(""".""" ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , ): """simple docstring""" if config_path is not None: UpperCAmelCase = SpeechTaConfig.from_pretrained(_snake_case ) else: UpperCAmelCase = SpeechTaConfig() if task == "s2t": UpperCAmelCase = config.max_text_positions UpperCAmelCase = SpeechTaForSpeechToText(_snake_case ) elif task == "t2s": UpperCAmelCase = 1876 UpperCAmelCase = 600 UpperCAmelCase = config.max_speech_positions UpperCAmelCase = SpeechTaForTextToSpeech(_snake_case ) elif task == "s2s": UpperCAmelCase = 1876 UpperCAmelCase = config.max_speech_positions UpperCAmelCase = SpeechTaForSpeechToSpeech(_snake_case ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: UpperCAmelCase = SpeechTaTokenizer(_snake_case , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken("""<mask>""" , lstrip=_snake_case , rstrip=_snake_case ) UpperCAmelCase = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) UpperCAmelCase = SpeechTaFeatureExtractor() UpperCAmelCase = SpeechTaProcessor(tokenizer=_snake_case , feature_extractor=_snake_case ) processor.save_pretrained(_snake_case ) UpperCAmelCase = torch.load(_snake_case ) recursively_load_weights(fairseq_checkpoint["""model"""] , _snake_case , _snake_case ) model.save_pretrained(_snake_case ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(_snake_case ) model.push_to_hub(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCamelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
234
1
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ = 50 ) -> int: __lowerCamelCase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
67
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCAmelCase_ : def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Any ) -> Tuple: raise NotImplementedError() def _UpperCamelCase ( self : List[Any] ) -> Dict: raise NotImplementedError() class UpperCAmelCase_ ( _lowercase): def __init__( self : Dict , __UpperCamelCase : "AutoTokenizer" , __UpperCamelCase : bool = False , **__UpperCamelCase : Tuple ) -> str: _UpperCamelCase = tokenizer _UpperCamelCase = skip_prompt _UpperCamelCase = decode_kwargs # variables used in the streaming process _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = True def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Dict ) -> Optional[Any]: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: _UpperCamelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _UpperCamelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _UpperCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): _UpperCamelCase = text[self.print_len :] _UpperCamelCase = [] _UpperCamelCase = 0 # If the last token is a CJK character, we print the characters. elif len(__UpperCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _UpperCamelCase = text[self.print_len :] self.print_len += len(__UpperCamelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _UpperCamelCase = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(__UpperCamelCase ) self.on_finalized_text(__UpperCamelCase ) def _UpperCamelCase ( self : List[Any] ) -> Optional[Any]: # Flush the cache, if it exists if len(self.token_cache ) > 0: _UpperCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _UpperCamelCase = text[self.print_len :] _UpperCamelCase = [] _UpperCamelCase = 0 else: _UpperCamelCase = '''''' _UpperCamelCase = True self.on_finalized_text(__UpperCamelCase , stream_end=__UpperCamelCase ) def _UpperCamelCase ( self : int , __UpperCamelCase : str , __UpperCamelCase : bool = False ) -> Tuple: print(__UpperCamelCase , flush=__UpperCamelCase , end='''''' if not stream_end else None ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Dict ) -> str: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False class UpperCAmelCase_ ( _lowercase): def __init__( self : Union[str, Any] , __UpperCamelCase : "AutoTokenizer" , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[float] = None , **__UpperCamelCase : Optional[int] ) -> Optional[Any]: super().__init__(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = Queue() _UpperCamelCase = None _UpperCamelCase = timeout def _UpperCamelCase ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : bool = False ) -> Any: self.text_queue.put(__UpperCamelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Optional[Any] ) -> List[str]: return self def _UpperCamelCase ( self : int ) -> Dict: _UpperCamelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
256
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) def lowercase ( A_ , A_=False )-> List[Any]: '''simple docstring''' a : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowercase ( A_ , A_ , A_=False )-> List[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: a : int = "" else: a : List[str] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a : Optional[int] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) a : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a : Tuple = in_proj_weight[ : config.hidden_size, : ] a : int = in_proj_bias[: config.hidden_size] a : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a : List[str] = in_proj_weight[ -config.hidden_size :, : ] a : Optional[int] = in_proj_bias[-config.hidden_size :] def lowercase ( A_ )-> Any: '''simple docstring''' a : Tuple = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(A_ , A_ ) def lowercase ( A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' a : int = dct.pop(A_ ) a : Optional[int] = val def lowercase ( )-> List[str]: '''simple docstring''' a : int = "http://images.cocodataset.org/val2017/000000039769.jpg" a : Dict = Image.open(requests.get(A_ , stream=A_ ).raw ) return im @torch.no_grad() def lowercase ( A_ , A_ , A_=True )-> List[Any]: '''simple docstring''' a : Optional[Any] = ViTConfig() # patch_size if model_name[-1] == "8": a : str = 8 # set labels if required if not base_model: a : Dict = 1_000 a : int = "huggingface/label-files" a : List[str] = "imagenet-1k-id2label.json" a : Optional[Any] = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) a : Union[str, Any] = {int(A_ ): v for k, v in idalabel.items()} a : Dict = idalabel a : List[str] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: a : Dict = 384 a : List[str] = 1_536 a : Union[str, Any] = 12 a : Optional[Any] = 6 # load original model from torch hub a : Optional[Any] = torch.hub.load("facebookresearch/dino:main" , A_ ) original_model.eval() # load state_dict of original model, remove and rename some keys a : Any = original_model.state_dict() if base_model: remove_classification_head_(A_ ) a : Union[str, Any] = create_rename_keys(A_ , base_model=A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) read_in_q_k_v(A_ , A_ , A_ ) # load HuggingFace model if base_model: a : Dict = ViTModel(A_ , add_pooling_layer=A_ ).eval() else: a : Optional[Any] = ViTForImageClassification(A_ ).eval() model.load_state_dict(A_ ) # Check outputs on an image, prepared by ViTImageProcessor a : Union[str, Any] = ViTImageProcessor() a : Dict = image_processor(images=prepare_img() , return_tensors="pt" ) a : str = encoding["pixel_values"] a : Optional[int] = model(A_ ) if base_model: a : List[str] = original_model(A_ ) assert torch.allclose(A_ , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: a : Union[str, Any] = original_model(A_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(A_ , outputs.logits , atol=1e-3 ) Path(A_ ).mkdir(exist_ok=A_ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A_ ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) __lowercase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
226
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Optional[Any] = 384 if "tiny" in model_name: a : List[str] = [3, 3, 9, 3] a : Optional[Any] = [96, 192, 384, 768] if "small" in model_name: a : Tuple = [3, 3, 27, 3] a : str = [96, 192, 384, 768] if "base" in model_name: a : Union[str, Any] = [3, 3, 27, 3] a : Dict = [128, 256, 512, 1_024] a : Any = 512 if "large" in model_name: a : Optional[Any] = [3, 3, 27, 3] a : str = [192, 384, 768, 1_536] a : Dict = 768 if "xlarge" in model_name: a : str = [3, 3, 27, 3] a : List[Any] = [256, 512, 1_024, 2_048] a : List[Any] = 1_024 # set label information a : int = 150 a : str = "huggingface/label-files" a : Tuple = "ade20k-id2label.json" a : Dict = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) a : int = {int(A_ ): v for k, v in idalabel.items()} a : List[Any] = {v: k for k, v in idalabel.items()} a : Optional[int] = ConvNextConfig( depths=A_ , hidden_sizes=A_ , out_features=["stage1", "stage2", "stage3", "stage4"] ) a : Tuple = UperNetConfig( backbone_config=A_ , auxiliary_in_channels=A_ , num_labels=A_ , idalabel=A_ , labelaid=A_ , ) return config def lowercase ( A_ )-> Tuple: '''simple docstring''' a : int = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def lowercase ( A_ , A_ , A_ )-> str: '''simple docstring''' a : str = dct.pop(A_ ) a : str = val def lowercase ( A_ , A_ , A_ )-> int: '''simple docstring''' a : Any = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } a : Tuple = model_name_to_url[model_name] a : int = torch.hub.load_state_dict_from_url(A_ , map_location="cpu" )["state_dict"] a : Optional[Any] = get_upernet_config(A_ ) a : int = UperNetForSemanticSegmentation(A_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a : Tuple = state_dict.pop(A_ ) if "bn" in key: a : Optional[int] = key.replace("bn" , "batch_norm" ) a : Any = val # rename keys a : Any = create_rename_keys(A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) model.load_state_dict(A_ ) # verify on image a : Dict = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" a : Any = Image.open(requests.get(A_ , stream=A_ ).raw ).convert("RGB" ) a : Union[str, Any] = SegformerImageProcessor() a : Dict = processor(A_ , return_tensors="pt" ).pixel_values with torch.no_grad(): a : Any = model(A_ ) if model_name == "upernet-convnext-tiny": a : List[str] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": a : int = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": a : Union[str, Any] = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": a : Union[str, Any] = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": a : str = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A_ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A_ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[f'''upernet-convnext-{size}''' for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
226
1
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''nielsr/canine-s''': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCAmelCase = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCAmelCase = 0 _lowerCAmelCase = 0xe_000 _lowerCAmelCase = 0xe_001 _lowerCAmelCase = 0xe_002 _lowerCAmelCase = 0xe_003 _lowerCAmelCase = 0xe_004 # Maps special codepoints to human-readable names. _lowerCAmelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCAmelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=False ,__UpperCAmelCase=2048 ,**__UpperCAmelCase ,) -> Optional[int]: lowerCAmelCase__ : Optional[int] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else bos_token lowerCAmelCase__ : Dict = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else eos_token lowerCAmelCase__ : Union[str, Any] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else sep_token lowerCAmelCase__ : int = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else cls_token lowerCAmelCase__ : int = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ : str = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else mask_token super().__init__( bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,mask_token=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,model_max_length=__UpperCAmelCase ,**__UpperCAmelCase ,) # Creates a mapping for looking up the IDs of special symbols. lowerCAmelCase__ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowerCAmelCase__ : Tuple = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowerCAmelCase__ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowerCAmelCase__ : Optional[Any] = UNICODE_VOCAB_SIZE lowerCAmelCase__ : Any = len(self._special_codepoints ) @property def UpperCAmelCase_ ( self ) -> int: return self._unicode_vocab_size def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: return list(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: try: return ord(__UpperCAmelCase ) except TypeError: raise ValueError(F"""invalid token: '{token}'""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__UpperCAmelCase ) except TypeError: raise ValueError(F"""invalid id: {index}""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: return "".join(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : str = [self.sep_token_id] lowerCAmelCase__ : Optional[int] = [self.cls_token_id] lowerCAmelCase__ : str = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = [1] + ([0] * len(__UpperCAmelCase )) + [1] if token_ids_a is not None: result += ([0] * len(__UpperCAmelCase )) + [1] return result def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : Optional[int] = [self.sep_token_id] lowerCAmelCase__ : List[str] = [self.cls_token_id] lowerCAmelCase__ : Optional[int] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> int: return ()
37
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} _lowerCAmelCase = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } _lowerCAmelCase = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } _lowerCAmelCase = '''▁''' class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase="[CLS]" ,__UpperCAmelCase="[SEP]" ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase="[SEP]" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase="[CLS]" ,__UpperCAmelCase="[MASK]" ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase__ : Tuple = ( AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ,normalized=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else mask_token ) lowerCAmelCase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase ,remove_space=__UpperCAmelCase ,keep_accents=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,mask_token=__UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCAmelCase ,) lowerCAmelCase__ : str = do_lower_case lowerCAmelCase__ : int = remove_space lowerCAmelCase__ : Tuple = keep_accents lowerCAmelCase__ : Any = vocab_file lowerCAmelCase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return len(self.sp_model ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Union[str, Any] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: lowerCAmelCase__ : Optional[Any] = self.__dict__.copy() lowerCAmelCase__ : Optional[Any] = None return state def __setstate__( self ,__UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : List[str] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[int]: if self.remove_space: lowerCAmelCase__ : int = """ """.join(inputs.strip().split() ) else: lowerCAmelCase__ : str = inputs lowerCAmelCase__ : Tuple = outputs.replace("""``""" ,"""\"""" ).replace("""''""" ,"""\"""" ) if not self.keep_accents: lowerCAmelCase__ : Any = unicodedata.normalize("""NFKD""" ,__UpperCAmelCase ) lowerCAmelCase__ : Dict = """""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: lowerCAmelCase__ : Tuple = outputs.lower() return outputs def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[str] = self.preprocess_text(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = self.sp_model.encode(__UpperCAmelCase ,out_type=__UpperCAmelCase ) lowerCAmelCase__ : str = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCAmelCase__ : List[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase ,"""""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase__ : str = cur_pieces[1:] else: lowerCAmelCase__ : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: return self.sp_model.PieceToId(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Any: return self.sp_model.IdToPiece(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : str = [] lowerCAmelCase__ : Tuple = """""" lowerCAmelCase__ : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : List[str] = [] else: current_sub_tokens.append(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : int = [self.sep_token_id] lowerCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : List[str] = [self.sep_token_id] lowerCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : int = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase ,"""wb""" ) as fi: lowerCAmelCase__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
37
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase :Optional[int] = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :int = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Union[str, Any] = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase :str = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :int = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase :List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
240
'''simple docstring''' def _a ( _lowercase : int = 600851475143 ): '''simple docstring''' try: __UpperCAmelCase : str = int(_lowercase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __UpperCAmelCase : Dict = 1 __UpperCAmelCase : List[str] = 2 while i * i <= n: while n % i == 0: __UpperCAmelCase : int = i n //= i i += 1 if n > 1: __UpperCAmelCase : List[str] = n return int(_lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
240
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = KandinskyVaaPriorPipeline __snake_case = ['''prompt'''] __snake_case = ['''prompt''', '''negative_prompt'''] __snake_case = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] __snake_case = False @property def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" return self.time_input_dim @property def __lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" return 100 @property def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" torch.manual_seed(0 ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(__UpperCAmelCase ) @property def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" torch.manual_seed(0 ) a = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } a = PriorTransformer(**__UpperCAmelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a = CLIPVisionModelWithProjection(__UpperCAmelCase ) return model @property def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" a = CLIPImageProcessor( crop_size=224 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" a = self.dummy_prior a = self.dummy_image_encoder a = self.dummy_text_encoder a = self.dummy_tokenizer a = self.dummy_image_processor a = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , ) a = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str=0 ) ->int: """simple docstring""" if str(__UpperCAmelCase ).startswith('''mps''' ): a = torch.manual_seed(__UpperCAmelCase ) else: a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" a = '''cpu''' a = self.get_dummy_components() a = self.pipeline_class(**__UpperCAmelCase ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) a = output.image_embeds a = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] a = image[0, -10:] a = image_from_tuple[0, -10:] assert image.shape == (1, 32) a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" a = torch_device == '''cpu''' a = True a = False self._test_inference_batch_single_identical( test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , ) @skip_mps def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a = torch_device == '''cpu''' a = False self._test_attention_slicing_forward_pass( test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
0
0
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = list(range(len(lowerCAmelCase__ ) ) ) UpperCAmelCase_ = [v / w for v, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] index.sort(key=lambda lowerCAmelCase__ : ratio[i] , reverse=lowerCAmelCase__ ) UpperCAmelCase_ = 0 UpperCAmelCase_ = [0] * len(lowerCAmelCase__ ) for i in index: if weight[i] <= capacity: UpperCAmelCase_ = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase_ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
241
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''roberta''' def __init__( self : int , _UpperCAmelCase : List[Any]=50265 , _UpperCAmelCase : str=768 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Tuple=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Optional[Any]=1e-12 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple="absolute" , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=None , **_UpperCAmelCase : List[str] , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
241
1
'''simple docstring''' from __future__ import annotations import math def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = u for i in range(1 , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = temp * (u - i) return temp def __lowerCAmelCase (): _UpperCAmelCase : List[str] = int(input("enter the numbers of values: " ) ) _UpperCAmelCase : list[list[float]] = [] for _ in range(__lowerCAmelCase ): y.append([] ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): y[i].append(__lowerCAmelCase ) _UpperCAmelCase : Dict = 0 print("enter the values of parameters in a list: " ) _UpperCAmelCase : int = list(map(__lowerCAmelCase , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(__lowerCAmelCase ): _UpperCAmelCase : Tuple = float(input() ) _UpperCAmelCase : str = int(input("enter the value to interpolate: " ) ) _UpperCAmelCase : int = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __lowerCAmelCase ): for j in range(n - i ): _UpperCAmelCase : int = y[j + 1][i - 1] - y[j][i - 1] _UpperCAmelCase : List[Any] = y[0][0] for i in range(1 , __lowerCAmelCase ): summ += (ucal(__lowerCAmelCase , __lowerCAmelCase ) * y[0][i]) / math.factorial(__lowerCAmelCase ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
234
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
234
1
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _a : int = '' for word_or_phrase in separated: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise Exception('join() accepts only strings to be joined' ) joined += word_or_phrase + separator return joined.strip(lowerCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
107
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __lowerCAmelCase = pytest.mark.integration __lowerCAmelCase = {'''comet'''} __lowerCAmelCase = importlib.util.find_spec('''fairseq''') is not None __lowerCAmelCase = {'''code_eval'''} __lowerCAmelCase = os.name == '''nt''' __lowerCAmelCase = {'''bertscore''', '''frugalscore''', '''perplexity'''} __lowerCAmelCase = importlib.util.find_spec('''transformers''') is not None def __lowerCamelCase ( lowerCAmelCase_ ) -> Any: @wraps(lowerCAmelCase_ ) def wrapper(self , lowerCAmelCase_ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , lowerCAmelCase_ ) return wrapper def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[str, Any]: @wraps(lowerCAmelCase_ ) def wrapper(self , lowerCAmelCase_ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , lowerCAmelCase_ ) return wrapper def __lowerCamelCase ( lowerCAmelCase_ ) -> int: @wraps(lowerCAmelCase_ ) def wrapper(self , lowerCAmelCase_ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , lowerCAmelCase_ ) return wrapper def __lowerCamelCase ( ) -> Tuple: _a : Optional[int] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) @local class __magic_name__ ( parameterized.TestCase ): lowerCAmelCase : List[str] = {} lowerCAmelCase : Optional[int] = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def __lowercase ( self : Dict ,_UpperCAmelCase : Optional[Any] ): _a : Tuple = '[...]' _a : Dict = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' ,_UpperCAmelCase ) ).module_path ) _a : Optional[int] = datasets.load.import_main_class(metric_module.__name__ ,dataset=_UpperCAmelCase ) # check parameters _a : Optional[int] = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_UpperCAmelCase ,metric_module.__name__ ): with self.use_local_metrics(): try: _a : Optional[int] = doctest.testmod(_UpperCAmelCase ,verbose=_UpperCAmelCase ,raise_on_error=_UpperCAmelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed ,0 ) self.assertGreater(results.attempted ,1 ) @slow def __lowercase ( self : Tuple ,_UpperCAmelCase : Dict ): _a : Tuple = '[...]' _a : Optional[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' ,_UpperCAmelCase ) ).module_path ) # run doctest with self.use_local_metrics(): _a : int = doctest.testmod(_UpperCAmelCase ,verbose=_UpperCAmelCase ,raise_on_error=_UpperCAmelCase ) self.assertEqual(results.failed ,0 ) self.assertGreater(results.attempted ,1 ) @contextmanager def __lowercase ( self : List[Any] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : List[str] ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_UpperCAmelCase ): yield else: yield @contextmanager def __lowercase ( self : Optional[int] ): def load_local_metric(_UpperCAmelCase : Tuple ,*_UpperCAmelCase : Dict ,**_UpperCAmelCase : Tuple ): return load_metric(os.path.join('metrics' ,_UpperCAmelCase ) ,*_UpperCAmelCase ,**_UpperCAmelCase ) with patch('datasets.load_metric' ) as mock_load_metric: _a : Any = load_local_metric yield @classmethod def __lowercase ( cls : str ,_UpperCAmelCase : List[str] ): def wrapper(_UpperCAmelCase : int ): _a : Optional[Any] = contextmanager(_UpperCAmelCase ) _a : Optional[int] = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> List[str]: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class __magic_name__ ( _UpperCamelCase ): def __lowercase ( self : int ,_UpperCAmelCase : Union[str, Any] ): assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: _a : int = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[str, Any]: import torch def bert_cos_score_idf(lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowerCAmelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: _a : Any = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Dict: def load_from_checkpoint(lowerCAmelCase_ ): class __magic_name__ : def __lowercase ( self : str ,_UpperCAmelCase : Dict ,*_UpperCAmelCase : int ,**_UpperCAmelCase : str ): assert len(_UpperCAmelCase ) == 2 _a : Dict = [0.19, 0.92] return scores, sum(_UpperCAmelCase ) / len(_UpperCAmelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: _a : Any = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: _a : Optional[Any] = load_from_checkpoint yield def __lowerCamelCase ( ) -> Tuple: _a : Dict = load_metric(os.path.join('metrics' , 'seqeval' ) ) _a : Optional[int] = 'ERROR' _a : Optional[Any] = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(lowerCAmelCase_ , match=re.escape(lowerCAmelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=lowerCAmelCase_ )
107
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __A =None __A =logging.get_logger(__name__) __A ={"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __A ={ "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } __A ={ "google/bigbird-roberta-base": 4_0_9_6, "google/bigbird-roberta-large": 4_0_9_6, "google/bigbird-base-trivia-itc": 4_0_9_6, } __A ="▁" class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = BigBirdTokenizer UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = [] def __init__( self : str , a_ : Tuple=None , a_ : Optional[int]=None , a_ : List[str]="<unk>" , a_ : Any="<s>" , a_ : Dict="</s>" , a_ : int="<pad>" , a_ : int="[SEP]" , a_ : int="[MASK]" , a_ : Optional[int]="[CLS]" , **a_ : int , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else bos_token __UpperCAmelCase : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else eos_token __UpperCAmelCase : Optional[Any] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else unk_token __UpperCAmelCase : Optional[Any] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else pad_token __UpperCAmelCase : Any = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else cls_token __UpperCAmelCase : Union[str, Any] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[Any] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , **a_ , ) __UpperCAmelCase : Tuple = vocab_file __UpperCAmelCase : List[Any] = False if not self.vocab_file else True def snake_case__ ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : List[Any] = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] def snake_case__ ( self : Optional[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : List[Any] = [self.sep_token_id] __UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Any , a_ : str , a_ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : Union[str, Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
226
import numpy as np class UpperCAmelCase__ : '''simple docstring''' def __init__( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = (0, 0) __UpperCAmelCase : List[str] = None __UpperCAmelCase : int = 0 __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : List[Any] = 0 def __eq__( self : Optional[int] , a_ : List[Any] ): '''simple docstring''' return self.position == cell.position def snake_case__ ( self : List[Any] ): '''simple docstring''' print(self.position ) class UpperCAmelCase__ : '''simple docstring''' def __init__( self : str , a_ : Dict=(5, 5) ): '''simple docstring''' __UpperCAmelCase : str = np.zeros(a_ ) __UpperCAmelCase : List[Any] = world_size[0] __UpperCAmelCase : List[str] = world_size[1] def snake_case__ ( self : Tuple ): '''simple docstring''' print(self.w ) def snake_case__ ( self : Union[str, Any] , a_ : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __UpperCAmelCase : str = cell.position[0] __UpperCAmelCase : List[Any] = cell.position[1] __UpperCAmelCase : str = [] for n in neughbour_cord: __UpperCAmelCase : Optional[Any] = current_x + n[0] __UpperCAmelCase : Any = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __UpperCAmelCase : int = Cell() __UpperCAmelCase : List[str] = (x, y) __UpperCAmelCase : List[Any] = cell neighbours.append(a_ ) return neighbours def a ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Optional[Any] = [] _open.append(_UpperCAmelCase ) while _open: __UpperCAmelCase : str = np.argmin([n.f for n in _open] ) __UpperCAmelCase : Optional[Any] = _open[min_f] _closed.append(_open.pop(_UpperCAmelCase ) ) if current == goal: break for n in world.get_neigbours(_UpperCAmelCase ): for c in _closed: if c == n: continue __UpperCAmelCase : Optional[Any] = current.g + 1 __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = n.position __UpperCAmelCase , __UpperCAmelCase : Tuple = goal.position __UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 __UpperCAmelCase : Optional[Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_UpperCAmelCase ) __UpperCAmelCase : str = [] while current.parent is not None: path.append(current.position ) __UpperCAmelCase : int = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __A =Gridworld() # Start position and goal __A =Cell() __A =(0, 0) __A =Cell() __A =(4, 4) print(f'''path from {start.position} to {goal.position}''') __A =astar(world, start, goal) # Just for visual reasons. for i in s: __A =1 print(world.w)
226
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
65
from manim import * class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Optional[int] = Rectangle(height=0.5 , width=0.5 ) A_ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) A_ : Any = [mem.copy() for i in range(6 )] A_ : Tuple = [mem.copy() for i in range(6 )] A_ : str = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Optional[Any] = Text('''CPU''' , font_size=24 ) A_ : Union[str, Any] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = [mem.copy() for i in range(1 )] A_ : Any = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Dict = Text('''GPU''' , font_size=24 ) A_ : List[str] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) gpu.align_to(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) gpu.set_x(gpu.get_x() - 1 ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = [mem.copy() for i in range(6 )] A_ : List[str] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = Text('''Model''' , font_size=24 ) A_ : List[Any] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.play( Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , ) A_ : int = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) A_ : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A_ : Any = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=2.5 ) , Write(_SCREAMING_SNAKE_CASE ) , Write(_SCREAMING_SNAKE_CASE ) ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Dict = [] A_ : int = [] A_ : Optional[Any] = [] for i, rect in enumerate(_SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(_SCREAMING_SNAKE_CASE , opacity=0.7 ) cpu_target.move_to(_SCREAMING_SNAKE_CASE ) cpu_target.generate_target() A_ : Union[str, Any] = 0.4_6 / 4 A_ : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=_SCREAMING_SNAKE_CASE ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_SCREAMING_SNAKE_CASE , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_SCREAMING_SNAKE_CASE , buff=0.0 ) cpu_targs.append(_SCREAMING_SNAKE_CASE ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_SCREAMING_SNAKE_CASE ) ) second_animations.append(MoveToTarget(_SCREAMING_SNAKE_CASE , run_time=1.5 ) ) self.play(*_SCREAMING_SNAKE_CASE ) self.play(*_SCREAMING_SNAKE_CASE ) self.wait()
65
1
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) snake_case : List[str] = '''pytorch_model.bin''' snake_case : Optional[Any] = '''pytorch_model.bin.index.json''' snake_case : Optional[Any] = '''adapter_config.json''' snake_case : str = '''adapter_model.bin''' snake_case : Dict = '''adapter_model.safetensors''' snake_case : List[str] = '''tf_model.h5''' snake_case : int = '''tf_model.h5.index.json''' snake_case : Union[str, Any] = '''model.ckpt''' snake_case : Dict = '''flax_model.msgpack''' snake_case : int = '''flax_model.msgpack.index.json''' snake_case : List[Any] = '''model.safetensors''' snake_case : Tuple = '''model.safetensors.index.json''' snake_case : Any = '''config.json''' snake_case : str = '''preprocessor_config.json''' snake_case : Tuple = FEATURE_EXTRACTOR_NAME snake_case : Tuple = '''generation_config.json''' snake_case : Dict = '''modelcard.json''' snake_case : Tuple = '''▁''' snake_case : Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility snake_case : Optional[int] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. snake_case : List[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] snake_case : Any = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __lowercase ( __lowerCAmelCase : int ): if version.parse(__lowerCAmelCase ) < version.parse(__lowerCAmelCase ): if "dev" in min_version: a__ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: a__ = F'This example requires a minimum version of {min_version},' error_message += F' but the version found is {__version__}.\n' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
240
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Union[str, Any] = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[Any] = ['''pixel_values'''] def __init__( self :Optional[int] ,__snake_case :bool = True ,__snake_case :Optional[Dict[str, int]] = None ,__snake_case :PILImageResampling = PILImageResampling.BICUBIC ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :Union[int, float] = 1 / 2_55 ,__snake_case :Dict[str, int] = None ,__snake_case :bool = True ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,**__snake_case :Dict ,) -> None: super().__init__(**__snake_case ) a__ = size if size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(__snake_case ) a__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ,param_name='crop_size' ) a__ = do_resize a__ = do_rescale a__ = do_normalize a__ = do_center_crop a__ = crop_size a__ = size a__ = resample a__ = rescale_factor a__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase__( self :Dict ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :PILImageResampling = PILImageResampling.BILINEAR ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :List[Any] ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "shortest_edge" in size: a__ = get_resize_output_image_size(__snake_case ,size=size['shortest_edge'] ,default_to_square=__snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: a__ = (size['height'], size['width']) else: raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(__snake_case ,size=__snake_case ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Dict ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Any ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__snake_case ,size=(size['height'], size['width']) ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :int ) -> np.ndarray: return rescale(__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :np.ndarray ,__snake_case :Union[float, List[float]] ,__snake_case :Union[float, List[float]] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Any ,) -> np.ndarray: return normalize(__snake_case ,mean=__snake_case ,std=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :ImageInput ,__snake_case :Optional[bool] = None ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = None ,__snake_case :bool = None ,__snake_case :int = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[float] = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[str, TensorType]] = None ,__snake_case :Union[str, ChannelDimension] = ChannelDimension.FIRST ,**__snake_case :Optional[int] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = do_center_crop if do_center_crop is not None else self.do_center_crop a__ = crop_size if crop_size is not None else self.crop_size a__ = get_size_dict(__snake_case ,param_name='crop_size' ,default_to_square=__snake_case ) a__ = resample if resample is not None else self.resample a__ = rescale_factor if rescale_factor is not None else self.rescale_factor a__ = image_mean if image_mean is not None else self.image_mean a__ = image_std if image_std is not None else self.image_std a__ = size if size is not None else self.size a__ = get_size_dict(__snake_case ) if not is_batched(__snake_case ): a__ = [images] if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for image in images] if do_resize: a__ = [self.resize(image=__snake_case ,size=__snake_case ,resample=__snake_case ) for image in images] if do_center_crop: a__ = [self.center_crop(image=__snake_case ,size=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(image=__snake_case ,scale=__snake_case ) for image in images] if do_normalize: a__ = [self.normalize(image=__snake_case ,mean=__snake_case ,std=__snake_case ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
240
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : List[Any] ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
352
