code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from math import factorial def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(a_ ) // (factorial(a_ ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', f'''4 for group projects, there are {combinations(40, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f'''are {combinations(10, 3)} ways that first, second and''', 'third place can be awarded.', )
15
SCREAMING_SNAKE_CASE :Any = 256 # Modulus to hash a string SCREAMING_SNAKE_CASE :Union[str, Any] = 100_0003 def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" __A = len(a_ ) __A = len(a_ ) if p_len > t_len: return False __A = 0 __A = 0 __A = 1 # Calculating the hash of pattern and substring of text for i in range(a_ ): __A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: """simple docstring""" __A = "abc1abc12" __A = "alskfjaldsabc1abc1abc12k23adsfabcabc" __A = "alskfjaldsk23adsfabcabc" assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ ) # Test 2) __A = "ABABX" __A = "ABABZABABYABABX" assert rabin_karp(a_ , a_ ) # Test 3) __A = "AAAB" __A = "ABAAAAAB" assert rabin_karp(a_ , a_ ) # Test 4) __A = "abcdabcy" __A = "abcxabcdabxabcdabcdabcy" assert rabin_karp(a_ , a_ ) # Test 5) __A = "Lü" __A = "Lüsai" assert rabin_karp(a_ , a_ ) __A = "Lue" assert not rabin_karp(a_ , a_ ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
15
1
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : int = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) UpperCAmelCase__ : Any = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : str = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def _UpperCamelCase ( ): UpperCAmelCase__ : List[str] = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) UpperCAmelCase__ : Dict = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) UpperCAmelCase__ : List[str] = yaml.safe_dump(UpperCamelCase__ ) UpperCAmelCase__ : Dict = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def _UpperCamelCase ( ): UpperCAmelCase__ : Any = DatasetInfo() UpperCAmelCase__ : Optional[int] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Dict = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) UpperCAmelCase__ : int = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): UpperCAmelCase__ : Union[str, Any] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml UpperCAmelCase__ : Tuple = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
361
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ = 4_0_0_0_0_0_0 ): UpperCAmelCase__ : List[str] = [0, 1] UpperCAmelCase__ : Any = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 UpperCAmelCase__ : str = 0 for j in range(len(UpperCamelCase__ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
283
0
from typing import TYPE_CHECKING from ...utils import _LazyModule A : Any = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
184
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ): """simple docstring""" SCREAMING_SNAKE_CASE =None if token is not None: SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE ='636036' SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json() return result["workflow_runs"] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE =workflow_run['id'] break return workflow_run_id def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE =artifacts_links[artifact_name] download_artifact( artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' ) if os.path.isfile(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE ={} with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file with z.open(lowerCAmelCase_ ) as f: SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' ) return results
334
0
def _a ( SCREAMING_SNAKE_CASE__ : int = 50_00_00_00 ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = set() SCREAMING_SNAKE_CASE__ : int = int((limit - 24) ** (1 / 2) ) SCREAMING_SNAKE_CASE__ : str = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowerCAmelCase__ ) ) ) for primea in primes: SCREAMING_SNAKE_CASE__ : List[Any] = primea * primea for primea in primes: SCREAMING_SNAKE_CASE__ : Any = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = primea * primea * primea * primea SCREAMING_SNAKE_CASE__ : Dict = square + cube + tetr if total >= limit: break ret.add(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) if __name__ == "__main__": print(f"{solution() = }")
366
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : complex , SCREAMING_SNAKE_CASE__ : str = "x" , SCREAMING_SNAKE_CASE__ : float = 10**-10 , SCREAMING_SNAKE_CASE__ : int = 1 , ) -> complex: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = symbols(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = lambdify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = lambdify(SCREAMING_SNAKE_CASE__ , diff(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Any = starting_point while True: if diff_function(SCREAMING_SNAKE_CASE__ ) != 0: SCREAMING_SNAKE_CASE__ : Any = prev_guess - multiplicity * func(SCREAMING_SNAKE_CASE__ ) / diff_function( SCREAMING_SNAKE_CASE__ ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess SCREAMING_SNAKE_CASE__ : Optional[int] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(f"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"{newton_raphson('exp(x) - 1', 1_0, precision=0.005)}", ) # Find root of cos(x) print(f"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
191
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = "▁" __lowerCamelCase = {"vocab_file": "sentencepiece.bpe.model"} __lowerCamelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __lowerCamelCase = { "facebook/xglm-564M": 20_48, } class UpperCamelCase__( __A ): lowerCAmelCase__ : Tuple = VOCAB_FILES_NAMES lowerCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : str = ['input_ids', 'attention_mask'] def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: A__ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer A__ = 7 A__ = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] A__ = kwargs.get('additional_special_tokens' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCAmelCase ,) A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) A__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A__ = 1 # Mimic fairseq token-to-id alignment for the first 4 token A__ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} A__ = len(self.sp_model ) A__ = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCAmelCase ) A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: A__ = self.__dict__.copy() A__ = None A__ = self.sp_model.serialized_model_proto() return state def __setstate__( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a A__ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: A__ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def snake_case__ ( self ) -> int: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def snake_case__ ( self ) -> Optional[Any]: A__ = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase ,out_type=__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A__ = self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case__ ( self ,__UpperCAmelCase ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: A__ = ''.join(__UpperCAmelCase ).replace(__UpperCAmelCase ,' ' ).strip() return out_string def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A__ = os.path.join( __UpperCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase ,'wb' ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
221
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __lowerCamelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __lowerCamelCase = "main" # Default branch name __lowerCamelCase = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) __lowerCamelCase = "aaaaaaa" # This commit does not exist, so we should 404. __lowerCamelCase = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes __lowerCamelCase = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def UpperCAmelCase ( ): """simple docstring""" print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def UpperCAmelCase ( ): """simple docstring""" print('Bonjour!' ) yield print('Au revoir!' ) class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> List[str]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class UpperCamelCase__( unittest.TestCase ): @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> Dict: with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() ,'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> Any: with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def snake_case__ ( self ) -> Union[str, Any]: self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['start_positions', 'end_positions'] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) @require_tf def snake_case__ ( self ) -> str: self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['start_positions', 'end_positions'] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) @require_flax def snake_case__ ( self ) -> List[Any]: # Flax models don't have labels self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,[] )
221
1
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): UpperCamelCase_ : List[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right UpperCamelCase_ : Optional[Any] = 128022 UpperCamelCase_ : Optional[int] = 128028 @require_sentencepiece class _a ( __lowerCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : str = MaMaaaTokenizer SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : int = True def _lowercase ( self ) -> Dict: super().setUp() _snake_case = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _snake_case = dict(zip(_SCREAMING_SNAKE_CASE ,range(len(_SCREAMING_SNAKE_CASE ) ) ) ) _snake_case = Path(self.tmpdirname ) save_json(_SCREAMING_SNAKE_CASE ,save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_SCREAMING_SNAKE_CASE ,save_dir / VOCAB_FILES_NAMES["spm_file"] ) _snake_case = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self ,**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: return MaMaaaTokenizer.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> str: return ( "This is a test", "This is a test", ) def _lowercase ( self ) -> Optional[int]: _snake_case = "</s>" _snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Union[str, Any]: _snake_case = self.get_tokenizer() _snake_case = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"</s>" ) self.assertEqual(vocab_keys[1] ,"<unk>" ) self.assertEqual(vocab_keys[-1] ,"<s>" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def _lowercase ( self ) -> List[str]: pass def _lowercase ( self ) -> Optional[int]: _snake_case = self.get_tokenizer() _snake_case = tokenizer.tokenize("This is a test" ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) ,[2, 3, 4, 5, 6] ,) _snake_case = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,["▁This", "▁is", "▁a", "▁t", "est"] ) _snake_case = tokenizer.convert_tokens_to_string(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,"This is a test" ) @slow def _lowercase ( self ) -> Dict: # fmt: off _snake_case = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE ,model_name="facebook/m2m100_418M" ,revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" ,) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = """facebook/m2m100_418M""" SCREAMING_SNAKE_CASE_ : List[str] = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] SCREAMING_SNAKE_CASE_ : Optional[int] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off SCREAMING_SNAKE_CASE_ : int = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def _lowercase ( cls ) -> Tuple: _snake_case = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name ,src_lang="en" ,tgt_lang="fr" ) _snake_case = 1 return cls def _lowercase ( self ) -> List[str]: self.assertEqual(self.tokenizer.get_lang_id("ar" ) ,128_006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) ,128_022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) ,128_076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) ,128_063 ) def _lowercase ( self ) -> str: _snake_case = self.tokenizer.get_vocab() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] ,3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) ,_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Optional[Any]: _snake_case = "en" _snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Union[str, Any]: self.assertIn(_SCREAMING_SNAKE_CASE ,self.tokenizer.all_special_ids ) # fmt: off _snake_case = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on _snake_case = self.tokenizer.decode(_SCREAMING_SNAKE_CASE ,skip_special_tokens=_SCREAMING_SNAKE_CASE ) _snake_case = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token ,_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Union[str, Any]: _snake_case = tempfile.mkdtemp() _snake_case = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) _snake_case = MaMaaaTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.lang_token_to_id ,_SCREAMING_SNAKE_CASE ) @require_torch def _lowercase ( self ) -> List[Any]: _snake_case = "en" _snake_case = "fr" _snake_case = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=_SCREAMING_SNAKE_CASE ,return_tensors="pt" ) _snake_case = shift_tokens_right( batch["labels"] ,self.tokenizer.pad_token_id ,self.tokenizer.eos_token_id ) for k in batch: _snake_case = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _lowercase ( self ) -> str: _snake_case = "mr" self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) _snake_case = "zh" self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) @require_torch def _lowercase ( self ) -> Optional[int]: _snake_case = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _snake_case = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _lowercase ( self ) -> List[str]: _snake_case = self.tokenizer._build_translation_inputs("A test" ,return_tensors="pt" ,src_lang="en" ,tgt_lang="ar" ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) ,{ # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } ,)
142
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __a ( _UpperCamelCase: Dict , _UpperCamelCase: Optional[int] , _UpperCamelCase: List[str] ) -> Optional[Any]: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __a ( _UpperCamelCase: List[Any] , _UpperCamelCase: Optional[Any] , _UpperCamelCase: Dict , _UpperCamelCase: Optional[Any]="attention" ) -> Any: """simple docstring""" _snake_case = _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _snake_case = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _snake_case = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _snake_case = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _snake_case = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __a ( _UpperCamelCase: Tuple , _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[int]=False ) -> List[Any]: """simple docstring""" if split_mlp_wi: _snake_case = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _snake_case = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _snake_case = (wi_a, wi_a) else: _snake_case = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _snake_case = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __a ( _UpperCamelCase: Optional[int] , _UpperCamelCase: Dict , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Union[str, Any] ) -> List[Any]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __a ( _UpperCamelCase: dict , *, _UpperCamelCase: int , _UpperCamelCase: bool , _UpperCamelCase: bool = False ) -> str: """simple docstring""" _snake_case = traverse_util.flatten_dict(variables["target"] ) _snake_case = {"/".join(_UpperCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _snake_case = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , _UpperCamelCase ) _snake_case = collections.OrderedDict() # Shared embeddings. _snake_case = old["token_embedder/embedding"] # Encoder. for i in range(_UpperCamelCase ): # Block i, layer 0 (Self Attention). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "pre_attention_layer_norm" ) _snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "attention" ) _snake_case = layer_norm _snake_case = k.T _snake_case = o.T _snake_case = q.T _snake_case = v.T # Block i, layer 1 (MLP). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "pre_mlp_layer_norm" ) _snake_case , _snake_case = tax_mlp_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , _UpperCamelCase ) _snake_case = layer_norm if split_mlp_wi: _snake_case = wi[0].T _snake_case = wi[1].T else: _snake_case = wi.T _snake_case = wo.T if scalable_attention: # convert the rel_embedding of each layer _snake_case = tax_relpos_bias_lookup( _UpperCamelCase , _UpperCamelCase , "encoder" ).T _snake_case = old["encoder/encoder_norm/scale"] if not scalable_attention: _snake_case = tax_relpos_bias_lookup( _UpperCamelCase , 0 , "encoder" ).T _snake_case = tax_relpos_bias_lookup( _UpperCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(_UpperCamelCase ): # Block i, layer 0 (Self Attention). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_self_attention_layer_norm" ) _snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "self_attention" ) _snake_case = layer_norm _snake_case = k.T _snake_case = o.T _snake_case = q.T _snake_case = v.T # Block i, layer 1 (Cross Attention). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) _snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "encoder_decoder_attention" ) _snake_case = layer_norm _snake_case = k.T _snake_case = o.T _snake_case = q.T _snake_case = v.T # Block i, layer 2 (MLP). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_mlp_layer_norm" ) _snake_case , _snake_case = tax_mlp_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , _UpperCamelCase ) _snake_case = layer_norm if split_mlp_wi: _snake_case = wi[0].T _snake_case = wi[1].T else: _snake_case = wi.T _snake_case = wo.T if scalable_attention: # convert the rel_embedding of each layer _snake_case = tax_relpos_bias_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" ).T _snake_case = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _snake_case = old["decoder/logits_dense/kernel"].T return new def __a ( _UpperCamelCase: Any , _UpperCamelCase: bool ) -> Dict: """simple docstring""" _snake_case = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _snake_case = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _snake_case = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) _snake_case = state_dict["shared.weight"] return state_dict def __a ( _UpperCamelCase: str , _UpperCamelCase: List[str] , _UpperCamelCase: Any , _UpperCamelCase: str , _UpperCamelCase: List[Any] ) -> Dict: """simple docstring""" _snake_case = checkpoints.load_tax_checkpoint(_UpperCamelCase ) _snake_case = convert_tax_to_pytorch( _UpperCamelCase , num_layers=config.num_layers , is_encoder_only=_UpperCamelCase , scalable_attention=_UpperCamelCase ) _snake_case = make_state_dict(_UpperCamelCase , _UpperCamelCase ) model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) def __a ( _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Optional[Any] , _UpperCamelCase: bool = False , _UpperCamelCase: bool = False , ) -> Dict: """simple docstring""" _snake_case = MTaConfig.from_json_file(_UpperCamelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _snake_case = UMTaEncoderModel(_UpperCamelCase ) else: _snake_case = UMTaForConditionalGeneration(_UpperCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_UpperCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_UpperCamelCase ) print("Done" ) if __name__ == "__main__": UpperCamelCase_ : Any = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) UpperCamelCase_ : Union[str, Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
142
1
"""simple docstring""" __A = {} def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowerCAmelCase__ :Dict = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowerCAmelCase__ :str = _calculate(days - 1 , lowerCamelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowerCAmelCase__ :int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowerCAmelCase__ :Tuple = _calculate(days - 1 , lowerCamelCase_ , 0 ) lowerCAmelCase__ :Tuple = state_late + state_absent + state_ontime lowerCAmelCase__ :str = prizestrings return prizestrings def __A (_SCREAMING_SNAKE_CASE = 30 ) ->int: """simple docstring""" return _calculate(lowerCamelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
293
def UpperCamelCase_( lowerCamelCase_ ) -> int: if not numbers: return 0 if not isinstance(lowerCamelCase_ , (list, tuple) ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) _lowercase : int = numbers[0] for i in range(1 , len(lowerCamelCase_ ) ): # update the maximum and minimum subarray products _lowercase : Union[str, Any] = numbers[i] if number < 0: _lowercase , _lowercase : Any = min_till_now, max_till_now _lowercase : Union[str, Any] = max(lowerCamelCase_ , max_till_now * number ) _lowercase : Union[str, Any] = min(lowerCamelCase_ , min_till_now * number ) # update the maximum product found till now _lowercase : Optional[Any] = max(lowerCamelCase_ , lowerCamelCase_ ) return max_prod
21
0
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
import argparse import datetime def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month lowercase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day lowercase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : int = m + 12 # maths var lowercase__ : int = int(str(_lowerCamelCase)[:2]) lowercase__ : int = int(str(_lowerCamelCase)[2:]) lowercase__ : int = int(2.6 * m - 5.39) lowercase__ : int = int(c / 4) lowercase__ : int = int(k / 4) lowercase__ : int = int(d + k) lowercase__ : int = int(t + u + v + x) lowercase__ : int = int(z - (2 * c)) lowercase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase = parser.parse_args() zeller(args.date_input)
333
1
def A_ ( A__ , A__ ) -> Any: a__ : List[str] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): a__ : Tuple = n - k # Calculate C(n,k) for i in range(SCREAMING_SNAKE_CASE_ ): result *= n - i result //= i + 1 return result def A_ ( A__ ) -> Any: return binomial_coefficient(2 * node_count , SCREAMING_SNAKE_CASE_ ) // (node_count + 1) def A_ ( A__ ) -> Union[str, Any]: if n < 0: raise ValueError('factorial() not defined for negative values' ) a__ : int = 1 for i in range(1 , n + 1 ): result *= i return result def A_ ( A__ ) -> Optional[Any]: return catalan_number(SCREAMING_SNAKE_CASE_ ) * factorial(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowercase : Optional[int] = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
99
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') _snake_case = parser.parse_args() _snake_case = '''cpu''' _snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' _snake_case = '''path-to-your-trained-model''' _snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _snake_case = pipe.to(device) # to channels last _snake_case = pipe.unet.to(memory_format=torch.channels_last) _snake_case = pipe.vae.to(memory_format=torch.channels_last) _snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _snake_case = torch.randn(2, 4, 64, 64) _snake_case = torch.rand(1) * 9_99 _snake_case = torch.randn(2, 77, 7_68) _snake_case = (sample, timestep, encoder_hidden_status) try: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _snake_case = 6_66 _snake_case = torch.Generator(device).manual_seed(seed) _snake_case = {'''generator''': generator} if args.steps is not None: _snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
283
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowercase__ :Any = logging.get_logger(__name__) class lowercase ( _lowerCAmelCase ): def __init__( self ,A__): super().__init__() lowercase = nn.ModuleList(SCREAMING_SNAKE_CASE_) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = False ,A__ = True ,): for i, (image, scale, controlnet) in enumerate(zip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,self.nets)): lowercase = controlnet( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,) # merge samples if i == 0: lowercase = down_samples, mid_sample else: lowercase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def A__ ( self ,A__ ,A__ = True ,A__ = None ,A__ = False ,A__ = None ,): lowercase = 0 lowercase = save_directory for controlnet in self.nets: controlnet.save_pretrained( SCREAMING_SNAKE_CASE_ ,is_main_process=SCREAMING_SNAKE_CASE_ ,save_function=SCREAMING_SNAKE_CASE_ ,safe_serialization=SCREAMING_SNAKE_CASE_ ,variant=SCREAMING_SNAKE_CASE_ ,) idx += 1 lowercase = model_path_to_save + f'_{idx}' @classmethod def A__ ( cls ,A__ ,**A__): lowercase = 0 lowercase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowercase = pretrained_model_path while os.path.isdir(SCREAMING_SNAKE_CASE_): lowercase = ControlNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_) controlnets.append(SCREAMING_SNAKE_CASE_) idx += 1 lowercase = pretrained_model_path + f'_{idx}' logger.info(f'{len(SCREAMING_SNAKE_CASE_)} controlnets loaded from {pretrained_model_path}.') if len(SCREAMING_SNAKE_CASE_) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(SCREAMING_SNAKE_CASE_)}. Expected at least {pretrained_model_path + "_0"}.') return cls(SCREAMING_SNAKE_CASE_)
366
from statistics import mean import numpy as np def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = 0 # Number of processes finished lowercase = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowercase = [0] * no_of_process # List to include calculation results lowercase = [0] * no_of_process # Sort by arrival time. lowercase = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )] lowercase = [process_name[i] for i in np.argsort(lowerCAmelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: lowercase = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowercase = arrival_time[i] lowercase = 0 # Index showing the location of the process being performed lowercase = 0 # Saves the current response ratio. lowercase = 0 for i in range(0 , lowerCAmelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowercase = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowercase = temp lowercase = i # Calculate the turn around time lowercase = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowercase = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = [0] * no_of_process for i in range(0 , lowerCAmelCase__ ): lowercase = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowercase__ :Dict = 5 lowercase__ :str = ["A", "B", "C", "D", "E"] lowercase__ :Optional[int] = [1, 2, 3, 4, 5] lowercase__ :List[Any] = [1, 2, 3, 4, 5] lowercase__ :List[str] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowercase__ :List[Any] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