'''simple docstring''' import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch SCREAMING_SNAKE_CASE_: Dict =True except ImportError: SCREAMING_SNAKE_CASE_: str =False try: from torch.hub import _get_torch_home SCREAMING_SNAKE_CASE_: Optional[Any] =_get_torch_home() except ImportError: SCREAMING_SNAKE_CASE_: Union[str, Any] =os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) SCREAMING_SNAKE_CASE_: int =os.path.join(torch_cache_home, 'transformers') SCREAMING_SNAKE_CASE_: Tuple ='https://cdn.huggingface.co' SCREAMING_SNAKE_CASE_: str ='https://s3.amazonaws.com/models.huggingface.co/bert' SCREAMING_SNAKE_CASE_: str ='/'.join(str(Path(__file__).resolve()).split('/')[:-1]) SCREAMING_SNAKE_CASE_: Optional[Any] =os.path.join(PATH, 'config.yaml') SCREAMING_SNAKE_CASE_: Optional[Any] =os.path.join(PATH, 'attributes.txt') SCREAMING_SNAKE_CASE_: Any =os.path.join(PATH, 'objects.txt') SCREAMING_SNAKE_CASE_: Optional[int] =os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) SCREAMING_SNAKE_CASE_: int =os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) SCREAMING_SNAKE_CASE_: List[str] =os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) SCREAMING_SNAKE_CASE_: str ='pytorch_model.bin' SCREAMING_SNAKE_CASE_: Dict ='config.yaml' def lowerCAmelCase_ ( snake_case_ : Optional[int]=OBJECTS , snake_case_ : Optional[Any]=ATTRIBUTES ) -> Any: '''simple docstring''' UpperCAmelCase_ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) UpperCAmelCase_ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = OrderedDict() with open(snake_case_ , "rb" ) as f: UpperCAmelCase_ = pkl.load(snake_case_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): UpperCAmelCase_ = ckp.pop(snake_case_ ) if isinstance(snake_case_ , np.ndarray ): UpperCAmelCase_ = torch.tensor(snake_case_ ) else: assert isinstance(snake_case_ , torch.tensor ), type(snake_case_ ) UpperCAmelCase_ = v return r class __A : a__ : Optional[Any] = {} def __init__(self : Union[str, Any] , __a : dict , __a : str = "root" , __a : str=0 ): UpperCAmelCase_ = name UpperCAmelCase_ = level UpperCAmelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() UpperCAmelCase_ = copy.deepcopy(__a ) UpperCAmelCase_ = copy.deepcopy(__a ) if isinstance(__a , __a ): UpperCAmelCase_ = Config(__a , name=__a , level=level + 1 ) UpperCAmelCase_ = v setattr(self , __a , __a ) UpperCAmelCase_ = d def __repr__(self : List[Any] ): return str(list((self._pointer.keys()) ) ) def __setattr__(self : int , __a : str , __a : Dict ): UpperCAmelCase_ = val UpperCAmelCase_ = val UpperCAmelCase_ = key.split("." ) UpperCAmelCase_ = len(__a ) - 1 UpperCAmelCase_ = self._pointer if len(__a ) > 1: for i, l in enumerate(__a ): if hasattr(self , __a ) and isinstance(getattr(self , __a ) , __a ): setattr(getattr(self , __a ) , ".".join(levels[i:] ) , __a ) if l == last_level: UpperCAmelCase_ = val else: UpperCAmelCase_ = pointer[l] def _lowercase (self : Optional[Any] ): return self._pointer def _lowercase (self : int , __a : Union[str, Any] , __a : str ): with open(f"""{file_name}""" , "w" ) as stream: dump(__a , __a ) def _lowercase (self : Any , __a : Optional[Any] , __a : List[str] ): with open(f"""{file_name}""" , "w" ) as stream: json.dump(__a , __a ) @staticmethod def _lowercase (__a : str ): with open(__a ) as stream: UpperCAmelCase_ = load(__a , Loader=__a ) return data def __str__(self : Dict ): UpperCAmelCase_ = " " if self._name != "root": UpperCAmelCase_ = f"""{t * (self._level-1)}{self._name}:\n""" else: UpperCAmelCase_ = "" UpperCAmelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__a , __a ): r += f"""{t * (self._level)}{v}\n""" self._level += 1 else: r += f"""{t * (self._level)}{k}: {v} ({type(__a ).__name__})\n""" UpperCAmelCase_ = level return r[:-1] @classmethod def _lowercase (cls : Tuple , __a : str , **__a : Dict ): UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(__a , **__a ) return cls(__a ) @classmethod def _lowercase (cls : Any , __a : str , **__a : Dict ): UpperCAmelCase_ = kwargs.pop("cache_dir" , __a ) UpperCAmelCase_ = kwargs.pop("force_download" , __a ) UpperCAmelCase_ = kwargs.pop("resume_download" , __a ) UpperCAmelCase_ = kwargs.pop("proxies" , __a ) UpperCAmelCase_ = kwargs.pop("local_files_only" , __a ) if os.path.isdir(__a ): UpperCAmelCase_ = os.path.join(__a , __a ) elif os.path.isfile(__a ) or is_remote_url(__a ): UpperCAmelCase_ = pretrained_model_name_or_path else: UpperCAmelCase_ = hf_bucket_url(__a , filename=__a , use_cdn=__a ) try: # Load from URL or cache if already cached UpperCAmelCase_ = cached_path( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , ) # Load config dict if resolved_config_file is None: raise EnvironmentError UpperCAmelCase_ = Config.load_yaml(__a ) except EnvironmentError: UpperCAmelCase_ = "Can't load config for" raise EnvironmentError(__a ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(__a ), kwargs def lowerCAmelCase_ ( snake_case_ : str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = torch.load("dump.pt" , map_location=in_tensor.device ) UpperCAmelCase_ = in_tensor.numpy() UpperCAmelCase_ = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ), ( f"""{sum([1 for x in np.isclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %""" " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = urlparse(snake_case_ ) return parsed.scheme in ("http", "https") def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , snake_case_ : Optional[int]=True ) -> str: '''simple docstring''' UpperCAmelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX UpperCAmelCase_ = "/" not in model_id if legacy_format: return f"""{endpoint}/{model_id}-{filename}""" else: return f"""{endpoint}/{model_id}/{filename}""" def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int]=None , snake_case_ : List[Any]=0 , snake_case_ : int=None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(snake_case_ , snake_case_ ): ua += "; " + "; ".join("{}/{}".format(snake_case_ , snake_case_ ) for k, v in user_agent.items() ) elif isinstance(snake_case_ , snake_case_ ): ua += "; " + user_agent UpperCAmelCase_ = {"user-agent": ua} if resume_size > 0: UpperCAmelCase_ = "bytes=%d-" % (resume_size,) UpperCAmelCase_ = requests.get(snake_case_ , stream=snake_case_ , proxies=snake_case_ , headers=snake_case_ ) if response.status_code == 4_16: # Range not satisfiable return UpperCAmelCase_ = response.headers.get("Content-Length" ) UpperCAmelCase_ = resume_size + int(snake_case_ ) if content_length is not None else None UpperCAmelCase_ = tqdm( unit="B" , unit_scale=snake_case_ , total=snake_case_ , initial=snake_case_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(snake_case_ ) ) temp_file.write(snake_case_ ) progress.close() def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : str=None , snake_case_ : List[str]=False , snake_case_ : List[str]=None , snake_case_ : int=10 , snake_case_ : Any=False , snake_case_ : int=None , snake_case_ : str=False , ) -> str: '''simple docstring''' if cache_dir is None: UpperCAmelCase_ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ = str(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCAmelCase_ = None if not local_files_only: try: UpperCAmelCase_ = requests.head(snake_case_ , allow_redirects=snake_case_ , proxies=snake_case_ , timeout=snake_case_ ) if response.status_code == 2_00: UpperCAmelCase_ = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass UpperCAmelCase_ = url_to_filename(snake_case_ , snake_case_ ) # get cache path to put the file UpperCAmelCase_ = os.path.join(snake_case_ , snake_case_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(snake_case_ ): return cache_path else: UpperCAmelCase_ = [ file for file in fnmatch.filter(os.listdir(snake_case_ ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(snake_case_ ) > 0: return os.path.join(snake_case_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(snake_case_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. UpperCAmelCase_ = cache_path + ".lock" with FileLock(snake_case_ ): # If the download just completed while the lock was activated. if os.path.exists(snake_case_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: UpperCAmelCase_ = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(snake_case_ , "a+b" ) as f: yield f UpperCAmelCase_ = _resumable_file_manager if os.path.exists(snake_case_ ): UpperCAmelCase_ = os.stat(snake_case_ ).st_size else: UpperCAmelCase_ = 0 else: UpperCAmelCase_ = partial(tempfile.NamedTemporaryFile , dir=snake_case_ , delete=snake_case_ ) UpperCAmelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , snake_case_ , temp_file.name , ) http_get( snake_case_ , snake_case_ , proxies=snake_case_ , resume_size=snake_case_ , user_agent=snake_case_ , ) os.replace(temp_file.name , snake_case_ ) UpperCAmelCase_ = {"url": url, "etag": etag} UpperCAmelCase_ = cache_path + ".json" with open(snake_case_ , "w" ) as meta_file: json.dump(snake_case_ , snake_case_ ) return cache_path def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Any=None ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = url.encode("utf-8" ) UpperCAmelCase_ = shaaaa(snake_case_ ) UpperCAmelCase_ = url_hash.hexdigest() if etag: UpperCAmelCase_ = etag.encode("utf-8" ) UpperCAmelCase_ = shaaaa(snake_case_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Tuple=None , snake_case_ : int=False , snake_case_ : Any=None , snake_case_ : List[Any]=False , snake_case_ : Any=None , snake_case_ : Any=False , snake_case_ : List[str]=False , snake_case_ : str=False , ) -> Union[str, Any]: '''simple docstring''' if cache_dir is None: UpperCAmelCase_ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ = str(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ = str(snake_case_ ) if is_remote_url(snake_case_ ): # URL, so get it from the cache (downloading if necessary) UpperCAmelCase_ = get_from_cache( snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , user_agent=snake_case_ , local_files_only=snake_case_ , ) elif os.path.exists(snake_case_ ): # File, and it exists. UpperCAmelCase_ = url_or_filename elif urlparse(snake_case_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(snake_case_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(snake_case_ ) ) if extract_compressed_file: if not is_zipfile(snake_case_ ) and not tarfile.is_tarfile(snake_case_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" UpperCAmelCase_ , UpperCAmelCase_ = os.path.split(snake_case_ ) UpperCAmelCase_ = output_file.replace("." , "-" ) + "-extracted" UpperCAmelCase_ = os.path.join(snake_case_ , snake_case_ ) if os.path.isdir(snake_case_ ) and os.listdir(snake_case_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions UpperCAmelCase_ = output_path + ".lock" with FileLock(snake_case_ ): shutil.rmtree(snake_case_ , ignore_errors=snake_case_ ) os.makedirs(snake_case_ ) if is_zipfile(snake_case_ ): with ZipFile(snake_case_ , "r" ) as zip_file: zip_file.extractall(snake_case_ ) zip_file.close() elif tarfile.is_tarfile(snake_case_ ): UpperCAmelCase_ = tarfile.open(snake_case_ ) tar_file.extractall(snake_case_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(snake_case_ ) ) return output_path_extracted return output_path def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Optional[int]="," ) -> int: '''simple docstring''' assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): with open(snake_case_ ) as f: UpperCAmelCase_ = eval(f.read() ) else: UpperCAmelCase_ = requests.get(snake_case_ ) try: UpperCAmelCase_ = requests.json() except Exception: UpperCAmelCase_ = req.content.decode() assert data is not None, "could not connect" try: UpperCAmelCase_ = eval(snake_case_ ) except Exception: UpperCAmelCase_ = data.split("\n" ) req.close() return data def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ = requests.get(snake_case_ ) UpperCAmelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(snake_case_ ) with open(snake_case_ , "rb" ) as stream: UpperCAmelCase_ = pkl.load(snake_case_ ) UpperCAmelCase_ = weights.pop("model" ) UpperCAmelCase_ = {} for k, v in model.items(): UpperCAmelCase_ = torch.from_numpy(snake_case_ ) if "running_var" in k: UpperCAmelCase_ = torch.tensor([0] ) UpperCAmelCase_ = k.replace("running_var" , "num_batches_tracked" ) UpperCAmelCase_ = zero return new def lowerCAmelCase_ ( ) -> int: '''simple docstring''' print(f"""{os.path.abspath(os.path.join(snake_case_ , os.pardir ) )}/demo.ipynb""" ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any="RGB" ) -> Dict: '''simple docstring''' assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): UpperCAmelCase_ = cva.imread(snake_case_ ) else: UpperCAmelCase_ = get_image_from_url(snake_case_ ) assert img is not None, f"""could not connect to: {im}""" UpperCAmelCase_ = cva.cvtColor(snake_case_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": UpperCAmelCase_ = img[:, :, ::-1] return img def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Union[str, Any]=1 ) -> str: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(snake_case_ ) , snake_case_ ))
106
0
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ = 16 lowercase__ = 32 def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 16 ) -> List[str]: """simple docstring""" lowerCAmelCase_ : str = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase_ : List[Any] = DatasetDict( { "train": dataset["train"].select(__UpperCamelCase ), "validation": dataset["train"].select(__UpperCamelCase ), "test": dataset["validation"], } ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ : Optional[int] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ : Dict = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ : List[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ : Any = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ : int = 8 else: lowerCAmelCase_ : List[Any] = None return tokenizer.pad( __UpperCamelCase , padding="longest" , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. lowerCAmelCase_ : str = DataLoader( tokenized_datasets["train"] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = DataLoader( tokenized_datasets["validation"] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) lowerCAmelCase_ : Tuple = DataLoader( tokenized_datasets["test"] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader, test_dataloader def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> int: """simple docstring""" lowerCAmelCase_ : Tuple = [] # Download the dataset lowerCAmelCase_ : str = load_dataset("glue" , "mrpc" ) # Create our splits lowerCAmelCase_ : Optional[int] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowerCAmelCase_ : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ : Optional[int] = config["lr"] lowerCAmelCase_ : int = int(config["num_epochs"] ) lowerCAmelCase_ : List[Any] = int(config["seed"] ) lowerCAmelCase_ : Tuple = int(config["batch_size"] ) lowerCAmelCase_ : Optional[int] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase_ : Dict = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase_ : Any = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase_ : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) # New Code # # Create our folds: lowerCAmelCase_ : Dict = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] ) lowerCAmelCase_ : str = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__UpperCamelCase ): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = get_fold_dataloaders( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ : List[str] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase_ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler lowerCAmelCase_ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Any = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase_ : Any = model(**__UpperCamelCase ) lowerCAmelCase_ : List[str] = outputs.loss lowerCAmelCase_ : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ : Optional[int] = model(**__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) lowerCAmelCase_ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __UpperCamelCase ) # New Code # # We also run predictions on the test set at the very end lowerCAmelCase_ : List[Any] = [] for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(**__UpperCamelCase ) lowerCAmelCase_ : Dict = outputs.logits lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__UpperCamelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowerCAmelCase_ : Tuple = torch.cat(__UpperCamelCase , dim=0 ) lowerCAmelCase_ : str = torch.stack(__UpperCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowerCAmelCase_ : Union[str, Any] = metric.compute(predictions=__UpperCamelCase , references=__UpperCamelCase ) accelerator.print("Average test metrics from all folds:" , __UpperCamelCase ) def __lowerCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase_ : Dict = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds" , type=__UpperCamelCase , default=3 , help="The number of splits to perform across the dataset" ) lowerCAmelCase_ : str = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
241
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Union[str, Any] = ["""flax"""] def __init__( self : Dict , *a_ : Optional[Any] , **a_ : List[str] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Union[str, Any] , **a_ : Optional[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : Union[str, Any] , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""flax"""] def __init__( self : Dict , *a_ : Optional[Any] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : Union[str, Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Dict = ["""flax"""] def __init__( self : Any , *a_ : Optional[int] , **a_ : str ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Tuple , **a_ : Dict ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Union[str, Any] , *a_ : Any , **a_ : Union[str, Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Optional[Any] = ["""flax"""] def __init__( self : str , *a_ : Optional[int] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Dict , **a_ : str ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Optional[int] , **a_ : List[str] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Optional[Any] = ["""flax"""] def __init__( self : Optional[Any] , *a_ : Optional[Any] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : Union[str, Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : Dict , **a_ : Any ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Tuple , *a_ : Optional[Any] , **a_ : Tuple ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[int] , *a_ : List[Any] , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[str] = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : str , **a_ : Any ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Any , **a_ : Tuple ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Optional[int] , **a_ : str ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : int = ["""flax"""] def __init__( self : Dict , *a_ : str , **a_ : int ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : List[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : List[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""flax"""] def __init__( self : Any , *a_ : Any , **a_ : int ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Tuple , **a_ : Optional[int] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Dict , **a_ : Dict ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Any = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : Any , **a_ : List[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : List[Any] , **a_ : Optional[int] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : List[Any] , **a_ : Tuple ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""flax"""] def __init__( self : Tuple , *a_ : Optional[int] , **a_ : Union[str, Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : List[str] , **a_ : Optional[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Union[str, Any] , *a_ : Any , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[str] = ["""flax"""] def __init__( self : Optional[Any] , *a_ : Optional[Any] , **a_ : Dict ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : int , **a_ : List[str] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : int , **a_ : str ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Any = ["""flax"""] def __init__( self : List[str] , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : Optional[int] , **a_ : Dict ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : Union[str, Any] , **a_ : Union[str, Any] ): requires_backends(cls , ["flax"] )
241
1
def snake_case_ (__A : str ) -> bool: return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def snake_case_ (__A : str ) -> bool: __lowerCAmelCase : List[str] = credit_card_number __lowerCAmelCase : Dict = 0 __lowerCAmelCase : Dict = len(__A ) - 2 for i in range(__A , -1 , -2 ): # double the value of every second digit __lowerCAmelCase : List[str] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 __lowerCAmelCase : Tuple = cc_number[:i] + str(__A ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def snake_case_ (__A : str ) -> bool: __lowerCAmelCase : List[str] = f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 1_3 <= len(__A ) <= 1_6: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(__A ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(__A ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
139
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : str=2 , lowerCAmelCase : Optional[Any]=56 , lowerCAmelCase : Any=True , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Any=True , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : int=2 , lowerCAmelCase : str=7 , lowerCAmelCase : List[Any]="gelu_new" , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Optional[Any]=5_12 , lowerCAmelCase : Dict=16 , lowerCAmelCase : int=2 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : Union[str, Any]="block_sparse" , lowerCAmelCase : List[str]=True , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : List[Any]=3 , ) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = parent __lowerCAmelCase : Union[str, Any] = batch_size __lowerCAmelCase : List[Any] = seq_length __lowerCAmelCase : int = is_training __lowerCAmelCase : Union[str, Any] = use_attention_mask __lowerCAmelCase : Tuple = use_token_type_ids __lowerCAmelCase : Union[str, Any] = use_labels __lowerCAmelCase : List[str] = vocab_size __lowerCAmelCase : int = hidden_size __lowerCAmelCase : Tuple = num_hidden_layers __lowerCAmelCase : List[str] = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : List[Any] = hidden_act __lowerCAmelCase : Optional[Any] = hidden_dropout_prob __lowerCAmelCase : List[str] = attention_probs_dropout_prob __lowerCAmelCase : Optional[int] = max_position_embeddings __lowerCAmelCase : str = type_vocab_size __lowerCAmelCase : List[Any] = type_sequence_label_size __lowerCAmelCase : Tuple = initializer_range __lowerCAmelCase : str = num_choices __lowerCAmelCase : Any = rescale_embeddings __lowerCAmelCase : str = attention_type __lowerCAmelCase : List[Any] = use_bias __lowerCAmelCase : List[str] = block_size __lowerCAmelCase : Union[str, Any] = num_random_blocks def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: """simple docstring""" __lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Optional[Any] = None if self.use_attention_mask: __lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Any = None if self.use_token_type_ids: __lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : List[Any] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" __lowerCAmelCase : List[str] = self.prepare_config_and_inputs() __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Any = config_and_inputs __lowerCAmelCase : Union[str, Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowerCamelCase : List[str] =False lowerCamelCase : Union[str, Any] =False def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: """simple docstring""" __lowerCAmelCase : str = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: """simple docstring""" super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: """simple docstring""" super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: """simple docstring""" super().test_hidden_states_output() @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: __lowerCAmelCase : List[str] = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: """simple docstring""" if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase : List[str] = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : Union[str, Any] ): return model(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , **lowerCAmelCase ) with self.subTest("""JIT Enabled""" ): __lowerCAmelCase : str = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCAmelCase : List[Any] = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any]=1e-5 , lowerCAmelCase : Union[str, Any]="outputs" , lowerCAmelCase : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
139
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["""image_processor""", """tokenizer"""] SCREAMING_SNAKE_CASE_ : List[str] = """CLIPImageProcessor""" SCREAMING_SNAKE_CASE_ : Tuple = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Optional[int] , __lowerCamelCase : Tuple=None , __lowerCamelCase : Any=None , **__lowerCamelCase : Any ) -> str: a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) a = kwargs.pop("feature_extractor" ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : int , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=None , **__lowerCamelCase : str ) -> Any: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: a = self.tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if images is not None: a = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase ) , tensor_type=__lowerCamelCase ) def __UpperCAmelCase ( self : Dict , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ) -> List[str]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def __UpperCAmelCase ( self : Any ) -> str: a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCAmelCase ( self : int ) -> Union[str, Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def __UpperCAmelCase ( self : Any ) -> Optional[int]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
107
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __lowerCAmelCase : List[Any] = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def __magic_name__ ( A : Dict, A : Union[str, Any], A : Optional[int]=None ): '''simple docstring''' if rng is None: a = random.Random() a = 1 for dim in shape: total_dims *= dim a = [] for _ in range(A ): values.append(rng.randint(0, vocab_size - 1 ) ) a = np.array(A, dtype=jnp.intaa ).reshape(A ) return output def __magic_name__ ( A : Dict, A : Union[str, Any]=None ): '''simple docstring''' a = ids_tensor(A, vocab_size=2, rng=A ) # make sure that at least one token is attended to for each batch a = 1 return attn_mask @require_flax class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Any = () def __UpperCAmelCase ( self : int ) -> List[str]: a , a = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 a = 2 a = inputs["input_ids"].shape[-1] // 2 a = inputs["input_ids"][:max_batch_size, :sequence_length] a = jnp.ones_like(__lowerCamelCase ) a = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens a = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` a = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __UpperCAmelCase ( self : Optional[Any] ) -> int: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length a = 0 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model_class.__name__[4:] # Skip the "Flax" at the beginning a = getattr(__lowerCamelCase , __lowerCamelCase ) a = pt_model_class(__lowerCamelCase ).eval() a = load_flax_weights_in_pytorch_model(__lowerCamelCase , flax_model.params ) a = flax_model.generate(__lowerCamelCase ).sequences a = pt_model.generate(torch.tensor(__lowerCamelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: a = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[int] ) -> Any: a , a , a , a = self._get_input_ids_and_config() a = True a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : int ) -> Dict: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length a = 2 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length a = 2 a = 2 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: a , a , a , a = self._get_input_ids_and_config() a = True a = max_length a = 0.8 a = 10 a = 0.3 a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: a , a , a , a = self._get_input_ids_and_config() a = max_length a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: a , a , a , a = self._get_input_ids_and_config() a = max_length a = 2 a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: a , a , a , a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = False a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Tuple ) -> Tuple: a , a , a , a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = True a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: a , a , a , a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = 2 a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) a = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) a = "Hello world" a = tokenizer(__lowerCamelCase , return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCamelCase , "do_samples" ): model.generate(__lowerCamelCase , do_samples=__lowerCamelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCamelCase , "foo" ): a = {"foo": "bar"} model.generate(__lowerCamelCase , **__lowerCamelCase )
107
1
'''simple docstring''' import math import sys def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Tuple = '' try: with open(_A , 'rb' ) as binary_file: _lowerCAmelCase : Dict = binary_file.read() for dat in data: _lowerCAmelCase : Any = f'{dat:08b}' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[str] = {'0': '0', '1': '1'} _lowerCAmelCase : Optional[int] = '', '' _lowerCAmelCase : Optional[Any] = len(_A ) for i in range(len(_A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowerCAmelCase : Any = lexicon[curr_string] result += last_match_id _lowerCAmelCase : Dict = last_match_id + '0' if math.loga(_A ).is_integer(): _lowerCAmelCase : str = {} for curr_key in list(_A ): _lowerCAmelCase : Any = lexicon.pop(_A ) _lowerCAmelCase : Tuple = new_lex _lowerCAmelCase : List[str] = last_match_id + '1' index += 1 _lowerCAmelCase : Dict = '' return result def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 8 try: with open(_A , 'wb' ) as opened_file: _lowerCAmelCase : Tuple = [ to_write[i : i + byte_length] for i in range(0 , len(_A ) , _A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_A , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 _lowerCAmelCase : Optional[Any] = data_bits[counter:] _lowerCAmelCase : str = data_bits[counter + 1 :] return data_bits def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : List[str] = read_file_binary(_A ) _lowerCAmelCase : List[str] = remove_prefix(_A ) _lowerCAmelCase : str = decompress_data(_A ) write_file_binary(_A , _A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
350
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase : List[str] = '' _lowerCAmelCase : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase : Any = 0 for j in range(len(_A ) ): _lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase : List[str] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741 _lowerCAmelCase : int = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase : Dict = length[j] _lowerCAmelCase : Optional[int] = j # create that string _lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
25
0
from __future__ import annotations def lowerCAmelCase_ ( __A = 4 ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = abs(__A ) or 4 return [[1 + x + y * row_size for x in range(__A )] for y in range(__A )] def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(__A ) ) # OR.. transpose(reverse_column(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(__A ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(__A ) ) # OR.. transpose(reverse_row(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = [list(__A ) for x in zip(*__A )] return matrix def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = matrix[::-1] return matrix def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = [x[::-1] for x in matrix] return matrix def lowerCAmelCase_ ( __A ) -> None: '''simple docstring''' for i in matrix: print(*__A ) if __name__ == "__main__": UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
65
import math import random def lowerCAmelCase_ ( __A, __A = False ) -> float: '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value UpperCamelCase__ = 0.0_2 def lowerCAmelCase_ ( __A, __A ) -> float: '''simple docstring''' UpperCAmelCase__ = float(2 * (random.randint(1, 100 )) - 1 ) for _ in range(__A ): # Forward propagation UpperCAmelCase__ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCAmelCase__ = (expected / 100) - layer_a # Error delta UpperCAmelCase__ = layer_1_error * sigmoid_function(__A, __A ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = int(input('Expected value: ')) UpperCamelCase__ = int(input('Number of propagations: ')) print(forward_propagation(expected, number_propagations))
65
1
import requests from bsa import BeautifulSoup def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> str: """simple docstring""" snake_case_ = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE , params=SCREAMING_SNAKE_CASE ).content , '''html.parser''' ) snake_case_ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) snake_case_ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": UpperCAmelCase = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
267
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): snake_case_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , '''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , '''num_encoder_blocks''' ) ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=64 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=[2, 2, 2, 2] , _UpperCAmelCase=[8, 4, 2, 1] , _UpperCAmelCase=[16, 32, 64, 1_28] , _UpperCAmelCase=[1, 4, 8, 16] , _UpperCAmelCase=[1, 2, 4, 8] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_encoder_blocks snake_case_ = sr_ratios snake_case_ = depths snake_case_ = hidden_sizes snake_case_ = downsampling_rates snake_case_ = num_attention_heads snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope def UpperCamelCase__ ( self ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = SegformerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) snake_case_ = snake_case_ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = self.num_labels snake_case_ = SegformerForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) snake_case_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = 1 snake_case_ = SegformerForSemanticSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_UpperCAmelCase ) snake_case_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase__ ( self ): snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __snake_case = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case = True __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase__ ( self ): snake_case_ = SegformerModelTester(self ) snake_case_ = SegformerConfigTester(self , config_class=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_UpperCAmelCase ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def UpperCamelCase__ ( self ): pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = outputs.attentions snake_case_ = sum(self.model_tester.depths ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # verify the first attentions (first block, first layer) snake_case_ = (self.model_tester.image_size // 4) ** 2 snake_case_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) snake_case_ = (self.model_tester.image_size // 32) ** 2 snake_case_ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) snake_case_ = len(_UpperCAmelCase ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(_UpperCAmelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # verify the first attentions (first block, first layer) snake_case_ = (self.model_tester.image_size // 4) ** 2 snake_case_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCamelCase__ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = self.model_tester.num_encoder_blocks self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self ): if not self.model_tester.is_training: return snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCAmelCase ): continue snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() snake_case_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) snake_case_ = model(**_UpperCAmelCase ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase__ ( self ): pass @slow def UpperCamelCase__ ( self ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SegformerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowerCAmelCase ()-> List[str]: """simple docstring""" snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_UpperCAmelCase , align=_UpperCAmelCase , do_random_crop=_UpperCAmelCase ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( _UpperCAmelCase ) snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(_UpperCAmelCase ) with torch.no_grad(): snake_case_ = model(_UpperCAmelCase ) snake_case_ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) snake_case_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_UpperCAmelCase , align=_UpperCAmelCase , do_random_crop=_UpperCAmelCase ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(_UpperCAmelCase ) snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(_UpperCAmelCase ) with torch.no_grad(): snake_case_ = model(_UpperCAmelCase ) snake_case_ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) snake_case_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-1 ) ) @slow def UpperCamelCase__ ( self ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_UpperCAmelCase , align=_UpperCAmelCase , do_random_crop=_UpperCAmelCase ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( _UpperCAmelCase ) snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(_UpperCAmelCase ) with torch.no_grad(): snake_case_ = model(_UpperCAmelCase ) snake_case_ = outputs.logits.detach().cpu() snake_case_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(5_00, 3_00)] ) snake_case_ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) snake_case_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) snake_case_ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
267
1
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __lowercase = logging.get_logger(__name__) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = to_pil_image(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :str = pil_image.size __UpperCamelCase :str = pytesseract.image_to_data(SCREAMING_SNAKE_CASE , lang=SCREAMING_SNAKE_CASE , output_type='''dict''' , config=SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __UpperCamelCase :Dict = [idx for idx, word in enumerate(SCREAMING_SNAKE_CASE ) if not word.strip()] __UpperCamelCase :Union[str, Any] = [word for idx, word in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] __UpperCamelCase :List[Any] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] __UpperCamelCase :Dict = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] __UpperCamelCase :List[str] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] __UpperCamelCase :str = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __UpperCamelCase :int = [] for x, y, w, h in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :int = [x, y, x + w, y + h] actual_boxes.append(SCREAMING_SNAKE_CASE ) # finally, normalize the bounding boxes __UpperCamelCase :Optional[int] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : int = ["""pixel_values"""] def __init__( self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = 1 / 255 , __lowercase = True , __lowercase = None , __lowercase = None , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ) -> None: super().__init__(**__lowercase) __UpperCamelCase :Any = size if size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase :str = get_size_dict(__lowercase) __UpperCamelCase :Tuple = do_resize __UpperCamelCase :Tuple = size __UpperCamelCase :Union[str, Any] = resample __UpperCamelCase :str = do_rescale __UpperCamelCase :Optional[int] = rescale_value __UpperCamelCase :List[str] = do_normalize __UpperCamelCase :Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCamelCase :str = image_std if image_std is not None else IMAGENET_STANDARD_STD __UpperCamelCase :str = apply_ocr __UpperCamelCase :Optional[Any] = ocr_lang __UpperCamelCase :Optional[Any] = tesseract_config def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ) -> np.ndarray: __UpperCamelCase :List[str] = get_size_dict(__lowercase) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""") __UpperCamelCase :Any = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> np.ndarray: return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> np.ndarray: return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase=None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ) -> PIL.Image.Image: __UpperCamelCase :Optional[Any] = do_resize if do_resize is not None else self.do_resize __UpperCamelCase :Dict = size if size is not None else self.size __UpperCamelCase :Union[str, Any] = get_size_dict(__lowercase) __UpperCamelCase :List[Any] = resample if resample is not None else self.resample __UpperCamelCase :Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase :List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase :str = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase :Any = image_mean if image_mean is not None else self.image_mean __UpperCamelCase :List[str] = image_std if image_std is not None else self.image_std __UpperCamelCase :List[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr __UpperCamelCase :int = ocr_lang if ocr_lang is not None else self.ocr_lang __UpperCamelCase :Dict = tesseract_config if tesseract_config is not None else self.tesseract_config __UpperCamelCase :Optional[int] = make_list_of_images(__lowercase) if not valid_images(__lowercase): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''') # All transformations expect numpy arrays. __UpperCamelCase :Any = [to_numpy_array(__lowercase) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''') __UpperCamelCase :str = [] __UpperCamelCase :Optional[Any] = [] for image in images: __UpperCamelCase , __UpperCamelCase :Optional[Any] = apply_tesseract(__lowercase , __lowercase , __lowercase) words_batch.append(__lowercase) boxes_batch.append(__lowercase) if do_resize: __UpperCamelCase :Dict = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase) for image in images] if do_rescale: __UpperCamelCase :Tuple = [self.rescale(image=__lowercase , scale=__lowercase) for image in images] if do_normalize: __UpperCamelCase :List[str] = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase) for image in images] __UpperCamelCase :Dict = [to_channel_dimension_format(__lowercase , __lowercase) for image in images] __UpperCamelCase :Any = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase) if apply_ocr: __UpperCamelCase :List[Any] = words_batch __UpperCamelCase :int = boxes_batch return data
43
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def __SCREAMING_SNAKE_CASE ( A_ = 1_00_00_00 , A_ = 10 ): lowerCAmelCase__ : defaultdict = defaultdict(A_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCAmelCase__ : int = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCAmelCase__ : Tuple = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(A_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'''{solution() = }''')
106
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) A_ : int = '\\n Text data.\n Second line of data.' A_ : Dict = 'file' @pytest.fixture(scope="""session""" ) def UpperCamelCase (lowercase_: Union[str, Any] ) -> List[Any]: A__ : List[Any] = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") A__ : List[Any] = bytes(lowercase_ , """utf-8""" ) with zstd.open(lowercase_ , """wb""" ) as f: f.write(lowercase_ ) return path @pytest.fixture def UpperCamelCase (lowercase_: Any ) -> Optional[int]: with open(os.path.join(tmpfs.local_root_dir , lowercase_ ) , """w""" ) as f: f.write(lowercase_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCamelCase (lowercase_: Dict , lowercase_: Tuple , lowercase_: Any , lowercase_: str , lowercase_: str , lowercase_: int ) -> int: A__ : Dict = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} A__ : int = input_paths[compression_format] A__ : int = tmp_path / """cache""" A__ : Dict = DownloadConfig(cache_dir=lowercase_ , extract_compressed_file=lowercase_ ) A__ : int = cached_path(lowercase_ , download_config=lowercase_ ) with open(lowercase_ ) as f: A__ : int = f.read() with open(lowercase_ ) as f: A__ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCamelCase (lowercase_: int , lowercase_: int , lowercase_: int , lowercase_: Union[str, Any] , lowercase_: Any ) -> Union[str, Any]: A__ : Dict = """custom_cache""" A__ : Optional[Any] = """custom_extracted_dir""" A__ : Dict = tmp_path / """custom_extracted_path""" if default_extracted: A__ : Optional[int] = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , lowercase_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowercase_ ) ) A__ : Optional[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A__ : Any = xz_file A__ : Tuple = ( DownloadConfig(extract_compressed_file=lowercase_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowercase_ ) ) A__ : List[str] = cached_path(lowercase_ , download_config=lowercase_ ) assert Path(lowercase_ ).parent.parts[-2:] == expected def UpperCamelCase (lowercase_: List[Any] ) -> str: # absolute path A__ : Any = str(Path(lowercase_ ).resolve() ) assert cached_path(lowercase_ ) == text_file # relative path A__ : Any = str(Path(lowercase_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowercase_ ) == text_file def UpperCamelCase (lowercase_: Optional[Any] ) -> Any: # absolute path A__ : str = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(lowercase_ ): cached_path(lowercase_ ) # relative path A__ : Optional[int] = """./__missing_file__.txt""" with pytest.raises(lowercase_ ): cached_path(lowercase_ ) def UpperCamelCase (lowercase_: Optional[int] ) -> Union[str, Any]: A__ : Tuple = get_from_cache(f"""tmp://{tmpfs_file}""" ) with open(lowercase_ ) as f: A__ : Any = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase_ ) def UpperCamelCase () -> str: with pytest.raises(lowercase_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase_ ) def UpperCamelCase (lowercase_: Union[str, Any] ) -> Union[str, Any]: A__ : Any = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowercase_ ): http_get("""https://huggingface.co""" , temp_file=lowercase_ ) with pytest.raises(lowercase_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase_ ) def UpperCamelCase (lowercase_: List[str] ) -> int: A__ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowercase_ ): ftp_get("""ftp://huggingface.co""" , temp_file=lowercase_ ) with pytest.raises(lowercase_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase_ ) def UpperCamelCase (lowercase_: Dict ) -> Dict: A__ : str = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowercase_ ): fsspec_get("""s3://huggingface.co""" , temp_file=lowercase_ ) with pytest.raises(lowercase_ ): fsspec_head("""s3://huggingface.co""" )
141
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable A_ : List[Any] = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
141
1
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class _snake_case : def __init__( self : int ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Any=13 ,SCREAMING_SNAKE_CASE__ : int=7 ,SCREAMING_SNAKE_CASE__ : Any=False ,SCREAMING_SNAKE_CASE__ : Tuple=True ,SCREAMING_SNAKE_CASE__ : Any=False ,SCREAMING_SNAKE_CASE__ : Dict=False ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=19 ,SCREAMING_SNAKE_CASE__ : str=32 ,SCREAMING_SNAKE_CASE__ : str=5 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 ,SCREAMING_SNAKE_CASE__ : List[Any]=37 ,SCREAMING_SNAKE_CASE__ : List[str]="gelu" ,SCREAMING_SNAKE_CASE__ : str=0.1 ,SCREAMING_SNAKE_CASE__ : str=0.1 ,SCREAMING_SNAKE_CASE__ : Tuple=512 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=16 ,SCREAMING_SNAKE_CASE__ : Optional[int]=2 ,SCREAMING_SNAKE_CASE__ : str=0.02 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 ,SCREAMING_SNAKE_CASE__ : Tuple=4 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,): SCREAMING_SNAKE_CASE:List[str] = parent SCREAMING_SNAKE_CASE:Optional[Any] = batch_size SCREAMING_SNAKE_CASE:Tuple = seq_length SCREAMING_SNAKE_CASE:Tuple = is_training SCREAMING_SNAKE_CASE:Union[str, Any] = use_input_mask SCREAMING_SNAKE_CASE:int = use_token_type_ids SCREAMING_SNAKE_CASE:List[str] = use_labels SCREAMING_SNAKE_CASE:Optional[Any] = vocab_size SCREAMING_SNAKE_CASE:List[Any] = hidden_size SCREAMING_SNAKE_CASE:Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE:Tuple = num_attention_heads SCREAMING_SNAKE_CASE:int = intermediate_size SCREAMING_SNAKE_CASE:Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE:Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE:int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE:List[str] = max_position_embeddings SCREAMING_SNAKE_CASE:str = type_vocab_size SCREAMING_SNAKE_CASE:Union[str, Any] = type_sequence_label_size SCREAMING_SNAKE_CASE:Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE:Optional[int] = num_labels SCREAMING_SNAKE_CASE:Union[str, Any] = num_choices SCREAMING_SNAKE_CASE:str = scope def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE:Tuple = None if self.use_input_mask: SCREAMING_SNAKE_CASE:Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE:Any = None SCREAMING_SNAKE_CASE:str = None SCREAMING_SNAKE_CASE:int = None if self.use_labels: SCREAMING_SNAKE_CASE:List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE:List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE:Union[str, Any] = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE:Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : List[str] ): SCREAMING_SNAKE_CASE:Dict = EsmConfig( vocab_size=33 ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,is_folding_model=SCREAMING_SNAKE_CASE__ ,esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} ,) return config def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[Any] ): SCREAMING_SNAKE_CASE:List[Any] = EsmForProteinFolding(config=SCREAMING_SNAKE_CASE__ ).float() model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:str = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[Any] = model(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.positions.shape ,(8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape ,(8, self.batch_size, self.seq_length, 7, 2) ) def __UpperCamelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE:str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ):List[str] = config_and_inputs SCREAMING_SNAKE_CASE:List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( _a , _a , unittest.TestCase ): _A : Dict = False _A : Optional[int] = (EsmForProteinFolding,) if is_torch_available() else () _A : Optional[int] = () _A : int = {} if is_torch_available() else {} _A : List[str] = False def __UpperCamelCase ( self : Dict ): SCREAMING_SNAKE_CASE:Optional[int] = EsmFoldModelTester(self ) SCREAMING_SNAKE_CASE:str = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ,hidden_size=37 ) def __UpperCamelCase ( self : List[str] ): self.config_tester.run_common_tests() def __UpperCamelCase ( self : int ): SCREAMING_SNAKE_CASE:str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) @unittest.skip("Does not support attention outputs" ) def __UpperCamelCase ( self : Any ): pass @unittest.skip def __UpperCamelCase ( self : Dict ): pass @unittest.skip("Esm does not support embedding resizing" ) def __UpperCamelCase ( self : List[Any] ): pass @unittest.skip("Esm does not support embedding resizing" ) def __UpperCamelCase ( self : Any ): pass @unittest.skip("ESMFold does not support passing input embeds!" ) def __UpperCamelCase ( self : int ): pass @unittest.skip("ESMFold does not support head pruning." ) def __UpperCamelCase ( self : Dict ): pass @unittest.skip("ESMFold does not support head pruning." ) def __UpperCamelCase ( self : Optional[Any] ): pass @unittest.skip("ESMFold does not support head pruning." ) def __UpperCamelCase ( self : List[Any] ): pass @unittest.skip("ESMFold does not support head pruning." ) def __UpperCamelCase ( self : str ): pass @unittest.skip("ESMFold does not support head pruning." ) def __UpperCamelCase ( self : int ): pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def __UpperCamelCase ( self : List[Any] ): pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def __UpperCamelCase ( self : int ): pass @unittest.skip("ESMFold only has one output format." ) def __UpperCamelCase ( self : Optional[int] ): pass @unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality" ) def __UpperCamelCase ( self : str ): pass @unittest.skip("ESMFold does not support input chunking." ) def __UpperCamelCase ( self : List[str] ): pass @unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments." ) def __UpperCamelCase ( self : Union[str, Any] ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def __UpperCamelCase ( self : List[str] ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def __UpperCamelCase ( self : Union[str, Any] ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def __UpperCamelCase ( self : str ): pass @unittest.skip("ESMFold doesn't support data parallel." ) def __UpperCamelCase ( self : List[Any] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCamelCase ( self : List[Any] ): pass @require_torch class _snake_case ( _a ): @slow def __UpperCamelCase ( self : int ): SCREAMING_SNAKE_CASE:Dict = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() SCREAMING_SNAKE_CASE:str = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE:List[Any] = model(SCREAMING_SNAKE_CASE__ )["positions"] SCREAMING_SNAKE_CASE:str = torch.tensor([2.5_828, 0.7_993, -10.9_334] ,dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] ,SCREAMING_SNAKE_CASE__ ,atol=1e-4 ) )
139
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def A_ ( snake_case ): SCREAMING_SNAKE_CASE:int = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) SCREAMING_SNAKE_CASE:str = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) SCREAMING_SNAKE_CASE:Dict = components[:-1] + [test_fn.replace(".py" , "" )] SCREAMING_SNAKE_CASE:str = ".".join(snake_case ) return test_module_path def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Any = get_module_path(snake_case ) SCREAMING_SNAKE_CASE:List[Any] = importlib.import_module(snake_case ) return test_module def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Any = [] SCREAMING_SNAKE_CASE:List[Any] = get_test_module(snake_case ) for attr in dir(snake_case ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(snake_case , snake_case ) ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Any = [] SCREAMING_SNAKE_CASE:int = get_test_module(snake_case ) for attr in dir(snake_case ): SCREAMING_SNAKE_CASE:Optional[Any] = getattr(snake_case , snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). SCREAMING_SNAKE_CASE:Union[str, Any] = getattr(snake_case , "all_model_classes" , [] ) if len(snake_case ) > 0: test_classes.append(snake_case ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Any = get_test_classes(snake_case ) SCREAMING_SNAKE_CASE:List[str] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:List[Any] = test_class() if hasattr(snake_case , "setUp" ): test.setUp() SCREAMING_SNAKE_CASE:str = None if hasattr(snake_case , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: SCREAMING_SNAKE_CASE:Tuple = test.model_tester.__class__ return model_tester def A_ ( snake_case , snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = get_test_classes(snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(snake_case ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def A_ ( snake_case , snake_case ): SCREAMING_SNAKE_CASE:str = get_test_classes_for_model(snake_case , snake_case ) SCREAMING_SNAKE_CASE:Dict = [] for test_class in test_classes: SCREAMING_SNAKE_CASE:Dict = get_model_tester_from_test_class(snake_case ) if tester_class is not None: tester_classes.append(snake_case ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:str = get_test_classes(snake_case ) SCREAMING_SNAKE_CASE:Dict = {test_class: get_model_tester_from_test_class(snake_case ) for test_class in test_classes} return test_tester_mapping def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = get_model_classes(snake_case ) SCREAMING_SNAKE_CASE:Optional[int] = { model_class: get_test_classes_for_model(snake_case , snake_case ) for model_class in model_classes } return model_test_mapping def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = get_model_classes(snake_case ) SCREAMING_SNAKE_CASE:Tuple = { model_class: get_tester_classes_for_model(snake_case , snake_case ) for model_class in model_classes } return model_to_tester_mapping def A_ ( snake_case ): if isinstance(snake_case , snake_case ): return o elif isinstance(snake_case , snake_case ): return o.__name__ elif isinstance(snake_case , (list, tuple) ): return [to_json(snake_case ) for x in o] elif isinstance(snake_case , snake_case ): return {to_json(snake_case ): to_json(snake_case ) for k, v in o.items()} else: return o
139
1
def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowercase = [] for current_row_idx in range(lowerCAmelCase__ ): lowercase = populate_current_row(lowerCAmelCase__ , lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowercase , lowercase = 1, 1 for current_col_idx in range(1 , lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return current_row def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): '''simple docstring''' lowercase = triangle[current_row_idx - 1][current_col_idx - 1] lowercase = triangle[current_row_idx - 1][current_col_idx] lowercase = above_to_left_elt + above_to_right_elt def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowercase = [[1]] for row_index in range(1 , lowerCAmelCase__ ): lowercase = [0] + result[-1] + [0] lowercase = row_index + 1 # Calculate the number of distinct elements in a row lowercase = sum(divmod(lowerCAmelCase__ , 2 ) ) lowercase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] lowercase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowercase = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def UpperCamelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ , lowerCAmelCase__ ) -> None: lowercase = f'{func.__name__}({value})' lowercase = timeit(f'__main__.{call}' , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ , lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
97
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = np.inf def set_batch_size(lowerCAmelCase__ ) -> None: nonlocal batch_size if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and feature.dtype == "binary": lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(lowerCAmelCase__ , lowerCAmelCase__ ) return None if batch_size is np.inf else batch_size class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__ ,A__ = None ,A__ = None ,A__ = None ,A__ = False ,A__ = False ,A__ = None ,**A__ ,): super().__init__( A__ ,split=A__ ,features=A__ ,cache_dir=A__ ,keep_in_memory=A__ ,streaming=A__ ,num_proc=A__ ,**A__ ,) lowercase = path_or_paths if isinstance(A__ ,A__) else {self.split: path_or_paths} lowercase = _PACKAGED_DATASETS_MODULES['''parquet'''][1] lowercase = Parquet( cache_dir=A__ ,data_files=A__ ,features=A__ ,hash=A__ ,**A__ ,) def A__ ( self): # Build iterable dataset if self.streaming: lowercase = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: lowercase = None lowercase = None lowercase = None lowercase = None self.builder.download_and_prepare( download_config=A__ ,download_mode=A__ ,verification_mode=A__ ,base_path=A__ ,num_proc=self.num_proc ,) lowercase = self.builder.as_dataset( split=self.split ,verification_mode=A__ ,in_memory=self.keep_in_memory) return dataset class lowercase : def __init__( self ,A__ ,A__ ,A__ = None ,**A__ ,): lowercase = dataset lowercase = path_or_buf lowercase = batch_size or get_writer_batch_size(dataset.features) lowercase = parquet_writer_kwargs def A__ ( self): lowercase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike)): with open(self.path_or_buf ,'''wb+''') as buffer: lowercase = self._write(file_obj=A__ ,batch_size=A__ ,**self.parquet_writer_kwargs) else: lowercase = self._write(file_obj=self.path_or_buf ,batch_size=A__ ,**self.parquet_writer_kwargs) return written def A__ ( self ,A__ ,A__ ,**A__): lowercase = 0 lowercase = parquet_writer_kwargs.pop('''path_or_buf''' ,A__) lowercase = self.dataset.features.arrow_schema lowercase = pq.ParquetWriter(A__ ,schema=A__ ,**A__) for offset in logging.tqdm( range(0 ,len(self.dataset) ,A__) ,unit='''ba''' ,disable=not logging.is_progress_bar_enabled() ,desc='''Creating parquet from Arrow format''' ,): lowercase = query_table( table=self.dataset._data ,key=slice(A__ ,offset + batch_size) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(A__) written += batch.nbytes writer.close() return written
97
1
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class a ( a__ ): def __init__( self : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : int=True , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Optional[Any] ): _UpperCAmelCase = parent _UpperCAmelCase = config_class _UpperCAmelCase = has_text_modality _UpperCAmelCase = kwargs _UpperCAmelCase = common_properties def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.config_class(**self.inputs_dict ) _UpperCAmelCase = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(SCREAMING_SNAKE_CASE__ ): try: setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , msg=f'''`{name} value {idx} expected, but was {getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(SCREAMING_SNAKE_CASE__ ): try: _UpperCAmelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , msg=f'''`{name} value {idx} expected, but was {getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.config_class(**self.inputs_dict ) _UpperCAmelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE__ , """config.json""" ) config_first.to_json_file(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase = self.config_class.from_json_file(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase = self.config_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = self.config_class(**self.inputs_dict ) _UpperCAmelCase = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) config_first.save_pretrained(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase = self.config_class.from_pretrained(SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _UpperCAmelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def lowerCAmelCase_ ( self : str ): if self.config_class.is_composition: return _UpperCAmelCase = self.config_class() self.parent.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase = self.config_class(**SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) != value: wrong_values.append((key, getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), value) ) if len(SCREAMING_SNAKE_CASE__ ) > 0: _UpperCAmelCase = """\n""".join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def lowerCAmelCase_ ( self : int ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
289
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = 'Hello world! cécé herlolip' def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : int = FairseqRobertaModel.from_pretrained(_snake_case ) roberta.eval() # disable dropout SCREAMING_SNAKE_CASE__ : Any = roberta.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE__ : Any = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: SCREAMING_SNAKE_CASE__ : Dict = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" ,_snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = XLMRobertaXLForSequenceClassification(_snake_case ) if classification_head else XLMRobertaXLForMaskedLM(_snake_case ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE__ : Optional[int] = roberta_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE__ : int = roberta_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. SCREAMING_SNAKE_CASE__ : Optional[int] = roberta_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE__ : Dict = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE__ : BertLayer = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE__ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] SCREAMING_SNAKE_CASE__ : RobertaAttention = layer.attention SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE__ : List[Any] = roberta_layer.self_attn_layer_norm.bias # self attention SCREAMING_SNAKE_CASE__ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE__ : int = roberta_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE__ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE__ : Optional[int] = roberta_layer.final_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE__ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape SCREAMING_SNAKE_CASE__ : List[Any] = roberta_layer.fca.weight SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.fca.bias # output SCREAMING_SNAKE_CASE__ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.fca.weight SCREAMING_SNAKE_CASE__ : Optional[int] = roberta_layer.fca.bias # end of layer if classification_head: SCREAMING_SNAKE_CASE__ : List[Any] = roberta.model.classification_heads["""mnli"""].dense.weight SCREAMING_SNAKE_CASE__ : Optional[Any] = roberta.model.classification_heads["""mnli"""].dense.bias SCREAMING_SNAKE_CASE__ : Optional[Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE__ : str = roberta.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE__ : List[Any] = roberta.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE__ : Dict = roberta.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE__ : Optional[int] = roberta.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE__ : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE__ : torch.Tensor = roberta.encode(_snake_case ).unsqueeze(0 ) # batch of size 1 SCREAMING_SNAKE_CASE__ : Tuple = model(_snake_case )[0] if classification_head: SCREAMING_SNAKE_CASE__ : Dict = roberta.model.classification_heads["""mnli"""](roberta.extract_features(_snake_case ) ) else: SCREAMING_SNAKE_CASE__ : Tuple = roberta.model(_snake_case )[0] print(our_output.shape ,their_output.shape ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 SCREAMING_SNAKE_CASE__ : Tuple = torch.allclose(_snake_case ,_snake_case ,atol=1E-3 ) print("""Do both models output the same tensors?""" ,"""🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(_snake_case ).mkdir(parents=_snake_case ,exist_ok=_snake_case ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) UpperCAmelCase__ : Any = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
25
0
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings( A_ ,r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " ,) class __A ( A_ ): '''simple docstring''' def UpperCAmelCase ( self : Any ,_snake_case : Union[str, Any] ) -> np.ndarray: """simple docstring""" if self.framework == "tf": lowercase__ : Dict = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase__ : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=__a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def UpperCAmelCase ( self : str ,_snake_case : str ) -> np.ndarray: """simple docstring""" lowercase__ : List[Any] = self.get_masked_index(__a ) lowercase__ : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' ,self.model.base_model_prefix ,f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" ,) def UpperCAmelCase ( self : Tuple ,_snake_case : Union[str, Any] ) -> int: """simple docstring""" if isinstance(__a ,__a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__a ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,**_snake_case : Optional[int] ) -> Dict[str, GenericTensor]: """simple docstring""" if return_tensors is None: lowercase__ : Dict = self.framework lowercase__ : List[Any] = self.tokenizer(__a ,return_tensors=__a ) self.ensure_exactly_one_mask_token(__a ) return model_inputs def UpperCAmelCase ( self : List[Any] ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : int = self.model(**__a ) lowercase__ : Any = model_inputs['''input_ids'''] return model_outputs def UpperCAmelCase ( self : Optional[int] ,_snake_case : Dict ,_snake_case : str=5 ,_snake_case : int=None ) -> Optional[int]: """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: lowercase__ : int = target_ids.shape[0] lowercase__ : Tuple = model_outputs['''input_ids'''][0] lowercase__ : str = model_outputs['''logits'''] if self.framework == "tf": lowercase__ : Optional[int] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase__ : List[Any] = outputs.numpy() lowercase__ : Optional[int] = outputs[0, masked_index, :] lowercase__ : str = stable_softmax(__a ,axis=-1 ) if target_ids is not None: lowercase__ : int = tf.gather_nd(tf.squeeze(__a ,0 ) ,target_ids.reshape(-1 ,1 ) ) lowercase__ : Dict = tf.expand_dims(__a ,0 ) lowercase__ : Dict = tf.math.top_k(__a ,k=__a ) lowercase__ , lowercase__ : str = topk.values.numpy(), topk.indices.numpy() else: lowercase__ : int = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=__a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase__ : Dict = outputs[0, masked_index, :] lowercase__ : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: lowercase__ : Dict = probs[..., target_ids] lowercase__ , lowercase__ : str = probs.topk(__a ) lowercase__ : int = [] lowercase__ : Union[str, Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): lowercase__ : List[Any] = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place lowercase__ : Dict = input_ids.numpy().copy() if target_ids is not None: lowercase__ : Optional[Any] = target_ids[p].tolist() lowercase__ : str = p # Filter padding out: lowercase__ : Union[str, Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase__ : Any = self.tokenizer.decode(__a ,skip_special_tokens=__a ) lowercase__ : Tuple = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(__a ) result.append(__a ) if single_mask: return result[0] return result def UpperCAmelCase ( self : Dict ,_snake_case : Any ,_snake_case : Dict=None ) -> Any: """simple docstring""" if isinstance(__a ,__a ): lowercase__ : Optional[Any] = [targets] try: lowercase__ : Optional[int] = self.tokenizer.get_vocab() except Exception: lowercase__ : Tuple = {} lowercase__ : Dict = [] for target in targets: lowercase__ : int = vocab.get(__a ,__a ) if id_ is None: lowercase__ : Union[str, Any] = self.tokenizer( __a ,add_special_tokens=__a ,return_attention_mask=__a ,return_token_type_ids=__a ,max_length=1 ,truncation=__a ,)['''input_ids'''] if len(__a ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue lowercase__ : Dict = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) lowercase__ : Dict = list(set(__a ) ) if len(__a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) lowercase__ : List[str] = np.array(__a ) return target_ids def UpperCAmelCase ( self : str ,_snake_case : Union[str, Any]=None ,_snake_case : Dict=None ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = {} if targets is not None: lowercase__ : Tuple = self.get_target_ids(__a ,__a ) lowercase__ : Optional[int] = target_ids if top_k is not None: lowercase__ : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' ,self.model.base_model_prefix ,'''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self : Optional[Any] ,_snake_case : str ,*_snake_case : Optional[Any] ,**_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : str = super().__call__(__a ,**__a ) if isinstance(__a ,__a ) and len(__a ) == 1: return outputs[0] return outputs
362
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
0
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCAmelCase__ : """simple docstring""" def __init__( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = question_encoder __SCREAMING_SNAKE_CASE = generator __SCREAMING_SNAKE_CASE = self.question_encoder def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" if os.path.isfile(__SCREAMING_SNAKE_CASE ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = os.path.join(__SCREAMING_SNAKE_CASE , """question_encoder_tokenizer""" ) __SCREAMING_SNAKE_CASE = os.path.join(__SCREAMING_SNAKE_CASE , """generator_tokenizer""" ) self.question_encoder.save_pretrained(__SCREAMING_SNAKE_CASE ) self.generator.save_pretrained(__SCREAMING_SNAKE_CASE ) @classmethod def UpperCAmelCase__ ( cls : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer __SCREAMING_SNAKE_CASE = kwargs.pop("""config""" , __SCREAMING_SNAKE_CASE ) if config is None: __SCREAMING_SNAKE_CASE = RagConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( __SCREAMING_SNAKE_CASE , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( __SCREAMING_SNAKE_CASE , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ) def __call__( self : Optional[int] , *__SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" return self.current_tokenizer(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" return self.generator.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: """simple docstring""" return self.generator.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.question_encoder def UpperCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.generator def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : str = "longest" , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = True , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchEncoding: """simple docstring""" warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , __SCREAMING_SNAKE_CASE , ) if max_length is None: __SCREAMING_SNAKE_CASE = self.current_tokenizer.model_max_length __SCREAMING_SNAKE_CASE = self( __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __SCREAMING_SNAKE_CASE = self.current_tokenizer.model_max_length __SCREAMING_SNAKE_CASE = self( text_target=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = labels["""input_ids"""] return model_inputs
267
'''simple docstring''' class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = n __SCREAMING_SNAKE_CASE = [None] * self.n __SCREAMING_SNAKE_CASE = 0 # index of the first element __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 def __len__( self : Tuple ) -> int: """simple docstring""" return self.size def UpperCAmelCase__ ( self : Optional[Any] ) -> bool: """simple docstring""" return self.size == 0 def UpperCAmelCase__ ( self : Any ) -> int: """simple docstring""" return False if self.is_empty() else self.array[self.front] def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: """simple docstring""" if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) __SCREAMING_SNAKE_CASE = data __SCREAMING_SNAKE_CASE = (self.rear + 1) % self.n self.size += 1 return self def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" if self.size == 0: raise Exception("""UNDERFLOW""" ) __SCREAMING_SNAKE_CASE = self.array[self.front] __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = (self.front + 1) % self.n self.size -= 1 return temp
267
1
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class UpperCAmelCase ( unittest.TestCase ): def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : Union[str, Any]=13 , __snake_case : Any=7 , __snake_case : Optional[int]=True , __snake_case : Optional[Any]=True , __snake_case : Tuple=True , __snake_case : List[str]=True , __snake_case : List[str]=99 , __snake_case : Dict=32 , __snake_case : Any=5 , __snake_case : Any=4 , __snake_case : Tuple=37 , __snake_case : str="gelu" , __snake_case : Any=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Optional[int]=5_12 , __snake_case : Any=16 , __snake_case : Optional[int]=2 , __snake_case : List[str]=0.02 , __snake_case : Optional[int]=4 , ) -> Tuple: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_attention_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_choices def lowercase__ ( self : str ) -> Dict: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_attention_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : List[Any] ) -> Any: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowercase__ ( self : Tuple ) -> int: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase ( snake_case_ , unittest.TestCase ): _lowercase: str = True _lowercase: Dict = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: _lowerCAmelCase = FlaxBertModelTester(self ) @slow def lowercase__ ( self : str ) -> List[str]: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. _lowerCAmelCase = FlaxBertModel.from_pretrained("""bert-base-cased""" ) _lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case )
220
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: A__ : Tuple =None try: import msvcrt except ImportError: A__ : str =None try: import fcntl except ImportError: A__ : Dict =None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: A__ : Tuple =OSError # Data # ------------------------------------------------ A__ : Optional[Any] =[ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] A__ : Union[str, Any] ='''3.0.12''' A__ : Optional[Any] =None def UpperCamelCase__ ( ): """simple docstring""" global _logger _lowerCAmelCase = _logger or logging.getLogger(__name__ ) return _logger class UpperCAmelCase ( snake_case_ ): def __init__( self : Optional[int] , __snake_case : str ) -> Optional[Any]: _lowerCAmelCase = lock_file return None def __str__( self : Union[str, Any] ) -> Any: _lowerCAmelCase = f"The file lock '{self.lock_file}' could not be acquired." return temp class UpperCAmelCase : def __init__( self : str , __snake_case : str ) -> Tuple: _lowerCAmelCase = lock return None def __enter__( self : Union[str, Any] ) -> Union[str, Any]: return self.lock def __exit__( self : Tuple , __snake_case : List[Any] , __snake_case : int , __snake_case : Optional[int] ) -> Union[str, Any]: self.lock.release() return None class UpperCAmelCase : def __init__( self : List[Any] , __snake_case : str , __snake_case : Tuple=-1 , __snake_case : List[str]=None ) -> Any: _lowerCAmelCase = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long _lowerCAmelCase = self.hash_filename_if_too_long(__snake_case , __snake_case ) # The path to the lock file. _lowerCAmelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _lowerCAmelCase = None # The default timeout value. _lowerCAmelCase = timeout # We use this lock primarily for the lock counter. _lowerCAmelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _lowerCAmelCase = 0 return None @property def lowercase__ ( self : int ) -> List[str]: return self._lock_file @property def lowercase__ ( self : Dict ) -> List[Any]: return self._timeout @timeout.setter def lowercase__ ( self : Tuple , __snake_case : int ) -> Optional[Any]: _lowerCAmelCase = float(__snake_case ) return None def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: raise NotImplementedError() def lowercase__ ( self : Optional[Any] ) -> Any: raise NotImplementedError() @property def lowercase__ ( self : str ) -> Dict: return self._lock_file_fd is not None def lowercase__ ( self : Union[str, Any] , __snake_case : Union[str, Any]=None , __snake_case : List[str]=0.05 ) -> List[str]: # Use the default timeout, if no timeout is provided. if timeout is None: _lowerCAmelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _lowerCAmelCase = id(self ) _lowerCAmelCase = self._lock_file _lowerCAmelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(f"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( f"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__snake_case ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _lowerCAmelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowercase__ ( self : Dict , __snake_case : Optional[int]=False ) -> Union[str, Any]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _lowerCAmelCase = id(self ) _lowerCAmelCase = self._lock_file logger().debug(f"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() _lowerCAmelCase = 0 logger().debug(f"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : List[str] ) -> Union[str, Any]: self.acquire() return self def __exit__( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple , __snake_case : Any ) -> int: self.release() return None def __del__( self : Optional[Any] ) -> Any: self.release(force=__snake_case ) return None def lowercase__ ( self : Optional[Any] , __snake_case : str , __snake_case : int ) -> str: _lowerCAmelCase = os.path.basename(__snake_case ) if len(__snake_case ) > max_length and max_length > 0: _lowerCAmelCase = os.path.dirname(__snake_case ) _lowerCAmelCase = str(hash(__snake_case ) ) _lowerCAmelCase = filename[: max_length - len(__snake_case ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__snake_case , __snake_case ) else: return path class UpperCAmelCase ( snake_case_ ): def __init__( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[int]=-1 , __snake_case : str=None ) -> Dict: from .file_utils import relative_to_absolute_path super().__init__(__snake_case , timeout=__snake_case , max_filename_length=__snake_case ) _lowerCAmelCase = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowercase__ ( self : List[str] ) -> Tuple: _lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _lowerCAmelCase = os.open(self._lock_file , __snake_case ) except OSError: pass else: try: msvcrt.locking(__snake_case , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__snake_case ) else: _lowerCAmelCase = fd return None def lowercase__ ( self : List[str] ) -> List[str]: _lowerCAmelCase = self._lock_file_fd _lowerCAmelCase = None msvcrt.locking(__snake_case , msvcrt.LK_UNLCK , 1 ) os.close(__snake_case ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class UpperCAmelCase ( snake_case_ ): def __init__( self : Dict , __snake_case : List[Any] , __snake_case : List[Any]=-1 , __snake_case : List[str]=None ) -> Dict: _lowerCAmelCase = os.statvfs(os.path.dirname(__snake_case ) ).f_namemax super().__init__(__snake_case , timeout=__snake_case , max_filename_length=__snake_case ) def lowercase__ ( self : Optional[int] ) -> List[Any]: _lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC _lowerCAmelCase = os.open(self._lock_file , __snake_case ) try: fcntl.flock(__snake_case , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__snake_case ) else: _lowerCAmelCase = fd return None def lowercase__ ( self : Optional[int] ) -> Optional[int]: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _lowerCAmelCase = self._lock_file_fd _lowerCAmelCase = None fcntl.flock(__snake_case , fcntl.LOCK_UN ) os.close(__snake_case ) return None class UpperCAmelCase ( snake_case_ ): def lowercase__ ( self : Union[str, Any] ) -> Dict: _lowerCAmelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _lowerCAmelCase = os.open(self._lock_file , __snake_case ) except OSError: pass else: _lowerCAmelCase = fd return None def lowercase__ ( self : Any ) -> Optional[Any]: os.close(self._lock_file_fd ) _lowerCAmelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None A__ : Tuple =None if msvcrt: A__ : List[Any] =WindowsFileLock elif fcntl: A__ : Tuple =UnixFileLock else: A__ : Tuple =SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
220
1
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self : Union[str, Any] , __lowercase : Any ): """simple docstring""" __lowercase =data __lowercase =None class lowerCAmelCase : def __init__( self : Dict ): """simple docstring""" __lowercase =None def snake_case ( self : Optional[Any] ): """simple docstring""" __lowercase =self.head while temp is not None: print(temp.data , end=' ' ) __lowercase =temp.next print() def snake_case ( self : Optional[Any] , __lowercase : Any ): """simple docstring""" __lowercase =Node(__lowercase ) __lowercase =self.head __lowercase =new_node def snake_case ( self : List[str] , __lowercase : int , __lowercase : Optional[int] ): """simple docstring""" if node_data_a == node_data_a: return else: __lowercase =self.head while node_a is not None and node_a.data != node_data_a: __lowercase =node_a.next __lowercase =self.head while node_a is not None and node_a.data != node_data_a: __lowercase =node_a.next if node_a is None or node_a is None: return __lowercase , __lowercase =node_a.data, node_a.data if __name__ == "__main__": UpperCAmelCase = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
141
'''simple docstring''' UpperCAmelCase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' UpperCAmelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] UpperCAmelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
141