97
0
"""simple docstring""" def _lowerCAmelCase ( lowercase_ , lowercase_ ): while a != 0: UpperCAmelCase , UpperCAmelCase = b % a, a return b def _lowerCAmelCase ( lowercase_ , lowercase_ ): if gcd(lowercase_ , lowercase_ ) != 1: UpperCAmelCase = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(lowercase_ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1, 0, a UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0, 1, m while va != 0: UpperCAmelCase = ua // va UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
78
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( a_ : Union[str, Any] , a_ : Tuple , a_ : str=None ) -> Union[str, Any]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' __SCREAMING_SNAKE_CASE :Dict = nn.Parameter(a_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' __SCREAMING_SNAKE_CASE :Optional[int] = nn.Parameter(a_ ) def __lowerCamelCase ( a_ : Dict , a_ : str , a_ : Optional[int] ) -> Any: # set torch weights for 1-to-1 comparison __SCREAMING_SNAKE_CASE :List[Any] = np.asarray(weights[0] ) __SCREAMING_SNAKE_CASE :Optional[int] = np.asarray(weights[1] ) __SCREAMING_SNAKE_CASE :Optional[int] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.output.dense , torch.tensor(a_ ).view(-1 , a_ ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( a_ : List[Any] , a_ : Dict , a_ : List[str] ) -> Union[str, Any]: # set torch weights for 1-to-1 comparison __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(weights[0] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(weights[1] ) __SCREAMING_SNAKE_CASE :Any = np.asarray(weights[2] ) __SCREAMING_SNAKE_CASE :Dict = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.output.dense , torch.tensor(a_ ).view(-1 , a_ ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( a_ : Any , a_ : List[str] , a_ : Optional[int] ) -> Union[str, Any]: # layernorm 1 __SCREAMING_SNAKE_CASE :Any = weights[0][0][0] __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(layer_norm_a[0] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(a_ ) , torch.tensor(a_ ) , ) # lsh weights + output __SCREAMING_SNAKE_CASE :List[Any] = weights[0][1] if len(a_ ) < 4: set_layer_weights_in_torch_lsh(a_ , torch_block.attention , a_ ) else: set_layer_weights_in_torch_local(a_ , torch_block.attention , a_ ) # intermediate weighs __SCREAMING_SNAKE_CASE :List[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(a_ ) == 4: __SCREAMING_SNAKE_CASE :List[str] = intermediate_weights[2] # layernorm 2 __SCREAMING_SNAKE_CASE :Tuple = np.asarray(intermediate_weights[0][0] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(a_ ) , torch.tensor(a_ ) , ) # intermediate dense __SCREAMING_SNAKE_CASE :int = np.asarray(intermediate_weights[1][0] ) __SCREAMING_SNAKE_CASE :int = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(a_ ).transpose(0 , 1 ).contiguous() , torch.tensor(a_ ) , ) # intermediate out __SCREAMING_SNAKE_CASE :str = np.asarray(intermediate_weights[4][0] ) __SCREAMING_SNAKE_CASE :str = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(a_ ).transpose(0 , 1 ).contiguous() , torch.tensor(a_ ) , ) def __lowerCamelCase ( a_ : List[str] , a_ : str , a_ : List[Any] ) -> Optional[Any]: # reformer model __SCREAMING_SNAKE_CASE :Dict = torch_model.reformer # word embeds __SCREAMING_SNAKE_CASE :List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(a_ ) , ) if isinstance(weights[3] , a_ ): __SCREAMING_SNAKE_CASE :List[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __SCREAMING_SNAKE_CASE :List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' __SCREAMING_SNAKE_CASE :str = nn.Parameter(torch.tensor(a_ ) ) __SCREAMING_SNAKE_CASE :Optional[int] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( a_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __SCREAMING_SNAKE_CASE :Dict = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(a_ , a_ , a_ ) # output layer norm __SCREAMING_SNAKE_CASE :Optional[int] = np.asarray(weights[7][0] ) __SCREAMING_SNAKE_CASE :List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(a_ ) , torch.tensor(a_ ) , ) # output embeddings __SCREAMING_SNAKE_CASE :Optional[int] = np.asarray(weights[9][0] ) __SCREAMING_SNAKE_CASE :str = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(a_ ).transpose(0 , 1 ).contiguous() , torch.tensor(a_ ) , ) def __lowerCamelCase ( a_ : Any , a_ : Dict , a_ : Dict ) -> Tuple: # Initialise PyTorch model __SCREAMING_SNAKE_CASE :List[str] = ReformerConfig.from_json_file(a_ ) print(f'''Building PyTorch model from configuration: {config}''' ) __SCREAMING_SNAKE_CASE :List[Any] = ReformerModelWithLMHead(a_ ) with open(a_ , '''rb''' ) as f: __SCREAMING_SNAKE_CASE :Any = pickle.load(a_ )['''weights'''] set_model_weights_in_torch(a_ , a_ , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase_ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
191
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''ConditionalDetrFeatureExtractor'''] UpperCamelCase = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
125
UpperCamelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} UpperCamelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(snake_case__ ,snake_case__ ,snake_case__ ) order.append(snake_case__ ) return order def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(snake_case__ ,snake_case__ ,snake_case__ ) return component def __lowerCamelCase ( snake_case__ ) -> list[list[int]]: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) * [False] _SCREAMING_SNAKE_CASE = {vert: [] for vert in range(len(snake_case__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(snake_case__ ) _SCREAMING_SNAKE_CASE = [] for i, was_visited in enumerate(snake_case__ ): if not was_visited: order += topology_sort(snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = len(snake_case__ ) * [False] for i in range(len(snake_case__ ) ): _SCREAMING_SNAKE_CASE = order[len(snake_case__ ) - i - 1] if not visited[vert]: _SCREAMING_SNAKE_CASE = find_components(snake_case__ ,snake_case__ ,snake_case__ ) components_list.append(snake_case__ ) return components_list
125
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _a ( ) -> List[Any]: """simple docstring""" lowerCamelCase__ : str = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase__ : Optional[int] = Dataset.from_dict(UpperCAmelCase ) return dataset class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __lowerCamelCase ( self : List[Any] ) ->Optional[int]: lowerCamelCase__ : Tuple = get_dataset() lowerCamelCase__ : Dict = make_duplicate_clusters(A , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __lowerCamelCase ( self : Optional[Any] ) ->Optional[int]: lowerCamelCase__ : Union[str, Any] = get_dataset() lowerCamelCase__ , lowerCamelCase__ : Tuple = deduplicate_dataset(A ) self.assertEqual(len(A ) , 2 ) print(A ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , A )
142
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = ["image_processor", "tokenizer"] _UpperCAmelCase : Dict = "BridgeTowerImageProcessor" _UpperCAmelCase : Dict = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : Any , A : List[Any] , A : Tuple ) ->Dict: super().__init__(A , A ) def __call__( self : str , A : int , A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , A : bool = True , A : Union[bool, str, PaddingStrategy] = False , A : Union[bool, str, TruncationStrategy] = None , A : Optional[int] = None , A : int = 0 , A : Optional[int] = None , A : Optional[bool] = None , A : Optional[bool] = None , A : bool = False , A : bool = False , A : bool = False , A : bool = False , A : bool = True , A : Optional[Union[str, TensorType]] = None , **A : Union[str, Any] , ) ->BatchEncoding: lowerCamelCase__ : Optional[int] = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_token_type_ids=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_length=A , verbose=A , return_tensors=A , **A , ) # add pixel_values + pixel_mask lowerCamelCase__ : int = self.image_processor( A , return_tensors=A , do_normalize=A , do_center_crop=A , **A ) encoding.update(A ) return encoding def __lowerCamelCase ( self : str , *A : Dict , **A : List[str] ) ->List[Any]: return self.tokenizer.batch_decode(*A , **A ) def __lowerCamelCase ( self : List[str] , *A : Optional[Any] , **A : Tuple ) ->Dict: return self.tokenizer.decode(*A , **A ) @property def __lowerCamelCase ( self : str ) ->Optional[Any]: lowerCamelCase__ : Optional[int] = self.tokenizer.model_input_names lowerCamelCase__ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
142
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger() @dataclass class a : _lowercase = 42 _lowercase = field(default_factory=UpperCAmelCase ) _lowercase = field(default_factory=UpperCAmelCase ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def _UpperCAmelCase ( self ): '''simple docstring''' return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a : _lowercase = 42 _lowercase = 42 _lowercase = 0 _lowercase = field(default_factory=UpperCAmelCase ) _lowercase = field(default_factory=UpperCAmelCase ) def __call__( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = Tracker(self.dest )(A_ ).parametrized _UpperCAmelCase : List[Any] = Tracker(self.src )(A_ ).parametrized _UpperCAmelCase : Union[str, Any] = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _UpperCAmelCase : Optional[Any] = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( f'Numbers of operations are different. Source module has {len(A_ )} operations while' f' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: ResNetConfig , lowerCAmelCase: Path , lowerCAmelCase: bool = True ) -> int: print(F'Converting {name}...' ) with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = timm.create_model(lowerCAmelCase , pretrained=lowerCAmelCase ).eval() _UpperCAmelCase : Optional[Any] = ResNetForImageClassification(lowerCAmelCase ).eval() _UpperCAmelCase : Optional[int] = ModuleTransfer(src=lowerCAmelCase , dest=lowerCAmelCase ) _UpperCAmelCase : Tuple = torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase ) assert torch.allclose(from_model(lowerCAmelCase ) , our_model(lowerCAmelCase ).logits ), "The model logits don't match the original one." _UpperCAmelCase : Dict = F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=lowerCAmelCase , ) # we can use the convnext one _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=lowerCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Path , lowerCAmelCase: str = None , lowerCAmelCase: bool = True ) -> Optional[Any]: _UpperCAmelCase : List[Any] = "imagenet-1k-id2label.json" _UpperCAmelCase : Tuple = 1000 _UpperCAmelCase : str = (1, num_labels) _UpperCAmelCase : List[Any] = "huggingface/label-files" _UpperCAmelCase : List[Any] = num_labels _UpperCAmelCase : int = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : Union[str, Any] = {int(lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : int = idalabel _UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : List[str] = partial(lowerCAmelCase , num_labels=lowerCAmelCase , idalabel=lowerCAmelCase , labelaid=lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(lowerCAmelCase , names_to_config[model_name] , lowerCAmelCase , lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
189
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a ( UpperCAmelCase ): _lowercase = ["image_processor", "tokenizer"] _lowercase = "OwlViTImageProcessor" _lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , A_=None , A_=None , **A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A_ , ) _UpperCAmelCase : Union[str, Any] = kwargs.pop("feature_extractor" ) _UpperCAmelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(A_ , A_ ) def __call__( self , A_=None , A_=None , A_=None , A_="max_length" , A_="np" , **A_ ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(A_ , A_ ) or (isinstance(A_ , A_ ) and not isinstance(text[0] , A_ )): _UpperCAmelCase : Optional[int] = [self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ )] elif isinstance(A_ , A_ ) and isinstance(text[0] , A_ ): _UpperCAmelCase : Optional[int] = [] # Maximum number of queries across batch _UpperCAmelCase : Optional[Any] = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: _UpperCAmelCase : Optional[int] = t + [" "] * (max_num_queries - len(A_ )) _UpperCAmelCase : str = self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ ) encodings.append(A_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _UpperCAmelCase : List[str] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCAmelCase : Optional[Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : str = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCAmelCase : str = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _UpperCAmelCase : Dict = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCAmelCase : Union[str, Any] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Optional[int] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _UpperCAmelCase : Optional[int] = BatchEncoding() _UpperCAmelCase : str = input_ids _UpperCAmelCase : Optional[Any] = attention_mask if query_images is not None: _UpperCAmelCase : int = BatchEncoding() _UpperCAmelCase : str = self.image_processor( A_ , return_tensors=A_ , **A_ ).pixel_values _UpperCAmelCase : Optional[Any] = query_pixel_values if images is not None: _UpperCAmelCase : int = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None and images is not None: _UpperCAmelCase : Optional[int] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , A_ , ) return self.image_processor_class @property def _UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , A_ , ) return self.image_processor
189
1
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __a ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase = emb.weight.shape __UpperCAmelCase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = emb.weight.data return lin_layer def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' __UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) __UpperCAmelCase = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] __UpperCAmelCase = mam_aaa['''model'''] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __UpperCAmelCase = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE , max_position_embeddings=1_0_2_4 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) __UpperCAmelCase = state_dict['''decoder.embed_tokens.weight'''] __UpperCAmelCase = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE ) model.model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') A_ : Optional[int] = parser.parse_args() A_ : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
333
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowercase : lowercase__ : Dict = LEDConfig lowercase__ : List[str] = {} lowercase__ : Union[str, Any] = """gelu""" def __init__( self : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Dict=13 , _UpperCamelCase : Optional[int]=7 , _UpperCamelCase : int=True , _UpperCamelCase : List[Any]=False , _UpperCamelCase : Dict=99 , _UpperCamelCase : Optional[Any]=32 , _UpperCamelCase : Any=2 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : Union[str, Any]=37 , _UpperCamelCase : str=0.1 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Union[str, Any]=20 , _UpperCamelCase : str=2 , _UpperCamelCase : Optional[Any]=1 , _UpperCamelCase : Optional[int]=0 , _UpperCamelCase : int=4 , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after SCREAMING_SNAKE_CASE = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests SCREAMING_SNAKE_CASE = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __snake_case( self : int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = tf.concat( [tf.zeros_like(_UpperCamelCase )[:, :-1], tf.ones_like(_UpperCamelCase )[:, -1:]] , axis=-1 , ) SCREAMING_SNAKE_CASE = global_attention_mask return config, inputs_dict def __snake_case( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = TFLEDModel(config=_UpperCamelCase ).get_decoder() SCREAMING_SNAKE_CASE = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE = input_ids[:1, :] SCREAMING_SNAKE_CASE = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE = 1 # first forward pass SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase )[0] SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-3 ) def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Union[str, Any]=None , ): if attention_mask is None: SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowercase ( a , a , unittest.TestCase ): lowercase__ : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowercase__ : List[Any] = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowercase__ : int = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowercase__ : List[Any] = True lowercase__ : List[str] = False lowercase__ : List[str] = False lowercase__ : Union[str, Any] = False def __snake_case( self : Tuple ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = TFLEDModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase ) def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def __snake_case( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCamelCase ) def __snake_case( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = tf.zeros_like(inputs_dict["attention_mask"] ) SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.model_tester.seq_length SCREAMING_SNAKE_CASE = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_UpperCamelCase : Dict ): SCREAMING_SNAKE_CASE = outputs.decoder_attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_UpperCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = [t.numpy() for t in outputs.encoder_attentions] SCREAMING_SNAKE_CASE = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) self.assertEqual(config.output_hidden_states , _UpperCamelCase ) check_encoder_attentions_output(_UpperCamelCase ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCamelCase ) check_decoder_attentions_output(_UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCamelCase ) check_encoder_attentions_output(_UpperCamelCase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCamelCase ) check_encoder_attentions_output(_UpperCamelCase ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __snake_case( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass def __snake_case( self : str ) -> str: '''simple docstring''' pass def __lowerCamelCase (UpperCAmelCase__ : Optional[int] ): return tf.constant(UpperCAmelCase__ , dtype=tf.intaa ) _lowerCamelCase : str = 1e-4 @slow @require_tf class lowercase ( unittest.TestCase ): def __snake_case( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here SCREAMING_SNAKE_CASE = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(model.config , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase )[0] SCREAMING_SNAKE_CASE = (1, 1_024, 768) self.assertEqual(output.shape , _UpperCamelCase ) # change to expected output here SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCamelCase , atol=1e-3 ) def __snake_case( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here SCREAMING_SNAKE_CASE = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(model.config , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase )[0] SCREAMING_SNAKE_CASE = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , _UpperCamelCase ) # change to expected output here SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCamelCase , atol=1e-3 , rtol=1e-3 )
206
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( a ): lowercase__ : Dict = (UniPCMultistepScheduler,) lowercase__ : Optional[int] = (("""num_inference_steps""", 25),) def __snake_case( self : List[str] , **_UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**_UpperCamelCase ) return config def __snake_case( self : List[str] , _UpperCamelCase : Dict=0 , **_UpperCamelCase : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_UpperCamelCase ) new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sample, sample for t in range(_UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : Any , _UpperCamelCase : Union[str, Any]=0 , **_UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : List[str] , _UpperCamelCase : Tuple=None , **_UpperCamelCase : List[Any] ) -> str: '''simple docstring''' if scheduler is None: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample return sample def __snake_case( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(_UpperCamelCase ) elif num_inference_steps is not None and not hasattr(_UpperCamelCase , "set_timesteps" ): SCREAMING_SNAKE_CASE = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.timesteps[5] SCREAMING_SNAKE_CASE = scheduler.timesteps[6] SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case( self : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = UniPCMultistepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __snake_case( self : Optional[int] ) -> List[Any]: '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def __snake_case( self : Tuple ) -> Union[str, Any]: '''simple docstring''' self.check_over_configs(thresholding=_UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_UpperCamelCase , prediction_type=_UpperCamelCase , sample_max_value=_UpperCamelCase , solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , ) def __snake_case( self : Tuple ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def __snake_case( self : Dict ) -> int: '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , prediction_type=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = self.full_loop( solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , prediction_type=_UpperCamelCase , ) assert not torch.isnan(_UpperCamelCase ).any(), "Samples have nan numbers" def __snake_case( self : List[str] ) -> Tuple: '''simple docstring''' self.check_over_configs(lower_order_final=_UpperCamelCase ) self.check_over_configs(lower_order_final=_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[Any]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=_UpperCamelCase , time_step=0 ) def __snake_case( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop() SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __snake_case( self : List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def __snake_case( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(thresholding=_UpperCamelCase , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter.half() scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def __snake_case( self : List[str] , **_UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
206
1
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowercase_ ( enum.Enum ): __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @add_end_docstrings(a__ ) class lowercase_ ( a__ ): __UpperCAmelCase = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self , *a , **a ): super().__init__(*a , **a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCamelCase__ = None if self.model.config.prefix is not None: UpperCamelCase__ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCamelCase__ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._sanitize_parameters(prefix=a , **self._forward_params ) UpperCamelCase__ = {**self._preprocess_params, **preprocess_params} UpperCamelCase__ = {**self._forward_params, **forward_params} def __a ( self , a=None , a=None , a=None , a=None , a=None , a=None , a=None , a=None , **a , ): UpperCamelCase__ = {} if prefix is not None: UpperCamelCase__ = prefix if prefix: UpperCamelCase__ = self.tokenizer( a , padding=a , add_special_tokens=a , return_tensors=self.framework ) UpperCamelCase__ = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' " [None, 'hole']" ) UpperCamelCase__ = handle_long_generation preprocess_params.update(a ) UpperCamelCase__ = generate_kwargs UpperCamelCase__ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) UpperCamelCase__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) UpperCamelCase__ = ReturnType.TENSORS if return_type is not None: UpperCamelCase__ = return_type if clean_up_tokenization_spaces is not None: UpperCamelCase__ = clean_up_tokenization_spaces if stop_sequence is not None: UpperCamelCase__ = self.tokenizer.encode(a , add_special_tokens=a ) if len(a ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) UpperCamelCase__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self , *a , **a ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*a , **a ) def __call__( self , a , **a ): return super().__call__(a , **a ) def __a ( self , a , a="" , a=None , **a ): UpperCamelCase__ = self.tokenizer( prefix + prompt_text , padding=a , add_special_tokens=a , return_tensors=self.framework ) UpperCamelCase__ = prompt_text if handle_long_generation == "hole": UpperCamelCase__ = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCamelCase__ = generate_kwargs["max_new_tokens"] else: UpperCamelCase__ = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCamelCase__ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) UpperCamelCase__ = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: UpperCamelCase__ = inputs["attention_mask"][:, -keep_length:] return inputs def __a ( self , a , **a ): UpperCamelCase__ = model_inputs["input_ids"] UpperCamelCase__ = model_inputs.get("attention_mask" , a ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = 1 else: UpperCamelCase__ = input_ids.shape[0] UpperCamelCase__ = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCamelCase__ = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: UpperCamelCase__ = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: UpperCamelCase__ = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCamelCase__ = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCamelCase__ = self.model.generate(input_ids=a , attention_mask=a , **a ) UpperCamelCase__ = generated_sequence.shape[0] if self.framework == "pt": UpperCamelCase__ = generated_sequence.reshape(a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCamelCase__ = tf.reshape(a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __a ( self , a , a=ReturnType.FULL_TEXT , a=True ): UpperCamelCase__ = model_outputs["generated_sequence"][0] UpperCamelCase__ = model_outputs["input_ids"] UpperCamelCase__ = model_outputs["prompt_text"] UpperCamelCase__ = generated_sequence.numpy().tolist() UpperCamelCase__ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCamelCase__ = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCamelCase__ = self.tokenizer.decode( a , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCamelCase__ = 0 else: UpperCamelCase__ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) ) if return_type == ReturnType.FULL_TEXT: UpperCamelCase__ = prompt_text + text[prompt_length:] else: UpperCamelCase__ = text[prompt_length:] UpperCamelCase__ = {"generated_text": all_text} records.append(a ) return records