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu SCREAMING_SNAKE_CASE : str = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: SCREAMING_SNAKE_CASE : Dict = json.load(f) @require_torch class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self, lowerCamelCase) -> Dict: """simple docstring""" return FSMTTokenizer.from_pretrained(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Dict = FSMTForConditionalGeneration.from_pretrained(lowerCamelCase).to(lowerCamelCase) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ]) @slow def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : int = F'''facebook/wmt19-{pair}''' _lowercase : Optional[int] = self.get_tokenizer(lowerCamelCase) _lowercase : Any = self.get_model(lowerCamelCase) _lowercase : List[Any] = bleu_data[pair]['src'] _lowercase : Optional[Any] = bleu_data[pair]['tgt'] _lowercase : int = tokenizer(lowerCamelCase, return_tensors='pt', truncation=lowerCamelCase, padding='longest').to(lowerCamelCase) _lowercase : int = model.generate( input_ids=batch.input_ids, num_beams=8, ) _lowercase : Any = tokenizer.batch_decode( lowerCamelCase, skip_special_tokens=lowerCamelCase, clean_up_tokenization_spaces=lowerCamelCase) _lowercase : Optional[int] = calculate_bleu(lowerCamelCase, lowerCamelCase) print(lowerCamelCase) self.assertGreaterEqual(scores['bleu'], lowerCamelCase)
84
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _lowercase : List[str] = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=lowerCamelCase, scheduler=lowerCamelCase) @torch.no_grad() def __call__( self, lowerCamelCase = 1, lowerCamelCase = None, lowerCamelCase = 0.0, lowerCamelCase = 50, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size, lowerCamelCase): _lowercase : Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _lowercase : Union[str, Any] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCamelCase)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') _lowercase : str = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(lowerCamelCase) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output _lowercase : Union[str, Any] = self.unet(lowerCamelCase, lowerCamelCase).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step( lowerCamelCase, lowerCamelCase, lowerCamelCase, eta=lowerCamelCase, use_clipped_model_output=lowerCamelCase, generator=lowerCamelCase).prev_sample _lowercase : Any = (image / 2 + 0.5).clamp(0, 1) _lowercase : str = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowercase : Optional[int] = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase)
84
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def a ( __a ) -> bool: '''simple docstring''' UpperCamelCase__ :int = int(number**0.5 ) return number == sq * sq def a ( __a , __a , __a , __a , __a , __a ) -> tuple[int, int]: '''simple docstring''' UpperCamelCase__ :int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCamelCase__ :int = x_den * y_den * z_den UpperCamelCase__ :int = gcd(__a , __a ) top //= hcf bottom //= hcf return top, bottom def a ( __a = 35 ) -> int: '''simple docstring''' UpperCamelCase__ :set = set() UpperCamelCase__ :int UpperCamelCase__ :Fraction = Fraction(0 ) UpperCamelCase__ :tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCamelCase__ :int = x_num * y_den + x_den * y_num UpperCamelCase__ :Any = x_den * y_den UpperCamelCase__ :Tuple = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ :Tuple = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) # n=2 UpperCamelCase__ :List[str] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCamelCase__ :Dict = x_den * x_den * y_den * y_den if is_sq(__a ) and is_sq(__a ): UpperCamelCase__ :Any = int(sqrt(__a ) ) UpperCamelCase__ :Optional[int] = int(sqrt(__a ) ) UpperCamelCase__ :int = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ :Tuple = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) # n=-1 UpperCamelCase__ :Tuple = x_num * y_num UpperCamelCase__ :Union[str, Any] = x_den * y_num + x_num * y_den UpperCamelCase__ :List[str] = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ :Union[str, Any] = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) # n=2 UpperCamelCase__ :Optional[Any] = x_num * x_num * y_num * y_num UpperCamelCase__ :Tuple = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__a ) and is_sq(__a ): UpperCamelCase__ :str = int(sqrt(__a ) ) UpperCamelCase__ :Any = int(sqrt(__a ) ) UpperCamelCase__ :Dict = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ :int = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) for num, den in unique_s: total += Fraction(__a , __a ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
97
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def a ( __a ) -> bool: '''simple docstring''' UpperCamelCase__ :int = int(number**0.5 ) return number == sq * sq def a ( __a , __a , __a , __a , __a , __a ) -> tuple[int, int]: '''simple docstring''' UpperCamelCase__ :int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCamelCase__ :int = x_den * y_den * z_den UpperCamelCase__ :int = gcd(__a , __a ) top //= hcf bottom //= hcf return top, bottom def a ( __a = 35 ) -> int: '''simple docstring''' UpperCamelCase__ :set = set() UpperCamelCase__ :int UpperCamelCase__ :Fraction = Fraction(0 ) UpperCamelCase__ :tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCamelCase__ :int = x_num * y_den + x_den * y_num UpperCamelCase__ :Any = x_den * y_den UpperCamelCase__ :Tuple = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ :Tuple = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) # n=2 UpperCamelCase__ :List[str] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCamelCase__ :Dict = x_den * x_den * y_den * y_den if is_sq(__a ) and is_sq(__a ): UpperCamelCase__ :Any = int(sqrt(__a ) ) UpperCamelCase__ :Optional[int] = int(sqrt(__a ) ) UpperCamelCase__ :int = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ :Tuple = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) # n=-1 UpperCamelCase__ :Tuple = x_num * y_num UpperCamelCase__ :Union[str, Any] = x_den * y_num + x_num * y_den UpperCamelCase__ :List[str] = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ :Union[str, Any] = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) # n=2 UpperCamelCase__ :Optional[Any] = x_num * x_num * y_num * y_num UpperCamelCase__ :Tuple = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__a ) and is_sq(__a ): UpperCamelCase__ :str = int(sqrt(__a ) ) UpperCamelCase__ :Any = int(sqrt(__a ) ) UpperCamelCase__ :Dict = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ :int = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) for num, den in unique_s: total += Fraction(__a , __a ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
97
1
"""simple docstring""" import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class a ( nn.Module ): def __init__( self , _snake_case , _snake_case ): """simple docstring""" super().__init__() lowerCAmelCase = module lowerCAmelCase = nn.Sequential( nn.Linear(module.in_features , _snake_case , bias=_snake_case ) , nn.Linear(_snake_case , module.out_features , bias=_snake_case ) , ) lowerCAmelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_snake_case ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCamelCase__ ( self , _snake_case , *_snake_case , **_snake_case ): """simple docstring""" return self.module(_snake_case , *_snake_case , **_snake_case ) + self.adapter(_snake_case ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class a ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module snake_case__ = '''bigscience/bloom-1b7''' # Constant values snake_case__ = 2.1_09_65_95_52_69_25_74 snake_case__ = '''Hello my name is''' snake_case__ = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = AutoTokenizer.from_pretrained(self.model_name ) class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # Models and tokenizer lowerCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' ) def UpperCamelCase__ ( self ): """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_abit.config self.assertTrue(hasattr(_snake_case , 'quantization_config' ) ) lowerCAmelCase = config.to_dict() lowerCAmelCase = config.to_diff_dict() lowerCAmelCase = config.to_json_string() def UpperCamelCase__ ( self ): """simple docstring""" from bitsandbytes.nn import Paramsabit lowerCAmelCase = self.model_fpaa.get_memory_footprint() lowerCAmelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowerCAmelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCamelCase__ ( self ): """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_snake_case , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ) lowerCAmelCase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_snake_case ) , self.EXPECTED_OUTPUTS ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = BitsAndBytesConfig() lowerCAmelCase = True lowerCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_snake_case , device_map='auto' ) lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ) lowerCAmelCase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_snake_case ) , self.EXPECTED_OUTPUTS ) def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(_snake_case ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = BitsAndBytesConfig() with self.assertRaises(_snake_case ): lowerCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_snake_case , load_in_abit=_snake_case , device_map='auto' , bnb_abit_quant_type='nf4' , ) def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(_snake_case ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_snake_case ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_snake_case ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_snake_case ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_snake_case ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ) lowerCAmelCase = self.model_fpaa.to(torch.floataa ) lowerCAmelCase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error lowerCAmelCase = self.model_fpaa.to('cpu' ) # Check this does not throw an error lowerCAmelCase = self.model_fpaa.half() # Check this does not throw an error lowerCAmelCase = self.model_fpaa.float() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_snake_case , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class a ( unittest.TestCase ): @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" lowerCAmelCase = 't5-small' lowerCAmelCase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense lowerCAmelCase = AutoTokenizer.from_pretrained(cls.model_name ) lowerCAmelCase = 'Translate in German: Hello, my dog is cute' def UpperCamelCase__ ( self ): """simple docstring""" gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" from transformers import TaForConditionalGeneration lowerCAmelCase = TaForConditionalGeneration._keep_in_fpaa_modules lowerCAmelCase = None # test with `t5-small` lowerCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' ) lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) lowerCAmelCase = model.generate(**_snake_case ) # test with `flan-t5-small` lowerCAmelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_snake_case , device_map='auto' ) lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) lowerCAmelCase = model.generate(**_snake_case ) lowerCAmelCase = modules def UpperCamelCase__ ( self ): """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowerCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) lowerCAmelCase = model.generate(**_snake_case ) # test with `flan-t5-small` lowerCAmelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_snake_case , device_map='auto' ) lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) lowerCAmelCase = model.generate(**_snake_case ) class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # model_name lowerCAmelCase = 'bigscience/bloom-560m' lowerCAmelCase = 't5-small' # Different types of model lowerCAmelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' ) # Sequence classification model lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_snake_case , device_map='auto' ) # CausalLM model lowerCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' ) # Seq2seq model lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_snake_case , device_map='auto' ) def UpperCamelCase__ ( self ): """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() def UpperCamelCase__ ( self ): """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowerCAmelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_snake_case , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch lowerCAmelCase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_snake_case ) , self.EXPECTED_OUTPUTS ) class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'facebook/opt-350m' super().setUp() def UpperCamelCase__ ( self ): """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters lowerCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_snake_case ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowerCAmelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowerCAmelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_snake_case ) ): lowerCAmelCase = LoRALayer(module.q_proj , rank=16 ) lowerCAmelCase = LoRALayer(module.k_proj , rank=16 ) lowerCAmelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch lowerCAmelCase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowerCAmelCase = model.forward(**_snake_case ) out.logits.norm().backward() for module in model.modules(): if isinstance(_snake_case , _snake_case ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_snake_case , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class a ( a__ ): snake_case__ = '''gpt2-xl''' snake_case__ = 3.31_91_85_48_54_15_21_87
309
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ): """simple docstring""" lowerCAmelCase = size if size is not None else {'shortest_edge': 20} lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_flip_channel_order def UpperCamelCase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class a ( a__ , unittest.TestCase ): snake_case__ = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MobileViTImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , 'do_resize' ) ) self.assertTrue(hasattr(_snake_case , 'size' ) ) self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
309
1
'''simple docstring''' import requests from bsa import BeautifulSoup def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : dict ): """simple docstring""" lowercase_ : Union[str, Any] = BeautifulSoup(requests.get(__SCREAMING_SNAKE_CASE , params=__SCREAMING_SNAKE_CASE ).content , '''html.parser''' ) lowercase_ : List[Any] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) lowercase_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowercase : Optional[int] = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 3_0, "pages": "3979-3990", "year": 2_0_1_8, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
93
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) ) class SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ): '''simple docstring''' __a = MobileViTVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase : Any =( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : Dict =False __lowerCamelCase : Optional[Any] =False __lowerCamelCase : int =False __lowerCamelCase : Any =False def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__lowercase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ): __a = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(__lowercase ) , __lowercase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(__lowercase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase__ ( ): """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __lowercase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowercase ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowercase ) __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowercase )
302
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_50, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_00, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ] ) class A ( unittest.TestCase ): def lowercase_ (self : str ) -> Union[str, Any]: """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=__UpperCAmelCase , ) assert hasattr(self , "env" ) def lowercase_ (self : int , __UpperCAmelCase : List[str]=1 ) -> Optional[Any]: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=__UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCAmelCase , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def lowercase_ (self : Dict , __UpperCAmelCase : List[str] ) -> Dict: """simple docstring""" TrainingJobAnalytics(__UpperCAmelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def lowercase_ (self : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __UpperCAmelCase )
143
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase__ = {'tokenization_bertweet': ['BertweetTokenizer']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
143
1
"""simple docstring""" import math def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : str ): '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__snake_case ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCamelCase : Dict = 'Enter the base and the power separated by a comma: ' _UpperCamelCase, _UpperCamelCase : str = map(int, input(prompt).split(',')) _UpperCamelCase, _UpperCamelCase : int = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCamelCase : Optional[Any] = res(xa, ya) _UpperCamelCase : List[str] = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
220
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) _UpperCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( __snake_case : Path , __snake_case : list ): '''simple docstring''' lowercase = '\n'.join(__snake_case ) Path(__snake_case ).open('w' ).writelines(__snake_case ) _UpperCamelCase : Union[str, Any] = 'patrickvonplaten/t5-tiny-random' _UpperCamelCase : Union[str, Any] = 'sshleifer/bart-tiny-random' _UpperCamelCase : Tuple = 'sshleifer/tiny-mbart' _UpperCamelCase : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class a ( a_ ): def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' lowercase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() lowercase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(_lowerCamelCase , _lowerCamelCase ) lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) lowercase = 'translation_en_to_de' if model == T5_TINY else 'summarization' lowercase = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(_lowerCamelCase , 'argv' , _lowerCamelCase ): run_generate() assert Path(_lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def UpperCamelCase_ ( self ): self.run_eval_tester(_lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def UpperCamelCase_ ( self , _lowerCamelCase ): self.run_eval_tester(_lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' lowercase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() lowercase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } lowercase = Path(self.get_auto_remove_tmp_dir() ) lowercase = str(tmp_dir / 'scores.json' ) lowercase = str(tmp_dir / 'val.target' ) _dump_articles(_lowerCamelCase , text['en'] ) _dump_articles(_lowerCamelCase , text['de'] ) lowercase = 'translation_en_to_de' if model == T5_TINY else 'summarization' lowercase = F'\n run_eval_search.py\n {model}\n {str(_lowerCamelCase )}\n {str(_lowerCamelCase )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(_lowerCamelCase , 'argv' , _lowerCamelCase ): with CaptureStdout() as cs: run_search() lowercase = [' num_beams | length_penalty', model, 'Best score args'] lowercase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(_lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_lowerCamelCase ).exists() os.remove(Path(_lowerCamelCase ) )
220
1
from __future__ import annotations from typing import Any class A__ : def __init__( self , UpperCamelCase__ = 6 ) -> None: '''simple docstring''' A_ = None A_ = None self.create_linked_list(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> None: '''simple docstring''' A_ = Node() A_ = current_node A_ = current_node A_ = current_node for _ in range(1 , UpperCamelCase__ ): A_ = Node() A_ = current_node A_ = previous_node A_ = current_node A_ = self.front A_ = previous_node def snake_case_ ( self ) -> bool: '''simple docstring''' return ( self.front == self.rear and self.front is not None and self.front.data is None ) def snake_case_ ( self ) -> Any | None: '''simple docstring''' self.check_can_perform_operation() return self.front.data if self.front else None def snake_case_ ( self , UpperCamelCase__ ) -> None: '''simple docstring''' if self.rear is None: return self.check_is_full() if not self.is_empty(): A_ = self.rear.next if self.rear: A_ = data def snake_case_ ( self ) -> Any: '''simple docstring''' self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: A_ = self.front.data A_ = None return data A_ = self.front A_ = old_front.next A_ = old_front.data A_ = None return data def snake_case_ ( self ) -> None: '''simple docstring''' if self.is_empty(): raise Exception("""Empty Queue""" ) def snake_case_ ( self ) -> None: '''simple docstring''' if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class A__ : def __init__( self ) -> None: '''simple docstring''' A_ = None A_ = None A_ = None if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00 ) -> int: A_ = n * (n + 1) * (2 * n + 1) / 6 A_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
101
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase = 16 __UpperCAmelCase = 32 def _snake_case ( lowercase__ : Accelerator , lowercase__ : int = 1_6 , lowercase__ : str = "bert-base-cased" ) -> Any: '''simple docstring''' lowerCAmelCase_ :Optional[int] = AutoTokenizer.from_pretrained(lowercase__ ) lowerCAmelCase_ :int = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ :str = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase_ :List[str] = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ :int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding="""max_length""" , max_length=1_2_8 , return_tensors="""pt""" ) return tokenizer.pad(lowercase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase_ :int = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) lowerCAmelCase_ :List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def _snake_case ( lowercase__ : Optional[int] , lowercase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ :List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ :Optional[int] = config["""lr"""] lowerCAmelCase_ :str = int(config["""num_epochs"""] ) lowerCAmelCase_ :Any = int(config["""seed"""] ) lowerCAmelCase_ :Optional[int] = int(config["""batch_size"""] ) lowerCAmelCase_ :List[Any] = args.model_name_or_path set_seed(lowercase__ ) lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = get_dataloaders(lowercase__ , lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ :Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer lowerCAmelCase_ :List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase_ :Dict = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase_ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowerCAmelCase_ :List[Any] = 1 lowerCAmelCase_ :List[Any] = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase_ :List[str] = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: lowerCAmelCase_ :Dict = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase_ :List[Any] = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase_ :Tuple = 0 # Now we train the model lowerCAmelCase_ :Any = evaluate.load("""glue""" , """mrpc""" ) lowerCAmelCase_ :Any = 0 lowerCAmelCase_ :int = {} for epoch in range(lowercase__ , lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): lowerCAmelCase_ :Optional[Any] = model(**lowercase__ ) lowerCAmelCase_ :int = outputs.loss lowerCAmelCase_ :Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowerCAmelCase_ :Dict = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ :Union[str, Any] = model(**lowercase__ ) lowerCAmelCase_ :Tuple = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCAmelCase_ , lowerCAmelCase_ :Tuple = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase__ ) - 1: lowerCAmelCase_ :Optional[int] = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase_ :Any = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) lowerCAmelCase_ :Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase__ ) lowerCAmelCase_ :int = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: lowerCAmelCase_ :Dict = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def _snake_case ( ) -> str: '''simple docstring''' lowerCAmelCase_ :Dict = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase__ , ) parser.add_argument( """--output_dir""" , type=lowercase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=lowercase__ , default=lowercase__ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase__ , default=3 , help="""Number of train epochs.""" , ) lowerCAmelCase_ :Tuple = parser.parse_args() lowerCAmelCase_ :Optional[int] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 4_2, """batch_size""": 1_6} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
84
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _snake_case ( ) -> Generator[int, None, None]: '''simple docstring''' lowerCAmelCase_ :dict[int, int] = {} lowerCAmelCase_ :int = 2 while True: lowerCAmelCase_ :List[Any] = factor_map.pop(lowercase__ , lowercase__ ) if factor: lowerCAmelCase_ :Optional[int] = factor + prime while x in factor_map: x += factor lowerCAmelCase_ :List[str] = factor else: lowerCAmelCase_ :Optional[int] = prime yield prime prime += 1 def _snake_case ( lowercase__ : float = 1E10 ) -> int: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = sieve() lowerCAmelCase_ :str = 1 while True: lowerCAmelCase_ :int = next(lowercase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowercase__ ) n += 2 if __name__ == "__main__": print(solution())
84
1
_snake_case = {} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCAmelCase : List[str] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCAmelCase : Any = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCAmelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCAmelCase : Tuple = _calculate(days - 1 , _lowerCamelCase , 0 ) _lowerCAmelCase : int = state_late + state_absent + state_ontime _lowerCAmelCase : List[str] = prizestrings return prizestrings def A ( _lowerCamelCase = 30 ): '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
300
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
1
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class a_ (nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : jnp.dtype = jnp.floataa def __UpperCamelCase ( self ): _lowerCAmelCase : List[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , snake_case_ ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = hidden_states.shape _lowerCAmelCase : str = jax.image.resize( snake_case_ , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) _lowerCAmelCase : int = self.conv(snake_case_ ) return hidden_states class a_ (nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : jnp.dtype = jnp.floataa def __UpperCamelCase ( self ): _lowerCAmelCase : List[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , snake_case_ ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _lowerCAmelCase : List[str] = self.conv(snake_case_ ) return hidden_states class a_ (nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : int = None __lowerCAmelCase : float = 0.0 __lowerCAmelCase : bool = None __lowerCAmelCase : jnp.dtype = jnp.floataa def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels _lowerCAmelCase : Union[str, Any] = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) _lowerCAmelCase : str = nn.Conv( snake_case_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _lowerCAmelCase : int = nn.Dense(snake_case_ , dtype=self.dtype ) _lowerCAmelCase : Any = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) _lowerCAmelCase : int = nn.Dropout(self.dropout_prob ) _lowerCAmelCase : Optional[Any] = nn.Conv( snake_case_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _lowerCAmelCase : Dict = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _lowerCAmelCase : Tuple = None if use_nin_shortcut: _lowerCAmelCase : Any = nn.Conv( snake_case_ , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self , snake_case_ , snake_case_ , snake_case_=True ): _lowerCAmelCase : Optional[int] = hidden_states _lowerCAmelCase : Tuple = self.norma(snake_case_ ) _lowerCAmelCase : int = nn.swish(snake_case_ ) _lowerCAmelCase : int = self.conva(snake_case_ ) _lowerCAmelCase : Optional[int] = self.time_emb_proj(nn.swish(snake_case_ ) ) _lowerCAmelCase : Dict = jnp.expand_dims(jnp.expand_dims(snake_case_ , 1 ) , 1 ) _lowerCAmelCase : List[str] = hidden_states + temb _lowerCAmelCase : str = self.norma(snake_case_ ) _lowerCAmelCase : Union[str, Any] = nn.swish(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.dropout(snake_case_ , snake_case_ ) _lowerCAmelCase : str = self.conva(snake_case_ ) if self.conv_shortcut is not None: _lowerCAmelCase : List[str] = self.conv_shortcut(snake_case_ ) return hidden_states + residual
309
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Dict: _lowerCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _lowerCAmelCase : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : str = qkv_bias def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : str = 3_64 if """coco""" in model_name else 2_24 _lowerCAmelCase : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCAmelCase : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCAmelCase : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _lowerCAmelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=False ) -> List[str]: _lowerCAmelCase : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _lowerCAmelCase : List[Any] = tokenizer("""\n""" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : List[Any] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _lowerCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _lowerCAmelCase : Dict = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _lowerCAmelCase : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _lowerCAmelCase : int = key.replace("""t5""" , """language""" ) _lowerCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCAmelCase : Union[str, Any] = load_demo_image() _lowerCAmelCase : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCAmelCase : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCAmelCase : Tuple = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCAmelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _lowerCAmelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCAmelCase : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _lowerCAmelCase : Dict = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCAmelCase : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCAmelCase : List[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _lowerCAmelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _lowerCamelCase ) _lowerCAmelCase : int = input_ids.shape[1] _lowerCAmelCase : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key A = remove_duplicates(key.upper() ) A = len(lowercase__ ) # First fill cipher with key characters A = {alphabet[i]: char for i, char in enumerate(lowercase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowercase__ ) , 26 ): A = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 A = alphabet[i - offset] A = char return cipher_alphabet def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" return "".join(cipher_map.get(lowercase__ , lowercase__ ) for ch in message.upper() ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" A = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowercase__ , lowercase__ ) for ch in message.upper() ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = input("Enter message to encode or decode: " ).strip() A = input("Enter keyword: " ).strip() A = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: A = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) A = create_cipher_map(lowercase__ ) print(func(lowercase__ , lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
350
"""simple docstring""" __A : Dict = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __A : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] __A : List[Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
57
0
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def UpperCamelCase__ ( A__ , A__ , A__ ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] snake_case__ : List[str] = (low + high) // 2 snake_case__ , snake_case__ , snake_case__ : str = max_subarray(A__ , A__ , A__ ) snake_case__ , snake_case__ , snake_case__ : int = max_subarray(A__ , mid + 1 , A__ ) snake_case__ , snake_case__ , snake_case__ : Optional[Any] = max_cross_sum(A__ , A__ , A__ , A__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def UpperCamelCase__ ( A__ , A__ , A__ , A__ ) -> tuple[int, int, float]: snake_case__ , snake_case__ : Optional[int] = float('-inf' ), -1 snake_case__ , snake_case__ : str = float('-inf' ), -1 snake_case__ : int | float = 0 for i in range(A__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: snake_case__ : Dict = summ snake_case__ : str = i snake_case__ : str = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: snake_case__ : int = summ snake_case__ : List[str] = i return max_left, max_right, (left_sum + right_sum) def UpperCamelCase__ ( A__ ) -> float: snake_case__ : Any = [randint(1 , A__ ) for _ in range(A__ )] snake_case__ : Optional[Any] = time.time() max_subarray(A__ , 0 , input_size - 1 ) snake_case__ : int = time.time() return end - start def UpperCamelCase__ ( ) -> None: snake_case__ : Dict = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] snake_case__ : List[Any] = [time_max_subarray(A__ ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(A__ , A__ ): print(A__ , '\t\t' , A__ ) plt.plot(A__ , A__ ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
143
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase__ : List[str] = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
143
1
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCamelCase_ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" UpperCamelCase_ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" UpperCamelCase_ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ), } ), ) def UpperCamelCase_ ( self, A, A, A = 1, A = 4, ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=A, hypotheses=A, min_len=A, max_len=A ) }
246
'''simple docstring''' def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): SCREAMING_SNAKE_CASE : List[str] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def lowercase__( __UpperCamelCase: int ): """simple docstring""" return binomial_coefficient(2 * node_count ,__UpperCamelCase ) // (node_count + 1) def lowercase__( __UpperCamelCase: int ): """simple docstring""" if n < 0: raise ValueError('factorial() not defined for negative values' ) SCREAMING_SNAKE_CASE : Optional[Any] = 1 for i in range(1 ,n + 1 ): result *= i return result def lowercase__( __UpperCamelCase: int ): """simple docstring""" return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
246
1
"""simple docstring""" def UpperCamelCase__ ( lowercase__ : Optional[Any] , lowercase__ : Tuple ): return int(input_a == input_a == 0 ) def UpperCamelCase__ ( ): print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
148
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowercase__ :str = 2 class lowercase : def __init__( self ,*, # begin keyword-only arguments A__="<s>" ,A__="<pad>" ,A__="</s>" ,A__="<unk>" ,A__=None ,): lowercase , lowercase , lowercase , lowercase = bos, unk, pad, eos lowercase = [] lowercase = [] lowercase = {} lowercase = self.add_symbol(A__) lowercase = self.add_symbol(A__) lowercase = self.add_symbol(A__) lowercase = self.add_symbol(A__) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(A__) lowercase = len(self.symbols) def __eq__( self ,A__): return self.indices == other.indices def __getitem__( self ,A__): if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self): return len(self.symbols) def __contains__( self ,A__): return sym in self.indices @classmethod def A__ ( cls ,A__): lowercase = cls() d.add_from_file(A__) return d def A__ ( self ,A__ ,A__=1 ,A__=False): if word in self.indices and not overwrite: lowercase = self.indices[word] lowercase = self.count[idx] + n return idx else: lowercase = len(self.symbols) lowercase = idx self.symbols.append(A__) self.count.append(A__) return idx def A__ ( self ,A__): return 0 def A__ ( self ,A__): if isinstance(A__ ,A__): try: with open(A__ ,'''r''' ,encoding='''utf-8''') as fd: self.add_from_file(A__) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(A__)) return lowercase = f.readlines() lowercase = self._load_meta(A__) for line in lines[indices_start_line:]: try: lowercase , lowercase = line.rstrip().rsplit(''' ''' ,1) if field == "#fairseq:overwrite": lowercase = True lowercase , lowercase = line.rsplit(''' ''' ,1) else: lowercase = False lowercase = int(A__) lowercase = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(A__)) self.add_symbol(A__ ,n=A__ ,overwrite=A__) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''') def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowercase = dict((re.sub(R'''@@$''' , '''''' , lowerCAmelCase__ ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , lowerCAmelCase__ ), v) for k, v in d.items() ) lowercase = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f'{k}</w>'] lowercase = d[k] # restore return da def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' # prep if not os.path.exists(lowerCAmelCase__ ): raise ValueError(f'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) print(f'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models lowercase = os.path.join(lowerCAmelCase__ , '''checkpoint.pt''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(f'path to the file {checkpoint_file} does not exist!' ) lowercase = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) lowercase = chkpt['''cfg''']['''model'''] # dicts lowercase = os.path.join(lowerCAmelCase__ , '''dict.txt''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(f'path to the file {dict_file} does not exist!' ) lowercase = Dictionary.load(lowerCAmelCase__ ) lowercase = rewrite_dict_keys(src_dict.indices ) lowercase = len(lowerCAmelCase__ ) lowercase = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES['''vocab_file'''] ) print(f'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # merges_file (bpecodes) lowercase = os.path.join(lowerCAmelCase__ , '''bpecodes''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(f'path to the file {bpecodes_file} does not exist!' ) lowercase = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) # model config lowercase = os.path.join(lowerCAmelCase__ , '''config.json''' ) lowercase = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1E-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f'Generating {biogpt_model_config_file}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # tokenizer config lowercase = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # model lowercase = chkpt['''model'''] # remove unneeded keys lowercase = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): lowercase = model_state_dict.pop(lowerCAmelCase__ ) else: lowercase = model_state_dict.pop(lowerCAmelCase__ ) lowercase = BioGptConfig.from_pretrained(lowerCAmelCase__ ) lowercase = BioGptForCausalLM(lowerCAmelCase__ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase__ ) # save lowercase = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) print(f'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) print('''Conversion is done!''' ) if __name__ == "__main__": lowercase__ :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--biogpt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ :Any = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
101
0
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple: if not isinstance(_A , _A ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_A ) == 0: raise ValueError('Input list must be a non empty list' ) if len(_A ) == 1: return True _a : int = series[1] - series[0] for index in range(len(_A ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: if not isinstance(_A , _A ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_A ) == 0: raise ValueError('Input list must be a non empty list' ) _a : Dict = 0 for val in series: answer += val return answer / len(_A ) if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] __lowerCAmelCase = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] __lowerCAmelCase = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): __lowerCAmelCase = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
107
0
from collections.abc import Callable import numpy as np def __snake_case ( _lowerCAmelCase : Callable , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> np.array: A_ : List[Any] = int(np.ceil((x_end - xa) / step_size ) ) A_ : Dict = np.zeros((n + 1,) ) A_ : str = ya A_ : str = xa for k in range(_lowerCAmelCase ): A_ : int = y[k] + step_size * ode_func(_lowerCAmelCase , y[k] ) A_ : Tuple = y[k] + ( (step_size / 2) * (ode_func(_lowerCAmelCase , y[k] ) + ode_func(x + step_size , _lowerCAmelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
300