80
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case = logging.get_logger(__name__) __snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __snake_case = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __snake_case = { '''facebook/blenderbot_small-90M''': 512, } class lowercase ( A__ ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = BlenderbotSmallTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , UpperCamelCase_=True , **UpperCamelCase_ , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=UpperCamelCase_ , merges=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ , ) , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :Union[str, Any] = add_prefix_space def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :Optional[int] = [self.sep_token_id] UpperCamelCase__ :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
97
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = Dict[str, Any] lowercase__ = List[Prediction] @add_end_docstrings(A__ ) class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : Union[str, Any] , *a_ : Any , **a_ : Union[str, Any] ): super().__init__(*a_ , **a_ ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , "vision" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def lowerCamelCase ( self : Union[str, Any] , **a_ : int ): lowerCAmelCase_ : Optional[int] = {} if "threshold" in kwargs: lowerCAmelCase_ : Union[str, Any] = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__( self : Dict , *a_ : List[str] , **a_ : Any ): return super().__call__(*a_ , **a_ ) def lowerCamelCase ( self : Optional[int] , a_ : str ): lowerCAmelCase_ : Tuple = load_image(a_ ) lowerCAmelCase_ : Dict = torch.IntTensor([[image.height, image.width]] ) lowerCAmelCase_ : int = self.image_processor(images=[image] , return_tensors="pt" ) if self.tokenizer is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer(text=inputs["words"] , boxes=inputs["boxes"] , return_tensors="pt" ) lowerCAmelCase_ : str = target_size return inputs def lowerCamelCase ( self : Optional[int] , a_ : Any ): lowerCAmelCase_ : List[str] = model_inputs.pop("target_size" ) lowerCAmelCase_ : Optional[int] = self.model(**a_ ) lowerCAmelCase_ : Dict = outputs.__class__({"target_size": target_size, **outputs} ) if self.tokenizer is not None: lowerCAmelCase_ : Optional[int] = model_inputs["bbox"] return model_outputs def lowerCamelCase ( self : Union[str, Any] , a_ : List[Any] , a_ : List[Any]=0.9 ): lowerCAmelCase_ : Any = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowerCAmelCase_ , lowerCAmelCase_ : str = target_size[0].tolist() def unnormalize(a_ : str ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ] ) ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = model_outputs["logits"].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowerCAmelCase_ : Optional[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowerCAmelCase_ : Any = [unnormalize(a_ ) for bbox in model_outputs["bbox"].squeeze(0 )] lowerCAmelCase_ : Optional[int] = ["score", "label", "box"] lowerCAmelCase_ : Optional[Any] = [dict(zip(a_ , a_ ) ) for vals in zip(scores.tolist() , a_ , a_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowerCAmelCase_ : Dict = self.image_processor.post_process_object_detection(a_ , a_ , a_ ) lowerCAmelCase_ : Any = raw_annotations[0] lowerCAmelCase_ : List[Any] = raw_annotation["scores"] lowerCAmelCase_ : List[Any] = raw_annotation["labels"] lowerCAmelCase_ : Tuple = raw_annotation["boxes"] lowerCAmelCase_ : List[str] = scores.tolist() lowerCAmelCase_ : Any = [self.model.config.idalabel[label.item()] for label in labels] lowerCAmelCase_ : Tuple = [self._get_bounding_box(a_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowerCAmelCase_ : int = ["score", "label", "box"] lowerCAmelCase_ : Dict = [ dict(zip(a_ , a_ ) ) for vals in zip(raw_annotation["scores"] , raw_annotation["labels"] , raw_annotation["boxes"] ) ] return annotation def lowerCamelCase ( self : Optional[Any] , a_ : "torch.Tensor" ): if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch." ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = box.int().tolist() lowerCAmelCase_ : Any = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
161
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Any = """dandelin/vilt-b32-finetuned-vqa""" a_ : List[str] = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) a_ : Dict = """image_qa""" a_ : Tuple = AutoProcessor a_ : Optional[int] = AutoModelForVisualQuestionAnswering a_ : Tuple = ["""image""", """text"""] a_ : Optional[int] = ["""text"""] def __init__( self : Dict , *a_ : List[Any] , **a_ : Tuple ): requires_backends(self , ["vision"] ) super().__init__(*a_ , **a_ ) def lowerCamelCase ( self : int , a_ : "Image" , a_ : str ): return self.pre_processor(a_ , a_ , return_tensors="pt" ) def lowerCamelCase ( self : List[Any] , a_ : Optional[int] ): with torch.no_grad(): return self.model(**a_ ).logits def lowerCamelCase ( self : List[Any] , a_ : Optional[Any] ): lowerCAmelCase_ : List[str] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
161
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : Union[str, Any] = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
125
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") snake_case_ : List[str] = logging.getLogger(__name__) @dataclass class __a : __a : Optional[str] = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __a : Optional[str] = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __a : int = field( default=1_024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __a : bool = field( default=lowerCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __a : bool = field( default=lowerCamelCase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __a : Optional[int] = field( default=lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __a : Optional[int] = field( default=lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __a : Optional[int] = field( default=lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "A csv or a json file containing the training data."} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "A csv or a json file containing the validation data."} ) __a : Optional[str] = field(default=lowerCamelCase , metadata={"help": "A csv or a json file containing the test data."} ) def UpperCAmelCase__ ( self : Dict ) -> Any: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: UpperCAmelCase_ : Dict = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." UpperCAmelCase_ : Union[str, Any] = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __a : __a : str = field( default=lowerCamelCase , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __a : bool = field( default=lowerCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __a : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __a : bool = field( default=lowerCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCamelCase_ ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) UpperCAmelCase_ : List[str] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase_ : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCAmelCase_ : List[Any] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. UpperCAmelCase_ : Dict = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: UpperCAmelCase_ : Dict = data_args.train_file.split('''.''' )[-1] UpperCAmelCase_ : Union[str, Any] = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." UpperCAmelCase_ : int = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files UpperCAmelCase_ : List[Any] = load_dataset('''csv''', data_files=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files UpperCAmelCase_ : int = load_dataset('''json''', data_files=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels UpperCAmelCase_ : Optional[Any] = raw_datasets['''train'''].features['''label'''].names UpperCAmelCase_ : List[str] = len(SCREAMING_SNAKE_CASE__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # load tapex tokenizer UpperCAmelCase_ : str = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, add_prefix_space=SCREAMING_SNAKE_CASE__, ) UpperCAmelCase_ : Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Padding strategy if data_args.pad_to_max_length: UpperCAmelCase_ : Optional[int] = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch UpperCAmelCase_ : Dict = False # Some models have set the order of the labels to use, so let's make sure we do use it. UpperCAmelCase_ : Tuple = {'''Refused''': 0, '''Entailed''': 1} UpperCAmelCase_ : Tuple = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) UpperCAmelCase_ : int = min(data_args.max_seq_length, tokenizer.model_max_length ) def preprocess_tabfact_function(SCREAMING_SNAKE_CASE__ : Optional[int] ): # Tokenize the texts def _convert_table_text_to_pandas(SCREAMING_SNAKE_CASE__ : Tuple ): UpperCAmelCase_ : List[str] = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] UpperCAmelCase_ : Any = pd.DataFrame.from_records(_table_content[1:], columns=_table_content[0] ) return _table_pd UpperCAmelCase_ : Optional[Any] = examples['''statement'''] UpperCAmelCase_ : Union[str, Any] = list(map(_convert_table_text_to_pandas, examples['''table_text'''] ) ) UpperCAmelCase_ : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, padding=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__, truncation=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): UpperCAmelCase_ : List[str] = raw_datasets.map( SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, load_from_cache_file=not data_args.overwrite_cache, desc='''Running tokenizer on dataset''', ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) UpperCAmelCase_ : Any = raw_datasets['''train'''] if data_args.max_train_samples is not None: UpperCAmelCase_ : Dict = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) UpperCAmelCase_ : str = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: UpperCAmelCase_ : Any = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) UpperCAmelCase_ : Dict = raw_datasets['''test'''] if data_args.max_predict_samples is not None: UpperCAmelCase_ : List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(SCREAMING_SNAKE_CASE__ ) ), 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE__ : EvalPrediction ): UpperCAmelCase_ : Any = p.predictions[0] if isinstance(p.predictions, SCREAMING_SNAKE_CASE__ ) else p.predictions UpperCAmelCase_ : Optional[int] = np.argmax(SCREAMING_SNAKE_CASE__, axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: UpperCAmelCase_ : Optional[Any] = default_data_collator elif training_args.fpaa: UpperCAmelCase_ : str = DataCollatorWithPadding(SCREAMING_SNAKE_CASE__, pad_to_multiple_of=8 ) else: UpperCAmelCase_ : List[Any] = None # Initialize our Trainer UpperCAmelCase_ : int = Trainer( model=SCREAMING_SNAKE_CASE__, args=SCREAMING_SNAKE_CASE__, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=SCREAMING_SNAKE_CASE__, tokenizer=SCREAMING_SNAKE_CASE__, data_collator=SCREAMING_SNAKE_CASE__, ) # Training if training_args.do_train: UpperCAmelCase_ : Dict = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ : Optional[int] = last_checkpoint UpperCAmelCase_ : Dict = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = train_result.metrics UpperCAmelCase_ : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase_ : List[Any] = min(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''', SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('''train''', SCREAMING_SNAKE_CASE__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Union[str, Any] = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Tuple = min(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('''eval''', SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('''eval''', SCREAMING_SNAKE_CASE__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. UpperCAmelCase_ : Optional[int] = predict_dataset.remove_columns('''label''' ) UpperCAmelCase_ : Union[str, Any] = trainer.predict(SCREAMING_SNAKE_CASE__, metric_key_prefix='''predict''' ).predictions UpperCAmelCase_ : Any = np.argmax(SCREAMING_SNAKE_CASE__, axis=1 ) UpperCAmelCase_ : int = os.path.join(training_args.output_dir, '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__, '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Dict = label_list[item] writer.write(F"""{index}\t{item}\n""" ) UpperCAmelCase_ : Optional[int] = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
125
1
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class a_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = VQModel __A = "sample" @property def lowercase__ ( self : Tuple , lowercase : List[Any]=(32, 32) ): """simple docstring""" lowercase_ :List[Any] = 4 lowercase_ :int = 3 lowercase_ :Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase ) return {"sample": image} @property def lowercase__ ( self : Union[str, Any] ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self : str ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Any = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } lowercase_ :Tuple = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : Optional[int] ): """simple docstring""" pass def lowercase__ ( self : List[str] ): """simple docstring""" pass def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ , lowercase_ :int = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=lowercase ) self.assertIsNotNone(lowercase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(lowercase ) lowercase_ :int = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :Optional[Any] = VQModel.from_pretrained("fusing/vqgan-dummy" ) model.to(lowercase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowercase_ :Any = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowercase_ :str = image.to(lowercase ) with torch.no_grad(): lowercase_ :int = model(lowercase ).sample lowercase_ :Optional[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowercase_ :Tuple = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-3 ) )
147
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a_ ( _lowerCAmelCase ): def __init__( self : Any , lowercase : int , lowercase : Union[str, Any]=13 , lowercase : List[str]=7 , lowercase : List[str]=True , lowercase : int=True , lowercase : Tuple=True , lowercase : int=True , lowercase : List[Any]=99 , lowercase : Optional[int]=32 , lowercase : Dict=5 , lowercase : Optional[int]=4 , lowercase : List[str]=37 , lowercase : Tuple="gelu" , lowercase : List[Any]=0.1 , lowercase : Tuple=0.1 , lowercase : List[str]=512 , lowercase : str=16 , lowercase : Tuple=2 , lowercase : List[Any]=0.02 , lowercase : Dict=False , lowercase : Dict=True , lowercase : int="None" , lowercase : Optional[Any]=3 , lowercase : Dict=4 , lowercase : List[Any]=None , ): """simple docstring""" lowercase_ :int = parent lowercase_ :str = batch_size lowercase_ :Tuple = seq_length lowercase_ :Union[str, Any] = is_training lowercase_ :Dict = use_input_mask lowercase_ :Any = use_token_type_ids lowercase_ :Tuple = use_labels lowercase_ :Dict = vocab_size lowercase_ :Tuple = hidden_size lowercase_ :Union[str, Any] = num_hidden_layers lowercase_ :int = num_attention_heads lowercase_ :List[Any] = intermediate_size lowercase_ :Tuple = hidden_act lowercase_ :str = hidden_dropout_prob lowercase_ :Any = attention_probs_dropout_prob lowercase_ :List[Any] = max_position_embeddings lowercase_ :Union[str, Any] = type_vocab_size lowercase_ :Union[str, Any] = type_sequence_label_size lowercase_ :Any = initializer_range lowercase_ :List[Any] = num_labels lowercase_ :str = num_choices lowercase_ :Optional[Any] = relative_attention lowercase_ :Tuple = position_biased_input lowercase_ :Union[str, Any] = pos_att_type lowercase_ :Tuple = scope def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :Union[str, Any] = None if self.use_input_mask: lowercase_ :int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase_ :List[Any] = None if self.use_token_type_ids: lowercase_ :Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ :str = None lowercase_ :Union[str, Any] = None lowercase_ :List[str] = None if self.use_labels: lowercase_ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ :Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ :str = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ :Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Dict = self.get_config() lowercase_ :Optional[Any] = 300 return config def lowercase__ ( self : Optional[Any] , lowercase : Dict ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase__ ( self : Optional[Any] , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str , lowercase : Optional[Any] , lowercase : Optional[int] ): """simple docstring""" lowercase_ :str = DebertaModel(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :Optional[int] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase )[0] lowercase_ :Union[str, Any] = model(lowercase , token_type_ids=lowercase )[0] lowercase_ :Dict = model(lowercase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase__ ( self : Dict , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : Tuple , lowercase : Dict , lowercase : Dict , lowercase : str , lowercase : Tuple ): """simple docstring""" lowercase_ :Dict = DebertaForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :Optional[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] , lowercase : Union[str, Any] , lowercase : Dict , lowercase : List[Any] , lowercase : int , lowercase : Dict ): """simple docstring""" lowercase_ :Dict = self.num_labels lowercase_ :int = DebertaForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowercase_ :Union[str, Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowercase ) def lowercase__ ( self : List[Any] , lowercase : List[str] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : Dict , lowercase : int ): """simple docstring""" lowercase_ :List[str] = self.num_labels lowercase_ :Optional[int] = DebertaForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :Dict = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , lowercase : Tuple , lowercase : Any , lowercase : List[Any] , lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : List[Any] ): """simple docstring""" lowercase_ :Any = DebertaForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :List[Any] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Optional[int] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) :List[str] = config_and_inputs lowercase_ :Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __A = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) __A = True __A = False __A = False __A = False __A = False def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :List[Any] = DebertaModelTester(self ) lowercase_ :str = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase ) def lowercase__ ( self : int ): """simple docstring""" lowercase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase ) def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase ) @slow def lowercase__ ( self : Optional[int] ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :Tuple = DebertaModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def lowercase__ ( self : Dict ): """simple docstring""" pass @slow def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :Optional[Any] = DebertaModel.from_pretrained("microsoft/deberta-base" ) lowercase_ :Dict = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) lowercase_ :Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ :Optional[int] = model(lowercase , attention_mask=lowercase )[0] # compare the actual values for a slice. lowercase_ :List[Any] = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1e-4 ) , F'{output[:, 1:4, 1:4]}' )
147
1
import qiskit def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> qiskit.result.counts.Counts: UpperCamelCase__ : Tuple = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register UpperCamelCase__ : List[Any] = qiskit.QuantumCircuit(__lowerCAmelCase , __lowerCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator UpperCamelCase__ : List[Any] = qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase : Optional[Any] =single_qubit_measure(2, 2) print(F"""Total count for various states are: {counts}""")
189
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __a ( datasets.BeamBasedBuilder ): def __lowercase ( self : List[str] ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=SCREAMING_SNAKE_CASE , ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE ) class __a ( datasets.BeamBasedBuilder ): def __lowercase ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=SCREAMING_SNAKE_CASE , ) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class __a ( A__ ): @require_beam def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : List[Any] = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCamelCase__ : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __lowercase ( self : Any ): '''simple docstring''' import apache_beam as beam UpperCamelCase__ : Any = beam.io.parquetio.WriteToParquet UpperCamelCase__ : Tuple = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : str = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCamelCase__ : Optional[Any] = partial(SCREAMING_SNAKE_CASE , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCamelCase__ : List[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __lowercase ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : int = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : List[Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : Any = NestedBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCamelCase__ : List[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
189
1