def __snake_case ( _lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : Tuple = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): A_ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : str = arr[i], arr[0] else: A_ , A_ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 A_ : Tuple = 0 else: A_ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : str = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
300
1
def __snake_case ( _lowerCAmelCase : Optional[Any] = 100 ) -> int: A_ : int = set() A_ : Tuple = 0 A_ : List[Any] = n + 1 # maximum limit for a in range(2 , __snake_case ): for b in range(2 , __snake_case ): A_ : Tuple = a**b # calculates the current power collect_powers.add(__snake_case ) # adds the result to the set return len(__snake_case ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
361
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _lowerCAmelCase : Tuple = logging.getLogger(__name__) def __snake_case ( ) -> Tuple: A_ : List[str] = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=_lowerCAmelCase , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=_lowerCAmelCase , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=_lowerCAmelCase , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=_lowerCAmelCase , default="data/dump" , help="The dump file prefix." ) A_ : int = parser.parse_args() logger.info(f"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": A_ : int = BertTokenizer.from_pretrained(args.tokenizer_name ) A_ : Union[str, Any] = tokenizer.special_tokens_map["cls_token"] # `[CLS]` A_ : Any = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": A_ : Dict = RobertaTokenizer.from_pretrained(args.tokenizer_name ) A_ : List[str] = tokenizer.special_tokens_map["cls_token"] # `<s>` A_ : Any = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": A_ : Union[str, Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) A_ : Any = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` A_ : Union[str, Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(f"Loading text from {args.file_path}" ) with open(args.file_path , "r" , encoding="utf8" ) as fp: A_ : Union[str, Any] = fp.readlines() logger.info("Start encoding" ) logger.info(f"{len(_lowerCAmelCase )} examples to process." ) A_ : List[Any] = [] A_ : Tuple = 0 A_ : Union[str, Any] = 10000 A_ : Optional[int] = time.time() for text in data: A_ : Any = f"{bos} {text.strip()} {sep}" A_ : List[Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) rslt.append(_lowerCAmelCase ) iter += 1 if iter % interval == 0: A_ : str = time.time() logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) A_ : Union[str, Any] = time.time() logger.info("Finished binarization" ) logger.info(f"{len(_lowerCAmelCase )} examples processed." ) A_ : int = f"{args.dump_file}.{args.tokenizer_name}.pickle" A_ : List[Any] = tokenizer.vocab_size if vocab_size < (1 << 16): A_ : Union[str, Any] = [np.uintaa(_lowerCAmelCase ) for d in rslt] else: A_ : List[str] = [np.intaa(_lowerCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"Dump to {dp_file}" ) with open(_lowerCAmelCase , "wb" ) as handle: pickle.dump(rslt_ , _lowerCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
70
0
from ..utils import DummyObject, requires_backends class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Optional[int] ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Any , *lowerCamelCase : Optional[int] , **lowerCamelCase : Tuple ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Tuple , *lowerCamelCase : List[str] , **lowerCamelCase : Union[str, Any] ) -> Tuple: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Tuple = ["""torch"""] def __init__( self : Dict , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Any ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : str , *lowerCamelCase : List[Any] , **lowerCamelCase : Dict ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : int , **lowerCamelCase : int ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["""torch"""] def __init__( self : str , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : List[str] ) -> Any: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Optional[int] , *lowerCamelCase : int , **lowerCamelCase : List[Any] ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : List[Any] ) -> Optional[int]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCamelCase : Tuple , **lowerCamelCase : Dict ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Union[str, Any] , *lowerCamelCase : Dict , **lowerCamelCase : str ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : Optional[int] , **lowerCamelCase : Any ) -> Any: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCamelCase : int , **lowerCamelCase : Dict ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Optional[int] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Optional[int] ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : int , **lowerCamelCase : Tuple ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Any = ["""torch"""] def __init__( self : str , *lowerCamelCase : Dict , **lowerCamelCase : Optional[Any] ) -> int: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Tuple ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : str , **lowerCamelCase : Dict ) -> int: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Dict = ["""torch"""] def __init__( self : Optional[Any] , *lowerCamelCase : List[str] , **lowerCamelCase : Union[str, Any] ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Union[str, Any] , *lowerCamelCase : List[str] , **lowerCamelCase : str ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Any , *lowerCamelCase : List[Any] , **lowerCamelCase : int ) -> Tuple: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : int = ["""torch"""] def __init__( self : Dict , *lowerCamelCase : Optional[int] , **lowerCamelCase : Tuple ) -> Any: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Optional[Any] , *lowerCamelCase : Dict , **lowerCamelCase : Union[str, Any] ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : str , *lowerCamelCase : Dict , **lowerCamelCase : List[str] ) -> List[Any]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : List[Any] = ["""torch"""] def __init__( self : Dict , *lowerCamelCase : Tuple , **lowerCamelCase : List[Any] ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Optional[int] ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Any , *lowerCamelCase : Any , **lowerCamelCase : int ) -> str: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Tuple ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : str ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Optional[Any] , *lowerCamelCase : List[Any] , **lowerCamelCase : Tuple ) -> Dict: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : int = ["""torch"""] def __init__( self : List[str] , *lowerCamelCase : Dict , **lowerCamelCase : List[str] ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Tuple , *lowerCamelCase : List[str] , **lowerCamelCase : Dict ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : List[str] , **lowerCamelCase : Tuple ) -> str: requires_backends(cls , ["torch"] ) def lowerCAmelCase_ ( *__lowerCamelCase , **__lowerCamelCase ): requires_backends(_UpperCamelCase , ["torch"] ) def lowerCAmelCase_ ( *__lowerCamelCase , **__lowerCamelCase ): requires_backends(_UpperCamelCase , ["torch"] ) def lowerCAmelCase_ ( *__lowerCamelCase , **__lowerCamelCase ): requires_backends(_UpperCamelCase , ["torch"] ) def lowerCAmelCase_ ( *__lowerCamelCase , **__lowerCamelCase ): requires_backends(_UpperCamelCase , ["torch"] ) def lowerCAmelCase_ ( *__lowerCamelCase , **__lowerCamelCase ): requires_backends(_UpperCamelCase , ["torch"] ) def lowerCAmelCase_ ( *__lowerCamelCase , **__lowerCamelCase ): requires_backends(_UpperCamelCase , ["torch"] ) def lowerCAmelCase_ ( *__lowerCamelCase , **__lowerCamelCase ): requires_backends(_UpperCamelCase , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["""torch"""] def __init__( self : str , *lowerCamelCase : int , **lowerCamelCase : Any ) -> str: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : int , **lowerCamelCase : List[str] ) -> str: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Union[str, Any] , *lowerCamelCase : Optional[int] , **lowerCamelCase : List[Any] ) -> Tuple: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : List[Any] = ["""torch"""] def __init__( self : str , *lowerCamelCase : Dict , **lowerCamelCase : Optional[int] ) -> str: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : List[str] , **lowerCamelCase : Any ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : str , *lowerCamelCase : Dict , **lowerCamelCase : Any ) -> Tuple: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Tuple = ["""torch"""] def __init__( self : Any , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Any ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Optional[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : str ) -> str: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : int = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCamelCase : Optional[int] , **lowerCamelCase : Any ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[Any] , *lowerCamelCase : str , **lowerCamelCase : str ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Optional[int] , *lowerCamelCase : Optional[int] , **lowerCamelCase : Optional[int] ) -> int: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : List[str] = ["""torch"""] def __init__( self : Dict , *lowerCamelCase : Optional[Any] , **lowerCamelCase : int ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[Any] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Tuple , *lowerCamelCase : List[str] , **lowerCamelCase : List[str] ) -> List[str]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCamelCase : Any , **lowerCamelCase : str ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Union[str, Any] , *lowerCamelCase : Tuple , **lowerCamelCase : List[Any] ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : int , *lowerCamelCase : List[Any] , **lowerCamelCase : str ) -> int: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Any = ["""torch"""] def __init__( self : int , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Tuple ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : List[str] , **lowerCamelCase : Dict ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Tuple , *lowerCamelCase : str , **lowerCamelCase : str ) -> List[str]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["""torch"""] def __init__( self : int , *lowerCamelCase : Tuple , **lowerCamelCase : Optional[int] ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : Tuple ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : Tuple , **lowerCamelCase : List[str] ) -> List[str]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : str = ["""torch"""] def __init__( self : int , *lowerCamelCase : Optional[int] , **lowerCamelCase : List[str] ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : int , **lowerCamelCase : int ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : Dict , **lowerCamelCase : Any ) -> str: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Tuple = ["""torch"""] def __init__( self : Dict , *lowerCamelCase : str , **lowerCamelCase : Dict ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[Any] , *lowerCamelCase : Any , **lowerCamelCase : Union[str, Any] ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Optional[int] , *lowerCamelCase : List[str] , **lowerCamelCase : List[str] ) -> List[str]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : str = ["""torch"""] def __init__( self : Optional[int] , *lowerCamelCase : str , **lowerCamelCase : Dict ) -> Any: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : str , *lowerCamelCase : str , **lowerCamelCase : Optional[int] ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : Dict , **lowerCamelCase : int ) -> Any: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : str = ["""torch"""] def __init__( self : Optional[int] , *lowerCamelCase : Optional[Any] , **lowerCamelCase : List[Any] ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[Any] , *lowerCamelCase : Dict , **lowerCamelCase : Tuple ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : str , *lowerCamelCase : int , **lowerCamelCase : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["""torch"""] def __init__( self : int , *lowerCamelCase : int , **lowerCamelCase : Tuple ) -> str: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : str , **lowerCamelCase : Optional[int] ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : Tuple , **lowerCamelCase : Tuple ) -> int: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCamelCase : str , **lowerCamelCase : Any ) -> Any: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : str , *lowerCamelCase : Dict , **lowerCamelCase : Union[str, Any] ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : str , *lowerCamelCase : List[str] , **lowerCamelCase : Optional[int] ) -> Optional[int]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Tuple = ["""torch"""] def __init__( self : List[str] , *lowerCamelCase : List[Any] , **lowerCamelCase : List[Any] ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Any , *lowerCamelCase : Any , **lowerCamelCase : int ) -> str: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : int , *lowerCamelCase : str , **lowerCamelCase : List[Any] ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : int = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCamelCase : Dict , **lowerCamelCase : Union[str, Any] ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : List[str] ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : int , **lowerCamelCase : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : str = ["""torch"""] def __init__( self : Tuple , *lowerCamelCase : List[str] , **lowerCamelCase : List[str] ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : str , *lowerCamelCase : str , **lowerCamelCase : int ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Union[str, Any] , *lowerCamelCase : int , **lowerCamelCase : Dict ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCamelCase : int , **lowerCamelCase : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Optional[int] , *lowerCamelCase : Optional[int] , **lowerCamelCase : str ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : int , *lowerCamelCase : List[str] , **lowerCamelCase : int ) -> int: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCamelCase : List[Any] , **lowerCamelCase : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Union[str, Any] , *lowerCamelCase : Dict , **lowerCamelCase : Dict ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : int , *lowerCamelCase : Any , **lowerCamelCase : Any ) -> Any: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Dict = ["""torch"""] def __init__( self : Dict , *lowerCamelCase : str , **lowerCamelCase : List[Any] ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : List[Any] , **lowerCamelCase : Union[str, Any] ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : str , **lowerCamelCase : Tuple ) -> Dict: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Dict ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Union[str, Any] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Dict ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : Any , **lowerCamelCase : str ) -> List[Any]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["""torch"""] def __init__( self : Tuple , *lowerCamelCase : Optional[int] , **lowerCamelCase : str ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[Any] , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Optional[Any] ) -> str: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : List[Any] , *lowerCamelCase : List[str] , **lowerCamelCase : Tuple ) -> Any: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCamelCase : str , **lowerCamelCase : Tuple ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : str , *lowerCamelCase : Tuple , **lowerCamelCase : Tuple ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : Tuple ) -> Any: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCamelCase : Dict , **lowerCamelCase : int ) -> str: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Union[str, Any] , *lowerCamelCase : Dict , **lowerCamelCase : Optional[int] ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Any , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Any ) -> Dict: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : str = ["""torch"""] def __init__( self : str , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Union[str, Any] ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Tuple , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Tuple ) -> str: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : List[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Optional[Any] ) -> Tuple: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCamelCase : str , **lowerCamelCase : Any ) -> int: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Any , *lowerCamelCase : Any , **lowerCamelCase : List[str] ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Tuple , *lowerCamelCase : Tuple , **lowerCamelCase : Dict ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Dict = ["""torch"""] def __init__( self : Any , *lowerCamelCase : List[Any] , **lowerCamelCase : Optional[int] ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : Any , **lowerCamelCase : int ) -> str: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : int , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Tuple ) -> Optional[int]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : int = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCamelCase : List[str] , **lowerCamelCase : Optional[int] ) -> int: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Tuple , *lowerCamelCase : List[str] , **lowerCamelCase : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Optional[int] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : str ) -> Dict: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Any = ["""torch"""] def __init__( self : Tuple , *lowerCamelCase : List[str] , **lowerCamelCase : Union[str, Any] ) -> int: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Dict ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Union[str, Any] , *lowerCamelCase : Any , **lowerCamelCase : Any ) -> Any: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Tuple = ["""torch"""] def __init__( self : Optional[int] , *lowerCamelCase : Dict , **lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Union[str, Any] , *lowerCamelCase : List[str] , **lowerCamelCase : int ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Tuple , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Any ) -> List[str]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : List[str] = ["""torch"""] def __init__( self : List[Any] , *lowerCamelCase : Dict , **lowerCamelCase : Any ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Optional[int] , *lowerCamelCase : int , **lowerCamelCase : List[Any] ) -> str: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : str , *lowerCamelCase : str , **lowerCamelCase : Dict ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : str ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[Any] , *lowerCamelCase : List[Any] , **lowerCamelCase : List[str] ) -> str: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Tuple , *lowerCamelCase : str , **lowerCamelCase : Optional[int] ) -> int: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Tuple = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCamelCase : List[Any] , **lowerCamelCase : str ) -> Any: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Optional[int] , *lowerCamelCase : int , **lowerCamelCase : Optional[int] ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Optional[Any] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : int ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Any = ["""torch"""] def __init__( self : Optional[Any] , *lowerCamelCase : Optional[int] , **lowerCamelCase : Any ) -> int: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Optional[int] , *lowerCamelCase : Tuple , **lowerCamelCase : List[Any] ) -> str: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : List[str] , **lowerCamelCase : List[str] ) -> Tuple: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCamelCase : Dict , **lowerCamelCase : Any ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Dict ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : List[Any] , *lowerCamelCase : Dict , **lowerCamelCase : List[Any] ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : List[str] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Dict ) -> str: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Tuple , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Tuple ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : Optional[int] , **lowerCamelCase : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCamelCase : List[Any] , **lowerCamelCase : str ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : Tuple , *lowerCamelCase : Optional[int] , **lowerCamelCase : int ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : str ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["""torch"""] def __init__( self : str , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : List[str] , **lowerCamelCase : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : Optional[Any] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Any ) -> Dict: requires_backends(cls , ["torch"] ) class a (metaclass=lowerCAmelCase__ ): """simple docstring""" __UpperCAmelCase : Any = ["""torch"""] def __init__( self : Tuple , *lowerCamelCase : Optional[int] , **lowerCamelCase : Tuple ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __snake_case ( cls : List[str] , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Optional[Any] ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __snake_case ( cls : str , *lowerCamelCase : Optional[int] , **lowerCamelCase : int ) -> List[str]: requires_backends(cls , ["torch"] )
123
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase : Union[str, Any] =TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = TextaTextGenerationPipeline(model=__a , tokenizer=__a ) return generator, ["Something to write", "Something else"] def snake_case ( self , __a , __a ): __lowerCAmelCase = generator("Something there" ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) __lowerCAmelCase = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=__a ) self.assertEqual( __a , [ [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], ] , ) __lowerCAmelCase = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=__a ) self.assertEqual( __a , [ [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], ] , ) with self.assertRaises(__a ): generator(4 ) @require_torch def snake_case ( self ): __lowerCAmelCase = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility __lowerCAmelCase = generator("Something there" , do_sample=__a ) self.assertEqual(__a , [{"generated_text": ""}] ) __lowerCAmelCase = 3 __lowerCAmelCase = generator( "Something there" , num_return_sequences=__a , num_beams=__a , ) __lowerCAmelCase = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(__a , __a ) __lowerCAmelCase = generator("This is a test" , do_sample=__a , num_return_sequences=2 , return_tensors=__a ) self.assertEqual( __a , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) __lowerCAmelCase = generator.model.config.eos_token_id __lowerCAmelCase = "<pad>" __lowerCAmelCase = generator( ["This is a test", "This is a second test"] , do_sample=__a , num_return_sequences=2 , batch_size=2 , return_tensors=__a , ) self.assertEqual( __a , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def snake_case ( self ): __lowerCAmelCase = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility __lowerCAmelCase = generator("Something there" , do_sample=__a ) self.assertEqual(__a , [{"generated_text": ""}] )
57
0
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : str=13 , lowercase_ : List[Any]=7 , lowercase_ : List[Any]=True , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : Union[str, Any]=True , lowercase_ : Any=99 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=5 , lowercase_ : List[Any]=4 , lowercase_ : List[Any]=37 , lowercase_ : Dict="gelu" , lowercase_ : str=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : List[Any]=128 , lowercase_ : Optional[Any]=32 , lowercase_ : Optional[int]=16 , lowercase_ : List[Any]=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Optional[Any]=3 , lowercase_ : List[str]=4 , lowercase_ : Any=None , ): lowercase_ : Tuple = parent lowercase_ : List[str] = batch_size lowercase_ : Optional[int] = seq_length lowercase_ : int = is_training lowercase_ : str = use_input_mask lowercase_ : str = use_token_type_ids lowercase_ : Tuple = use_labels lowercase_ : Dict = vocab_size lowercase_ : str = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Optional[Any] = hidden_act lowercase_ : List[str] = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : str = max_position_embeddings lowercase_ : Tuple = type_vocab_size lowercase_ : str = type_sequence_label_size lowercase_ : List[Any] = initializer_range lowercase_ : Any = num_labels lowercase_ : Optional[int] = num_choices lowercase_ : Dict = scope def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Union[str, Any] = None if self.use_input_mask: lowercase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : List[Any] = None if self.use_token_type_ids: lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : Union[str, Any] = None lowercase_ : Any = None lowercase_ : Optional[int] = None if self.use_labels: lowercase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : Any ): ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : List[str] = self.prepare_config_and_inputs() lowercase_ : Any = True lowercase_ : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Any , lowercase_ : int , lowercase_ : str ): lowercase_ : List[Any] = NezhaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Any = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) lowercase_ : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Any , lowercase_ : int , lowercase_ : Tuple , lowercase_ : List[str] , ): lowercase_ : int = True lowercase_ : Any = NezhaModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Dict = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , ) lowercase_ : List[str] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ) lowercase_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Union[str, Any] ): lowercase_ : int = NezhaForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : List[str] ): lowercase_ : str = NezhaForNextSentencePrediction(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : List[str] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : List[Any] ): lowercase_ : int = NezhaForPreTraining(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Optional[Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , next_sentence_label=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : str ): lowercase_ : List[str] = NezhaForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Any = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[Any] ): lowercase_ : Optional[Any] = self.num_labels lowercase_ : Tuple = NezhaForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : List[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : List[str] , lowercase_ : int , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Optional[int] ): lowercase_ : Dict = self.num_labels lowercase_ : Optional[int] = NezhaForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Tuple = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Optional[int] ): lowercase_ : Union[str, Any] = self.num_choices lowercase_ : Optional[Any] = NezhaForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Tuple = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Tuple = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[Any] = config_and_inputs lowercase_ : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, unittest.TestCase): UpperCamelCase__ = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase__ = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = True def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Tuple=False ): lowercase_ : Dict = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): lowercase_ : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Optional[int] = NezhaModelTester(self ) lowercase_ : Dict = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): # This regression test was failing with PyTorch < 1.3 ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[int] = None self.model_tester.create_and_check_model_as_decoder( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Any = NezhaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ , lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowercase_ : List[str] = True lowercase_ : List[str] = model_class(config=_SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """bert.pt""" ) ) lowercase_ : Dict = torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , """bert.pt""" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["""attention_mask"""].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) lowercase_ : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowercase_ : List[str] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = torch.tensor([[[0.06_85, 0.24_41, 0.11_02], [0.06_00, 0.19_06, 0.13_49], [0.02_21, 0.08_19, 0.05_86]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : str = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) lowercase_ : Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : str = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowercase_ : Union[str, Any] = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = torch.tensor( [[-2.79_39, -1.79_02, -2.21_89], [-2.85_85, -1.89_08, -2.37_23], [-2.64_99, -1.77_50, -2.25_58]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowerCamelCase__ : Union[str, Any] = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowerCamelCase__ : List[Any] = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def UpperCamelCase ( _lowerCAmelCase : List[str] ) -> str: _UpperCAmelCase : Dict = (images / 2 + 0.5).clamp(0, 1 ) _UpperCAmelCase : List[Any] = images.cpu().permute(0, 2, 3, 1 ).float().numpy() _UpperCAmelCase : int = numpy_to_pil(_lowerCAmelCase ) return images def UpperCamelCase ( _lowerCAmelCase : str ) -> Optional[Any]: if images.ndim == 3: _UpperCAmelCase : List[Any] = images[None, ...] _UpperCAmelCase : Optional[Any] = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _UpperCAmelCase : List[Any] = [Image.fromarray(image.squeeze(), mode="""L""" ) for image in images] else: _UpperCAmelCase : List[Any] = [Image.fromarray(_lowerCAmelCase ) for image in images] return pil_images
246
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def UpperCamelCase ( _lowerCAmelCase : Dict, _lowerCAmelCase : int=(), _lowerCAmelCase : Union[str, Any]=None, _lowerCAmelCase : Union[str, Any]="no", _lowerCAmelCase : Optional[int]="29500" ) -> Any: _UpperCAmelCase : Any = False _UpperCAmelCase : Dict = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): _UpperCAmelCase : Union[str, Any] = True elif "IPython" in sys.modules: _UpperCAmelCase : Dict = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: _UpperCAmelCase : int = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""", _lowerCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: _UpperCAmelCase : List[Any] = 8 _UpperCAmelCase : int = PrepareForLaunch(_lowerCAmelCase, distributed_type="""TPU""" ) print(f'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(_lowerCAmelCase, args=_lowerCAmelCase, nprocs=_lowerCAmelCase, start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*_lowerCAmelCase ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase, master_addr="""127.0.01""", master_port=_lowerCAmelCase, mixed_precision=_lowerCAmelCase ): _UpperCAmelCase : Any = PrepareForLaunch(_lowerCAmelCase, distributed_type="""MULTI_GPU""" ) print(f'''Launching training on {num_processes} GPUs.''' ) try: start_processes(_lowerCAmelCase, args=_lowerCAmelCase, nprocs=_lowerCAmelCase, start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _UpperCAmelCase : Union[str, Any] = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : List[str]=(), _lowerCAmelCase : Optional[int]=2 ) -> Tuple: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase, master_addr="""127.0.01""", master_port="""29500""", accelerate_mixed_precision="""no""", accelerate_debug_rdv_file=tmp_file.name, accelerate_use_cpu="""yes""", ): _UpperCAmelCase : Tuple = PrepareForLaunch(_lowerCAmelCase, debug=_lowerCAmelCase ) start_processes(_lowerCAmelCase, args=_lowerCAmelCase, nprocs=_lowerCAmelCase, start_method="""fork""" )
246
1
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> int: return int((input_a, input_a).count(0 ) != 0 ) def lowercase__ ( )-> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
183
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowercase__ ( __UpperCamelCase )-> Dict: # picklable for multiprocessing return x.sum() def lowercase__ ( __UpperCamelCase )-> Tuple: # picklable for multiprocessing return i + 1 @dataclass class a_ : lowercase = 42 lowercase = 42 class a_ ( lowerCamelCase ): def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 1 UpperCamelCase = [1, 2] UpperCamelCase = {"""a""": 1, """b""": 2} UpperCamelCase = {"""a""": [1, 2], """b""": [3, 4]} UpperCamelCase = {"""a""": {"""1""": 1}, """b""": 2} UpperCamelCase = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 2 UpperCamelCase = [2, 3] UpperCamelCase = {"""a""": 2, """b""": 3} UpperCamelCase = {"""a""": [2, 3], """b""": [4, 5]} UpperCamelCase = {"""a""": {"""1""": 2}, """b""": 3} UpperCamelCase = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase = 2 self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} UpperCamelCase = {"""a""": 2, """b""": 0, """c""": 2} UpperCamelCase = { """a""": np.eye(2 ).astype(_SCREAMING_SNAKE_CASE ), """b""": np.zeros(3 ).astype(_SCREAMING_SNAKE_CASE ), """c""": np.ones(2 ).astype(_SCREAMING_SNAKE_CASE ), } self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # can't pickle a local lambda map_nested(lambda _SCREAMING_SNAKE_CASE : x + 1 , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = {"""a""": 1, """b""": 2} UpperCamelCase = {"""a""": 3, """b""": 4} UpperCamelCase = {"""a""": 5, """b""": 6} UpperCamelCase = sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[str]: """simple docstring""" class a_ : lowercase = """bar""" UpperCamelCase = Foo() self.assertEqual(foo.my_attr , """bar""" ) with temporary_assignment(_SCREAMING_SNAKE_CASE , """my_attr""" , """BAR""" ): self.assertEqual(foo.my_attr , """BAR""" ) self.assertEqual(foo.my_attr , """bar""" ) @pytest.mark.parametrize( """iterable_length, num_proc, expected_num_proc""" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch( """datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool: UpperCamelCase = {F"{i}": i for i in range(__UpperCamelCase )} UpperCamelCase = map_nested(lambda __UpperCamelCase : x + 10 , __UpperCamelCase , num_proc=__UpperCamelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class a_ ( lowerCamelCase ): @require_tf def A__ ( self ) -> Any: """simple docstring""" import tensorflow as tf from tensorflow.keras import layers UpperCamelCase = layers.Dense(2 ) def gen_random_output(): UpperCamelCase = tf.random.uniform((1, 3) ) return model(_SCREAMING_SNAKE_CASE ).numpy() with temp_seed(42 , set_tensorflow=_SCREAMING_SNAKE_CASE ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_tensorflow=_SCREAMING_SNAKE_CASE ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def A__ ( self ) -> int: """simple docstring""" import torch def gen_random_output(): UpperCamelCase = torch.nn.Linear(3 , 2 ) UpperCamelCase = torch.rand(1 , 3 ) return model(_SCREAMING_SNAKE_CASE ).detach().numpy() with temp_seed(42 , set_pytorch=_SCREAMING_SNAKE_CASE ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_pytorch=_SCREAMING_SNAKE_CASE ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def A__ ( self ) -> Dict: """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): UpperCamelCase = gen_random_output() with temp_seed(42 ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("""input_data""" , [{}] ) def lowercase__ ( __UpperCamelCase )-> List[str]: UpperCamelCase = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( """data, expected_output""" , [ ({}, []), ([], []), ("""foo""", ["""foo"""]), (["""foo""", """bar"""], ["""foo""", """bar"""]), ([["""foo""", """bar"""]], ["""foo""", """bar"""]), ([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]), ([[["""foo"""], """bar"""]], ["""foo""", """bar"""]), ({"""a""": 1, """b""": 2}, [1, 2]), ({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]), ({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]), ] , ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> str: UpperCamelCase = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def lowercase__ ( )-> Union[str, Any]: UpperCamelCase = A(x=1 , y="""foobar""" ) UpperCamelCase = {"""x""": 1, """y""": """foobar"""} assert asdict(__UpperCamelCase ) == expected_output UpperCamelCase = {"""a""": {"""b""": A(x=10 , y="""foo""" )}, """c""": [A(x=20 , y="""bar""" )]} UpperCamelCase = {"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 , y="""foo""" )] ) def lowercase__ ( __UpperCamelCase )-> List[Any]: return text.split() def lowercase__ ( __UpperCamelCase )-> List[str]: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowercase__ ( )-> int: with Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(__UpperCamelCase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(__UpperCamelCase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCamelCase = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count("""a""" ) == 2 assert out.count("""b""" ) == 2 assert len(__UpperCamelCase ) == 4
183
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase : List[str] = logging.get_logger(__name__) _lowercase : Any = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase_ = '''dinat''' lowerCAmelCase_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=[3, 4, 6, 5] , __SCREAMING_SNAKE_CASE=[2, 4, 8, 16] , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , __SCREAMING_SNAKE_CASE=3.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-5 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = patch_size lowercase_ : Any = num_channels lowercase_ : str = embed_dim lowercase_ : List[str] = depths lowercase_ : Any = len(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = num_heads lowercase_ : Tuple = kernel_size lowercase_ : Union[str, Any] = dilations lowercase_ : List[str] = mlp_ratio lowercase_ : Any = qkv_bias lowercase_ : List[str] = hidden_dropout_prob lowercase_ : Union[str, Any] = attention_probs_dropout_prob lowercase_ : Tuple = drop_path_rate lowercase_ : List[str] = hidden_act lowercase_ : List[Any] = layer_norm_eps lowercase_ : int = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase_ : List[Any] = int(embed_dim * 2 ** (len(__SCREAMING_SNAKE_CASE ) - 1) ) lowercase_ : Dict = layer_scale_init_value lowercase_ : Optional[int] = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] lowercase_ , lowercase_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
93
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase : List[str] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowerCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
107
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A : Tuple = logging.get_logger(__name__) __A : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : List[str] = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A : Optional[Any] = { "yjernite/retribert-base-uncased": 512, } __A : int = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = RetriBertTokenizer lowercase = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : List[str]=None , lowerCamelCase : str=True , lowerCamelCase : str="[UNK]" , lowerCamelCase : str="[SEP]" , lowerCamelCase : Optional[int]="[PAD]" , lowerCamelCase : List[Any]="[CLS]" , lowerCamelCase : Optional[Any]="[MASK]" , lowerCamelCase : Dict=True , lowerCamelCase : int=None , **lowerCamelCase : str , ) -> Optional[int]: super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , ) lowerCAmelCase_ : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : int = getattr(lowerCamelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : Dict = do_lower_case lowerCAmelCase_ : Optional[Any] = strip_accents lowerCAmelCase_ : List[str] = tokenize_chinese_chars lowerCAmelCase_ : Tuple = normalizer_class(**lowerCamelCase ) lowerCAmelCase_ : Tuple = do_lower_case def __lowercase ( self : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]=None ) -> int: lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : Dict , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Dict , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase_ : Optional[int] = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
358