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger UpperCamelCase = get_logger(__name__) UpperCamelCase = R'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class __lowerCamelCase : """simple docstring""" @add_start_docstrings(SCREAMING_SNAKE_CASE__ ) def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class __lowerCamelCase : """simple docstring""" @add_start_docstrings(SCREAMING_SNAKE_CASE__ ) def __call__( self : Tuple , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" @add_start_docstrings(SCREAMING_SNAKE_CASE__ ) def __call__( self : str , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> jnp.ndarray: for processor in self: lowerCAmelCase__ = inspect.signature(processor.__call__ ).parameters if len(SCREAMING_SNAKE_CASE__ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys() )} for ' f'{processor.__class__} are passed to the logits processor.' ) lowerCAmelCase__ = processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ = processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return scores class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE__ : float ) -> Any: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' ) lowerCAmelCase__ = temperature def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : int ) -> jnp.ndarray: lowerCAmelCase__ = scores / self.temperature return scores class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float = -float("Inf" ) , SCREAMING_SNAKE_CASE__ : int = 1 ) -> Tuple: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) lowerCAmelCase__ = top_p lowerCAmelCase__ = filter_value lowerCAmelCase__ = min_tokens_to_keep def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : int ) -> jnp.ndarray: lowerCAmelCase__ , lowerCAmelCase__ = lax.top_k(SCREAMING_SNAKE_CASE__ , scores.shape[-1] ) lowerCAmelCase__ = jnp.full_like(SCREAMING_SNAKE_CASE__ , self.filter_value ) lowerCAmelCase__ = jax.nn.softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ).cumsum(axis=-1 ) lowerCAmelCase__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well lowerCAmelCase__ = jnp.roll(SCREAMING_SNAKE_CASE__ , 1 ) score_mask |= score_mask.at[:, 0].set(SCREAMING_SNAKE_CASE__ ) # min tokens to keep lowerCAmelCase__ = score_mask.at[:, : self.min_tokens_to_keep].set(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = jnp.where(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = jax.lax.sort_key_val(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[-1] return next_scores class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float = -float("Inf" ) , SCREAMING_SNAKE_CASE__ : int = 1 ) -> Optional[int]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' ) lowerCAmelCase__ = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = filter_value def __call__( self : Tuple , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : int ) -> jnp.ndarray: lowerCAmelCase__ , lowerCAmelCase__ = scores.shape lowerCAmelCase__ = jnp.full(batch_size * vocab_size , self.filter_value ) lowerCAmelCase__ = min(self.top_k , scores.shape[-1] ) # Safety check lowerCAmelCase__ , lowerCAmelCase__ = lax.top_k(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = jnp.broadcast_to((jnp.arange(SCREAMING_SNAKE_CASE__ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() lowerCAmelCase__ = topk_scores.flatten() lowerCAmelCase__ = topk_indices.flatten() + shift lowerCAmelCase__ = next_scores_flat.at[topk_indices_flat].set(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = next_scores_flat.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return next_scores class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> List[str]: lowerCAmelCase__ = bos_token_id def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : int ) -> jnp.ndarray: lowerCAmelCase__ = jnp.full(scores.shape , -float("inf" ) ) lowerCAmelCase__ = 1 - jnp.bool_(cur_len - 1 ) lowerCAmelCase__ = jnp.where(SCREAMING_SNAKE_CASE__ , new_scores.at[:, self.bos_token_id].set(0 ) , SCREAMING_SNAKE_CASE__ ) return scores class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: lowerCAmelCase__ = max_length lowerCAmelCase__ = eos_token_id def __call__( self : int , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : int ) -> jnp.ndarray: lowerCAmelCase__ = jnp.full(scores.shape , -float("inf" ) ) lowerCAmelCase__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowerCAmelCase__ = jnp.where(SCREAMING_SNAKE_CASE__ , new_scores.at[:, self.eos_token_id].set(0 ) , SCREAMING_SNAKE_CASE__ ) return scores class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) lowerCAmelCase__ = min_length lowerCAmelCase__ = eos_token_id def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : int ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied lowerCAmelCase__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) lowerCAmelCase__ = jnp.where(SCREAMING_SNAKE_CASE__ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , SCREAMING_SNAKE_CASE__ ) return scores class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: lowerCAmelCase__ = list(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = begin_index def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: lowerCAmelCase__ = 1 - jnp.bool_(cur_len - self.begin_index ) lowerCAmelCase__ = jnp.where(SCREAMING_SNAKE_CASE__ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , SCREAMING_SNAKE_CASE__ ) return scores class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : list ) -> int: lowerCAmelCase__ = list(SCREAMING_SNAKE_CASE__ ) def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : int ) -> jnp.ndarray: lowerCAmelCase__ = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]: lowerCAmelCase__ = dict(SCREAMING_SNAKE_CASE__ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowerCAmelCase__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowerCAmelCase__ = force_token_array.at[index].set(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = jnp.intaa(SCREAMING_SNAKE_CASE__ ) def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : int ) -> jnp.ndarray: def _force_token(SCREAMING_SNAKE_CASE__ : Any ): lowerCAmelCase__ = scores.shape[0] lowerCAmelCase__ = self.force_token_array[generation_idx] lowerCAmelCase__ = jnp.ones_like(SCREAMING_SNAKE_CASE__ , dtype=scores.dtype ) * -float("inf" ) lowerCAmelCase__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) lowerCAmelCase__ = lax.dynamic_update_slice(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , (0, current_token) ) return new_scores lowerCAmelCase__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(SCREAMING_SNAKE_CASE__ ) , lambda: scores , ) , ) return scores class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: lowerCAmelCase__ = generate_config.eos_token_id lowerCAmelCase__ = generate_config.no_timestamps_token_id lowerCAmelCase__ = generate_config.no_timestamps_token_id + 1 lowerCAmelCase__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(SCREAMING_SNAKE_CASE__ , "max_initial_timestamp_index" ): lowerCAmelCase__ = generate_config.max_initial_timestamp_index else: lowerCAmelCase__ = model_config.vocab_size if self.max_initial_timestamp_index is None: lowerCAmelCase__ = model_config.vocab_size def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: # suppress <|notimestamps|> which is handled by without_timestamps lowerCAmelCase__ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ): lowerCAmelCase__ = jnp.where((cur_len - self.begin_index) >= 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = jnp.where((cur_len - self.begin_index) < 2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) return jnp.where( SCREAMING_SNAKE_CASE__ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = jax.vmap(SCREAMING_SNAKE_CASE__ )(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = jnp.where(cur_len == self.begin_index , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = self.timestamp_begin + self.max_initial_timestamp_index lowerCAmelCase__ = jnp.where( SCREAMING_SNAKE_CASE__ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , SCREAMING_SNAKE_CASE__ , ) # if sum of probability over timestamps is above any other token, sample timestamp lowerCAmelCase__ = jax.nn.log_softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) def handle_cumulative_probs(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict ): lowerCAmelCase__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) lowerCAmelCase__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = jax.vmap(SCREAMING_SNAKE_CASE__ )(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return scores
363
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = "Speech2TextFeatureExtractor" snake_case__ = "Speech2TextTokenizer" def __init__( self : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.feature_extractor lowerCAmelCase__ = False def __call__( self : str , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCAmelCase__ = kwargs.pop("raw_speech" ) else: lowerCAmelCase__ = kwargs.pop("audio" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = kwargs.pop("sampling_rate" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = kwargs.pop("text" , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: lowerCAmelCase__ = args[0] lowerCAmelCase__ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCAmelCase__ = self.feature_extractor(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is not None: lowerCAmelCase__ = self.tokenizer(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase__ = encodings["input_ids"] return inputs def a ( self : str , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : Dict , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @contextmanager def a ( self : Union[str, Any] ) -> Any: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCAmelCase__ = True lowerCAmelCase__ = self.tokenizer yield lowerCAmelCase__ = self.feature_extractor lowerCAmelCase__ = False
221
0
'''simple docstring''' import string def a ( lowerCamelCase__ ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): A_ : int = """""" for symbol in message: if symbol in string.ascii_uppercase: A_ : Dict = string.ascii_uppercase.find(lowerCamelCase__ ) A_ : Tuple = num - key if num < 0: A_ : Dict = num + len(string.ascii_uppercase ) A_ : Any = translated + string.ascii_uppercase[num] else: A_ : Tuple = translated + symbol print(f'Decryption using Key #{key}: {translated}' ) def a ( ): '''simple docstring''' A_ : Union[str, Any] = input("""Encrypted message: """ ) A_ : str = message.upper() decrypt(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
206
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def a ( lowerCamelCase__=None ): '''simple docstring''' A_ : int = argparse.ArgumentParser(add_help=lowerCamelCase__ , allow_abbrev=lowerCamelCase__ ) # The main config parser A_ : int = config_command_parser(lowerCamelCase__ ) # The subparser to add commands to A_ : int = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(lowerCamelCase__ , parents=[parent_parser] ) update_command_parser(lowerCamelCase__ , parents=[parent_parser] ) return config_parser def a ( ): '''simple docstring''' A_ : Optional[int] = get_config_parser() A_ : List[str] = config_parser.parse_args() if not hasattr(lowerCamelCase__ , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(lowerCamelCase__ ) if __name__ == "__main__": main()
206
1
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : int = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : int = flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Dict = {} __lowerCamelCase : Optional[Any] = { 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __lowerCamelCase : Union[str, Any] = { 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __lowerCamelCase : Any = '.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __lowerCamelCase : Dict = new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __lowerCamelCase : Any = new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __lowerCamelCase : Any = re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Any = new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __lowerCamelCase : Optional[int] = re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[Any] = flax_dict[key] __lowerCamelCase : Optional[Any] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __lowerCamelCase : int = torch.from_numpy(converted_dict[key].T ) else: __lowerCamelCase : Optional[Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False ): __lowerCamelCase : Optional[int] = get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __lowerCamelCase : List[Any] = PixaStructVisionConfig() __lowerCamelCase : List[str] = PixaStructTextConfig() else: __lowerCamelCase : str = PixaStructVisionConfig( hidden_size=1_536 , d_ff=3_968 , num_attention_heads=24 , num_hidden_layers=18 ) __lowerCamelCase : List[str] = PixaStructTextConfig(hidden_size=1_536 , d_ff=3_968 , num_heads=24 , num_layers=18 ) __lowerCamelCase : Dict = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Union[str, Any] = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : List[str] = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __lowerCamelCase : Optional[Any] = PixaStructImageProcessor() __lowerCamelCase : Tuple = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __lowerCamelCase : List[Any] = 4_096 __lowerCamelCase : Tuple = True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') lowercase_ = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
355
import datasets lowercase_ = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' lowercase_ = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' lowercase_ = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def _snake_case ( self: Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def _snake_case ( self: int , a: Optional[Any] , a: Optional[Any] ): return {"accuracy": simple_accuracy(a , a )}
194
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase): UpperCAmelCase__ : str = DiTPipeline UpperCAmelCase__ : str = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS UpperCAmelCase__ : Dict = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } UpperCAmelCase__ : str = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS UpperCAmelCase__ : List[str] = False def lowercase_ ( self :str ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __A = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_A , activation_fn='gelu-approximate' , num_embeds_ada_norm=1_000 , norm_type='ada_norm_zero' , norm_elementwise_affine=_A , ) __A = AutoencoderKL() __A = DDIMScheduler() __A = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowercase_ ( self :List[str] , _A :Any , _A :Union[str, Any]=0 ) -> str: '''simple docstring''' if str(_A ).startswith('mps' ): __A = torch.manual_seed(_A ) else: __A = torch.Generator(device=_A ).manual_seed(_A ) __A = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowercase_ ( self :List[str] ) -> List[Any]: '''simple docstring''' __A = 'cpu' __A = self.get_dummy_components() __A = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __A = self.get_dummy_inputs(_A ) __A = pipe(**_A ).images __A = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __A = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) __A = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1E-3 ) def lowercase_ ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=_A , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase_ ( self :Tuple ) -> Optional[int]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase): def lowercase_ ( self :str ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self :str ) -> Tuple: '''simple docstring''' __A = torch.manual_seed(0 ) __A = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) __A = ['vase', 'umbrella', 'white shark', 'white wolf'] __A = pipe.get_label_ids(_A ) __A = pipe(_A , generator=_A , num_inference_steps=40 , output_type='np' ).images for word, image in zip(_A , _A ): __A = load_numpy( F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowercase_ ( self :int ) -> Union[str, Any]: '''simple docstring''' __A = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) __A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) __A = ['vase', 'umbrella'] __A = pipe.get_label_ids(_A ) __A = torch.manual_seed(0 ) __A = pipe(_A , generator=_A , num_inference_steps=25 , output_type='np' ).images for word, image in zip(_A , _A ): __A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' F'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
161
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase): UpperCAmelCase__ : str = KandinskyImgaImgPipeline UpperCAmelCase__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] UpperCAmelCase__ : Union[str, Any] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] UpperCAmelCase__ : Union[str, Any] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] UpperCAmelCase__ : Any = False @property def lowercase_ ( self :Tuple ) -> Any: '''simple docstring''' return 32 @property def lowercase_ ( self :Optional[int] ) -> str: '''simple docstring''' return 32 @property def lowercase_ ( self :Optional[Any] ) -> str: '''simple docstring''' return self.time_input_dim @property def lowercase_ ( self :Optional[Any] ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return 100 @property def lowercase_ ( self :Tuple ) -> Tuple: '''simple docstring''' __A = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def lowercase_ ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __A = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) __A = MultilingualCLIP(_A ) __A = text_encoder.eval() return text_encoder @property def lowercase_ ( self :Optional[int] ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __A = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __A = UNetaDConditionModel(**_A ) return model @property def lowercase_ ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __A = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self :List[str] ) -> str: '''simple docstring''' __A = self.dummy_text_encoder __A = self.dummy_tokenizer __A = self.dummy_unet __A = self.dummy_movq __A = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __A = DDIMScheduler(**_A ) __A = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase_ ( self :Dict , _A :Union[str, Any] , _A :Optional[int]=0 ) -> str: '''simple docstring''' __A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_A ) ).to(_A ) __A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_A ) # create init_image __A = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) __A = image.cpu().permute(0 , 2 , 3 , 1 )[0] __A = Image.fromarray(np.uinta(_A ) ).convert('RGB' ).resize((256, 256) ) if str(_A ).startswith('mps' ): __A = torch.manual_seed(_A ) else: __A = torch.Generator(device=_A ).manual_seed(_A ) __A = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def lowercase_ ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' __A = 'cpu' __A = self.get_dummy_components() __A = self.pipeline_class(**_A ) __A = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __A = pipe(**self.get_dummy_inputs(_A ) ) __A = output.images __A = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __A = image[0, -3:, -3:, -1] __A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __A = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase): def lowercase_ ( self :Union[str, Any] ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self :Dict ) -> Optional[int]: '''simple docstring''' __A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) __A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __A = 'A red cartoon frog, 4k' __A = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) __A = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) __A = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) __A = torch.Generator(device='cpu' ).manual_seed(0 ) __A , __A = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __A = pipeline( _A , image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) __A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A )
161
1
'''simple docstring''' import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :int = R''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class A_ ( lowerCAmelCase_ ): @add_start_docstrings(snake_case_ ) def __call__( self : List[Any] , snake_case_ : torch.LongTensor , snake_case_ : torch.FloatTensor , **snake_case_ : List[Any] ): raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class A_ ( lowerCAmelCase_ ): def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[int] = None ): _UpperCAmelCase = max_length _UpperCAmelCase = max_position_embeddings @add_start_docstrings(snake_case_ ) def __call__( self : Optional[int] , snake_case_ : torch.LongTensor , snake_case_ : torch.FloatTensor , **snake_case_ : List[Any] ): _UpperCAmelCase = input_ids.shape[-1] _UpperCAmelCase = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " f'maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ' "exceptions, performance degradation, or nothing at all." ) return is_done class A_ ( lowerCAmelCase_ ): def __init__( self : str , snake_case_ : int , snake_case_ : int ): warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " f'Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ' "with `max_length = start_length + max_new_tokens` instead." , snake_case_ , ) _UpperCAmelCase = start_length _UpperCAmelCase = max_new_tokens _UpperCAmelCase = start_length + max_new_tokens @add_start_docstrings(snake_case_ ) def __call__( self : Optional[Any] , snake_case_ : torch.LongTensor , snake_case_ : torch.FloatTensor , **snake_case_ : Optional[Any] ): return input_ids.shape[-1] >= self.max_length class A_ ( lowerCAmelCase_ ): def __init__( self : Dict , snake_case_ : float , snake_case_ : Optional[float] = None ): _UpperCAmelCase = max_time _UpperCAmelCase = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(snake_case_ ) def __call__( self : Any , snake_case_ : torch.LongTensor , snake_case_ : torch.FloatTensor , **snake_case_ : Any ): return time.time() - self.initial_timestamp > self.max_time class A_ ( lowerCAmelCase_ ): @add_start_docstrings(snake_case_ ) def __call__( self : int , snake_case_ : torch.LongTensor , snake_case_ : torch.FloatTensor , **snake_case_ : Union[str, Any] ): return any(criteria(snake_case_ , snake_case_ ) for criteria in self ) @property def lowercase ( self : Tuple ): for stopping_criterium in self: if isinstance(snake_case_ , snake_case_ ): return stopping_criterium.max_length elif isinstance(snake_case_ , snake_case_ ): return stopping_criterium.max_length return None def UpperCAmelCase_ ( __lowercase : StoppingCriteriaList , __lowercase : int ) -> StoppingCriteriaList: '''simple docstring''' _UpperCAmelCase = stopping_criteria.max_length _UpperCAmelCase = deepcopy(__lowercase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , __lowercase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__lowercase ) ) return new_stopping_criteria
156
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase_ ( __lowercase : str , __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Dict=True , __lowercase : Dict="pt" ) -> List[str]: '''simple docstring''' _UpperCAmelCase = {"add_prefix_space": True} if isinstance(__lowercase , __lowercase ) and not line.startswith(" " ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=__lowercase , padding="max_length" if pad_to_max_length else None , truncation=__lowercase , return_tensors=__lowercase , add_special_tokens=__lowercase , **__lowercase , ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Union[str, Any] , __lowercase : Tuple=None , ) -> Dict: '''simple docstring''' _UpperCAmelCase = input_ids.ne(__lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A_ ( lowerCAmelCase_ ): def __init__( self : Union[str, Any] , snake_case_ : int , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : int="train" , snake_case_ : Tuple=None , snake_case_ : str=None , snake_case_ : Optional[Any]=None , snake_case_ : Any="" , ): super().__init__() _UpperCAmelCase = Path(snake_case_ ).joinpath(type_path + ".source" ) _UpperCAmelCase = Path(snake_case_ ).joinpath(type_path + ".target" ) _UpperCAmelCase = self.get_char_lens(self.src_file ) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : List[Any] ): return len(self.src_lens ) def __getitem__( self : Optional[Any] , snake_case_ : List[Any] ): _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , snake_case_ ).rstrip("\n" ) _UpperCAmelCase = linecache.getline(str(self.tgt_file ) , snake_case_ ).rstrip("\n" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer _UpperCAmelCase = encode_line(snake_case_ , snake_case_ , self.max_source_length , "right" ) _UpperCAmelCase = encode_line(snake_case_ , snake_case_ , self.max_target_length , "right" ) _UpperCAmelCase = source_inputs["input_ids"].squeeze() _UpperCAmelCase = target_inputs["input_ids"].squeeze() _UpperCAmelCase = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase ( snake_case_ : Optional[Any] ): return [len(snake_case_ ) for x in Path(snake_case_ ).open().readlines()] def lowercase ( self : List[str] , snake_case_ : Optional[int] ): _UpperCAmelCase = torch.stack([x["input_ids"] for x in batch] ) _UpperCAmelCase = torch.stack([x["attention_mask"] for x in batch] ) _UpperCAmelCase = torch.stack([x["decoder_input_ids"] for x in batch] ) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(snake_case_ , snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = trim_batch(snake_case_ , snake_case_ , attention_mask=snake_case_ ) _UpperCAmelCase = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch __SCREAMING_SNAKE_CASE :Union[str, Any] = getLogger(__name__) def UpperCAmelCase_ ( __lowercase : List[List] ) -> List[Any]: '''simple docstring''' return list(itertools.chain.from_iterable(__lowercase ) ) def UpperCAmelCase_ ( __lowercase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(__lowercase , os.path.join(__lowercase , "git_log.json" ) ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Dict , __lowercase : Union[str, Any]=4 , **__lowercase : Any ) -> int: '''simple docstring''' with open(__lowercase , "w" ) as f: json.dump(__lowercase , __lowercase , indent=__lowercase , **__lowercase ) def UpperCAmelCase_ ( __lowercase : Union[str, Any] ) -> List[str]: '''simple docstring''' with open(__lowercase ) as f: return json.load(__lowercase ) def UpperCAmelCase_ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=__lowercase ) _UpperCAmelCase = { "repo_id": str(__lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase_ ( __lowercase : Callable , __lowercase : Iterable ) -> List: '''simple docstring''' return list(map(__lowercase , __lowercase ) ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : str ) -> List[Any]: '''simple docstring''' with open(__lowercase , "wb" ) as f: return pickle.dump(__lowercase , __lowercase ) def UpperCAmelCase_ ( __lowercase : str ) -> int: '''simple docstring''' def remove_articles(__lowercase : Union[str, Any] ): return re.sub(r"\b(a|an|the)\b" , " " , __lowercase ) def white_space_fix(__lowercase : str ): return " ".join(text.split() ) def remove_punc(__lowercase : Union[str, Any] ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowercase : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowercase ) ) ) ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase = normalize_answer(__lowercase ).split() _UpperCAmelCase = normalize_answer(__lowercase ).split() _UpperCAmelCase = Counter(__lowercase ) & Counter(__lowercase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(__lowercase ) _UpperCAmelCase = 1.0 * num_same / len(__lowercase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Optional[Any] ) -> int: '''simple docstring''' return normalize_answer(__lowercase ) == normalize_answer(__lowercase ) def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : List[str] ) -> Dict: '''simple docstring''' assert len(__lowercase ) == len(__lowercase ) _UpperCAmelCase = 0 for hypo, pred in zip(__lowercase , __lowercase ): em += exact_match_score(__lowercase , __lowercase ) if len(__lowercase ) > 0: em /= len(__lowercase ) return {"em": em} def UpperCAmelCase_ ( __lowercase : Tuple ) -> List[str]: '''simple docstring''' return model_prefix.startswith("rag" ) def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : int , __lowercase : int ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = "dropout_rate" for p in extra_params: if getattr(__lowercase , __lowercase , __lowercase ): if not hasattr(__lowercase , __lowercase ) and not hasattr(__lowercase , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(__lowercase ) ) delattr(__lowercase , __lowercase ) continue _UpperCAmelCase = p if hasattr(__lowercase , __lowercase ) else equivalent_param[p] setattr(__lowercase , __lowercase , getattr(__lowercase , __lowercase ) ) delattr(__lowercase , __lowercase ) return hparams, config
156
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a : List[str] = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys a : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
147
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: int , lowerCAmelCase__: Optional[int] ): """simple docstring""" UpperCAmelCase_: int = hf_hub_url(repo_id=lowerCAmelCase__ , path=lowerCAmelCase__ , revision=lowerCAmelCase__ ) assert url == F'https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(lowerCAmelCase__ )}'
147
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase : '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any]=13 , lowerCAmelCase_ : int=7 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=99 , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : Any=37 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : List[str]=5_12 , lowerCAmelCase_ : Any=16 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : Optional[int]=None , ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =parent A__ : int =batch_size A__ : int =seq_length A__ : Union[str, Any] =is_training A__ : int =use_token_type_ids A__ : str =use_labels A__ : List[Any] =vocab_size A__ : int =hidden_size A__ : List[str] =num_hidden_layers A__ : str =num_attention_heads A__ : Optional[int] =intermediate_size A__ : str =hidden_act A__ : Any =hidden_dropout_prob A__ : List[Any] =attention_probs_dropout_prob A__ : Union[str, Any] =max_position_embeddings A__ : Tuple =type_vocab_size A__ : Union[str, Any] =type_sequence_label_size A__ : Optional[int] =initializer_range A__ : Optional[int] =num_labels A__ : List[Any] =num_choices A__ : Tuple =scope A__ : int =self.vocab_size - 1 def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' A__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Any =None if self.use_token_type_ids: A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Tuple =None A__ : Optional[Any] =None A__ : Optional[int] =None if self.use_labels: A__ : Any =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Dict =ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] =OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) A__ : List[str] =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : List[Any] ) -> int: '''simple docstring''' A__ : Optional[int] =OpenAIGPTModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Union[str, Any] =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) A__ : Any =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) A__ : Tuple =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , *lowerCAmelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =OpenAIGPTLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , *lowerCAmelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' A__ : Any =OpenAIGPTDoubleHeadsModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : str , *lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Any =self.num_labels A__ : str =OpenAIGPTForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Optional[Any] =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' A__ : List[Any] =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : str =config_and_inputs A__ : Optional[int] ={ """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __snake_case = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __snake_case = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any]=False ) -> Union[str, Any]: '''simple docstring''' A__ : Any =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A__ : Tuple =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_ , ) A__ : int =inputs_dict["""labels"""] A__ : List[Any] =inputs_dict["""labels"""] A__ : str =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase_ , ) A__ : Tuple =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =OpenAIGPTModelTester(self ) A__ : Optional[Any] =ConfigTester(self , config_class=lowerCAmelCase_ , n_embd=37 ) def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase_ ) def lowercase__ ( self : int ) -> int: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase_ ) def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' A__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase_ ) @slow def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =OpenAIGPTModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' A__ : Any =OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(lowerCAmelCase_ ) A__ : Optional[Any] =torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president is A__ : List[str] =[ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the A__ : List[Any] =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase_ )
136
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[Any] =ArgumentParser("""Transformers CLI tool""", usage="""transformers-cli <command> [<args>]""" ) A__ : List[Any] =parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(__snake_case ) DownloadCommand.register_subcommand(__snake_case ) EnvironmentCommand.register_subcommand(__snake_case ) RunCommand.register_subcommand(__snake_case ) ServeCommand.register_subcommand(__snake_case ) UserCommands.register_subcommand(__snake_case ) AddNewModelCommand.register_subcommand(__snake_case ) AddNewModelLikeCommand.register_subcommand(__snake_case ) LfsCommands.register_subcommand(__snake_case ) PTtoTFCommand.register_subcommand(__snake_case ) # Let's go A__ : List[str] =parser.parse_args() if not hasattr(__snake_case, """func""" ): parser.print_help() exit(1 ) # Run A__ : Optional[Any] =args.func(__snake_case ) service.run() if __name__ == "__main__": main()
136
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class SCREAMING_SNAKE_CASE_ ( __A ): """simple docstring""" __lowercase : str = 'mra' def __init__( self , lowerCAmelCase__=5_0_2_6_5 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="absolute" , lowerCAmelCase__=4 , lowerCAmelCase__="full" , lowerCAmelCase__=0 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , **lowerCAmelCase__ , ): super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = block_per_row __SCREAMING_SNAKE_CASE = approx_mode __SCREAMING_SNAKE_CASE = initial_prior_first_n_blocks __SCREAMING_SNAKE_CASE = initial_prior_diagonal_n_blocks
100
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = AlbertConfig.from_json_file(UpperCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) A__ = AlbertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
221
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): A : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) A : List[str] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) A : str = tokenizer("""Hello there""", return_tensors="""np""" ).input_ids A : Tuple = tokenizer("""Hi I am""", return_tensors="""np""" ).input_ids A : Union[str, Any] = shift_tokens_right(lowerCamelCase__, model.config.pad_token_id, model.config.decoder_start_token_id ) A : Optional[Any] = model(lowerCamelCase__, decoder_input_ids=lowerCamelCase__ ).logits A : List[Any] = optax.softmax_cross_entropy(lowerCamelCase__, onehot(lowerCamelCase__, logits.shape[-1] ) ).mean() A : Optional[int] = -(labels.shape[-1] * loss.item()) A : Dict = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
115
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_:int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Any = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Any = "roberta" def __init__( self, lowerCamelCase__=5_0265, lowerCamelCase__=768, lowerCamelCase__=12, lowerCamelCase__=12, lowerCamelCase__=3072, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=1e-12, lowerCamelCase__=1, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__="absolute", lowerCamelCase__=True, lowerCamelCase__=None, **lowerCamelCase__, ): super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, **lowerCamelCase__ ) A : List[str] = vocab_size A : List[Any] = hidden_size A : List[Any] = num_hidden_layers A : Optional[Any] = num_attention_heads A : Union[str, Any] = hidden_act A : Union[str, Any] = intermediate_size A : Optional[int] = hidden_dropout_prob A : List[str] = attention_probs_dropout_prob A : int = max_position_embeddings A : List[str] = type_vocab_size A : List[str] = initializer_range A : Dict = layer_norm_eps A : Optional[int] = position_embedding_type A : Any = use_cache A : Optional[int] = classifier_dropout class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): if self.task == "multiple-choice": A : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
115
1
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __magic_name__ ( _UpperCamelCase ): def __init__( self : Optional[int] ,_UpperCAmelCase : Union[str, "sqlalchemy.sql.Selectable"] ,_UpperCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,_UpperCAmelCase : Optional[Features] = None ,_UpperCAmelCase : str = None ,_UpperCAmelCase : bool = False ,**_UpperCAmelCase : Dict ,): super().__init__(features=_UpperCAmelCase ,cache_dir=_UpperCAmelCase ,keep_in_memory=_UpperCAmelCase ,**_UpperCAmelCase ) _a : Tuple = Sql( cache_dir=_UpperCAmelCase ,features=_UpperCAmelCase ,sql=_UpperCAmelCase ,con=_UpperCAmelCase ,**_UpperCAmelCase ,) def __lowercase ( self : Dict ): _a : Optional[Any] = None _a : Dict = None _a : Dict = None _a : Optional[int] = None self.builder.download_and_prepare( download_config=_UpperCAmelCase ,download_mode=_UpperCAmelCase ,verification_mode=_UpperCAmelCase ,base_path=_UpperCAmelCase ,) # Build dataset for splits _a : List[str] = self.builder.as_dataset( split='train' ,verification_mode=_UpperCAmelCase ,in_memory=self.keep_in_memory ) return dataset class __magic_name__ : def __init__( self : Optional[int] ,_UpperCAmelCase : Dataset ,_UpperCAmelCase : str ,_UpperCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,_UpperCAmelCase : Optional[int] = None ,_UpperCAmelCase : Optional[int] = None ,**_UpperCAmelCase : Dict ,): if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) _a : Dict = dataset _a : List[Any] = name _a : Tuple = con _a : Union[str, Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _a : List[Any] = num_proc _a : Tuple = to_sql_kwargs def __lowercase ( self : List[Any] ): _a : Tuple = self.to_sql_kwargs.pop('sql' ,_UpperCAmelCase ) _a : str = self.to_sql_kwargs.pop('con' ,_UpperCAmelCase ) _a : Optional[Any] = self.to_sql_kwargs.pop('index' ,_UpperCAmelCase ) _a : Any = self._write(index=_UpperCAmelCase ,**self.to_sql_kwargs ) return written def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Dict ): _a , _a , _a : Any = args _a : Tuple = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs _a : Dict = query_table( table=self.dataset.data ,key=slice(_UpperCAmelCase ,offset + self.batch_size ) ,indices=self.dataset._indices ,) _a : Tuple = batch.to_pandas() _a : Dict = df.to_sql(self.name ,self.con ,index=_UpperCAmelCase ,**_UpperCAmelCase ) return num_rows or len(_UpperCAmelCase ) def __lowercase ( self : int ,_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : List[Any] ): _a : Union[str, Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 ,len(self.dataset ) ,self.batch_size ) ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating SQL from Arrow format' ,): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _a , _a : List[Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql ,[(offset, index, to_sql_kwargs) for offset in range(0 ,_UpperCAmelCase ,_UpperCAmelCase )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating SQL from Arrow format' ,): written += num_rows return written
89
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=5 ) -> Union[str, Any]: """simple docstring""" assert masked_input.count('''<mask>''' ) == 1 _UpperCamelCase = torch.tensor(tokenizer.encode(__snake_case, add_special_tokens=__snake_case ) ).unsqueeze(0 ) # Batch size 1 _UpperCamelCase = model(__snake_case )[0] # The last hidden-state is the first element of the output tuple _UpperCamelCase = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _UpperCamelCase = logits[0, masked_index, :] _UpperCamelCase = logits.softmax(dim=0 ) _UpperCamelCase , _UpperCamelCase = prob.topk(k=__snake_case, dim=0 ) _UpperCamelCase = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__snake_case ) )] ) _UpperCamelCase = tokenizer.mask_token _UpperCamelCase = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): _UpperCamelCase = predicted_token_bpe.replace('''\u2581''', ''' ''' ) if " {0}".format(__snake_case ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(__snake_case ), __snake_case ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__snake_case, __snake_case ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _a = CamembertTokenizer.from_pretrained("""camembert-base""") _a = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() _a = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
194
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class __A (snake_case__): '''simple docstring''' __lowercase: int = """fnet""" def __init__( self : Dict , UpperCAmelCase_ : List[Any]=32_000 , UpperCAmelCase_ : str=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : str=3_072 , UpperCAmelCase_ : Union[str, Any]="gelu_new" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-12 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[int]=2 , **UpperCAmelCase_ : Any , ) ->Optional[Any]: """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps snake_case_ = use_tpu_fourier_optimizations snake_case_ = tpu_short_seq_length
233
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __SCREAMING_SNAKE_CASE : Tuple = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : bool , UpperCAmelCase_ : str = None , UpperCAmelCase_ : list = None ) ->List[Any]: """simple docstring""" snake_case_ = None snake_case_ = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) snake_case_ = os.path.abspath("""examples""" ) for item in os.listdir(UpperCAmelCase_ ): if item not in EXCLUDE_EXAMPLES: snake_case_ = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) if os.path.isfile(UpperCAmelCase_ ) and ".py" in item_path: with self.subTest( tested_script=UpperCAmelCase_ , feature_script=UpperCAmelCase_ , tested_section="""main()""" if parser_only else """training_function()""" , ): snake_case_ = compare_against_test( os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = """\n""".join(UpperCAmelCase_ ) if special_strings is not None: for string in special_strings: snake_case_ = diff.replace(UpperCAmelCase_ , """""" ) self.assertEqual(UpperCAmelCase_ , """""" ) def lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" self.one_complete_example("""complete_nlp_example.py""" , UpperCAmelCase_ ) self.one_complete_example("""complete_nlp_example.py""" , UpperCAmelCase_ ) def lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" snake_case_ = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) snake_case_ = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.one_complete_example("""complete_cv_example.py""" , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""}) class __A (snake_case__): '''simple docstring''' __lowercase: str = False @classmethod def lowerCAmelCase ( cls : Any ) ->List[str]: """simple docstring""" super().setUpClass() snake_case_ = tempfile.mkdtemp() snake_case_ = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) snake_case_ = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def lowerCAmelCase ( cls : List[str] ) ->int: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" snake_case_ = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" snake_case_ = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() snake_case_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" snake_case_ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} """.split() snake_case_ = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase_ ) self.assertNotIn("""epoch 0:""" , UpperCAmelCase_ ) self.assertIn("""epoch 1:""" , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" snake_case_ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} """.split() snake_case_ = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase_ ) if torch.cuda.is_available(): snake_case_ = torch.cuda.device_count() else: snake_case_ = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , UpperCAmelCase_ ) self.assertIn("""epoch 1:""" , UpperCAmelCase_ ) else: self.assertIn("""epoch 0:""" , UpperCAmelCase_ ) self.assertIn("""epoch 1:""" , UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" snake_case_ = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): snake_case_ = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase_ ) snake_case_ = re.findall("""({.+})""" , UpperCAmelCase_ ) snake_case_ = [r for r in results if """accuracy""" in r][-1] snake_case_ = ast.literal_eval(UpperCAmelCase_ ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" snake_case_ = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: snake_case_ = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase_ , """tracking""" ) ) ) def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" snake_case_ = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" snake_case_ = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
233
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def UpperCAmelCase_ ( ) -> Tuple: __lowercase : str = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=__lowerCAmelCase , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=__lowerCAmelCase , default=5 ) parser.add_argument('''--batch_size''' , type=__lowerCAmelCase , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=__lowerCAmelCase , default=1 ) parser.add_argument('''--freeze''' , type=__lowerCAmelCase , default=__lowerCAmelCase ) parser.add_argument('''--learning_rate''' , type=__lowerCAmelCase , default=5E-4 ) parser.add_argument('''--seed''' , type=__lowerCAmelCase , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=__lowerCAmelCase , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=__lowerCAmelCase , default=10 ) parser.add_argument('''--weight_decay''' , type=__lowerCAmelCase , default=0.01 ) parser.add_argument('''--output_dir''' , type=__lowerCAmelCase , default='''./results''' ) return parser.parse_args() __lowerCAmelCase : Any = load("accuracy") def UpperCAmelCase_ ( __lowerCAmelCase ) -> Dict: __lowercase , __lowercase : Optional[int] = eval_pred __lowercase : Optional[int] = np.argmax(__lowerCAmelCase , axis=1 ) return metric.compute(predictions=__lowerCAmelCase , references=__lowerCAmelCase ) class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[int] , _snake_case : int ): super().__init__() __lowercase : Dict = trainer def snake_case_ ( self : Optional[int] , _snake_case : Any , _snake_case : int , _snake_case : Union[str, Any] , **_snake_case : Union[str, Any] ): if control.should_evaluate: __lowercase : int = deepcopy(_snake_case ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def UpperCAmelCase_ ( ) -> Dict: __lowercase : Tuple = get_args() set_seed(args.seed ) __lowercase : List[Any] = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) __lowercase : List[str] = dataset.train_test_split(test_size=0.2 ) __lowercase : Optional[int] = train_test['''test'''].train_test_split(test_size=0.5 ) __lowercase : List[Any] = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) __lowercase : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt ) __lowercase : Optional[int] = tokenizer.eos_token __lowercase : int = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __lowercase : Tuple = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __lowercase : List[Any] = False __lowercase : Dict = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(__lowerCAmelCase ): __lowercase : Optional[int] = tokenizer(example['''src'''] , truncation=__lowerCAmelCase , max_length=1_024 ) __lowercase : Tuple = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __lowercase : List[Any] = train_test_validation.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=train_test_validation['''train'''].column_names , ) __lowercase : Any = DataCollatorWithPadding(tokenizer=__lowerCAmelCase ) __lowercase : Union[str, Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) __lowercase : str = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , compute_metrics=__lowerCAmelCase , ) print('''Training...''' ) trainer.add_callback(CustomCallback(__lowerCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
156
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> int: if attention_mask is None: __lowercase : int = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __lowerCAmelCase : """simple docstring""" A__ : Union[str, Any] = OPTConfig A__ : Optional[int] = {} A__ : Optional[int] = '''gelu''' def __init__( self : Tuple , _snake_case : Dict , _snake_case : List[str]=13 , _snake_case : Optional[Any]=7 , _snake_case : List[str]=True , _snake_case : Union[str, Any]=False , _snake_case : Union[str, Any]=99 , _snake_case : Dict=16 , _snake_case : Any=2 , _snake_case : Dict=4 , _snake_case : List[Any]=4 , _snake_case : Optional[int]="gelu" , _snake_case : List[str]=0.1 , _snake_case : List[str]=0.1 , _snake_case : List[Any]=20 , _snake_case : Any=2 , _snake_case : List[str]=1 , _snake_case : Tuple=0 , _snake_case : Dict=16 , _snake_case : Tuple=16 , ): __lowercase : Dict = parent __lowercase : str = batch_size __lowercase : List[str] = seq_length __lowercase : Optional[int] = is_training __lowercase : Optional[int] = use_labels __lowercase : Optional[int] = vocab_size __lowercase : Optional[Any] = hidden_size __lowercase : Dict = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Any = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Union[str, Any] = max_position_embeddings __lowercase : Any = eos_token_id __lowercase : List[Any] = pad_token_id __lowercase : Optional[int] = bos_token_id __lowercase : List[str] = embed_dim __lowercase : Any = word_embed_proj_dim __lowercase : Optional[int] = False def snake_case_ ( self : Optional[Any] ): __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase : Any = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_snake_case , **self.config_updates , ) __lowercase : Optional[int] = prepare_opt_inputs_dict(_snake_case , _snake_case ) return config, inputs_dict def snake_case_ ( self : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] ): __lowercase : int = TFOPTModel(config=_snake_case ) __lowercase : Union[str, Any] = inputs_dict['''input_ids'''] __lowercase : Tuple = input_ids[:1, :] __lowercase : Optional[Any] = inputs_dict['''attention_mask'''][:1, :] __lowercase : Dict = 1 # first forward pass __lowercase : Dict = model(_snake_case , attention_mask=_snake_case , use_cache=_snake_case ) __lowercase , __lowercase : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase : List[str] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowercase : str = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowercase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowercase : Any = model(_snake_case , attention_mask=_snake_case )[0] __lowercase : List[Any] = model(_snake_case , attention_mask=_snake_case , past_key_values=_snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowercase : Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowercase : List[str] = output_from_no_past[:, -3:, random_slice_idx] __lowercase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_snake_case , _snake_case , rtol=1E-3 ) @require_tf class __lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : List[Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () A__ : int = (TFOPTForCausalLM,) if is_tf_available() else () A__ : List[str] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) A__ : Union[str, Any] = False A__ : Optional[int] = False A__ : int = False A__ : List[str] = 1_0 def snake_case_ ( self : Any ): __lowercase : Optional[Any] = TFOPTModelTester(self ) __lowercase : List[Any] = ConfigTester(self , config_class=_snake_case ) def snake_case_ ( self : Tuple ): self.config_tester.run_common_tests() def snake_case_ ( self : int ): __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case ) def snake_case_ ( self : List[Any] ): __lowercase , __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_snake_case : Optional[int] , _snake_case : Dict ): if hasattr(_snake_case , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_snake_case , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __lowercase : Union[str, Any] = model_class(config=_snake_case ) __lowercase : int = _get_word_embedding_weight(_snake_case , model.get_input_embeddings() ) __lowercase : str = _get_word_embedding_weight(_snake_case , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_snake_case ) __lowercase : Dict = _get_word_embedding_weight(_snake_case , model.get_input_embeddings() ) __lowercase : Tuple = _get_word_embedding_weight(_snake_case , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowercase : List[str] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _snake_case ) # check that weights remain the same after resizing __lowercase : str = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase : str = False self.assertTrue(_snake_case ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _snake_case ) __lowercase : Optional[Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase : Optional[Any] = False self.assertTrue(_snake_case ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> Dict: return tf.constant(__lowerCAmelCase , dtype=tf.intaa ) @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : Optional[Any] = 9_9 def snake_case_ ( self : List[Any] ): __lowercase : List[Any] = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __lowercase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __lowercase : List[str] = input_ids.shape[0] __lowercase : int = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self : Tuple ): __lowercase : int = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) __lowercase : Optional[int] = _long_tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) __lowercase : int = tf.not_equal(_snake_case , model.config.pad_token_id ) with tf.GradientTape(): __lowercase : Optional[int] = model(input_ids=_snake_case , attention_mask=_snake_case ).last_hidden_state __lowercase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , _snake_case ) __lowercase : Tuple = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _snake_case , atol=4E-3 ) ) __lowercase : Union[str, Any] = tf.function(_snake_case , jit_compile=_snake_case ) __lowercase : Dict = xla_generate(_snake_case , _snake_case )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _snake_case , atol=4E-2 ) ) @require_tf @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Optional[Any] ): super().setUp() __lowercase : Tuple = '''facebook/opt-350m''' def snake_case_ ( self : int ): __lowercase : Any = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowercase : Dict = GPTaTokenizer.from_pretrained(self.path_model ) __lowercase : Union[str, Any] = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowercase : int = tokenizer(_snake_case , return_tensors='''tf''' , padding=_snake_case , add_special_tokens=_snake_case ) __lowercase : str = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __lowercase : str = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-4 ) ) __lowercase : Any = tf.function(_snake_case , jit_compile=_snake_case ) __lowercase : List[str] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-4 ) ) @require_tf @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def snake_case_ ( self : str ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def snake_case_ ( self : List[Any] ): __lowercase : Optional[Any] = '''facebook/opt-125m''' __lowercase : int = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase : Dict = [] __lowercase : Optional[int] = GPTaTokenizer.from_pretrained(_snake_case ) __lowercase : List[str] = TFOPTForCausalLM.from_pretrained(_snake_case ) for prompt in self.prompts: __lowercase : List[Any] = tokenizer(_snake_case , return_tensors='''tf''' ).input_ids __lowercase : int = model.generate(_snake_case , max_length=10 ) __lowercase : Union[str, Any] = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) predicted_outputs += generated_string self.assertListEqual(_snake_case , _snake_case ) def snake_case_ ( self : Union[str, Any] ): __lowercase : List[str] = '''facebook/opt-350m''' __lowercase : List[Any] = GPTaTokenizer.from_pretrained(_snake_case ) __lowercase : Tuple = TFOPTForCausalLM.from_pretrained(_snake_case ) __lowercase : List[str] = '''left''' # use different length sentences to test batching __lowercase : str = [ '''Hello, my dog is a little''', '''Today, I''', ] __lowercase : List[str] = tokenizer(_snake_case , return_tensors='''tf''' , padding=_snake_case ) __lowercase : Optional[Any] = inputs['''input_ids'''] __lowercase : List[str] = model.generate(input_ids=_snake_case , attention_mask=inputs['''attention_mask'''] ) __lowercase : List[str] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __lowercase : int = model.generate(input_ids=_snake_case ) __lowercase : Optional[Any] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) __lowercase : Optional[int] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __lowercase : Optional[Any] = model.generate(input_ids=_snake_case , max_length=model.config.max_length - num_paddings ) __lowercase : str = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __lowercase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_snake_case ) __lowercase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=_snake_case ) __lowercase : List[Any] = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(_snake_case , _snake_case ) self.assertListEqual(_snake_case , [non_padded_sentence, padded_sentence] ) def snake_case_ ( self : Union[str, Any] ): __lowercase : List[Any] = '''facebook/opt-350m''' __lowercase : str = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase : Union[str, Any] = [] __lowercase : List[str] = GPTaTokenizer.from_pretrained(_snake_case ) __lowercase : List[str] = TFOPTForCausalLM.from_pretrained(_snake_case ) for prompt in self.prompts: __lowercase : Union[str, Any] = tokenizer(_snake_case , return_tensors='''tf''' ).input_ids __lowercase : List[str] = model.generate(_snake_case , max_length=10 ) __lowercase : Tuple = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) predicted_outputs += generated_string self.assertListEqual(_snake_case , _snake_case )