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase_ ( A__ : List[Any] , A__ : str=False ): '''simple docstring''' lowerCAmelCase_ : List[str] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): lowerCAmelCase_ : str = """segformer.encoder.""" + key if key.startswith("""backbone""" ): lowerCAmelCase_ : str = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ : List[str] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] lowerCAmelCase_ : List[Any] = key.replace(f'patch_embed{idx}' , f'patch_embeddings.{int(A__ )-1}' ) if "norm" in key: lowerCAmelCase_ : Any = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ : Tuple = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] lowerCAmelCase_ : int = key.replace(f'layer_norm{idx}' , f'layer_norm.{int(A__ )-1}' ) if "layer_norm1" in key: lowerCAmelCase_ : str = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: lowerCAmelCase_ : Union[str, Any] = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ : Any = key[key.find("""block""" ) + len("""block""" )] lowerCAmelCase_ : str = key.replace(f'block{idx}' , f'block.{int(A__ )-1}' ) if "attn.q" in key: lowerCAmelCase_ : List[Any] = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: lowerCAmelCase_ : Optional[int] = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: lowerCAmelCase_ : str = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: lowerCAmelCase_ : List[Any] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) lowerCAmelCase_ : Any = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ : str = key[key.find("""linear_c""" ) + len("""linear_c""" )] lowerCAmelCase_ : Dict = key.replace(f'linear_c{idx}' , f'linear_c.{int(A__ )-1}' ) if key.startswith("""head""" ): lowerCAmelCase_ : int = key.replace("""head""" , """classifier""" ) lowerCAmelCase_ : int = value return new_state_dict def UpperCamelCase_ ( A__ : int , A__ : Union[str, Any] ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ : int = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) lowerCAmelCase_ : Optional[int] = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ : List[str] = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ : Optional[Any] = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ : Union[str, Any] = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ : str = kv_bias[ config.hidden_sizes[i] : ] def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : Optional[Any] = Image.open(requests.get(A__ , stream=A__ ).raw ) return image @torch.no_grad() def UpperCamelCase_ ( A__ : Optional[Any] , A__ : List[Any] , A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : str = SegformerConfig() lowerCAmelCase_ : Optional[Any] = False # set attributes based on model_name lowerCAmelCase_ : int = """huggingface/label-files""" if "segformer" in model_name: lowerCAmelCase_ : Optional[int] = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: lowerCAmelCase_ : List[Any] = 1_50 lowerCAmelCase_ : int = """ade20k-id2label.json""" lowerCAmelCase_ : Tuple = (1, 1_50, 1_28, 1_28) elif "city" in model_name: lowerCAmelCase_ : List[str] = 19 lowerCAmelCase_ : Dict = """cityscapes-id2label.json""" lowerCAmelCase_ : List[str] = (1, 19, 1_28, 1_28) else: raise ValueError(f'Model {model_name} not supported' ) elif "mit" in model_name: lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Optional[int] = model_name[4:6] lowerCAmelCase_ : Union[str, Any] = 10_00 lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : Optional[Any] = (1, 10_00) else: raise ValueError(f'Model {model_name} not supported' ) # set config attributes lowerCAmelCase_ : Optional[Any] = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[Any] = {int(A__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : List[str] = idalabel lowerCAmelCase_ : List[Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase_ : Any = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : int = 2_56 elif size == "b2": lowerCAmelCase_ : Any = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : List[str] = 7_68 lowerCAmelCase_ : Any = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase_ : List[str] = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : Union[str, Any] = 7_68 lowerCAmelCase_ : Union[str, Any] = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase_ : Tuple = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : Tuple = 7_68 lowerCAmelCase_ : Tuple = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase_ : Union[str, Any] = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : str = 7_68 lowerCAmelCase_ : Any = [3, 6, 40, 3] else: raise ValueError(f'Size {size} not supported' ) # load image processor (only resize + normalize) lowerCAmelCase_ : List[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=A__ , align=A__ , do_random_crop=A__ ) # prepare image lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Union[str, Any] = image_processor(images=A__ , return_tensors="""pt""" ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict if encoder_only: lowerCAmelCase_ : str = torch.load(A__ , map_location=torch.device("""cpu""" ) ) else: lowerCAmelCase_ : List[str] = torch.load(A__ , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys lowerCAmelCase_ : Dict = rename_keys(A__ , encoder_only=A__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(A__ , A__ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase_ : Dict = False lowerCAmelCase_ : List[Any] = SegformerForImageClassification(A__ ) else: lowerCAmelCase_ : str = SegformerForSemanticSegmentation(A__ ) model.load_state_dict(A__ ) model.eval() # forward pass lowerCAmelCase_ : Tuple = model(A__ ) lowerCAmelCase_ : Union[str, Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase_ : Tuple = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase_ : List[str] = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase_ : List[str] = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase_ : Dict = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase_ : Dict = torch.tensor( [ [ [-1.13_72E01, -1.27_87E01, -1.34_77E01], [-1.25_36E01, -1.41_94E01, -1.44_09E01], [-1.32_17E01, -1.48_88E01, -1.53_27E01], ], [ [-1.47_91E01, -1.71_22E01, -1.82_77E01], [-1.71_63E01, -1.91_92E01, -1.95_33E01], [-1.78_97E01, -1.99_91E01, -2.03_15E01], ], [ [7.67_23E-01, 4.19_21E-01, -7.78_78E-02], [4.77_72E-01, 9.55_57E-03, -2.80_82E-01], [3.60_32E-01, -2.48_26E-01, -5.11_68E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase_ : str = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase_ : Optional[int] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase_ : int = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase_ : Union[str, Any] = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: lowerCAmelCase_ : Optional[Any] = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , A__ , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A : Tuple = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
89
0
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class snake_case : """simple docstring""" @staticmethod def __lowerCAmelCase ( *lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : Union[str, Any] ): pass def a_ ( lowerCamelCase ): UpperCAmelCase__ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def a_ ( lowerCamelCase ): UpperCAmelCase__ = np.array(lowerCamelCase ) UpperCAmelCase__ = npimg.shape return {"hash": hashimage(lowerCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" snake_case__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) snake_case__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : str ): UpperCAmelCase__ = MaskGenerationPipeline(model=lowerCamelCase__ ,image_processor=lowerCamelCase__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : str ): pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def __lowerCAmelCase ( self : Optional[Any] ): pass @slow @require_torch def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = pipeline('mask-generation' ,model='facebook/sam-vit-huge' ) UpperCAmelCase__ = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' ,points_per_batch=256 ) # Shortening by hashing UpperCAmelCase__ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCamelCase__ ,decimals=4 ) ,[ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9_9_6_7}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.9_9_3}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9_9_0_9}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9_8_7_9}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9_8_3_4}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9_7_1_6}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9_6_1_2}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9_5_9_9}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9_5_5_2}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9_5_3_2}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9_5_1_6}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9_4_9_9}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9_4_8_3}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9_4_6_4}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9_4_0_8}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9_3_3_5}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9_3_2_6}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9_2_6_2}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8_9_9_9}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8_9_8_6}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8_9_8_4}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8_8_7_3}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8_8_7_1} ] ,) # fmt: on @require_torch @slow def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = 'facebook/sam-vit-huge' UpperCAmelCase__ = pipeline('mask-generation' ,model=lowerCamelCase__ ) UpperCAmelCase__ = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' ,pred_iou_thresh=1 ,points_per_batch=256 ) # Shortening by hashing UpperCAmelCase__ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCamelCase__ ,decimals=4 ) ,[ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1_0}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, ] ,)
98
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True A__ : Optional[Any] =[num for num in range(3, 10_00_01, 2) if not is_prime(num)] def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) _lowerCAmelCase = [] for num in range(len(lowerCAmelCase ) ): _lowerCAmelCase = 0 while 2 * i * i <= odd_composites[num]: _lowerCAmelCase = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase ) == n: return list_nums return [] def UpperCamelCase__ ( ): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
70
0
from __future__ import annotations A : Dict = "#" class lowerCamelCase : """simple docstring""" def __init__( self : Dict ) -> None: SCREAMING_SNAKE_CASE_ = {} def __A ( self : List[Any] , __magic_name__ : str ) -> None: SCREAMING_SNAKE_CASE_ = self._trie for char in text: if char not in trie: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = trie[char] SCREAMING_SNAKE_CASE_ = True def __A ( self : Union[str, Any] , __magic_name__ : str ) -> tuple | list: SCREAMING_SNAKE_CASE_ = self._trie for char in prefix: if char in trie: SCREAMING_SNAKE_CASE_ = trie[char] else: return [] return self._elements(__magic_name__ ) def __A ( self : int , __magic_name__ : dict ) -> tuple: SCREAMING_SNAKE_CASE_ = [] for c, v in d.items(): SCREAMING_SNAKE_CASE_ = [" "] if c == END else [(c + s) for s in self._elements(__magic_name__ )] result.extend(__magic_name__ ) return tuple(__magic_name__ ) A : Union[str, Any] = Trie() A : Optional[int] = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = trie.find_word(__UpperCamelCase ) return tuple(string + word for word in suffixes ) def a__ ( ): print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
363
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) SCREAMING_SNAKE_CASE_ = np.array(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __UpperCamelCase ) ) , x.transpose() ) , __UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = (1, 2, 1) SCREAMING_SNAKE_CASE_ = (1, 1, 0, 7) SCREAMING_SNAKE_CASE_ = SARIMAX( __UpperCamelCase , exog=__UpperCamelCase , order=__UpperCamelCase , seasonal_order=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model.fit(disp=__UpperCamelCase , maxiter=6_0_0 , method="nm" ) SCREAMING_SNAKE_CASE_ = model_fit.predict(1 , len(__UpperCamelCase ) , exog=[test_match] ) return result[0] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regressor.predict(__UpperCamelCase ) return y_pred[0] def a__ ( __UpperCamelCase ): train_user.sort() SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 2_5 ) SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 7_5 ) SCREAMING_SNAKE_CASE_ = qa - qa SCREAMING_SNAKE_CASE_ = qa - (iqr * 0.1) return low_lim def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for i in list_vote: if i > actual_result: SCREAMING_SNAKE_CASE_ = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] A : Optional[Any] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) A : Union[str, Any] = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : List[str] = normalize_df[:, 0].tolist() A : int = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Tuple = x[: len(x) - 1] A : str = x[len(x) - 1 :] # for linear regression & sarimax A : Tuple = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : List[Any] = total_date[len(total_date) - 1 :] A : List[Any] = total_user[len(total_user) - 1 :] A : Optional[Any] = total_match[len(total_match) - 1 :] # voting system with forecasting A : Optional[int] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : str = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
305
0
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
48
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: _lowercase : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCamelCase_( ) -> Optional[int]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __UpperCamelCase : Union[str, Any] = "<<<<<<< This should probably be modified because it mentions: " __UpperCamelCase : Optional[int] = "=======\n>>>>>>>\n" __UpperCamelCase : Optional[Any] = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __UpperCamelCase : Dict = [ # (pattern, replacement) # Order is important here for some replacements (r"tfds\.core", r"datasets"), (r"tf\.io\.gfile\.GFile", r"open"), (r"tf\.([\w\d]+)", r"datasets.Value('\1')"), (r"tfds\.features\.Text\(\)", r"datasets.Value('string')"), (r"tfds\.features\.Text\(", r"datasets.Value('string'),"), (r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("), (r"tfds\.features\.FeaturesDict\(", r"dict("), (r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (r"tfds\.", r"datasets."), (r"dl_manager\.manual_dir", r"self.config.data_dir"), (r"self\.builder_config", r"self.config"), ] def A ( _lowercase ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowercase__ ( lowercase_): @staticmethod def __A ( UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=a__ , required=a__ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=a__ , required=a__ , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=a__ ) def __init__( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , *UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = get_logger('''datasets-cli/converting''' ) SCREAMING_SNAKE_CASE : int = tfds_path SCREAMING_SNAKE_CASE : int = datasets_directory def __A ( self : Optional[Any] ): '''simple docstring''' if os.path.isdir(self._tfds_path ): SCREAMING_SNAKE_CASE : Tuple = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): SCREAMING_SNAKE_CASE : Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) SCREAMING_SNAKE_CASE : List[Any] = os.path.abspath(self._datasets_directory ) self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : str = {} if os.path.isdir(self._tfds_path ): SCREAMING_SNAKE_CASE : List[str] = os.listdir(a__ ) else: SCREAMING_SNAKE_CASE : Any = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"""Looking at file {f_name}""" ) SCREAMING_SNAKE_CASE : Tuple = os.path.join(a__ , a__ ) SCREAMING_SNAKE_CASE : str = os.path.join(a__ , a__ ) if not os.path.isfile(a__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(a__ , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Union[str, Any] = f.readlines() SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Optional[int] = [] for line in lines: SCREAMING_SNAKE_CASE : int = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: SCREAMING_SNAKE_CASE : int = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here SCREAMING_SNAKE_CASE : Dict = '''''' continue elif "from absl import logging" in out_line: SCREAMING_SNAKE_CASE : List[str] = '''from datasets import logging\n''' elif "getLogger" in out_line: SCREAMING_SNAKE_CASE : Union[str, Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = list(filter(lambda UpperCamelCase__ : e in out_line , a__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(a__ ) + '''\n''' ) out_lines.append(a__ ) out_lines.append(a__ ) continue else: for pattern, replacement in TO_CONVERT: SCREAMING_SNAKE_CASE : str = re.sub(a__ , a__ , a__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: SCREAMING_SNAKE_CASE : Optional[Any] = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , a__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) SCREAMING_SNAKE_CASE : Any = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: SCREAMING_SNAKE_CASE : Any = True out_lines.append(a__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset SCREAMING_SNAKE_CASE : List[Any] = f_name.replace('''.py''' , '''''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(a__ , a__ ) SCREAMING_SNAKE_CASE : str = os.path.join(a__ , a__ ) os.makedirs(a__ , exist_ok=a__ ) self._logger.info(f"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(a__ ) if needs_manual_update: with_manual_update.append(a__ ) with open(a__ , '''w''' , encoding='''utf-8''' ) as f: f.writelines(a__ ) self._logger.info(f"""Converted in {output_file}""" ) for utils_file in utils_files: try: SCREAMING_SNAKE_CASE : Any = os.path.basename(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(f"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(a__ , a__ ) except KeyError: self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"""You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.""" )
354
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase__ : def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]="resnet50" , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=32 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Any=True , UpperCamelCase__ : int=True , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : Union[str, Any] = out_indices if out_indices is not None else [4] SCREAMING_SNAKE_CASE : List[Any] = stage_names SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : Optional[int] = backbone SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : Dict = image_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : List[Any] = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = is_training def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values def __A ( self : List[Any] ): '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __A ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = TimmBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(UpperCamelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = (TimmBackbone,) if is_torch_available() else () UpperCamelCase_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TimmBackboneModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def __A ( self : List[Any] ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''resnet18''' SCREAMING_SNAKE_CASE : str = '''microsoft/resnet-18''' SCREAMING_SNAKE_CASE : Dict = AutoBackbone.from_pretrained(UpperCamelCase__ , use_timm_backbone=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = AutoBackbone.from_pretrained(UpperCamelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) SCREAMING_SNAKE_CASE : List[str] = AutoBackbone.from_pretrained(UpperCamelCase__ , use_timm_backbone=UpperCamelCase__ , out_indices=[1, 2, 3] ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoBackbone.from_pretrained(UpperCamelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def __A ( self : int ): '''simple docstring''' pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def __A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __A ( self : List[Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __A ( self : Any ): '''simple docstring''' pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : int ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''Safetensors is not supported by timm.''' ) def __A ( self : List[Any] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self : int ): '''simple docstring''' pass def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Any = self.has_attentions # no need to test all models as different heads yield the same functionality SCREAMING_SNAKE_CASE : Any = self.all_model_classes[0] SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = model(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = outputs[0][-1] # Encoder-/Decoder-only models SCREAMING_SNAKE_CASE : List[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: SCREAMING_SNAKE_CASE : Any = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCamelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(**UpperCamelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None SCREAMING_SNAKE_CASE : List[str] = copy.deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(**UpperCamelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : int = model(**UpperCamelCase__ )
258
0
"""simple docstring""" from typing import Any class a : def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Any ) -> List[Any]: lowerCamelCase_ = data lowerCamelCase_ = None class a : def __init__( self : Union[str, Any] ) -> List[Any]: lowerCamelCase_ = None def UpperCamelCase ( self : Dict ) -> Optional[int]: lowerCamelCase_ = self.head while temp is not None: print(temp.data , end=' ' ) lowerCamelCase_ = temp.next print() def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: lowerCamelCase_ = Node(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.head lowerCamelCase_ = new_node def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: if node_data_a == node_data_a: return else: lowerCamelCase_ = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase_ = node_a.next lowerCamelCase_ = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase_ = node_a.next if node_a is None or node_a is None: return lowerCamelCase_ , lowerCamelCase_ = node_a.data, node_a.data if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
183
"""simple docstring""" import argparse import json import subprocess def lowerCamelCase__ ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> List[Any]: lowerCamelCase_ = [] lowerCamelCase_ = ( F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowerCamelCase_ = subprocess.run(_lowerCamelCase , shell=_lowerCamelCase , stdout=subprocess.PIPE ) lowerCamelCase_ = output.stdout.decode('utf-8' ) lowerCamelCase_ = json.loads(_lowerCamelCase ) lowerCamelCase_ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: lowerCamelCase_ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def lowerCamelCase__ ( _lowerCamelCase : Dict ) -> Tuple: return values.split(',' ) _SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() get_runner_status(args.target_runners, args.token)
183
1
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): super().__init__() _lowerCamelCase = value_function _lowerCamelCase = unet _lowerCamelCase = scheduler _lowerCamelCase = env _lowerCamelCase = env.get_dataset() _lowerCamelCase = {} for key in self.data.keys(): try: _lowerCamelCase = self.data[key].mean() except: # noqa: E722 pass _lowerCamelCase = {} for key in self.data.keys(): try: _lowerCamelCase = self.data[key].std() except: # noqa: E722 pass _lowerCamelCase = env.observation_space.shape[0] _lowerCamelCase = env.action_space.shape[0] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): return (x_in - self.means[key]) / self.stds[key] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): return x_in * self.stds[key] + self.means[key] def snake_case__ ( self , lowerCamelCase__ ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): for key, val in cond.items(): _lowerCamelCase = val.clone() return x_in def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = x.shape[0] _lowerCamelCase = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model _lowerCamelCase = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _lowerCamelCase = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample _lowerCamelCase = torch.autograd.grad([y.sum()] , [x] )[0] _lowerCamelCase = self.scheduler._get_variance(lowerCamelCase__ ) _lowerCamelCase = torch.exp(0.5 * posterior_variance ) _lowerCamelCase = model_std * grad _lowerCamelCase = 0 _lowerCamelCase = x.detach() _lowerCamelCase = x + scale * grad _lowerCamelCase = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) _lowerCamelCase = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg _lowerCamelCase = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) _lowerCamelCase = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) _lowerCamelCase = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self , lowerCamelCase__ , lowerCamelCase__=6_4 , lowerCamelCase__=3_2 , lowerCamelCase__=2 , lowerCamelCase__=0.1 ): # normalize the observations and create batch dimension _lowerCamelCase = self.normalize(lowerCamelCase__ , '''observations''' ) _lowerCamelCase = obs[None].repeat(lowerCamelCase__ , axis=0 ) _lowerCamelCase = {0: self.to_torch(lowerCamelCase__ )} _lowerCamelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _lowerCamelCase = randn_tensor(lowerCamelCase__ , device=self.unet.device ) _lowerCamelCase = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) _lowerCamelCase = self.to_torch(lowerCamelCase__ ) # run the diffusion process _lowerCamelCase , _lowerCamelCase = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value _lowerCamelCase = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() _lowerCamelCase = x[sorted_idx] _lowerCamelCase = sorted_values[:, :, : self.action_dim] _lowerCamelCase = actions.detach().cpu().numpy() _lowerCamelCase = self.de_normalize(lowerCamelCase__ , key='''actions''' ) # select the action with the highest value if y is not None: _lowerCamelCase = 0 else: # if we didn't run value guiding, select a random action _lowerCamelCase = np.random.randint(0 , lowerCamelCase__ ) _lowerCamelCase = denorm_actions[selected_index, 0] return denorm_actions
73
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : Dict = { '''configuration_blenderbot_small''': [ '''BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotSmallConfig''', '''BlenderbotSmallOnnxConfig''', ], '''tokenization_blenderbot_small''': ['''BlenderbotSmallTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = ['''BlenderbotSmallTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ '''BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotSmallForCausalLM''', '''BlenderbotSmallForConditionalGeneration''', '''BlenderbotSmallModel''', '''BlenderbotSmallPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ '''TFBlenderbotSmallForConditionalGeneration''', '''TFBlenderbotSmallModel''', '''TFBlenderbotSmallPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = [ '''FlaxBlenderbotSmallForConditionalGeneration''', '''FlaxBlenderbotSmallModel''', '''FlaxBlenderbotSmallPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : List[Any] = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A__ ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'cvt' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: List[str]=[7, 3, 3] , _SCREAMING_SNAKE_CASE: List[str]=[4, 2, 2] , _SCREAMING_SNAKE_CASE: Optional[Any]=[2, 1, 1] , _SCREAMING_SNAKE_CASE: List[str]=[64, 192, 384] , _SCREAMING_SNAKE_CASE: Tuple=[1, 3, 6] , _SCREAMING_SNAKE_CASE: Optional[Any]=[1, 2, 10] , _SCREAMING_SNAKE_CASE: Optional[int]=[4.0, 4.0, 4.0] , _SCREAMING_SNAKE_CASE: Optional[Any]=[0.0, 0.0, 0.0] , _SCREAMING_SNAKE_CASE: List[str]=[0.0, 0.0, 0.0] , _SCREAMING_SNAKE_CASE: List[str]=[0.0, 0.0, 0.1] , _SCREAMING_SNAKE_CASE: Dict=[True, True, True] , _SCREAMING_SNAKE_CASE: Dict=[False, False, True] , _SCREAMING_SNAKE_CASE: str=["dw_bn", "dw_bn", "dw_bn"] , _SCREAMING_SNAKE_CASE: int=[3, 3, 3] , _SCREAMING_SNAKE_CASE: Optional[int]=[1, 1, 1] , _SCREAMING_SNAKE_CASE: List[str]=[2, 2, 2] , _SCREAMING_SNAKE_CASE: List[str]=[1, 1, 1] , _SCREAMING_SNAKE_CASE: Optional[Any]=[1, 1, 1] , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.02 , _SCREAMING_SNAKE_CASE: int=1e-12 , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**_UpperCAmelCase) __lowerCAmelCase : Any = num_channels __lowerCAmelCase : List[Any] = patch_sizes __lowerCAmelCase : int = patch_stride __lowerCAmelCase : List[Any] = patch_padding __lowerCAmelCase : Any = embed_dim __lowerCAmelCase : List[str] = num_heads __lowerCAmelCase : Tuple = depth __lowerCAmelCase : int = mlp_ratio __lowerCAmelCase : List[Any] = attention_drop_rate __lowerCAmelCase : Optional[int] = drop_rate __lowerCAmelCase : str = drop_path_rate __lowerCAmelCase : Tuple = qkv_bias __lowerCAmelCase : str = cls_token __lowerCAmelCase : Optional[int] = qkv_projection_method __lowerCAmelCase : Any = kernel_qkv __lowerCAmelCase : Any = padding_kv __lowerCAmelCase : str = stride_kv __lowerCAmelCase : Tuple = padding_q __lowerCAmelCase : List[str] = stride_q __lowerCAmelCase : List[str] = initializer_range __lowerCAmelCase : Dict = layer_norm_eps
269
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Optional[int] = BarthezTokenizer lowerCAmelCase : int = BarthezTokenizerFast lowerCAmelCase : Dict = True lowerCAmelCase : str = True def __lowercase ( self : List[Any] ): super().setUp() _a : List[Any] = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ,legacy_format=_UpperCAmelCase ) _a : Union[str, Any] = tokenizer def __lowercase ( self : Tuple ): _a : Optional[Any] = '<pad>' _a : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) ,_UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) ,_UpperCAmelCase ) def __lowercase ( self : str ): _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-1] ,'<mask>' ) self.assertEqual(len(_UpperCAmelCase ) ,101122 ) def __lowercase ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size ,101122 ) @require_torch def __lowercase ( self : Dict ): _a : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _a : Dict = [0, 57, 3018, 70307, 91, 2] _a : Dict = self.tokenizer( _UpperCAmelCase ,max_length=len(_UpperCAmelCase ) ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase ,return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase ) self.assertEqual((2, 6) ,batch.input_ids.shape ) self.assertEqual((2, 6) ,batch.attention_mask.shape ) _a : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ): if not self.test_rust_tokenizer: return _a : str = self.get_tokenizer() _a : List[str] = self.get_rust_tokenizer() _a : Dict = 'I was born in 92000, and this is falsé.' _a : List[Any] = tokenizer.tokenize(_UpperCAmelCase ) _a : Tuple = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) _a : Optional[Any] = tokenizer.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) _a : Optional[int] = rust_tokenizer.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) _a : Union[str, Any] = self.get_rust_tokenizer() _a : Any = tokenizer.encode(_UpperCAmelCase ) _a : Optional[int] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) @slow def __lowercase ( self : Optional[int] ): # fmt: off _a : Optional[int] = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _a : Optional[Any] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase ,model_name='moussaKam/mbarthez' ,revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' ,sequences=_UpperCAmelCase ,)
89
0
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[Any] = tmp_path / "cache" lowerCAmelCase : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : str = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Optional[int] = tmp_path / "cache" lowerCAmelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Tuple = features.copy() if features else default_expected_features lowerCAmelCase : List[str] = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : List[str] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : List[Any] = tmp_path / "cache" lowerCAmelCase : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Tuple = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = parquet_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Dict = [parquet_path] lowerCAmelCase : Optional[Any] = tmp_path / "cache" lowerCAmelCase : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Optional[Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple=("train",) ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: lowerCAmelCase : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Tuple = tmp_path / "cache" lowerCAmelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : Optional[Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Any = tmp_path / "cache" lowerCAmelCase : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : List[Any] = features.copy() if features else default_expected_features lowerCAmelCase : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Optional[int] = ParquetDatasetReader({"train": parquet_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if split: lowerCAmelCase : List[str] = {split: parquet_path} else: lowerCAmelCase : List[str] = "train" lowerCAmelCase : str = {"train": parquet_path, "test": parquet_path} lowerCAmelCase : Optional[int] = tmp_path / "cache" lowerCAmelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : List[str] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Optional[int] = ParquetDatasetWriter(SCREAMING_SNAKE_CASE , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCAmelCase : List[str] = pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCAmelCase : Union[str, Any] = pf.read() assert dataset.data.table == output_table def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : str = str(shared_datadir / "test_image_rgb.jpg" ) lowerCAmelCase : List[str] = {"image": [image_path]} lowerCAmelCase : str = Features({"image": Image()} ) lowerCAmelCase : Optional[Any] = Dataset.from_dict(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = ParquetDatasetWriter(SCREAMING_SNAKE_CASE , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCAmelCase : Any = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCAmelCase : Optional[int] = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=SCREAMING_SNAKE_CASE ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert get_writer_batch_size(SCREAMING_SNAKE_CASE ) == expected
133
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase__ = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Any ="tapas" def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1_024 , snake_case__=[3, 256, 256, 2, 256, 256, 10] , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__=10.0 , snake_case__=0 , snake_case__=1.0 , snake_case__=None , snake_case__=1.0 , snake_case__=False , snake_case__=None , snake_case__=1.0 , snake_case__=1.0 , snake_case__=False , snake_case__=False , snake_case__="ratio" , snake_case__=None , snake_case__=None , snake_case__=64 , snake_case__=32 , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , **snake_case__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : Dict = type_vocab_sizes lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = layer_norm_eps # Fine-tuning task hyperparameters lowerCAmelCase : Dict = positive_label_weight lowerCAmelCase : Union[str, Any] = num_aggregation_labels lowerCAmelCase : Optional[Any] = aggregation_loss_weight lowerCAmelCase : List[Any] = use_answer_as_supervision lowerCAmelCase : Dict = answer_loss_importance lowerCAmelCase : List[Any] = use_normalized_answer_loss lowerCAmelCase : List[str] = huber_loss_delta lowerCAmelCase : Optional[int] = temperature lowerCAmelCase : Optional[int] = aggregation_temperature lowerCAmelCase : Any = use_gumbel_for_cells lowerCAmelCase : Union[str, Any] = use_gumbel_for_aggregation lowerCAmelCase : Union[str, Any] = average_approximation_function lowerCAmelCase : int = cell_selection_preference lowerCAmelCase : Dict = answer_loss_cutoff lowerCAmelCase : Optional[int] = max_num_rows lowerCAmelCase : Union[str, Any] = max_num_columns lowerCAmelCase : Any = average_logits_per_cell lowerCAmelCase : List[Any] = select_one_column lowerCAmelCase : Tuple = allow_empty_column_selection lowerCAmelCase : str = init_cell_selection_weights_to_zero lowerCAmelCase : List[Any] = reset_position_index_per_cell lowerCAmelCase : Optional[Any] = disable_per_token_loss # Aggregation hyperparameters lowerCAmelCase : List[str] = aggregation_labels lowerCAmelCase : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , snake_case__ ): lowerCAmelCase : Union[str, Any] = {int(snake_case__ ): v for k, v in aggregation_labels.items()}
133
1
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
335
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
0
"""simple docstring""" import cmath import math def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = math.radians(__lowerCamelCase ) UpperCAmelCase_ : Tuple = math.radians(__lowerCamelCase ) # Convert voltage and current to rectangular form UpperCAmelCase_ : Optional[Any] = cmath.rect(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Optional[int] = cmath.rect(__lowerCamelCase, __lowerCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
0
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class _snake_case : lowerCAmelCase_ : torch.Tensor # [batch_size x 3] lowerCAmelCase_ : torch.Tensor # [batch_size x 3] lowerCAmelCase_ : torch.Tensor # [batch_size x 3] lowerCAmelCase_ : torch.Tensor # [batch_size x 3] lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : float lowerCAmelCase_ : float lowerCAmelCase_ : Tuple[int] def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowerCAmelCase__ ( self ) -> torch.Tensor: '''simple docstring''' snake_case_ = torch.arange(self.height * self.width ) snake_case_ = torch.stack( [ pixel_indices % self.width, torch.div(a__ , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ , *snake_case_ = self.shape snake_case_ = int(np.prod(a__ ) ) snake_case_ = self.get_image_coords() snake_case_ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) snake_case_ = self.get_camera_rays(a__ ) snake_case_ = rays.view(a__ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowerCAmelCase__ ( self , a__ ) -> torch.Tensor: '''simple docstring''' snake_case_ , *snake_case_ , snake_case_ = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] snake_case_ = coords.view(a__ , -1 , 2 ) snake_case_ = self.resolution() snake_case_ = self.fov() snake_case_ = (flat.float() / (res - 1)) * 2 - 1 snake_case_ = fracs * torch.tan(fov / 2 ) snake_case_ = fracs.view(a__ , -1 , 2 ) snake_case_ = ( self.z.view(a__ , 1 , 3 ) + self.x.view(a__ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(a__ , 1 , 3 ) * fracs[:, :, 1:] ) snake_case_ = directions / directions.norm(dim=-1 , keepdim=a__ ) snake_case_ = torch.stack( [ torch.broadcast_to(self.origin.view(a__ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(a__ , *a__ , 2 , 3 ) def lowerCAmelCase__ ( self , a__ , a__ ) -> "DifferentiableProjectiveCamera": '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=a__ , height=a__ , x_fov=self.x_fov , y_fov=self.y_fov , ) def UpperCamelCase_( snake_case : int ): '''simple docstring''' snake_case_ = [] snake_case_ = [] snake_case_ = [] snake_case_ = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): snake_case_ = np.array([np.sin(snake_case ), np.cos(snake_case ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) snake_case_ = -z * 4 snake_case_ = np.array([np.cos(snake_case ), -np.sin(snake_case ), 0.0] ) snake_case_ = np.cross(snake_case , snake_case ) origins.append(snake_case ) xs.append(snake_case ) ys.append(snake_case ) zs.append(snake_case ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case , axis=0 ) ).float() , x=torch.from_numpy(np.stack(snake_case , axis=0 ) ).float() , y=torch.from_numpy(np.stack(snake_case , axis=0 ) ).float() , z=torch.from_numpy(np.stack(snake_case , axis=0 ) ).float() , width=snake_case , height=snake_case , x_fov=0.7 , y_fov=0.7 , shape=(1, len(snake_case )) , )
85
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def __a ( ) ->None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
258
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""GLPNFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
0
import math from numpy import inf from scipy.integrate import quad def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> float: if num <= 0: raise ValueError('math domain error' ) return quad(lowerCamelCase__ , 0 , lowerCamelCase__ , args=(lowerCamelCase__) )[0] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> float: return math.pow(lowerCamelCase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
73
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Any = ['''image_processor''', '''tokenizer'''] _UpperCAmelCase : List[Any] = '''AutoImageProcessor''' _UpperCAmelCase : Dict = '''AutoTokenizer''' def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,**SCREAMING_SNAKE_CASE__ : Union[str, Any]): __lowerCamelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Union[str, Any] = kwargs.pop('feature_extractor') __lowerCamelCase : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = self.image_processor __lowerCamelCase : Optional[int] = False def __call__( self : int ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : Union[str, Any]): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = kwargs.pop('images' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = kwargs.pop('text' ,SCREAMING_SNAKE_CASE__) if len(SCREAMING_SNAKE_CASE__) > 0: __lowerCamelCase : int = args[0] __lowerCamelCase : List[str] = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.') if images is not None: __lowerCamelCase : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) if text is not None: __lowerCamelCase : List[Any] = self.tokenizer(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) if text is None: return inputs elif images is None: return encodings else: __lowerCamelCase : Optional[Any] = encodings['input_ids'] return inputs def lowerCAmelCase ( self : int ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : Dict): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any] ,*SCREAMING_SNAKE_CASE__ : List[Any] ,**SCREAMING_SNAKE_CASE__ : Any): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) @contextmanager def lowerCAmelCase ( self : Tuple): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.') __lowerCamelCase : List[Any] = True __lowerCamelCase : str = self.tokenizer yield __lowerCamelCase : Tuple = self.image_processor __lowerCamelCase : Tuple = False def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int=False ,SCREAMING_SNAKE_CASE__ : List[Any]=None): if added_vocab is None: __lowerCamelCase : str = self.tokenizer.get_added_vocab() __lowerCamelCase : Union[str, Any] = {} while tokens: __lowerCamelCase : Tuple = re.search(R'<s_(.*?)>' ,SCREAMING_SNAKE_CASE__ ,re.IGNORECASE) if start_token is None: break __lowerCamelCase : Dict = start_token.group(1) __lowerCamelCase : List[str] = re.search(RF"</s_{key}>" ,SCREAMING_SNAKE_CASE__ ,re.IGNORECASE) __lowerCamelCase : Optional[int] = start_token.group() if end_token is None: __lowerCamelCase : List[Any] = tokens.replace(SCREAMING_SNAKE_CASE__ ,'') else: __lowerCamelCase : Tuple = end_token.group() __lowerCamelCase : int = re.escape(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = re.escape(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = re.search(F"{start_token_escaped}(.*?){end_token_escaped}" ,SCREAMING_SNAKE_CASE__ ,re.IGNORECASE) if content is not None: __lowerCamelCase : List[Any] = content.group(1).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __lowerCamelCase : str = self.tokenajson(SCREAMING_SNAKE_CASE__ ,is_inner_value=SCREAMING_SNAKE_CASE__ ,added_vocab=SCREAMING_SNAKE_CASE__) if value: if len(SCREAMING_SNAKE_CASE__) == 1: __lowerCamelCase : Tuple = value[0] __lowerCamelCase : int = value else: # leaf nodes __lowerCamelCase : Tuple = [] for leaf in content.split(R'<sep/>'): __lowerCamelCase : List[Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __lowerCamelCase : str = leaf[1:-2] # for categorical special tokens output[key].append(SCREAMING_SNAKE_CASE__) if len(output[key]) == 1: __lowerCamelCase : Dict = output[key][0] __lowerCamelCase : Dict = tokens[tokens.find(SCREAMING_SNAKE_CASE__) + len(SCREAMING_SNAKE_CASE__) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] ,is_inner_value=SCREAMING_SNAKE_CASE__ ,added_vocab=SCREAMING_SNAKE_CASE__) if len(SCREAMING_SNAKE_CASE__): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowerCAmelCase ( self : List[str]): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,SCREAMING_SNAKE_CASE__ ,) return self.image_processor_class @property def lowerCAmelCase ( self : List[Any]): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' ,SCREAMING_SNAKE_CASE__ ,) return self.image_processor
73
1
def A__ ( __lowerCamelCase ): return "".join(chr(ord(__lowerCamelCase ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
257
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCamelCase__ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase_ =None class UpperCamelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase_ =PandasConfig def _UpperCamelCase ( self ) -> int: return datasets.DatasetInfo(features=self.config.features ) def _UpperCamelCase ( self , _A ) -> Tuple: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ = data_files if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] SCREAMING_SNAKE_CASE_ = [] for split_name, files in data_files.items(): if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(_A ) for file in files] splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'''files''': files} ) ) return splits def _UpperCamelCase ( self , _A ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ = table_cast(_A , self.config.features.arrow_schema ) return pa_table def _UpperCamelCase ( self , _A ) -> Any: for i, file in enumerate(itertools.chain.from_iterable(_A ) ): with open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE_ = pa.Table.from_pandas(pd.read_pickle(_A ) ) yield i, self._cast_table(_A )
257
1
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowercase_ : int = pd.read_csv('sample_data.csv', header=None) lowercase_ : Any = df.shape[:1][0] # If you're using some other dataset input the target column lowercase_ : str = df.iloc[:, 1:2] lowercase_ : List[Any] = actual_data.values.reshape(len_data, 1) lowercase_ : Any = MinMaxScaler().fit_transform(actual_data) lowercase_ : List[str] = 10 lowercase_ : Dict = 5 lowercase_ : List[str] = 20 lowercase_ : Any = len_data - periods * look_back lowercase_ : Optional[int] = actual_data[:division] lowercase_ : int = actual_data[division - look_back :] lowercase_ , lowercase_ : Any = [], [] lowercase_ , lowercase_ : Optional[Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowercase_ : List[Any] = np.array(train_x) lowercase_ : str = np.array(test_x) lowercase_ : str = np.array([list(i.ravel()) for i in train_y]) lowercase_ : Dict = np.array([list(i.ravel()) for i in test_y]) lowercase_ : Dict = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') lowercase_ : Any = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) lowercase_ : Union[str, Any] = model.predict(x_test)
133
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ : int = logging.get_logger(__name__) lowercase_ : Optional[Any] = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : int = "roberta" def __init__( self : Dict , snake_case__ : Tuple=50_265 , snake_case__ : str=768 , snake_case__ : Tuple=12 , snake_case__ : Tuple=12 , snake_case__ : Union[str, Any]=3_072 , snake_case__ : Optional[Any]="gelu" , snake_case__ : int=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : str=512 , snake_case__ : List[str]=2 , snake_case__ : str=0.02 , snake_case__ : int=1e-12 , snake_case__ : List[str]=1 , snake_case__ : Any=0 , snake_case__ : int=2 , snake_case__ : List[Any]="absolute" , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=None , **snake_case__ : Dict , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class __lowerCAmelCase ( UpperCAmelCase__ ): @property def UpperCamelCase ( self : List[Any] ): """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
133
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(_a , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = _distribute_shards(**_a ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = _split_gen_kwargs(_a , _a ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if expected is RuntimeError: with pytest.raises(_a ): _number_of_shards_in_gen_kwargs(_a ) else: __UpperCamelCase :Any = _number_of_shards_in_gen_kwargs(_a ) assert out == expected
365
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase = '''▁''' __lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : int = BertGenerationTokenizer a__ : Dict = False a__ : str = True def UpperCamelCase__ ( self) -> List[str]: super().setUp() __UpperCamelCase :Optional[Any] = BertGenerationTokenizer(__lowercase , keep_accents=__lowercase) tokenizer.save_pretrained(self.tmpdirname) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Dict = '''<s>''' __UpperCamelCase :Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase) , __lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase) , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''<pad>''') self.assertEqual(len(__lowercase) , 1_002) def UpperCamelCase__ ( self) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1_000) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :str = BertGenerationTokenizer(__lowercase , keep_accents=__lowercase) __UpperCamelCase :Optional[Any] = tokenizer.tokenize('''This is a test''') self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase) , [285, 46, 10, 170, 382] , ) __UpperCamelCase :List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __UpperCamelCase :Any = tokenizer.convert_tokens_to_ids(__lowercase) self.assertListEqual( __lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __UpperCamelCase :Tuple = tokenizer.convert_ids_to_tokens(__lowercase) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase__ ( self) -> int: return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''') @slow def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[Any] = '''Hello World!''' __UpperCamelCase :Optional[int] = [18_536, 2_260, 101] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase)) @slow def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[Any] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __UpperCamelCase :Union[str, Any] = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase)) @require_torch @slow def UpperCamelCase__ ( self) -> Optional[int]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __UpperCamelCase :Optional[Any] = list(self.big_tokenizer.get_vocab().keys())[:10] __UpperCamelCase :Optional[int] = ''' '''.join(__lowercase) __UpperCamelCase :Optional[int] = self.big_tokenizer.encode_plus(__lowercase , return_tensors='''pt''' , return_token_type_ids=__lowercase) __UpperCamelCase :List[str] = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__lowercase) __UpperCamelCase :List[Any] = BertGenerationConfig() __UpperCamelCase :Optional[Any] = BertGenerationEncoder(__lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowercase) model(**__lowercase) @slow def UpperCamelCase__ ( self) -> Dict: # fmt: off __UpperCamelCase :List[str] = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
105
0
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowerCAmelCase__ ( unittest.TestCase ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) __a = ["""accelerate""", """launch"""] __a = Path.home() / """.cache/huggingface/accelerate""" __a = """default_config.yaml""" __a = config_folder / config_file __a = config_folder / """_default_config.yaml""" __a = Path("""tests/test_configs""" ) @classmethod def lowercase ( cls : int ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase ( cls : Dict ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase ( self : Union[str, Any] ): _snake_case = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase ( self : Any ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=__snake_case ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(__snake_case ), self.test_file_path] , env=os.environ.copy() ) def lowercase ( self : str ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowerCAmelCase__ ( unittest.TestCase ): __a = """test-tpu""" __a = """us-central1-a""" __a = """ls""" __a = ["""accelerate""", """tpu-config"""] __a = """cd /usr/share""" __a = """tests/test_samples/test_command_file.sh""" __a = """Running gcloud compute tpus tpu-vm ssh""" def lowercase ( self : List[Any] ): _snake_case = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __snake_case , ) def lowercase ( self : Union[str, Any] ): _snake_case = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __snake_case , ) def lowercase ( self : str ): _snake_case = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=__snake_case ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all''' , __snake_case , ) def lowercase ( self : str ): _snake_case = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __snake_case , ) def lowercase ( self : Optional[int] ): _snake_case = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all''' , __snake_case , ) def lowercase ( self : Union[str, Any] ): _snake_case = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all''' , __snake_case , ) def lowercase ( self : Tuple ): _snake_case = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all''' , __snake_case , ) def lowercase ( self : int ): _snake_case = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all''' , __snake_case , ) def lowercase ( self : Union[str, Any] ): _snake_case = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all''' , __snake_case , )
288
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCamelCase__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = {} with open(_lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(_lowerCAmelCase ): UpperCAmelCase : List[str] = line.strip() if line: UpperCAmelCase : str = line.split() UpperCAmelCase : Union[str, Any] = line_number UpperCAmelCase : List[Any] = words[0] UpperCAmelCase : Union[str, Any] = value return result def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Dict = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : int = shape_pointer.shape # let's reduce dimension UpperCAmelCase : Union[str, Any] = value[0] else: UpperCAmelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : int = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = value else: UpperCAmelCase : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]: UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Any = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase : List[Any] = key UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0] UpperCamelCase__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int: UpperCAmelCase : List[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase : str = '''weight_g''' elif "weight_v" in name: UpperCAmelCase : int = '''weight_v''' elif "bias" in name: UpperCAmelCase : int = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : List[str] = '''weight''' else: UpperCAmelCase : Dict = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : Dict = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : Any = True else: UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : Optional[int] = name.split('''.''' ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict: if config_path is not None: UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = idalabel UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase ) UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : Optional[int] = target_dict.eos_index UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , ) UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase ) else: UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCamelCase__: Any = parser.parse_args() UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
23
0
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(4_2) _SCREAMING_SNAKE_CASE = '''bert-base-cased''' _SCREAMING_SNAKE_CASE = '''fp16''' _SCREAMING_SNAKE_CASE = '''bf16''' _SCREAMING_SNAKE_CASE = [FPaa, BFaa] @require_fsdp @require_cuda class __lowercase ( __snake_case ): '''simple docstring''' def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' super().setUp() __lowercase = dict( ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(lowerCamelCase_ ): __lowercase = self.dist_env.copy() __lowercase = f"{i + 1}" __lowercase = strategy with mockenv_context(**lowerCamelCase_ ): __lowercase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(lowerCamelCase_ ): __lowercase = self.dist_env.copy() __lowercase = prefetch_policy with mockenv_context(**lowerCamelCase_ ): __lowercase = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(lowerCamelCase_ ): __lowercase = self.dist_env.copy() __lowercase = state_dict_type with mockenv_context(**lowerCamelCase_ ): __lowercase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = AutoModel.from_pretrained(lowerCamelCase_ ) for policy in FSDP_AUTO_WRAP_POLICY: __lowercase = self.dist_env.copy() __lowercase = policy if policy == "TRANSFORMER_BASED_WRAP": __lowercase = """BertLayer""" elif policy == "SIZE_BASED_WRAP": __lowercase = """2000""" with mockenv_context(**lowerCamelCase_ ): __lowercase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowerCamelCase_ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) __lowercase = self.dist_env.copy() __lowercase = """TRANSFORMER_BASED_WRAP""" __lowercase = """T5Layer""" with mockenv_context(**lowerCamelCase_ ): __lowercase = FullyShardedDataParallelPlugin() with self.assertRaises(lowerCamelCase_ ) as cm: fsdp_plugin.set_auto_wrap_policy(lowerCamelCase_ ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) __lowercase = self.dist_env.copy() __lowercase = """SIZE_BASED_WRAP""" __lowercase = """0""" with mockenv_context(**lowerCamelCase_ ): __lowercase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowerCamelCase_ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: __lowercase = self.dist_env.copy() __lowercase = mp_dtype with mockenv_context(**lowerCamelCase_ ): __lowercase = Accelerator() if mp_dtype == "fp16": __lowercase = torch.floataa elif mp_dtype == "bf16": __lowercase = torch.bfloataa __lowercase = MixedPrecision(param_dtype=lowerCamelCase_ ,reduce_dtype=lowerCamelCase_ ,buffer_dtype=lowerCamelCase_ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,lowerCamelCase_ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler ,lowerCamelCase_ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(lowerCamelCase_ ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: __lowercase = self.dist_env.copy() __lowercase = str(lowerCamelCase_ ).lower() with mockenv_context(**lowerCamelCase_ ): __lowercase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=lowerCamelCase_ ) ) @require_fsdp @require_multi_gpu @slow class __lowercase ( __snake_case ): '''simple docstring''' def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' super().setUp() __lowercase = 0.8_2 __lowercase = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] __lowercase = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } __lowercase = 160 __lowercase = 160 __lowercase = inspect.getfile(accelerate.test_utils ) __lowercase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = os.path.join(self.test_scripts_folder ,'''test_performance.py''' ) __lowercase = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: __lowercase = cmd.copy() for i, strategy in enumerate(lowerCamelCase_ ): if strategy.lower() in config: cmd_config.append(f"--fsdp_sharding_strategy={i+1}" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"--fsdp_auto_wrap_policy={policy}" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--performance_lower_bound={self.performance_lower_bound}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase_ ,env=os.environ.copy() ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' ) __lowercase = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(lowerCamelCase_ ): __lowercase = cmd.copy() cmd_config.append(f"--fsdp_sharding_strategy={i+1}" ) if strategy != "FULL_SHARD": continue __lowercase = len(lowerCamelCase_ ) for state_dict_type in FSDP_STATE_DICT_TYPE: __lowercase = cmd_config[:state_dict_config_index] cmd_config.append(f"--fsdp_state_dict_type={state_dict_type}" ) cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase_ ,env=os.environ.copy() ) __lowercase = cmd_config[:-1] __lowercase = os.path.join(self.tmpdir ,'''epoch_0''' ) cmd_config.extend( [ f"--resume_from_checkpoint={resume_from_checkpoint}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase_ ,env=os.environ.copy() ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' ) __lowercase = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): __lowercase = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(lowerCamelCase_ ): if strategy.lower() in spec: cmd_config.append(f"--fsdp_sharding_strategy={i+1}" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"--fsdp_auto_wrap_policy={policy}" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--peak_memory_upper_bound={peak_mem_upper_bound}", f"--n_train={self.n_train}", f"--n_val={self.n_val}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase_ ,env=os.environ.copy() )
365
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : List[Any] = CanineTokenizer a : Union[str, Any] = False def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().setUp() __lowercase = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return CanineTokenizer.from_pretrained('''google/canine-s''' ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> CanineTokenizer: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) __lowercase = 1024 return tokenizer @require_torch def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.canine_tokenizer __lowercase = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off __lowercase = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on __lowercase = tokenizer(_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors='''pt''' ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual((2, 39) ,batch.input_ids.shape ) self.assertEqual((2, 39) ,batch.attention_mask.shape ) @require_torch def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.canine_tokenizer __lowercase = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] __lowercase = tokenizer(_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' ,_lowerCamelCase ) self.assertIn('''attention_mask''' ,_lowerCamelCase ) self.assertIn('''token_type_ids''' ,_lowerCamelCase ) @require_torch def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.canine_tokenizer __lowercase = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] __lowercase = tokenizer( text_target=_lowerCamelCase ,max_length=32 ,padding='''max_length''' ,truncation=_lowerCamelCase ,return_tensors='''pt''' ) self.assertEqual(32 ,targets['''input_ids'''].shape[1] ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length ,42 ) # Now let's start the test __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ) __lowercase = after_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) shutil.rmtree(_lowerCamelCase ) __lowercase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __lowercase = chr(0xe_0_0_7 ) additional_special_tokens.append(_lowerCamelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ) __lowercase = after_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertIn(_lowerCamelCase ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,42 ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length ,43 ) shutil.rmtree(_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase , __lowercase = self.get_clean_sequence(_lowerCamelCase ) # a special token for Canine can be defined as follows: __lowercase = 0xe_0_0_5 __lowercase = chr(_lowerCamelCase ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) ,1 ) __lowercase = tokenizer.decode(ids + encoded_special_token ,clean_up_tokenization_spaces=_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,input_encoded + special_token_id ) __lowercase = tokenizer.decode(_lowerCamelCase ,skip_special_tokens=_lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase = chr(0xe_0_0_5 ) __lowercase = chr(0xe_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] ,special_tokens=_lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) __lowercase = tokenizer.tokenize(_lowerCamelCase ) __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) ,1 ) self.assertEqual(len(_lowerCamelCase ) ,1 ) self.assertEqual(token_a[0] ,_lowerCamelCase ) self.assertEqual(token_a[0] ,_lowerCamelCase ) @require_tokenizers def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: __lowercase = 0xe_0_0_6 __lowercase = chr(_lowerCamelCase ) __lowercase = AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCamelCase ) tokenizer.from_pretrained(_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''special_tokens_map.json''' ) ,encoding='''utf-8''' ) as json_file: __lowercase = json.load(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''tokenizer_config.json''' ) ,encoding='''utf-8''' ) as json_file: __lowercase = json.load(_lowerCamelCase ) # a special token for Canine can be defined as follows: __lowercase = 0xe_0_0_6 __lowercase = chr(_lowerCamelCase ) __lowercase = [new_token_a] __lowercase = [new_token_a] with open(os.path.join(_lowerCamelCase ,'''special_tokens_map.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(_lowerCamelCase ,_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''tokenizer_config.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(_lowerCamelCase ,_lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowercase = tokenizer_class.from_pretrained(_lowerCamelCase ,extra_ids=0 ) self.assertIn(_lowerCamelCase ,tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) ,) __lowercase = 0xe_0_0_7 __lowercase = chr(_lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowercase = [AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase )] __lowercase = tokenizer_class.from_pretrained( _lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,extra_ids=0 ) self.assertIn(_lowerCamelCase ,tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase = '''hello world''' if self.space_between_special_tokens: __lowercase = '''[CLS] hello world [SEP]''' else: __lowercase = input __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.decode(_lowerCamelCase ,spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCamelCase ,[output, output.lower()] ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] __lowercase = '''a''' __lowercase = ord(_lowerCamelCase ) for attr in attributes_list: setattr(_lowerCamelCase ,attr + '''_id''' ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,attr + '''_id''' ) ,_lowerCamelCase ) setattr(_lowerCamelCase ,attr + '''_id''' ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,attr + '''_id''' ) ,_lowerCamelCase ) setattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ,[] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens''' ) ,[] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ) ,[] ) __lowercase = 0xe_0_0_6 __lowercase = chr(_lowerCamelCase ) setattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ,[additional_special_token_id] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens''' ) ,[additional_special_token] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ) ,[additional_special_token_id] ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' pass def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> int: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Any: '''simple docstring''' pass def _UpperCAmelCase (self ) -> int: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' pass
217
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=_UpperCamelCase ): lowerCAmelCase : str = ['note_seq'] def __init__( self : Tuple ,*_UpperCAmelCase : List[Any] ,**_UpperCAmelCase : str ): requires_backends(self ,['note_seq'] ) @classmethod def __lowercase ( cls : List[Any] ,*_UpperCAmelCase : str ,**_UpperCAmelCase : Optional[Any] ): requires_backends(cls ,['note_seq'] ) @classmethod def __lowercase ( cls : Union[str, Any] ,*_UpperCAmelCase : Dict ,**_UpperCAmelCase : Any ): requires_backends(cls ,['note_seq'] )
89
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : List[str] = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
0
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase="shi-labs/oneformer_demo" ) -> Union[str, Any]: """simple docstring""" with open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) as f: snake_case__ : Optional[int] = json.load(__lowerCAmelCase ) snake_case__ : List[Any] = {} snake_case__ : str = [] snake_case__ : Tuple = [] for key, info in class_info.items(): snake_case__ : str = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(__lowerCAmelCase ) ) snake_case__ : Tuple = thing_ids snake_case__ : int = class_names return metadata class a ( unittest.TestCase ): def __init__( self :Dict ,__lowercase :List[Any] ,__lowercase :str=7 ,__lowercase :Any=3 ,__lowercase :Union[str, Any]=3_0 ,__lowercase :Optional[int]=4_0_0 ,__lowercase :int=None ,__lowercase :Dict=True ,__lowercase :Dict=True ,__lowercase :Optional[Any]=[0.5, 0.5, 0.5] ,__lowercase :List[str]=[0.5, 0.5, 0.5] ,__lowercase :Dict=1_0 ,__lowercase :List[str]=False ,__lowercase :Tuple=2_5_5 ,__lowercase :Any="shi-labs/oneformer_demo" ,__lowercase :str="ade20k_panoptic.json" ,__lowercase :str=1_0 ,): snake_case__ : Dict = parent snake_case__ : Dict = batch_size snake_case__ : str = num_channels snake_case__ : Union[str, Any] = min_resolution snake_case__ : Optional[Any] = max_resolution snake_case__ : str = do_resize snake_case__ : Any = {'''shortest_edge''': 3_2, '''longest_edge''': 1_3_3_3} if size is None else size snake_case__ : int = do_normalize snake_case__ : str = image_mean snake_case__ : List[Any] = image_std snake_case__ : str = class_info_file snake_case__ : Union[str, Any] = prepare_metadata(__lowercase ,__lowercase ) snake_case__ : List[Any] = num_text snake_case__ : Any = repo_path # for the post_process_functions snake_case__ : List[str] = 2 snake_case__ : Tuple = 1_0 snake_case__ : List[str] = 1_0 snake_case__ : Tuple = 3 snake_case__ : int = 4 snake_case__ : Optional[int] = num_labels snake_case__ : Optional[Any] = do_reduce_labels snake_case__ : Dict = ignore_index def __lowerCamelCase ( self :Union[str, Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def __lowerCamelCase ( self :Tuple ,__lowercase :int ,__lowercase :List[Any]=False ): if not batched: snake_case__ : Any = image_inputs[0] if isinstance(__lowercase ,Image.Image ): snake_case__ , snake_case__ : Optional[Any] = image.size else: snake_case__ , snake_case__ : Optional[Any] = image.shape[1], image.shape[2] if w < h: snake_case__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) snake_case__ : Union[str, Any] = self.size['''shortest_edge'''] elif w > h: snake_case__ : Optional[Any] = self.size['''shortest_edge'''] snake_case__ : Optional[Any] = int(self.size['''shortest_edge'''] * w / h ) else: snake_case__ : Tuple = self.size['''shortest_edge'''] snake_case__ : Optional[int] = self.size['''shortest_edge'''] else: snake_case__ : Union[str, Any] = [] for image in image_inputs: snake_case__ , snake_case__ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Optional[int] = max(__lowercase ,key=lambda __lowercase : item[0] )[0] snake_case__ : Union[str, Any] = max(__lowercase ,key=lambda __lowercase : item[1] )[1] return expected_height, expected_width def __lowerCamelCase ( self :Any ): return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) ,masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) ,) @require_torch @require_vision class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : str = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __lowerCAmelCase : List[Any] = image_processing_class def __lowerCamelCase ( self :Any ): snake_case__ : Dict = OneFormerImageProcessorTester(self ) @property def __lowerCamelCase ( self :Optional[Any] ): return self.image_processing_tester.prepare_image_processor_dict() def __lowerCamelCase ( self :Tuple ): snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowercase ,'''image_std''' ) ) self.assertTrue(hasattr(__lowercase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase ,'''do_resize''' ) ) self.assertTrue(hasattr(__lowercase ,'''size''' ) ) self.assertTrue(hasattr(__lowercase ,'''ignore_index''' ) ) self.assertTrue(hasattr(__lowercase ,'''class_info_file''' ) ) self.assertTrue(hasattr(__lowercase ,'''num_text''' ) ) self.assertTrue(hasattr(__lowercase ,'''repo_path''' ) ) self.assertTrue(hasattr(__lowercase ,'''metadata''' ) ) self.assertTrue(hasattr(__lowercase ,'''do_reduce_labels''' ) ) def __lowerCamelCase ( self :Any ): pass def __lowerCamelCase ( self :List[Any] ): # Initialize image_processor snake_case__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Any = prepare_image_inputs(self.image_processing_tester ,equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processor(image_inputs[0] ,['''semantic'''] ,return_tensors='''pt''' ).pixel_values snake_case__ , snake_case__ : str = self.image_processing_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape ,(1, self.image_processing_tester.num_channels, expected_height, expected_width) ,) # Test batched snake_case__ , snake_case__ : Dict = self.image_processing_tester.get_expected_values(__lowercase ,batched=__lowercase ) snake_case__ : Dict = image_processor( __lowercase ,['''semantic'''] * len(__lowercase ) ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) ,) def __lowerCamelCase ( self :Dict ): # Initialize image_processor snake_case__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Dict = prepare_image_inputs(self.image_processing_tester ,equal_resolution=__lowercase ,numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,np.ndarray ) # Test not batched input snake_case__ : Any = image_processor(image_inputs[0] ,['''semantic'''] ,return_tensors='''pt''' ).pixel_values snake_case__ , snake_case__ : Any = self.image_processing_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape ,(1, self.image_processing_tester.num_channels, expected_height, expected_width) ,) # Test batched snake_case__ , snake_case__ : Any = self.image_processing_tester.get_expected_values(__lowercase ,batched=__lowercase ) snake_case__ : List[Any] = image_processor( __lowercase ,['''semantic'''] * len(__lowercase ) ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) ,) def __lowerCamelCase ( self :str ): # Initialize image_processor snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : Optional[int] = prepare_image_inputs(self.image_processing_tester ,equal_resolution=__lowercase ,torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,torch.Tensor ) # Test not batched input snake_case__ : Optional[int] = image_processor(image_inputs[0] ,['''semantic'''] ,return_tensors='''pt''' ).pixel_values snake_case__ , snake_case__ : Optional[Any] = self.image_processing_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape ,(1, self.image_processing_tester.num_channels, expected_height, expected_width) ,) # Test batched snake_case__ , snake_case__ : Any = self.image_processing_tester.get_expected_values(__lowercase ,batched=__lowercase ) snake_case__ : Tuple = image_processor( __lowercase ,['''semantic'''] * len(__lowercase ) ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) ,) def __lowerCamelCase ( self :Dict ,__lowercase :Optional[Any]=False ,__lowercase :str=False ,__lowercase :List[Any]="np" ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target snake_case__ : Any = self.image_processing_tester.num_labels snake_case__ : List[str] = None snake_case__ : int = None snake_case__ : List[Any] = prepare_image_inputs(self.image_processing_tester ,equal_resolution=__lowercase ) if with_segmentation_maps: snake_case__ : Tuple = num_labels if is_instance_map: snake_case__ : Optional[int] = list(range(__lowercase ) ) * 2 snake_case__ : Dict = dict(enumerate(__lowercase ) ) snake_case__ : Optional[Any] = [ np.random.randint(0 ,high * 2 ,(img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": snake_case__ : Tuple = [Image.fromarray(__lowercase ) for annotation in annotations] snake_case__ : str = image_processor( __lowercase ,['''semantic'''] * len(__lowercase ) ,__lowercase ,return_tensors='''pt''' ,instance_id_to_semantic_id=__lowercase ,pad_and_return_pixel_mask=__lowercase ,) return inputs def __lowerCamelCase ( self :Any ): pass def __lowerCamelCase ( self :int ): def common(__lowercase :int=False ,__lowercase :Tuple=None ): snake_case__ : List[Any] = self.comm_get_image_processor_inputs( with_segmentation_maps=__lowercase ,is_instance_map=__lowercase ,segmentation_type=__lowercase ) snake_case__ : List[str] = inputs['''mask_labels'''] snake_case__ : Tuple = inputs['''class_labels'''] snake_case__ : Any = inputs['''pixel_values'''] snake_case__ : str = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(__lowercase ,__lowercase ,__lowercase ): self.assertEqual(mask_label.shape[0] ,class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] ,pixel_values.shape[2:] ) self.assertEqual(len(__lowercase ) ,self.image_processing_tester.num_text ) common() common(is_instance_map=__lowercase ) common(is_instance_map=__lowercase ,segmentation_type='''pil''' ) common(is_instance_map=__lowercase ,segmentation_type='''pil''' ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Optional[Any] = np.zeros((2_0, 5_0) ) snake_case__ : List[str] = 1 snake_case__ : Any = 1 snake_case__ : int = 1 snake_case__ : Dict = binary_mask_to_rle(__lowercase ) self.assertEqual(len(__lowercase ) ,4 ) self.assertEqual(rle[0] ,2_1 ) self.assertEqual(rle[1] ,4_5 ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes ,max_seq_length=7_7 ,task_seq_length=7_7 ,class_info_file='''ade20k_panoptic.json''' ,num_text=self.image_processing_tester.num_text ,repo_path='''shi-labs/oneformer_demo''' ,) snake_case__ : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() snake_case__ : Optional[int] = fature_extractor.post_process_semantic_segmentation(__lowercase ) self.assertEqual(len(__lowercase ) ,self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape ,( self.image_processing_tester.height, self.image_processing_tester.width, ) ,) snake_case__ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] snake_case__ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(__lowercase ,target_sizes=__lowercase ) self.assertEqual(segmentation[0].shape ,target_sizes[0] ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes ,max_seq_length=7_7 ,task_seq_length=7_7 ,class_info_file='''ade20k_panoptic.json''' ,num_text=self.image_processing_tester.num_text ,repo_path='''shi-labs/oneformer_demo''' ,) snake_case__ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() snake_case__ : List[str] = image_processor.post_process_instance_segmentation(__lowercase ,threshold=0 ) self.assertTrue(len(__lowercase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) ,__lowercase ) self.assertEqual( el['''segmentation'''].shape ,(self.image_processing_tester.height, self.image_processing_tester.width) ) def __lowerCamelCase ( self :List[str] ): snake_case__ : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes ,max_seq_length=7_7 ,task_seq_length=7_7 ,class_info_file='''ade20k_panoptic.json''' ,num_text=self.image_processing_tester.num_text ,repo_path='''shi-labs/oneformer_demo''' ,) snake_case__ : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() snake_case__ : Optional[int] = image_processor.post_process_panoptic_segmentation(__lowercase ,threshold=0 ) self.assertTrue(len(__lowercase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) ,__lowercase ) self.assertEqual( el['''segmentation'''].shape ,(self.image_processing_tester.height, self.image_processing_tester.width) )
44
def _lowerCAmelCase ( __lowerCAmelCase = 50 ) -> int: """simple docstring""" snake_case__ : Optional[int] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
44
1
def __lowercase ( a__ = 50_00_00_00 ) -> int: __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = int((limit - 24) ** (1 / 2) ) __SCREAMING_SNAKE_CASE = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , a__ ) ) ) for primea in primes: __SCREAMING_SNAKE_CASE = primea * primea for primea in primes: __SCREAMING_SNAKE_CASE = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __SCREAMING_SNAKE_CASE = primea * primea * primea * primea __SCREAMING_SNAKE_CASE = square + cube + tetr if total >= limit: break ret.add(a__ ) return len(a__ ) if __name__ == "__main__": print(F'''{solution() = }''')
257
from math import factorial def __lowercase ( a__ = 1_00 ) -> int: return sum(int(a__ ) for x in str(factorial(a__ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
257
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'openai-gpt' lowerCAmelCase__ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowercase=40478 , lowercase=512 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=1e-5 , lowercase=0.0_2 , lowercase="cls_index" , lowercase=True , lowercase=None , lowercase=True , lowercase=0.1 , **lowercase , ) -> List[Any]: lowerCamelCase_ = vocab_size lowerCamelCase_ = n_positions lowerCamelCase_ = n_embd lowerCamelCase_ = n_layer lowerCamelCase_ = n_head lowerCamelCase_ = afn lowerCamelCase_ = resid_pdrop lowerCamelCase_ = embd_pdrop lowerCamelCase_ = attn_pdrop lowerCamelCase_ = layer_norm_epsilon lowerCamelCase_ = initializer_range lowerCamelCase_ = summary_type lowerCamelCase_ = summary_use_proj lowerCamelCase_ = summary_activation lowerCamelCase_ = summary_first_dropout lowerCamelCase_ = summary_proj_to_labels super().__init__(**lowercase )
47