156
1
from math import factorial def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : int ): '''simple docstring''' if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(lowerCamelCase__ ) // (factorial(lowerCamelCase__ ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( "If a class of 40 students must be arranged into groups of", f"""4 for group projects, there are {combinations(40, 4)} ways""", "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", f"""are {combinations(10, 3)} ways that first, second and""", "third place can be awarded.", )
353
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : int = {"vocab_file": "spiece.model"} UpperCAmelCase : Optional[int] = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class __lowercase ( a_ ): """simple docstring""" def __init__( self , A , A=False , A=True , A=False , A="<s>" , A="</s>" , A="<unk>" , A="<sep>" , A="<pad>" , A="<cls>" , A="<mask>" , A=["<eop>", "<eod>"] , A = None , **A , ) -> None: '''simple docstring''' lowerCamelCase = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) lowerCamelCase = 3 lowerCamelCase = do_lower_case lowerCamelCase = remove_space lowerCamelCase = keep_accents lowerCamelCase = vocab_file lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) lowerCamelCase = jieba lowerCamelCase = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __A ( self ) -> int: '''simple docstring''' return len(self.sp_model ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' lowerCamelCase = self.__dict__.copy() lowerCamelCase = None return state def __setstate__( self , A ) -> int: '''simple docstring''' lowerCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase = {} lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self , A ) -> Any: '''simple docstring''' if self.remove_space: lowerCamelCase = """ """.join(inputs.strip().split() ) else: lowerCamelCase = inputs lowerCamelCase = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: lowerCamelCase = unicodedata.normalize("""NFKD""" , A ) lowerCamelCase = """""".join([c for c in outputs if not unicodedata.combining(A )] ) if self.do_lower_case: lowerCamelCase = outputs.lower() return outputs def __A ( self , A ) -> List[str]: '''simple docstring''' lowerCamelCase = self.preprocess_text(A ) lowerCamelCase = self.sp_model.encode(A , out_type=A ) lowerCamelCase = [] for piece in pieces: if len(A ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(A , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase = cur_pieces[1:] else: lowerCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(A ) else: new_pieces.append(A ) return new_pieces def __A ( self , A ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.PieceToId(A ) def __A ( self , A ) -> int: '''simple docstring''' return self.sp_model.IdToPiece(A ) def __A ( self , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = """""".join(A ).replace(A , """ """ ).strip() return out_string def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __A ( self , A , A = None , A = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is not None: return ([0] * len(A )) + [1] + ([0] * len(A )) + [1, 1] return ([0] * len(A )) + [1, 1] def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __A ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def __A ( self , *A , **A ) -> int: '''simple docstring''' lowerCamelCase = super()._decode(*A , **A ) lowerCamelCase = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
66
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE__ : def __init__( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Any=2_4 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Union[str, Any]=5 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Any=3_7 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : List[str]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : Tuple=2 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = patch_size lowercase_ = max_length lowercase_ = num_mel_bins lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = frequency_stride lowercase_ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase_ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowercase_ = (self.max_length - self.patch_size) // self.time_stride + 1 lowercase_ = frequency_out_dimension * time_out_dimension lowercase_ = num_patches + 2 def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = self.get_config() return config, input_values, labels def _UpperCAmelCase ( self : List[Any]): """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = ASTModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_values""": input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowercase__ = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]): """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = ASTModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : int): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""") def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" pass def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear)) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) lowercase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""input_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_) @slow def _UpperCAmelCase ( self : int): """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = ASTModel.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) def _SCREAMING_SNAKE_CASE () -> List[Any]: '''simple docstring''' lowercase_ = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) lowercase_ , lowercase_ = torchaudio.load(__lowerCAmelCase ) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self : int): """simple docstring""" return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""") if is_torchaudio_available() else None ) @slow def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = self.default_feature_extractor lowercase_ = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""").to(lowerCAmelCase_) lowercase_ = self.default_feature_extractor lowercase_ , lowercase_ = prepare_audio() lowercase_ = audio.squeeze().numpy() lowercase_ = feature_extractor(lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_) # forward pass with torch.no_grad(): lowercase_ = model(**lowerCAmelCase_) # verify the logits lowercase_ = torch.Size((1, 5_2_7)) self.assertEqual(outputs.logits.shape , lowerCAmelCase_) lowercase_ = torch.tensor([-0.8_760, -7.0_042, -8.6_602]).to(lowerCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4))
136
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1_00_00_00 ) -> int: '''simple docstring''' lowercase_ = 1 lowercase_ = 1 lowercase_ = {1: 1} for inputa in range(2 , __lowerCAmelCase ): lowercase_ = 0 lowercase_ = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowercase_ = (3 * number) + 1 counter += 1 if inputa not in counters: lowercase_ = counter if counter > pre_counter: lowercase_ = inputa lowercase_ = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
136
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : str = logging.get_logger(__name__) lowercase : List[Any] = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : List[Any] = '''realm''' def __init__( self , __UpperCamelCase=3_05_22 , __UpperCamelCase=7_68 , __UpperCamelCase=1_28 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=8 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu_new" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=2_56 , __UpperCamelCase=10 , __UpperCamelCase=1E-3 , __UpperCamelCase=5 , __UpperCamelCase=3_20 , __UpperCamelCase=13_35_37_18 , __UpperCamelCase=50_00 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , **__UpperCamelCase , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) # Common config __UpperCamelCase : List[str] = vocab_size __UpperCamelCase : Optional[int] = max_position_embeddings __UpperCamelCase : Any = hidden_size __UpperCamelCase : Any = retriever_proj_size __UpperCamelCase : Dict = num_hidden_layers __UpperCamelCase : Union[str, Any] = num_attention_heads __UpperCamelCase : int = num_candidates __UpperCamelCase : Dict = intermediate_size __UpperCamelCase : List[Any] = hidden_act __UpperCamelCase : str = hidden_dropout_prob __UpperCamelCase : Optional[int] = attention_probs_dropout_prob __UpperCamelCase : List[str] = initializer_range __UpperCamelCase : Tuple = type_vocab_size __UpperCamelCase : Any = layer_norm_eps # Reader config __UpperCamelCase : str = span_hidden_size __UpperCamelCase : str = max_span_width __UpperCamelCase : str = reader_layer_norm_eps __UpperCamelCase : Optional[int] = reader_beam_size __UpperCamelCase : int = reader_seq_len # Retrieval config __UpperCamelCase : Dict = num_block_records __UpperCamelCase : Any = searcher_beam_size
357
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
171
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = inspect.getfile(accelerate.test_utils ) __UpperCAmelCase : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __UpperCAmelCase : List[str] = test_metrics @require_cpu def lowerCamelCase__ ( self : str ): '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def lowerCamelCase__ ( self : str ): '''simple docstring''' self.test_metrics.main() @require_multi_gpu def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices.''' ) __UpperCAmelCase : Optional[int] = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
115
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase : List[Any] = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class lowerCamelCase__ ( A ): """simple docstring""" __a = """facebook/nllb-200-distilled-600M""" __a = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __a = """translator""" __a = AutoTokenizer __a = AutoModelForSeqaSeqLM __a = LANGUAGE_CODES __a = ["""text""", """text""", """text"""] __a = ["""text"""] def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : List[Any] ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'''{tgt_lang} is not a supported language.''' ) __UpperCAmelCase : Union[str, Any] = self.lang_to_code[src_lang] __UpperCAmelCase : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCamelCase , return_tensors="""pt""" , src_lang=UpperCamelCase , tgt_lang=UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[str] ): '''simple docstring''' return self.model.generate(**UpperCamelCase ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCamelCase )
115
1
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, 'r', encoding='utf-8') as f: _snake_case = json.load(f) @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Dict , UpperCAmelCase__ : Optional[Any] ) -> List[str]: return FSMTTokenizer.from_pretrained(_lowerCamelCase ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[int] ) -> Tuple: _a : Dict = FSMTForConditionalGeneration.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _lowercase ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple ) -> str: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _a : List[str] = f"""facebook/wmt19-{pair}""" _a : Union[str, Any] = self.get_tokenizer(_lowerCamelCase ) _a : List[str] = self.get_model(_lowerCamelCase ) _a : Optional[Any] = bleu_data[pair]['''src'''] _a : Dict = bleu_data[pair]['''tgt'''] _a : Tuple = tokenizer(_lowerCamelCase , return_tensors="""pt""" , truncation=_lowerCamelCase , padding="""longest""" ).to(_lowerCamelCase ) _a : Union[str, Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _a : Tuple = tokenizer.batch_decode( _lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) _a : int = calculate_bleu(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) self.assertGreaterEqual(scores["""bleu"""] , _lowerCamelCase )
369
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
0
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) lowerCamelCase : Dict = logging.getLogger(__name__) lowerCamelCase : List[Any] = {'''facebook/bart-base''': BartForConditionalGeneration} lowerCamelCase : Optional[Any] = {'''facebook/bart-base''': BartTokenizer} def snake_case_ ( ): __lowercase : Dict = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=lowerCAmelCase_ , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=lowerCAmelCase_ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCAmelCase_ , ) parser.add_argument( """--config_name""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=lowerCAmelCase_ , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""Where to store the final ONNX file.""" ) __lowercase : Any = parser.parse_args() return args def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int="cpu" ): __lowercase : Union[str, Any] = model_dict[model_name].from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) __lowercase : Dict = tokenizer_dict[model_name].from_pretrained(lowerCAmelCase_ ) if model_name in ["facebook/bart-base"]: __lowercase : Dict = 0 __lowercase : Optional[Any] = None __lowercase : Union[str, Any] = 0 return huggingface_model, tokenizer def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] ): model.eval() __lowercase : List[str] = None __lowercase : str = torch.jit.script(BARTBeamSearchGenerator(lowerCAmelCase_ ) ) with torch.no_grad(): __lowercase : Dict = """My friends are cool but they eat too many carbs.""" __lowercase : List[str] = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="""pt""" ).to(model.device ) __lowercase : List[str] = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=lowerCAmelCase_ , max_length=lowerCAmelCase_ , early_stopping=lowerCAmelCase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowerCAmelCase_ , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , lowerCAmelCase_ , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=lowerCAmelCase_ , ) logger.info("""Model exported to {}""".format(lowerCAmelCase_ ) ) __lowercase : Optional[Any] = remove_dup_initializers(os.path.abspath(lowerCAmelCase_ ) ) logger.info("""Deduplicated and optimized model written to {}""".format(lowerCAmelCase_ ) ) __lowercase : Tuple = onnxruntime.InferenceSession(lowerCAmelCase_ ) __lowercase : Dict = ort_sess.run( lowerCAmelCase_ , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(lowerCAmelCase_ ), """max_length""": np.array(lowerCAmelCase_ ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def snake_case_ ( ): __lowercase : int = parse_args() __lowercase : List[str] = 5 __lowercase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() __lowercase : List[str] = torch.device(args.device ) __lowercase , __lowercase : Optional[Any] = load_model_tokenizer(args.model_name_or_path , lowerCAmelCase_ ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(lowerCAmelCase_ ) if args.max_length: __lowercase : Any = args.max_length if args.num_beams: __lowercase : List[Any] = args.num_beams if args.output_file_path: __lowercase : str = args.output_file_path else: __lowercase : int = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
233
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowerCAmelCase ( self : int , __a : List[Any]=0 ) -> Optional[int]: """simple docstring""" __lowercase : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(__a ) ) __lowercase : Any = np.random.RandomState(__a ) __lowercase : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Optional[Any] = self.get_dummy_inputs() __lowercase : str = pipe(**__a ).images __lowercase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowercase : List[Any] = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Union[str, Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Dict = self.get_dummy_inputs() __lowercase : Optional[int] = pipe(**__a ).images __lowercase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Any = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Union[str, Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) # warmup pass to apply optimizations __lowercase : Optional[int] = pipe(**self.get_dummy_inputs() ) __lowercase : Dict = self.get_dummy_inputs() __lowercase : str = pipe(**__a ).images __lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Any = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Any = self.get_dummy_inputs() __lowercase : int = pipe(**__a ).images __lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Optional[int] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Dict = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Tuple = self.get_dummy_inputs() __lowercase : Union[str, Any] = pipe(**__a ).images __lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Union[str, Any] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : str = self.get_dummy_inputs() __lowercase : Dict = pipe(**__a ).images __lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Dict = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = ort.SessionOptions() __lowercase : Dict = False return options def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __lowercase : Union[str, Any] = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowercase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __lowercase : int = """A fantasy landscape, trending on artstation""" __lowercase : int = np.random.RandomState(0 ) __lowercase : List[str] = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__a , output_type="""np""" , ) __lowercase : Any = output.images __lowercase : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowercase : Optional[int] = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __lowercase : Any = init_image.resize((768, 512) ) __lowercase : int = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=__a , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Union[str, Any] = """A fantasy landscape, trending on artstation""" __lowercase : Any = np.random.RandomState(0 ) __lowercase : Optional[Any] = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__a , output_type="""np""" , ) __lowercase : str = output.images __lowercase : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowercase : Union[str, Any] = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
233
1
def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" if not isinstance(_UpperCamelCase, _UpperCamelCase ): raise TypeError('''Input value must be an \'int\' type''' ) lowercase : Optional[Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
173
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __SCREAMING_SNAKE_CASE ( A__ ): A : Tuple = 'pegasus' A : int = ['past_key_values'] A : Optional[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE__=50265 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=4096 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=4096 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , **SCREAMING_SNAKE_CASE__ , ): lowercase : List[Any] = vocab_size lowercase : List[Any] = max_position_embeddings lowercase : Dict = d_model lowercase : Optional[Any] = encoder_ffn_dim lowercase : int = encoder_layers lowercase : str = encoder_attention_heads lowercase : Tuple = decoder_ffn_dim lowercase : List[str] = decoder_layers lowercase : List[Any] = decoder_attention_heads lowercase : Tuple = dropout lowercase : int = attention_dropout lowercase : Optional[Any] = activation_dropout lowercase : Dict = activation_function lowercase : Optional[Any] = init_std lowercase : Tuple = encoder_layerdrop lowercase : Optional[int] = decoder_layerdrop lowercase : List[Any] = use_cache lowercase : Any = encoder_layers lowercase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , forced_eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) @property def __lowerCamelCase ( self ): return self.encoder_attention_heads @property def __lowerCamelCase ( self ): return self.d_model
173
1
from scipy.stats import pearsonr import datasets a__ : List[Any] = '''\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n''' a__ : Optional[Any] = '''\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n''' a__ : str = '''\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) ->int: if return_pvalue: SCREAMING_SNAKE_CASE : Union[str, Any] = pearsonr(_lowerCamelCase , _lowerCamelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_lowerCamelCase , _lowerCamelCase )[0] )}
313
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
0
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCAmelCase__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" super().__init__() lowerCAmelCase : Optional[Any] = torchvision.models.resnetaaa(pretrained=snake_case__ ) lowerCAmelCase : int = list(model.children() )[:-2] lowerCAmelCase : int = nn.Sequential(*snake_case__ ) lowerCAmelCase : List[Any] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.pool(self.model(snake_case__ ) ) lowerCAmelCase : str = torch.flatten(snake_case__ , start_dim=2 ) lowerCAmelCase : int = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = [json.loads(snake_case__ ) for l in open(snake_case__ )] lowerCAmelCase : Optional[Any] = os.path.dirname(snake_case__ ) lowerCAmelCase : Tuple = tokenizer lowerCAmelCase : Any = labels lowerCAmelCase : Dict = len(snake_case__ ) lowerCAmelCase : Tuple = max_seq_length lowerCAmelCase : Tuple = transforms def __len__( self ): """simple docstring""" return len(self.data ) def __getitem__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=snake_case__ ) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1] lowerCAmelCase : List[Any] = sentence[: self.max_seq_length] lowerCAmelCase : Tuple = torch.zeros(self.n_classes ) lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) lowerCAmelCase : Union[str, Any] = self.transforms(snake_case__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[int] = [len(row["sentence"] ) for row in batch] lowerCAmelCase , lowerCAmelCase : Tuple = len(SCREAMING_SNAKE_CASE ), max(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = torch.zeros(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=torch.long ) lowerCAmelCase : Any = torch.zeros(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): lowerCAmelCase : int = input_row["sentence"] lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : List[str] = torch.stack([row["image"] for row in batch] ) lowerCAmelCase : Optional[Any] = torch.stack([row["label"] for row in batch] ) lowerCAmelCase : int = torch.stack([row["image_start_token"] for row in batch] ) lowerCAmelCase : Any = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def a__ ( ): '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def a__ ( ): '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
133
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[Any] = tmp_path / "cache" lowerCAmelCase : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : str = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Optional[int] = tmp_path / "cache" lowerCAmelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Tuple = features.copy() if features else default_expected_features lowerCAmelCase : List[str] = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : List[str] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : List[Any] = tmp_path / "cache" lowerCAmelCase : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Tuple = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = parquet_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Dict = [parquet_path] lowerCAmelCase : Optional[Any] = tmp_path / "cache" lowerCAmelCase : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Optional[Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple=("train",) ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: lowerCAmelCase : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Tuple = tmp_path / "cache" lowerCAmelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : Optional[Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Any = tmp_path / "cache" lowerCAmelCase : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : List[Any] = features.copy() if features else default_expected_features lowerCAmelCase : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Optional[int] = ParquetDatasetReader({"train": parquet_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if split: lowerCAmelCase : List[str] = {split: parquet_path} else: lowerCAmelCase : List[str] = "train" lowerCAmelCase : str = {"train": parquet_path, "test": parquet_path} lowerCAmelCase : Optional[int] = tmp_path / "cache" lowerCAmelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : List[str] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Optional[int] = ParquetDatasetWriter(SCREAMING_SNAKE_CASE , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCAmelCase : List[str] = pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCAmelCase : Union[str, Any] = pf.read() assert dataset.data.table == output_table def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : str = str(shared_datadir / "test_image_rgb.jpg" ) lowerCAmelCase : List[str] = {"image": [image_path]} lowerCAmelCase : str = Features({"image": Image()} ) lowerCAmelCase : Optional[Any] = Dataset.from_dict(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = ParquetDatasetWriter(SCREAMING_SNAKE_CASE , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCAmelCase : Any = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCAmelCase : Optional[int] = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=SCREAMING_SNAKE_CASE ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert get_writer_batch_size(SCREAMING_SNAKE_CASE ) == expected
133
1
'''simple docstring''' import os __snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def a_ ( lowerCamelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(lowerCamelCase ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( lowerCamelCase : int ): lowerCAmelCase = '' lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( lowerCamelCase : str = "/p089_roman.txt" ): lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(lowerCamelCase ) lowerCAmelCase = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
4
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ) -> None: if start is None: UpperCAmelCase__ : Dict = 0 if end is None: UpperCAmelCase__ : List[str] = len(lowerCAmelCase ) - 1 if start >= end: return UpperCAmelCase__ : int = (start + end) // 2 slowsort(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) slowsort(lowerCAmelCase , mid + 1 , lowerCAmelCase ) if sequence[end] < sequence[mid]: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = sequence[mid], sequence[end] slowsort(lowerCAmelCase , lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
171
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = [], [] while len(lowercase ) > 1: lowerCamelCase_ , lowerCamelCase_ = min(lowercase ), max(lowercase ) start.append(lowercase ) end.append(lowercase ) collection.remove(lowercase ) collection.remove(lowercase ) end.reverse() return start + collection + end if __name__ == "__main__": lowerCamelCase : List[str] = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase : Dict = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
359
import math def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float ): '''simple docstring''' return math.pow(lowercase , 2 ) - a def _SCREAMING_SNAKE_CASE ( lowercase : float ): '''simple docstring''' return 2 * x def _SCREAMING_SNAKE_CASE ( lowercase : float ): '''simple docstring''' lowerCamelCase_ = 2.0 while start <= a: lowerCamelCase_ = math.pow(lowercase , 2 ) return start def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : int = 99_99 , lowercase : float = 0.00_0000_0000_0001 ): '''simple docstring''' if a < 0: raise ValueError('math domain error' ) lowerCamelCase_ = get_initial_point(lowercase ) for _ in range(lowercase ): lowerCamelCase_ = value lowerCamelCase_ = value - fx(lowercase , lowercase ) / fx_derivative(lowercase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
208
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase)
11
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE lowercase__ : int = 'config.json' lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin' lowercase__ : List[str] = 'diffusion_flax_model.msgpack' lowercase__ : str = 'model.onnx' lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors' lowercase__ : List[str] = 'weights.pb' lowercase__ : str = 'https://huggingface.co' lowercase__ : str = default_cache_path lowercase__ : Optional[int] = 'diffusers_modules' lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) lowercase__ : Tuple = ['fp16', 'non-ema'] lowercase__ : int = '.self_attn'
324
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = KandinskyVaaInpaintPipeline a = ["image_embeds", "negative_image_embeds", "image", "mask_image"] a = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] a = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a = False @property def lowercase_ ( self : Any ) -> List[Any]: return 32 @property def lowercase_ ( self : int ) -> Union[str, Any]: return 32 @property def lowercase_ ( self : Dict ) -> Union[str, Any]: return self.time_input_dim @property def lowercase_ ( self : Optional[Any] ) -> int: return self.time_input_dim * 4 @property def lowercase_ ( self : int ) -> List[Any]: return 100 @property def lowercase_ ( self : int ) -> Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE__ = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowercase_ ( self : Any ) -> Optional[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self : List[str] ) -> int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self : int ) -> Dict: SCREAMING_SNAKE_CASE__ = self.dummy_unet SCREAMING_SNAKE_CASE__ = self.dummy_movq SCREAMING_SNAKE_CASE__ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowercase_ ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple=0 ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create mask SCREAMING_SNAKE_CASE__ = np.ones((64, 64) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = 0 if str(__lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def lowercase_ ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = '''cpu''' SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.50775903, 0.49527195, 0.48824543, 0.50192237, 0.48644906, 0.49373814, 0.4780598, 0.47234827, 0.48327848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def lowercase_ ( self : Tuple ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : int ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) SCREAMING_SNAKE_CASE__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE__ = np.ones((768, 768) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = '''a hat''' SCREAMING_SNAKE_CASE__ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE__ = pipeline( image=__lowerCamelCase , mask_image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
218
from __future__ import annotations def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(_A ) // 2 # choose the middle 3 elements SCREAMING_SNAKE_CASE__ = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
218
1
"""simple docstring""" import numpy class a : def __init__( self : Optional[Any] , lowerCAmelCase : numpy.ndarray , lowerCAmelCase : numpy.ndarray ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. SCREAMING_SNAKE_CASE_: Any =numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. SCREAMING_SNAKE_CASE_: Optional[int] =numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. SCREAMING_SNAKE_CASE_: Tuple =numpy.random.rand(3 , 1 ) # Real output values provided. SCREAMING_SNAKE_CASE_: List[str] =output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. SCREAMING_SNAKE_CASE_: int =numpy.zeros(output_array.shape ) def lowerCamelCase__ ( self : List[Any] ) -> numpy.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. SCREAMING_SNAKE_CASE_: int =sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. SCREAMING_SNAKE_CASE_: int =sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCamelCase__ ( self : Union[str, Any] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) SCREAMING_SNAKE_CASE_: str =numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) SCREAMING_SNAKE_CASE_: int =numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : numpy.ndarray , lowerCAmelCase : int , lowerCAmelCase : bool ) -> None: '''simple docstring''' for iteration in range(1 , iterations + 1 ): SCREAMING_SNAKE_CASE_: int =self.feedforward() self.back_propagation() if give_loss: SCREAMING_SNAKE_CASE_: Any =numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : numpy.ndarray ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =input_arr SCREAMING_SNAKE_CASE_: int =sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) SCREAMING_SNAKE_CASE_: Optional[int] =sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) SCREAMING_SNAKE_CASE_: Any =sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def __magic_name__ ( lowercase ): return 1 / (1 + numpy.exp(-value )) def __magic_name__ ( lowercase ): return (value) * (1 - (value)) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: str =numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. SCREAMING_SNAKE_CASE_: str =numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. SCREAMING_SNAKE_CASE_: Dict =TwoHiddenLayerNeuralNetwork( input_array=lowercase , output_array=lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=lowercase , iterations=10 , give_loss=lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
173
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") _UpperCAmelCase = {"""target_lang""": """fi""", """source_lang""": """en"""} _UpperCAmelCase = """>>zh<<""" _UpperCAmelCase = """Helsinki-NLP/""" if is_torch_available(): _UpperCAmelCase = """pt""" elif is_tf_available(): _UpperCAmelCase = """tf""" else: _UpperCAmelCase = """jax""" @require_sentencepiece class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Any = MarianTokenizer UpperCamelCase : List[Any] = False UpperCamelCase : Optional[Any] = True def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE_: str =["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] SCREAMING_SNAKE_CASE_: List[Any] =dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE_: Optional[int] =Path(self.tmpdirname ) save_json(lowerCAmelCase , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowerCAmelCase , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCAmelCase , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowerCAmelCase , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) SCREAMING_SNAKE_CASE_: str =MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : str , **lowerCAmelCase : Any ) -> MarianTokenizer: '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[str] ) -> int: '''simple docstring''' return ( "This is a test", "This is a test", ) def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] ="""</s>""" SCREAMING_SNAKE_CASE_: List[str] =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowerCAmelCase ) , 9 ) def lowerCamelCase__ ( self : Dict ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =MarianTokenizer.from_pretrained(f'''{ORG_NAME}opus-mt-en-de''' ) SCREAMING_SNAKE_CASE_: List[Any] =en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =[38, 121, 14, 697, 3_8848, 0] self.assertListEqual(lowerCAmelCase , batch.input_ids[0] ) SCREAMING_SNAKE_CASE_: Optional[int] =tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =[x.name for x in Path(lowerCAmelCase ).glob("""*""" )] self.assertIn("""source.spm""" , lowerCAmelCase ) MarianTokenizer.from_pretrained(lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =self.get_tokenizer() SCREAMING_SNAKE_CASE_: str =tok( ["""I am a small frog""" * 1000, """I am a small frog"""] , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def lowerCamelCase__ ( self : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.get_tokenizer() SCREAMING_SNAKE_CASE_: int =tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowerCAmelCase , return_tensors=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple ={"""input_ids""": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowerCamelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) SCREAMING_SNAKE_CASE_: Optional[int] ="""Tämä on testi""" SCREAMING_SNAKE_CASE_: Union[str, Any] ="""This is a test""" SCREAMING_SNAKE_CASE_: List[Any] =[76, 7, 2047, 2] SCREAMING_SNAKE_CASE_: Any =[69, 12, 11, 940, 2] SCREAMING_SNAKE_CASE_: Optional[int] =tokenizer(lowerCAmelCase ).input_ids self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =tokenizer(text_target=lowerCAmelCase ).input_ids self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase )
173
1
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance _a : int= 6_3_7_8_1_3_7.0 _a : Optional[Any]= 6_3_5_6_7_5_2.3_1_4_2_4_5 _a : Union[str, Any]= 6_378_137 def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any ) -> float: '''simple docstring''' __snake_case : Union[str, Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case : str = atan((1 - flattening) * tan(radians(a__ ) ) ) __snake_case : Optional[Any] = atan((1 - flattening) * tan(radians(a__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case : int = haversine_distance(a__ , a__ , a__ , a__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case : Any = (b_lata + b_lata) / 2 __snake_case : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case : List[str] = (sin(a__ ) ** 2) * (cos(a__ ) ** 2) __snake_case : int = cos(sigma / 2 ) ** 2 __snake_case : int = (sigma - sin(a__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case : List[str] = (cos(a__ ) ** 2) * (sin(a__ ) ** 2) __snake_case : Union[str, Any] = sin(sigma / 2 ) ** 2 __snake_case : str = (sigma + sin(a__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _a : Tuple= logging.get_logger(__name__) class UpperCamelCase ( lowercase ): def __init__(self : int , *_A : str , **_A : List[str]) -> None: warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , _A , ) super().__init__(*_A , **_A)
95
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ : str = { 'configuration_mobilenet_v2': [ 'MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileNetV2Config', 'MobileNetV2OnnxConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = ['MobileNetV2FeatureExtractor'] lowercase_ : int = ['MobileNetV2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ 'MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileNetV2ForImageClassification', 'MobileNetV2ForSemanticSegmentation', 'MobileNetV2Model', 'MobileNetV2PreTrainedModel', 'load_tf_weights_in_mobilenet_v2', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys lowercase_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
133
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput lowercase_ : str = 'scheduler_config.json' class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : List[str] = 1 snake_case_ : Tuple = 2 snake_case_ : List[Any] = 3 snake_case_ : Union[str, Any] = 4 snake_case_ : Optional[int] = 5 snake_case_ : str = 6 snake_case_ : Any = 7 snake_case_ : List[str] = 8 snake_case_ : Optional[Any] = 9 snake_case_ : Any = 10 snake_case_ : int = 11 snake_case_ : int = 12 snake_case_ : Union[str, Any] = 13 snake_case_ : int = 14 @dataclass class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : torch.FloatTensor class __lowerCAmelCase : snake_case_ : List[str] = SCHEDULER_CONFIG_NAME snake_case_ : Union[str, Any] = [] snake_case_ : str = True @classmethod def UpperCamelCase ( cls : List[str] , snake_case__ : Dict[str, Any] = None , snake_case__ : Optional[str] = None , snake_case__ : int=False , **snake_case__ : Tuple , ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = cls.load_config( pretrained_model_name_or_path=snake_case__ , subfolder=snake_case__ , return_unused_kwargs=snake_case__ , return_commit_hash=snake_case__ , **snake_case__ , ) return cls.from_config(snake_case__ , return_unused_kwargs=snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : Union[str, os.PathLike] , snake_case__ : bool = False , **snake_case__ : List[Any] ): """simple docstring""" self.save_config(save_directory=snake_case__ , push_to_hub=snake_case__ , **snake_case__ ) @property def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return self._get_compatibles() @classmethod def UpperCamelCase ( cls : str ): """simple docstring""" _UpperCAmelCase = list(set([cls.__name__] + cls._compatibles ) ) _UpperCAmelCase = importlib.import_module(__name__.split("." )[0] ) _UpperCAmelCase = [ getattr(snake_case__ , snake_case__ ) for c in compatible_classes_str if hasattr(snake_case__ , snake_case__ ) ] return compatible_classes
133
1
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''nvidia/segformer-b0-finetuned-ade-512-512''': ( '''https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json''' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = '''segformer''' def __init__( self : int , lowercase_ : Union[str, Any]=3 , lowercase_ : List[Any]=4 , lowercase_ : Any=[2, 2, 2, 2] , lowercase_ : List[Any]=[8, 4, 2, 1] , lowercase_ : List[str]=[32, 64, 160, 256] , lowercase_ : Optional[int]=[7, 3, 3, 3] , lowercase_ : Union[str, Any]=[4, 2, 2, 2] , lowercase_ : int=[1, 2, 5, 8] , lowercase_ : Optional[Any]=[4, 4, 4, 4] , lowercase_ : Optional[Any]="gelu" , lowercase_ : List[str]=0.0 , lowercase_ : str=0.0 , lowercase_ : Optional[int]=0.1 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Any=0.1 , lowercase_ : int=1e-6 , lowercase_ : Dict=256 , lowercase_ : Dict=255 , **lowercase_ : Dict , ) -> Dict: """simple docstring""" super().__init__(**lowercase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , lowercase_ , ) _UpperCamelCase = num_channels _UpperCamelCase = num_encoder_blocks _UpperCamelCase = depths _UpperCamelCase = sr_ratios _UpperCamelCase = hidden_sizes _UpperCamelCase = patch_sizes _UpperCamelCase = strides _UpperCamelCase = mlp_ratios _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = classifier_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = drop_path_rate _UpperCamelCase = layer_norm_eps _UpperCamelCase = decoder_hidden_size _UpperCamelCase = kwargs.get("reshape_last_stage" , lowercase_) _UpperCamelCase = semantic_loss_ignore_index class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = version.parse('''1.11''' ) @property def __UpperCAmelCase ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def __UpperCAmelCase ( self : Optional[Any]) -> float: """simple docstring""" return 1e-4 @property def __UpperCAmelCase ( self : int) -> int: """simple docstring""" return 12
63
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowercase_) _UpperCamelCase = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_) _UpperCamelCase = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: _UpperCamelCase = TextStreamer(lowercase_) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowercase_) _UpperCamelCase = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_) _UpperCamelCase = tokenizer.decode(greedy_ids[0]) _UpperCamelCase = TextIteratorStreamer(lowercase_) _UpperCamelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase = Thread(target=model.generate , kwargs=lowercase_) thread.start() _UpperCamelCase = "" for new_text in streamer: streamer_text += new_text self.assertEqual(lowercase_ , lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowercase_) _UpperCamelCase = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_) _UpperCamelCase = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: _UpperCamelCase = TextStreamer(lowercase_ , skip_prompt=lowercase_) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_) def __UpperCAmelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("distilgpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("distilgpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = torch.ones((1, 5) , device=lowercase_).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase = TextStreamer(lowercase_ , skip_special_tokens=lowercase_) model.generate(lowercase_ , max_new_tokens=1 , do_sample=lowercase_ , streamer=lowercase_) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase = cs.out[:-1] # Remove the final "\n" _UpperCamelCase = tokenizer(lowercase_ , return_tensors="pt") self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def __UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowercase_) _UpperCamelCase = TextIteratorStreamer(lowercase_ , timeout=0.0_01) _UpperCamelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase = Thread(target=model.generate , kwargs=lowercase_) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowercase_): _UpperCamelCase = "" for new_text in streamer: streamer_text += new_text
63
1
'''simple docstring''' import string import numpy def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , _lowerCAmelCase ) class _A : _SCREAMING_SNAKE_CASE : Optional[int] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) _SCREAMING_SNAKE_CASE : int = numpy.vectorize(lambda __SCREAMING_SNAKE_CASE : x % 36 ) _SCREAMING_SNAKE_CASE : Optional[int] = numpy.vectorize(SCREAMING_SNAKE_CASE_ ) def __init__( self , __UpperCAmelCase ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = self.modulus(_a ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __UpperCAmelCase : List[str] = encrypt_key.shape[0] def __A ( self , __UpperCAmelCase ) -> int: '''simple docstring''' return self.key_string.index(_a ) def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' return self.key_string[round(_a )] def __A ( self ) -> None: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __UpperCAmelCase : Tuple = det % len(self.key_string ) __UpperCAmelCase : Tuple = len(self.key_string ) if greatest_common_divisor(_a , len(self.key_string ) ) != 1: __UpperCAmelCase : Union[str, Any] = ( f'determinant modular {req_l} of encryption key({det}) ' f'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(_a ) def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = [char for char in text.upper() if char in self.key_string] __UpperCAmelCase : List[str] = chars[-1] while len(_a ) % self.break_key != 0: chars.append(_a ) return "".join(_a ) def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = self.process_text(text.upper() ) __UpperCAmelCase : Dict = '' for i in range(0 , len(_a ) - self.break_key + 1 , self.break_key ): __UpperCAmelCase : List[Any] = text[i : i + self.break_key] __UpperCAmelCase : Union[str, Any] = [self.replace_letters(_a ) for char in batch] __UpperCAmelCase : Optional[int] = numpy.array([vec] ).T __UpperCAmelCase : Optional[Any] = self.modulus(self.encrypt_key.dot(_a ) ).T.tolist()[ 0 ] __UpperCAmelCase : List[str] = ''.join( self.replace_digits(_a ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __A ( self ) -> numpy.ndarray: '''simple docstring''' __UpperCAmelCase : Dict = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __UpperCAmelCase : int = det % len(self.key_string ) __UpperCAmelCase : List[str] = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __UpperCAmelCase : List[Any] = i break __UpperCAmelCase : Dict = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_a ) ) def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.make_decrypt_key() __UpperCAmelCase : Tuple = self.process_text(text.upper() ) __UpperCAmelCase : Union[str, Any] = '' for i in range(0 , len(_a ) - self.break_key + 1 , self.break_key ): __UpperCAmelCase : List[str] = text[i : i + self.break_key] __UpperCAmelCase : str = [self.replace_letters(_a ) for char in batch] __UpperCAmelCase : List[Any] = numpy.array([vec] ).T __UpperCAmelCase : Any = self.modulus(decrypt_key.dot(_a ) ).T.tolist()[0] __UpperCAmelCase : Tuple = ''.join( self.replace_digits(_a ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : List[Any] = int(input("""Enter the order of the encryption key: """ ) ) __UpperCAmelCase : Tuple = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(_lowerCAmelCase ): __UpperCAmelCase : Union[str, Any] = [int(_lowerCAmelCase ) for x in input().split()] hill_matrix.append(_lowerCAmelCase ) __UpperCAmelCase : List[str] = HillCipher(numpy.array(_lowerCAmelCase ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __UpperCAmelCase : str = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __UpperCAmelCase : Optional[int] = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(_lowerCAmelCase ) ) elif option == "2": __UpperCAmelCase : List[str] = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
254