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase = 16 , lowercase = 88 , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = 32 , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = "geglu" , lowercase = None , ) -> Any: super().__init__() lowerCamelCase_ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowercase , attention_head_dim=lowercase , in_channels=lowercase , num_layers=lowercase , dropout=lowercase , norm_num_groups=lowercase , cross_attention_dim=lowercase , attention_bias=lowercase , sample_size=lowercase , num_vector_embeds=lowercase , activation_fn=lowercase , num_embeds_ada_norm=lowercase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCamelCase_ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCamelCase_ = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCamelCase_ = [1, 0] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase = True , ) -> int: lowerCamelCase_ = hidden_states lowerCamelCase_ = [] lowerCamelCase_ = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCamelCase_ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCamelCase_ = self.transformer_index_for_condition[i] lowerCamelCase_ = self.transformers[transformer_index]( lowercase , encoder_hidden_states=lowercase , timestep=lowercase , cross_attention_kwargs=lowercase , return_dict=lowercase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCamelCase_ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCamelCase_ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowercase )
47
1
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __magic_name__ ( __UpperCAmelCase="" ) -> str: '''simple docstring''' snake_case_ = tempfile.mkdtemp() return os.path.join(__UpperCAmelCase, str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class a ( unittest.TestCase ): def A_ ( self : int ): snake_case_ = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ = AgentAudio(lowercase_ ) snake_case_ = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowercase_ ) ) # Ensure that the file contains the same value as the original tensor snake_case_ ,snake_case_ = sf.read(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , torch.tensor(lowercase_ ) , atol=1e-4 ) ) def A_ ( self : Optional[int] ): snake_case_ = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ = get_new_path(suffix='''.wav''' ) sf.write(lowercase_ , lowercase_ , 1_6000 ) snake_case_ = AgentAudio(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , lowercase_ ) @require_vision @require_torch class a ( unittest.TestCase ): def A_ ( self : List[Any] ): snake_case_ = torch.randint(0 , 256 , (64, 64, 3) ) snake_case_ = AgentImage(lowercase_ ) snake_case_ = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) def A_ ( self : Tuple ): snake_case_ = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' snake_case_ = Image.open(lowercase_ ) snake_case_ = AgentImage(lowercase_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) def A_ ( self : Dict ): snake_case_ = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' snake_case_ = Image.open(lowercase_ ) snake_case_ = AgentImage(lowercase_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) class a ( unittest.TestCase ): def A_ ( self : int ): snake_case_ = '''Hey!''' snake_case_ = AgentText(lowercase_ ) self.assertEqual(lowercase_ , agent_type.to_string() ) self.assertEqual(lowercase_ , agent_type.to_raw() ) self.assertEqual(lowercase_ , lowercase_ )
56
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __UpperCamelCase ( a__ ): lowerCamelCase : List[str] =ComputeEnvironment.AMAZON_SAGEMAKER lowerCamelCase : str =True lowerCamelCase : Union[str, Any] ="""ml.p3.2xlarge""" lowerCamelCase : str ="""accelerate_sagemaker_execution_role""" lowerCamelCase : int ="""hf-sm""" lowerCamelCase : int ="""us-east-1""" lowerCamelCase : Tuple =1 lowerCamelCase : Any ="""accelerate-sagemaker-1""" lowerCamelCase : str ="""1.6""" lowerCamelCase : Tuple ="""4.4""" lowerCamelCase : Optional[int] ="""train.py""" lowerCamelCase : Optional[Any] =[ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] lowerCamelCase : Union[str, Any] =[ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> List[str]: # If no defaults are changed, `to_kwargs` returns an empty dict. a : str = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"] , lowerCAmelCase__ ) assert isinstance(converted_args["do_train"] , lowerCAmelCase__ ) assert isinstance(converted_args["epochs"] , lowerCAmelCase__ ) assert isinstance(converted_args["learning_rate"] , lowerCAmelCase__ ) assert isinstance(converted_args["max_steps"] , lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
105
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : int = '''maskformer''' _UpperCamelCase : Union[str, Any] = {'''hidden_size''': '''mask_feature_size'''} _UpperCamelCase : Dict = ['''resnet''', '''swin'''] _UpperCamelCase : Optional[int] = ['''detr'''] def __init__( self : Any , _A : int = 256 , _A : int = 256 , _A : float = 0.1 , _A : bool = False , _A : Optional[Dict] = None , _A : Optional[Dict] = None , _A : float = 0.02 , _A : float = 1.0 , _A : float = 1.0 , _A : float = 1.0 , _A : float = 20.0 , _A : Optional[bool] = None , **_A : str , ) -> str: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase : List[str] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_A , _A ): lowercase : Optional[int] = backbone_config.pop('''model_type''' ) lowercase : List[str] = CONFIG_MAPPING[backbone_model_type] lowercase : Union[str, Any] = config_class.from_dict(_A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase : Any = DetrConfig() else: # verify that the decoder is supported lowercase : Union[str, Any] = ( decoder_config.pop('''model_type''' ) if isinstance(_A , _A ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {','.join(self.decoders_supported )}""" ) if isinstance(_A , _A ): lowercase : str = CONFIG_MAPPING[decoder_type] lowercase : Dict = config_class.from_dict(_A ) lowercase : Tuple = backbone_config lowercase : List[Any] = decoder_config # main feature dimension for the model lowercase : Optional[int] = fpn_feature_size lowercase : List[Any] = mask_feature_size # initializer lowercase : Union[str, Any] = init_std lowercase : Tuple = init_xavier_std # Hungarian matcher && loss lowercase : List[str] = cross_entropy_weight lowercase : int = dice_weight lowercase : List[Any] = mask_weight lowercase : Tuple = use_auxiliary_loss lowercase : Tuple = no_object_weight lowercase : int = output_auxiliary_logits lowercase : List[Any] = self.decoder_config.encoder_attention_heads lowercase : List[Any] = self.decoder_config.num_hidden_layers super().__init__(**_A ) @classmethod def __a ( cls : Optional[int] , _A : PretrainedConfig , _A : PretrainedConfig , **_A : str ) -> Any: """simple docstring""" return cls( backbone_config=_A , decoder_config=_A , **_A , ) def __a ( self : Optional[int] ) -> Dict[str, any]: """simple docstring""" lowercase : str = copy.deepcopy(self.__dict__ ) lowercase : Optional[Any] = self.backbone_config.to_dict() lowercase : List[Any] = self.decoder_config.to_dict() lowercase : Optional[int] = self.__class__.model_type return output
116
0
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def UpperCAmelCase__ (lowerCAmelCase_ = "" ): '''simple docstring''' __SCREAMING_SNAKE_CASE = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(lowerCAmelCase_ ).text , "html.parser" ) __SCREAMING_SNAKE_CASE = soup.find_all("td" , attrs="titleColumn" ) __SCREAMING_SNAKE_CASE = soup.find_all("td" , class_="ratingColumn imdbRating" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowerCAmelCase_ , lowerCAmelCase_ ) } def UpperCAmelCase__ (lowerCAmelCase_ = "IMDb_Top_250_Movies.csv" ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_imdb_top_aaa_movies() with open(lowerCAmelCase_ , "w" , newline="" ) as out_file: __SCREAMING_SNAKE_CASE = csv.writer(lowerCAmelCase_ ) writer.writerow(["Movie title", "IMDb rating"] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
54
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class snake_case : SCREAMING_SNAKE_CASE_ : Optional[Union[str, Path]] = None SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : Optional[Dict] = None SCREAMING_SNAKE_CASE_ : Optional[str] = None SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = True SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : Optional[Union[str, bool]] = None SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : Optional[Dict] = None SCREAMING_SNAKE_CASE_ : Optional[str] = None def lowercase_ ( self : str)-> "DownloadConfig": '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase__) for k, v in self.__dict__.items()})
217
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __a = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCAmelCase_ : """simple docstring""" def lowerCamelCase ( self : Optional[Any] , snake_case_ : Optional[int] ): raise NotImplementedError() def lowerCamelCase ( self : Optional[int] ): raise NotImplementedError() class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Tuple , snake_case_ : "AutoTokenizer" , snake_case_ : bool = False , **snake_case_ : Tuple ): snake_case__ : Tuple = tokenizer snake_case__ : List[str] = skip_prompt snake_case__ : Optional[int] = decode_kwargs # variables used in the streaming process snake_case__ : Optional[int] = [] snake_case__ : Optional[int] = 0 snake_case__ : List[Any] = True def lowerCamelCase ( self : List[str] , snake_case_ : int ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: snake_case__ : Optional[Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: snake_case__ : List[Any] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) snake_case__ : Tuple = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): snake_case__ : int = text[self.print_len :] snake_case__ : Optional[int] = [] snake_case__ : int = 0 # If the last token is a CJK character, we print the characters. elif len(snake_case_ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): snake_case__ : str = text[self.print_len :] self.print_len += len(snake_case_ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: snake_case__ : Dict = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(snake_case_ ) self.on_finalized_text(snake_case_ ) def lowerCamelCase ( self : int ): # Flush the cache, if it exists if len(self.token_cache ) > 0: snake_case__ : Union[str, Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) snake_case__ : Optional[Any] = text[self.print_len :] snake_case__ : Tuple = [] snake_case__ : int = 0 else: snake_case__ : int = """""" snake_case__ : Union[str, Any] = True self.on_finalized_text(snake_case_ , stream_end=snake_case_ ) def lowerCamelCase ( self : Optional[int] , snake_case_ : str , snake_case_ : bool = False ): print(snake_case_ , flush=snake_case_ , end="""""" if not stream_end else None ) def lowerCamelCase ( self : int , snake_case_ : Optional[int] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Optional[int] , snake_case_ : "AutoTokenizer" , snake_case_ : bool = False , snake_case_ : Optional[float] = None , **snake_case_ : List[Any] ): super().__init__(snake_case_ , snake_case_ , **snake_case_ ) snake_case__ : Dict = Queue() snake_case__ : List[Any] = None snake_case__ : int = timeout def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : bool = False ): self.text_queue.put(snake_case_ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : List[str] ): return self def lowerCamelCase ( self : str ): snake_case__ : List[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
43
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Optional[Any]: stooge(_lowerCamelCase ,0 ,len(_lowerCamelCase ) - 1 ) return arr def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : List[str] ,_lowerCamelCase : Any ) -> str: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _lowerCAmelCase , _lowerCAmelCase : str = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _lowerCAmelCase : int = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_lowerCamelCase ,_lowerCamelCase ,(h - t) ) # Recursively sort last 2/3 elements stooge(_lowerCamelCase ,i + t ,(_lowerCamelCase) ) # Recursively sort first 2/3 elements stooge(_lowerCamelCase ,_lowerCamelCase ,(h - t) ) if __name__ == "__main__": _a : List[str] = input('Enter numbers separated by a comma:\n').strip() _a : List[Any] = [int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
44
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = "" _UpperCamelCase : str = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , a__ = None , a__ = None , **a__ , ): super().__init__(self , **a__ ) _lowerCAmelCase : Any = repo_info _lowerCAmelCase : Optional[Any] = token _lowerCAmelCase : Optional[int] = None def __A ( self ): if self.dir_cache is None: _lowerCAmelCase : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _lowerCAmelCase : Any = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(a__ ): {"""name""": str(a__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __A ( self , a__ , a__ = "rb" , **a__ , ): if not isinstance(self.repo_info , a__ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) _lowerCAmelCase : Tuple = hf_hub_url(self.repo_info.id , a__ , revision=self.repo_info.sha ) return fsspec.open( a__ , mode=a__ , headers=get_authentication_headers_for_url(a__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def __A ( self , a__ , **a__ ): self._get_dirs() _lowerCAmelCase : Union[str, Any] = self._strip_protocol(a__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(a__ ) def __A ( self , a__ , a__=False , **a__ ): self._get_dirs() _lowerCAmelCase : Any = PurePosixPath(path.strip("""/""" ) ) _lowerCAmelCase : List[str] = {} for p, f in self.dir_cache.items(): _lowerCAmelCase : Any = PurePosixPath(p.strip("""/""" ) ) _lowerCAmelCase : Optional[int] = p.parent if root == path: _lowerCAmelCase : Dict = f _lowerCAmelCase : Union[str, Any] = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
44
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() def __A ( self : Optional[int] ): A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2" , revision="bf16" , dtype=jnp.bfloataa , ) A_ = "A painting of a squirrel eating a burger" A_ = jax.device_count() A_ = num_samples * [prompt] A_ = sd_pipe.prepare_inputs(__lowerCAmelCase ) A_ = replicate(__lowerCAmelCase ) A_ = shard(__lowerCAmelCase ) A_ = jax.random.PRNGKey(0 ) A_ = jax.random.split(__lowerCAmelCase , jax.device_count() ) A_ = sd_pipe(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_inference_steps=25 , jit=__lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) A_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A_ = images[0, 253:256, 253:256, -1] A_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A_ = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __A ( self : str ): A_ = "stabilityai/stable-diffusion-2" A_ , A_ = FlaxDPMSolverMultistepScheduler.from_pretrained(__lowerCAmelCase , subfolder="scheduler" ) A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained( __lowerCAmelCase , scheduler=__lowerCAmelCase , revision="bf16" , dtype=jnp.bfloataa , ) A_ = scheduler_params A_ = "A painting of a squirrel eating a burger" A_ = jax.device_count() A_ = num_samples * [prompt] A_ = sd_pipe.prepare_inputs(__lowerCAmelCase ) A_ = replicate(__lowerCAmelCase ) A_ = shard(__lowerCAmelCase ) A_ = jax.random.PRNGKey(0 ) A_ = jax.random.split(__lowerCAmelCase , jax.device_count() ) A_ = sd_pipe(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_inference_steps=25 , jit=__lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) A_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A_ = images[0, 253:256, 253:256, -1] A_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A_ = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
371
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __a :str = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = RobertaPreLayerNormConfig.from_pretrained( __UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) ) A_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A_ = tensor_value A_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) # convert tokenizer A_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a :Any = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
329
0
'''simple docstring''' import math def _lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: """simple docstring""" return math.pow(_UpperCamelCase , 2 ) - a def _lowerCAmelCase ( _UpperCamelCase : float ) -> float: """simple docstring""" return 2 * x def _lowerCAmelCase ( _UpperCamelCase : float ) -> float: """simple docstring""" _SCREAMING_SNAKE_CASE =2.0 while start <= a: _SCREAMING_SNAKE_CASE =math.pow(_UpperCamelCase , 2 ) return start def _lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : int = 99_99 , _UpperCamelCase : float = 0.00_00_00_00_00_00_01 ) -> float: """simple docstring""" if a < 0: raise ValueError('math domain error' ) _SCREAMING_SNAKE_CASE =get_initial_point(_UpperCamelCase ) for _ in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =value _SCREAMING_SNAKE_CASE =value - fx(_UpperCamelCase , _UpperCamelCase ) / fx_derivative(_UpperCamelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
47
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class A__ ( A__ ): A__ = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) A__ = 'CIDAS/clipseg-rd64-refined' A__ = 'image_segmenter' A__ = CLIPSegForImageSegmentation A__ = ['image', 'text'] A__ = ['image'] def __init__( self : Any , *_a : Dict , **_a : str ) -> Any: '''simple docstring''' requires_backends(self , ['vision'] ) super().__init__(*_a , **_a ) def A ( self : int , _a : "Image" , _a : str ) -> Optional[Any]: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=_a , return_tensors='pt' ) def A ( self : Dict , _a : Dict ) -> str: '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE =self.model(**_a ).logits return logits def A ( self : Any , _a : str ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =outputs.cpu().detach().numpy() _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =1 return Image.fromarray((array * 255).astype(np.uinta ) )
47
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __snake_case ( a ): def __init__( self : List[Any] , _snake_case : NestedDataStructureLike[PathLike] , _snake_case : Optional[NamedSplit] = None , _snake_case : Optional[Features] = None , _snake_case : str = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : Optional[str] = None , _snake_case : Optional[int] = None , **_snake_case : Union[str, Any] , ): """simple docstring""" super().__init__( _snake_case , split=_snake_case , features=_snake_case , cache_dir=_snake_case , keep_in_memory=_snake_case , streaming=_snake_case , num_proc=_snake_case , **_snake_case , ) UpperCAmelCase_ = field UpperCAmelCase_ = path_or_paths if isinstance(_snake_case , _snake_case) else {self.split: path_or_paths} UpperCAmelCase_ = Json( cache_dir=_snake_case , data_files=_snake_case , features=_snake_case , field=_snake_case , **_snake_case , ) def lowerCamelCase ( self : List[str]): """simple docstring""" if self.streaming: UpperCAmelCase_ = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None self.builder.download_and_prepare( download_config=_snake_case , download_mode=_snake_case , verification_mode=_snake_case , base_path=_snake_case , num_proc=self.num_proc , ) UpperCAmelCase_ = self.builder.as_dataset( split=self.split , verification_mode=_snake_case , in_memory=self.keep_in_memory) return dataset class __snake_case : def __init__( self : Dict , _snake_case : Dataset , _snake_case : Union[PathLike, BinaryIO] , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , **_snake_case : List[Any] , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""") UpperCAmelCase_ = dataset UpperCAmelCase_ = path_or_buf UpperCAmelCase_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase_ = num_proc UpperCAmelCase_ = '''utf-8''' UpperCAmelCase_ = to_json_kwargs def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.to_json_kwargs.pop('''path_or_buf''' , _snake_case) UpperCAmelCase_ = self.to_json_kwargs.pop('''orient''' , '''records''') UpperCAmelCase_ = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False) UpperCAmelCase_ = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True) UpperCAmelCase_ = self.to_json_kwargs.pop('''compression''' , _snake_case) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""") if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , '''wb''' , compression=_snake_case) as buffer: UpperCAmelCase_ = self._write(file_obj=_snake_case , orient=_snake_case , lines=_snake_case , index=_snake_case , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" ''' was passed. Please provide a local path instead.''') UpperCAmelCase_ = self._write( file_obj=self.path_or_buf , orient=_snake_case , lines=_snake_case , index=_snake_case , **self.to_json_kwargs) return written def lowerCamelCase ( self : Any , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = args UpperCAmelCase_ = query_table( table=self.dataset.data , key=slice(_snake_case , offset + self.batch_size) , indices=self.dataset._indices , ) UpperCAmelCase_ = batch.to_pandas().to_json( path_or_buf=_snake_case , orient=_snake_case , lines=_snake_case , index=_snake_case , **_snake_case) if not json_str.endswith('''\n'''): json_str += "\n" return json_str.encode(self.encoding) def lowerCamelCase ( self : Union[str, Any] , _snake_case : BinaryIO , _snake_case : Any , _snake_case : str , _snake_case : Any , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): UpperCAmelCase_ = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(_snake_case) else: UpperCAmelCase_ , UpperCAmelCase_ = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _snake_case , _snake_case)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(_snake_case) return written
7
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["DeiTFeatureExtractor"] snake_case_ : List[str] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __lowercase = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , **__lowercase) -> int: super().__init__(**__lowercase) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , __lowercase , **__lowercase) -> Union[str, Any]: return super().__call__(__lowercase , **__lowercase) def UpperCamelCase__ ( self , **__lowercase) -> int: __UpperCamelCase :int = {} if "candidate_labels" in kwargs: __UpperCamelCase :Union[str, Any] = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __UpperCamelCase :List[str] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCamelCase__ ( self , __lowercase , __lowercase=None , __lowercase="This is a photo of {}.") -> List[Any]: __UpperCamelCase :Dict = load_image(__lowercase) __UpperCamelCase :Dict = self.image_processor(images=[image] , return_tensors=self.framework) __UpperCamelCase :Optional[int] = candidate_labels __UpperCamelCase :int = [hypothesis_template.format(__lowercase) for x in candidate_labels] __UpperCamelCase :Optional[Any] = self.tokenizer(__lowercase , return_tensors=self.framework , padding=__lowercase) __UpperCamelCase :List[str] = [text_inputs] return inputs def UpperCamelCase__ ( self , __lowercase) -> List[str]: __UpperCamelCase :List[str] = model_inputs.pop('''candidate_labels''') __UpperCamelCase :List[str] = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , __lowercase): __UpperCamelCase :int = text_inputs[0] else: # Batching case. __UpperCamelCase :str = text_inputs[0][0] __UpperCamelCase :Dict = self.model(**__lowercase , **__lowercase) __UpperCamelCase :str = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCamelCase__ ( self , __lowercase) -> Union[str, Any]: __UpperCamelCase :Optional[Any] = model_outputs.pop('''candidate_labels''') __UpperCamelCase :List[Any] = model_outputs['''logits'''][0] if self.framework == "pt": __UpperCamelCase :Tuple = logits.softmax(dim=-1).squeeze(-1) __UpperCamelCase :Optional[int] = probs.tolist() if not isinstance(__lowercase , __lowercase): __UpperCamelCase :Dict = [scores] elif self.framework == "tf": __UpperCamelCase :Optional[Any] = stable_softmax(__lowercase , axis=-1) __UpperCamelCase :Dict = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""") __UpperCamelCase :Optional[int] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__lowercase , __lowercase) , key=lambda __lowercase: -x[0]) ] return result
43
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : torch.FloatTensor class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @register_to_config def __init__( self, lowerCamelCase__ = 32, lowerCamelCase__ = 64, lowerCamelCase__ = 20, lowerCamelCase__ = 768, lowerCamelCase__=77, lowerCamelCase__=4, lowerCamelCase__ = 0.0, lowerCamelCase__ = "silu", lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = "linear", lowerCamelCase__ = "prd", lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, ): super().__init__() A : int = num_attention_heads A : Tuple = attention_head_dim A : Optional[int] = num_attention_heads * attention_head_dim A : List[str] = additional_embeddings A : int = time_embed_dim or inner_dim A : Tuple = embedding_proj_dim or embedding_dim A : Dict = clip_embed_dim or embedding_dim A : List[str] = Timesteps(lowerCamelCase__, lowerCamelCase__, 0 ) A : Any = TimestepEmbedding(lowerCamelCase__, lowerCamelCase__, out_dim=lowerCamelCase__, act_fn=lowerCamelCase__ ) A : List[Any] = nn.Linear(lowerCamelCase__, lowerCamelCase__ ) if embedding_proj_norm_type is None: A : Union[str, Any] = None elif embedding_proj_norm_type == "layer": A : str = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) A : Optional[Any] = nn.Linear(lowerCamelCase__, lowerCamelCase__ ) if encoder_hid_proj_type is None: A : Dict = None elif encoder_hid_proj_type == "linear": A : Union[str, Any] = nn.Linear(lowerCamelCase__, lowerCamelCase__ ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) A : List[str] = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, lowerCamelCase__ ) ) if added_emb_type == "prd": A : Union[str, Any] = nn.Parameter(torch.zeros(1, 1, lowerCamelCase__ ) ) elif added_emb_type is None: A : int = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) A : int = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, dropout=lowerCamelCase__, activation_fn="""gelu""", attention_bias=lowerCamelCase__, ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": A : int = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: A : Tuple = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) A : Optional[Any] = nn.LayerNorm(lowerCamelCase__ ) A : str = nn.Linear(lowerCamelCase__, lowerCamelCase__ ) A : Union[str, Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -1_0000.0 ) causal_attention_mask.triu_(1 ) A : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""", lowerCamelCase__, persistent=lowerCamelCase__ ) A : Dict = nn.Parameter(torch.zeros(1, lowerCamelCase__ ) ) A : Tuple = nn.Parameter(torch.zeros(1, lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _lowerCAmelCase ( self ): A : Optional[int] = {} def fn_recursive_add_processors(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): if hasattr(lowerCamelCase__, """set_processor""" ): A : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''', lowerCamelCase__, lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) return processors def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Optional[Any] = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__, lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): if hasattr(lowerCamelCase__, """set_processor""" ): if not isinstance(lowerCamelCase__, lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''', lowerCamelCase__, lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): self.set_attn_processor(AttnProcessor() ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = True, ): A : Optional[int] = hidden_states.shape[0] A : Tuple = timestep if not torch.is_tensor(lowerCamelCase__ ): A : List[Any] = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: A : Optional[int] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A : Optional[Any] = timesteps * torch.ones(lowerCamelCase__, dtype=timesteps.dtype, device=timesteps.device ) A : str = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. A : Union[str, Any] = timesteps_projected.to(dtype=self.dtype ) A : Tuple = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: A : Optional[Any] = self.embedding_proj_norm(lowerCamelCase__ ) A : Any = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: A : List[str] = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) A : Tuple = self.proj_in(lowerCamelCase__ ) A : Dict = self.positional_embedding.to(hidden_states.dtype ) A : List[str] = [] A : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: A : Optional[Any] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: A : List[str] = hidden_states[:, None, :] A : Dict = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: A : List[Any] = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__, -1, -1 ) additional_embeds.append(lowerCamelCase__ ) A : Union[str, Any] = torch.cat( lowerCamelCase__, dim=1, ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: A : Any = F.pad( lowerCamelCase__, ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ), value=0.0, ) A : Union[str, Any] = hidden_states + positional_embeddings if attention_mask is not None: A : List[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 A : Tuple = F.pad(lowerCamelCase__, (0, self.additional_embeddings), value=0.0 ) A : List[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) A : Any = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0 ) if self.norm_in is not None: A : str = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: A : Optional[Any] = block(lowerCamelCase__, attention_mask=lowerCamelCase__ ) A : Optional[int] = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: A : Dict = hidden_states[:, -1] else: A : Optional[int] = hidden_states[:, additional_embeddings_len:] A : Optional[Any] = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : str = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
116
0
'''simple docstring''' from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase = 6 ) -> None: A_ : Node | None = None A_ : Node | None = None self.create_linked_list(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: A_ : Dict = Node() A_ : Optional[int] = current_node A_ : List[str] = current_node A_ : Dict = current_node for _ in range(1 , _lowerCamelCase ): A_ : Any = Node() A_ : Optional[Any] = current_node A_ : Any = previous_node A_ : Optional[int] = current_node A_ : List[str] = self.front A_ : Optional[Any] = previous_node def UpperCAmelCase_ ( self ) -> bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def UpperCAmelCase_ ( self ) -> Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: if self.rear is None: return self.check_is_full() if not self.is_empty(): A_ : str = self.rear.next if self.rear: A_ : List[Any] = data def UpperCAmelCase_ ( self ) -> Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: A_ : Dict = self.front.data A_ : int = None return data A_ : List[str] = self.front A_ : List[str] = old_front.next A_ : Any = old_front.data A_ : Any = None return data def UpperCAmelCase_ ( self ) -> None: if self.is_empty(): raise Exception("""Empty Queue""" ) def UpperCAmelCase_ ( self ) -> None: if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> None: A_ : Any | None = None A_ : Node | None = None A_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' UpperCamelCase__ : Optional[Any] = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] UpperCamelCase__ : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] UpperCamelCase__ : Optional[Any] = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] UpperCamelCase__ : List[Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] UpperCamelCase__ : Optional[Any] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] UpperCamelCase__ : str = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] UpperCamelCase__ : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] UpperCamelCase__ : List[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
164
0
from __future__ import annotations from scipy.special import comb # type: ignore class _lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' __snake_case : str = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __snake_case : Optional[int] = len(__lowercase ) - 1 def UpperCAmelCase ( self , UpperCAmelCase ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __snake_case : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __lowercase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__lowercase ) , 5 ) == 1 return output_values def UpperCAmelCase ( self , UpperCAmelCase ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __snake_case : Tuple = self.basis_function(__lowercase ) __snake_case : Optional[Any] = 0.0 __snake_case : Dict = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def UpperCAmelCase ( self , UpperCAmelCase = 0.01 ) -> Optional[Any]: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore __snake_case : list[float] = [] # x coordinates of points to plot __snake_case : list[float] = [] # y coordinates of points to plot __snake_case : int = 0.0 while t <= 1: __snake_case : str = self.bezier_curve_function(__lowercase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __snake_case : List[Any] = [i[0] for i in self.list_of_points] __snake_case : List[str] = [i[1] for i in self.list_of_points] plt.plot( __lowercase , __lowercase , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(__lowercase , __lowercase , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
326
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : int = StableUnCLIPImgaImgPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS a__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a__ : Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a__ : int = frozenset([] ) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Tuple = 32 __UpperCamelCase :Optional[int] = embedder_hidden_size # image encoding components __UpperCamelCase :Union[str, Any] = CLIPImageProcessor(crop_size=32 , size=32) torch.manual_seed(0) __UpperCamelCase :Union[str, Any] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__lowercase , projection_dim=__lowercase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , )) # regular denoising components torch.manual_seed(0) __UpperCamelCase :str = StableUnCLIPImageNormalizer(embedding_dim=__lowercase) __UpperCamelCase :Optional[int] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''') torch.manual_seed(0) __UpperCamelCase :Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') torch.manual_seed(0) __UpperCamelCase :Dict = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )) torch.manual_seed(0) __UpperCamelCase :List[Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowercase , layers_per_block=1 , upcast_attention=__lowercase , use_linear_projection=__lowercase , ) torch.manual_seed(0) __UpperCamelCase :Tuple = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='''v_prediction''' , set_alpha_to_one=__lowercase , steps_offset=1 , ) torch.manual_seed(0) __UpperCamelCase :List[str] = AutoencoderKL() __UpperCamelCase :Tuple = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def UpperCamelCase__ ( self , __lowercase , __lowercase=0 , __lowercase=True) -> str: if str(__lowercase).startswith('''mps'''): __UpperCamelCase :Union[str, Any] = torch.manual_seed(__lowercase) else: __UpperCamelCase :int = torch.Generator(device=__lowercase).manual_seed(__lowercase) __UpperCamelCase :int = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase)).to(__lowercase) if pil_image: __UpperCamelCase :List[Any] = input_image * 0.5 + 0.5 __UpperCamelCase :Optional[Any] = input_image.clamp(0 , 1) __UpperCamelCase :int = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() __UpperCamelCase :Optional[Any] = DiffusionPipeline.numpy_to_pil(__lowercase)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase :Tuple = self.get_dummy_components() __UpperCamelCase :Any = StableUnCLIPImgaImgPipeline(**__lowercase) __UpperCamelCase :Optional[Any] = sd_pipe.to(__lowercase) sd_pipe.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :List[Any] = self.get_dummy_inputs(__lowercase) inputs.update({'''image_embeds''': None}) __UpperCamelCase :Any = sd_pipe(**__lowercase).images __UpperCamelCase :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase :List[Any] = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Optional[Any] = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=__lowercase) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Optional[Any] = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__lowercase) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase__ ( self) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__lowercase) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') __UpperCamelCase :Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''') __UpperCamelCase :List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa) pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCamelCase :int = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :Dict = pipe(__lowercase , '''anime turle''' , generator=__lowercase , output_type='''np''') __UpperCamelCase :Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') __UpperCamelCase :Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''') __UpperCamelCase :Any = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa) pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCamelCase :int = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :Optional[int] = pipe(__lowercase , '''anime turle''' , generator=__lowercase , output_type='''np''') __UpperCamelCase :List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCamelCase :List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa) __UpperCamelCase :Union[str, Any] = pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCamelCase :Optional[Any] = pipe( __lowercase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) __UpperCamelCase :int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
43
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : str ) -> str: """simple docstring""" UpperCamelCase_ : int = tempfile.mkdtemp() UpperCamelCase_ : int = BlipImageProcessor() UpperCamelCase_ : Optional[Any] = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) UpperCamelCase_ : Tuple = BlipaProcessor(snake_case , snake_case ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , **snake_case : Dict ) -> List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case ).tokenizer def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , **snake_case : List[str] ) -> int: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case ).image_processor def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] UpperCamelCase_ : Union[str, Any] = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase_ : List[str] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_ : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase_ : List[str] = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 ) UpperCamelCase_ : str = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : int = self.get_image_processor() UpperCamelCase_ : int = self.get_tokenizer() UpperCamelCase_ : Tuple = BlipaProcessor(tokenizer=snake_case , image_processor=snake_case ) UpperCamelCase_ : Tuple = self.prepare_image_inputs() UpperCamelCase_ : Union[str, Any] = image_processor(snake_case , return_tensors='np' ) UpperCamelCase_ : Tuple = processor(images=snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Any = self.get_image_processor() UpperCamelCase_ : Optional[Any] = self.get_tokenizer() UpperCamelCase_ : Any = BlipaProcessor(tokenizer=snake_case , image_processor=snake_case ) UpperCamelCase_ : Optional[int] = 'lower newer' UpperCamelCase_ : str = processor(text=snake_case ) UpperCamelCase_ : List[str] = tokenizer(snake_case , return_token_type_ids=snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Dict: """simple docstring""" UpperCamelCase_ : Union[str, Any] = self.get_image_processor() UpperCamelCase_ : Dict = self.get_tokenizer() UpperCamelCase_ : Optional[int] = BlipaProcessor(tokenizer=snake_case , image_processor=snake_case ) UpperCamelCase_ : Dict = 'lower newer' UpperCamelCase_ : List[Any] = self.prepare_image_inputs() UpperCamelCase_ : Dict = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Any: """simple docstring""" UpperCamelCase_ : List[Any] = self.get_image_processor() UpperCamelCase_ : Optional[int] = self.get_tokenizer() UpperCamelCase_ : List[str] = BlipaProcessor(tokenizer=snake_case , image_processor=snake_case ) UpperCamelCase_ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_ : Tuple = processor.batch_decode(snake_case ) UpperCamelCase_ : str = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str: """simple docstring""" UpperCamelCase_ : Union[str, Any] = self.get_image_processor() UpperCamelCase_ : Optional[Any] = self.get_tokenizer() UpperCamelCase_ : Dict = BlipaProcessor(tokenizer=snake_case , image_processor=snake_case ) UpperCamelCase_ : Tuple = 'lower newer' UpperCamelCase_ : int = self.prepare_image_inputs() UpperCamelCase_ : str = processor(text=snake_case , images=snake_case ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
50
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" debug_launcher(test_script.main ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: """simple docstring""" debug_launcher(test_ops.main )
50
1