'''simple docstring''' def a_ ( _lowerCAmelCase ) -> str: if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) __lowerCamelCase : int = '' while len(_lowerCAmelCase ) % 3 != 0: __lowerCamelCase : str = '0' + bin_string __lowerCamelCase : Union[str, Any] = [ bin_string[index : index + 3] for index in range(len(_lowerCAmelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __lowerCamelCase : Tuple = 0 for index, val in enumerate(_lowerCAmelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCAmelCase ) ) oct_string += str(_lowerCAmelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
208
0
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase : List[Any] =numpy.array([0, 0]) __lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase : List[Any] =numpy.array([1, 0]) __lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = initial_vectors for _ in range(lowerCAmelCase__ ): lowercase = iteration_step(lowerCAmelCase__ ) return vectors def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase = vectors[i + 1] new_vectors.append(lowerCAmelCase__ ) lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray: '''simple docstring''' lowercase = numpy.radians(lowerCAmelCase__ ) lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ ) lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None: '''simple docstring''' lowercase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase , lowercase = zip(*lowerCAmelCase__ ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
32
1
import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
218
from manim import * class __magic_name__ ( lowerCAmelCase_ ): def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =Rectangle(height=0.5 , width=0.5 ) __a =Rectangle(height=0.25 , width=0.25 ) __a =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __a =[mem.copy() for i in range(6 )] __a =[mem.copy() for i in range(6 )] __a =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __a =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __a =VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) __a =Text('CPU' , font_size=24 ) __a =Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) __a =[mem.copy() for i in range(4 )] __a =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __a =Text('GPU' , font_size=24 ) __a =Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) __a =[mem.copy() for i in range(6 )] __a =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __a =Text('Model' , font_size=24 ) __a =Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) __a =[] __a =[] __a =[] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) __a =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case , *__snake_case , *__snake_case ) __a =[mem.copy() for i in range(6 )] __a =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __a =Text('Loaded Checkpoint' , font_size=24 ) __a =Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) checkpoint.move_to([3, 0.5, 0] ) self.add(__snake_case ) __a =[] __a =[] for i, rect in enumerate(__snake_case ): __a =fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) ckpt_arr.append(__snake_case ) __a =target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__snake_case ) self.add(*__snake_case , *__snake_case ) __a =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __a =MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) __a =MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__snake_case ) __a =MarkupText( f'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) __a =[meta_mem.copy() for i in range(6 )] __a =[meta_mem.copy() for i in range(6 )] __a =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __a =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __a =VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) __a =Text('Disk' , font_size=24 ) __a =Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__snake_case , run_time=3 ) , Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) __a =[] for i, rect in enumerate(__snake_case ): __a =rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(FadeOut(__snake_case ) ) __a =MarkupText(f'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case , run_time=3 ) ) self.play( FadeOut(__snake_case , __snake_case , *__snake_case , *__snake_case ) , ) self.wait()
218
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
357
"""simple docstring""" import copy import re class UpperCamelCase : SCREAMING_SNAKE_CASE_ = "hp" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = prefix snake_case_ = defaults cls.build_naming_info() @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: if len(lowerCAmelCase__) == 0: return "" snake_case_ = None if any(char.isdigit() for char in word): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number') if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): snake_case_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__): snake_case_ = '' while integer != 0: snake_case_ = chr(ord('A') + integer % 10) + s integer //= 10 return s snake_case_ = 0 while True: snake_case_ = word + '#' + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: snake_case_ = sword break snake_case_ = short_word snake_case_ = word return short_word @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = param_name.split('_') snake_case_ = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case_ = ['', '_'] for separator in separators: snake_case_ = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: snake_case_ = shortname snake_case_ = param_name return shortname return param_name @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = short_name snake_case_ = param_name @classmethod def a_ ( cls) -> List[str]: if cls.NAMING_INFO is not None: return snake_case_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } snake_case_ = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = info @classmethod def a_ ( cls, lowerCAmelCase__) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None snake_case_ = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}') if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case_ = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = 1 if v else 0 snake_case_ = '' if isinstance(lowerCAmelCase__, (int, float)) else '-' snake_case_ = f'{key}{sep}{v}' name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__) -> Optional[Any]: snake_case_ = repr[len(cls.PREFIX) + 1 :] if repr == "": snake_case_ = [] else: snake_case_ = repr.split('_') snake_case_ = {} for value in values: if "-" in value: snake_case_ , snake_case_ = value.split('-') else: snake_case_ = re.sub('[0-9.]', '', lowerCAmelCase__) snake_case_ = float(re.sub('[^0-9.]', '', lowerCAmelCase__)) snake_case_ = cls.NAMING_INFO['reverse_short_param'][p_k] snake_case_ = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case_ = cls.DEFAULTS[k] return parameters
312
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = '▁' _a = {'vocab_file': 'sentencepiece.bpe.model'} _a = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } _a = { 'facebook/mbart-large-en-ro': 1_024, 'facebook/mbart-large-cc25': 1_024, } # fmt: off _a = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE__ : List[int] = [] SCREAMING_SNAKE_CASE__ : List[int] = [] def __init__( self , lowercase_ , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_ = None , lowercase_=None , **lowercase_ , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : List[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token UpperCAmelCase_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , tokenizer_file=lowercase_ , src_lang=lowercase_ , tgt_lang=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) UpperCAmelCase_ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ : List[str] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : Tuple = len(self.sp_model ) UpperCAmelCase_ : Tuple = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase_ ) } UpperCAmelCase_ : int = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase_ : int = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase_ : str = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase_ : str = src_lang if src_lang is not None else "en_XX" UpperCAmelCase_ : Any = self.lang_code_to_id[self._src_lang] UpperCAmelCase_ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.__dict__.copy() UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ : List[str] = {} UpperCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase__ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) UpperCAmelCase_ : Optional[Any] = [1] * len(self.prefix_tokens ) UpperCAmelCase_ : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase_ )) + suffix_ones return prefix_ones + ([0] * len(lowercase_ )) + ([0] * len(lowercase_ )) + suffix_ones def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [self.sep_token_id] UpperCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase_ : List[str] = src_lang UpperCAmelCase_ : Any = self(lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , **lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.convert_tokens_to_ids(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = tgt_lang_id return inputs def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : Tuple = self.sp_model.PieceToId(lowercase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = "".join(lowercase_ ).replace(lowercase_ , " " ).strip() return out_string def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Union[str, Any] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , "wb" ) as fi: UpperCAmelCase_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = "en_XX" , lowercase_ = None , lowercase_ = "ro_RO" , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = src_lang UpperCAmelCase_ : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(lowercase_ , lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase__ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = self.lang_code_to_id[src_lang] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = self.lang_code_to_id[lang] UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
61
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __lowerCAmelCase : def _lowercase ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError() def _lowercase ( self ) -> int: '''simple docstring''' raise NotImplementedError() class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = False , **lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : str =tokenizer a__ : List[str] =skip_prompt a__ : List[Any] =decode_kwargs # variables used in the streaming process a__ : Dict =[] a__ : int =0 a__ : str =True def _lowercase ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: a__ : Any =value[0] if self.skip_prompt and self.next_tokens_are_prompt: a__ : Dict =False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) a__ : Union[str, Any] =self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): a__ : List[Any] =text[self.print_len :] a__ : List[str] =[] a__ : Optional[int] =0 # If the last token is a CJK character, we print the characters. elif len(lowerCAmelCase__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): a__ : List[str] =text[self.print_len :] self.print_len += len(lowerCAmelCase__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: a__ : str =text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(lowerCAmelCase__ ) self.on_finalized_text(lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' if len(self.token_cache ) > 0: a__ : Union[str, Any] =self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) a__ : List[Any] =text[self.print_len :] a__ : List[str] =[] a__ : Optional[int] =0 else: a__ : Union[str, Any] ="" a__ : Any =True self.on_finalized_text(lowerCAmelCase__ , stream_end=lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> Optional[Any]: '''simple docstring''' print(lowerCAmelCase__ , flush=lowerCAmelCase__ , end="" if not stream_end else None ) def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : str =Queue() a__ : Optional[Any] =None a__ : Any =timeout def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> List[str]: '''simple docstring''' self.text_queue.put(lowerCAmelCase__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> Dict: '''simple docstring''' return self def _lowercase ( self ) -> int: '''simple docstring''' a__ : int =self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
95
0
'''simple docstring''' __lowercase : Optional[int] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __lowercase : Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] __lowercase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
294
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
294
1
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCAmelCase_ : List[str] = HfApi() lowerCAmelCase_ : str = {} # fmt: off lowerCAmelCase_ : Any = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) lowerCAmelCase_ : List[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) lowerCAmelCase_ : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) lowerCAmelCase_ : List[Any] = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) lowerCAmelCase_ : Tuple = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) lowerCAmelCase_ : List[str] = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) lowerCAmelCase_ : Optional[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) lowerCAmelCase_ : Optional[Any] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) lowerCAmelCase_ : Optional[int] = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) lowerCAmelCase_ : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) lowerCAmelCase_ : Tuple = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) lowerCAmelCase_ : str = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) lowerCAmelCase_ : int = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) lowerCAmelCase_ : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) lowerCAmelCase_ : List[str] = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on lowerCAmelCase_ : Any = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCAmelCase_ : Union[str, Any] = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('CompVis'): lowerCAmelCase_ : Dict = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: lowerCAmelCase_ : int = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCAmelCase_ : Optional[int] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCAmelCase_ : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
63
'''simple docstring''' import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" @register_to_config def __init__( self : Dict , *, __a : int = 4 , __a : int = 7_68 , __a : int , __a : int , ): super().__init__() _a = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings _a = nn.Linear(__a , __a ) _a = nn.Linear(__a , __a ) # parameters for encoder hidden states _a = clip_extra_context_tokens _a = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) _a = nn.Linear(__a , __a ) _a = nn.LayerNorm(__a ) def UpperCamelCase__ ( self : Optional[Any] , *, __a : Tuple , __a : Union[str, Any] , __a : Any , __a : List[Any] ): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _a = image_embeddings.shape[0] _a = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _a = classifier_free_guidance_embeddings.expand( __a , -1 ) _a = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _a = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _a = self.embedding_proj(__a ) _a = self.clip_image_embeddings_project_to_time_embeddings(__a ) _a = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _a = self.clip_extra_context_tokens_proj(__a ) _a = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) _a = clip_extra_context_tokens.permute(0 , 2 , 1 ) _a = self.encoder_hidden_states_proj(__a ) _a = self.text_encoder_hidden_states_norm(__a ) _a = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
63
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=2 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = 13 _lowerCAmelCase = 7 _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = 99 _lowerCAmelCase = 384 _lowerCAmelCase = 2 _lowerCAmelCase = 4 _lowerCAmelCase = 37 _lowerCAmelCase = """gelu""" _lowerCAmelCase = 0.1 _lowerCAmelCase = 0.1 _lowerCAmelCase = 512 _lowerCAmelCase = 16 _lowerCAmelCase = 2 _lowerCAmelCase = 0.02 _lowerCAmelCase = 3 _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = 2 _lowerCAmelCase = 9 _lowerCAmelCase = 1 _lowerCAmelCase = None def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertModel(config=_lowercase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = [input_ids, input_mask] _lowerCAmelCase = model(_lowercase ) _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertForMaskedLM(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFConvBertForSequenceClassification(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_choices _lowerCAmelCase = TFConvBertForMultipleChoice(config=_lowercase ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFConvBertForTokenClassification(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertForQuestionAnswering(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowercase : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowercase : Optional[Any] = False _lowercase : Dict = False _lowercase : Any = False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = True if hasattr(_lowercase , """use_cache""" ): _lowerCAmelCase = True _lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) for model_class in self.all_model_classes: _lowerCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = len(model(_lowercase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase , saved_model=_lowercase ) _lowerCAmelCase = os.path.join(_lowercase , """saved_model""" , """1""" ) _lowerCAmelCase = tf.keras.models.load_model(_lowercase ) _lowerCAmelCase = model(_lowercase ) if self.is_encoder_decoder: _lowerCAmelCase = outputs["""encoder_hidden_states"""] _lowerCAmelCase = outputs["""encoder_attentions"""] else: _lowerCAmelCase = outputs["""hidden_states"""] _lowerCAmelCase = outputs["""attentions"""] self.assertEqual(len(_lowercase ) , _lowercase ) _lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) def check_decoder_attentions_output(_lowercase ): _lowerCAmelCase = len(_lowercase ) self.assertEqual(out_len % 2 , 0 ) _lowerCAmelCase = outputs.decoder_attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_lowercase ): _lowerCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) _lowerCAmelCase = len(_lowercase ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) if self.is_encoder_decoder: _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_decoder_attentions_output(_lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowercase ) ) self.assertEqual(model.config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) _lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = model(_lowercase )[0] _lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , _lowercase ) _lowerCAmelCase = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1e-4 )
229
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = str(id_ ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = [] _lowerCAmelCase = {} # {vertex:distance} def __lt__( self , _lowercase ): """simple docstring""" return self.key < other.key def __repr__( self ): """simple docstring""" return self.id def _lowercase ( self , _lowercase ): """simple docstring""" self.neighbors.append(_lowercase ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = weight def A (__lowerCamelCase :List[Any] , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :Dict , __lowerCamelCase :Optional[int] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __lowerCamelCase ) graph[b - 1].add_edge(graph[a - 1] , __lowerCamelCase ) def A (__lowerCamelCase :list , __lowerCamelCase :Vertex ): _lowerCAmelCase = [] for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = graph[:] while q: _lowerCAmelCase = min(__lowerCamelCase ) q.remove(__lowerCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] for i in range(1 , len(__lowerCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def A (__lowerCamelCase :list , __lowerCamelCase :Vertex ): for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = list(__lowerCamelCase ) hq.heapify(__lowerCamelCase ) while h: _lowerCAmelCase = hq.heappop(__lowerCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] hq.heapify(__lowerCamelCase ) for i in range(1 , len(__lowerCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def A (): pass if __name__ == "__main__": import doctest doctest.testmod()
229
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : str = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
32
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ : Any = {'UserAgent': UserAgent().random} def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] ) -> dict: """simple docstring""" a_ : Tuple = script.contents[0] a_ : int = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: a_ : Tuple = F"""https://www.instagram.com/{username}/""" a_ : Optional[Any] = self.get_json() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> dict: a_ : Any = requests.get(self.url , headers=SCREAMING_SNAKE_CASE__ ).text a_ : Dict = BeautifulSoup(SCREAMING_SNAKE_CASE__ , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Union[str, Any] ) -> str: return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self : Optional[int] ) -> str: return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: return self.user_data["username"] @property def SCREAMING_SNAKE_CASE ( self : str ) -> str: return self.user_data["full_name"] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.user_data["biography"] @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["business_email"] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.user_data["external_url"] @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.user_data["edge_followed_by"]["count"] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self.user_data["edge_follow"]["count"] @property def SCREAMING_SNAKE_CASE ( self : str ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: return self.user_data["profile_pic_url_hd"] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> bool: return self.user_data["is_verified"] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> bool: return self.user_data["is_private"] def SCREAMING_SNAKE_CASE_ ( __A : str = "github" ) -> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions a_ : int = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Union[str, Any] = InstagramUser('github') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
32
1
'''simple docstring''' def _A ( snake_case ) -> Dict: _lowercase : Union[str, Any] = len(_lowerCamelCase ) for i in range(length - 1 ): _lowercase : Union[str, Any] = i for k in range(i + 1 , _lowerCamelCase ): if collection[k] < collection[least]: _lowercase : int = k if least != i: _lowercase : Optional[int] = (collection[i], collection[least]) return collection if __name__ == "__main__": _snake_case = input('Enter numbers separated by a comma:\n').strip() _snake_case = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
363
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : int = 'Wav2Vec2FeatureExtractor' _SCREAMING_SNAKE_CASE : List[str] = 'AutoTokenizer' def __init__( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" super().__init__(_UpperCamelCase , _UpperCamelCase ) _lowercase : List[Any] = self.feature_extractor _lowercase : Optional[Any] = False @classmethod def _lowerCamelCase ( cls , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" try: return super().from_pretrained(_UpperCamelCase , **_UpperCamelCase ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , _UpperCamelCase , ) _lowercase : Dict = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) _lowercase : str = WavaVecaCTCTokenizer.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) return cls(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase ) def __call__( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_UpperCamelCase , **_UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) _lowercase : int = kwargs.pop("raw_speech" ) else: _lowercase : List[Any] = kwargs.pop("audio" , _UpperCamelCase ) _lowercase : List[Any] = kwargs.pop("sampling_rate" , _UpperCamelCase ) _lowercase : Union[str, Any] = kwargs.pop("text" , _UpperCamelCase ) if len(_UpperCamelCase ) > 0: _lowercase : int = args[0] _lowercase : Any = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _lowercase : Dict = self.feature_extractor(_UpperCamelCase , *_UpperCamelCase , sampling_rate=_UpperCamelCase , **_UpperCamelCase ) if text is not None: _lowercase : Union[str, Any] = self.tokenizer(_UpperCamelCase , **_UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: _lowercase : int = encodings["input_ids"] return inputs def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*_UpperCamelCase , **_UpperCamelCase ) _lowercase : List[Any] = kwargs.pop("input_features" , _UpperCamelCase ) _lowercase : Any = kwargs.pop("labels" , _UpperCamelCase ) if len(_UpperCamelCase ) > 0: _lowercase : Any = args[0] _lowercase : Any = args[1:] if input_features is not None: _lowercase : Any = self.feature_extractor.pad(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) if labels is not None: _lowercase : int = self.tokenizer.pad(_UpperCamelCase , **_UpperCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: _lowercase : Optional[Any] = labels["input_ids"] return input_features def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @contextmanager def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) _lowercase : Optional[Any] = True _lowercase : Dict = self.tokenizer yield _lowercase : List[str] = self.feature_extractor _lowercase : List[str] = False
199
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class A : @property def lowercase_ (self : Tuple ) -> str: """simple docstring""" return self.get_dummy_input() @property def lowercase_ (self : str ) -> Tuple: """simple docstring""" if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(f"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def lowercase_ (self : Dict , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : str=False , __UpperCAmelCase : Optional[Any]=False , ) -> Any: """simple docstring""" UpperCAmelCase__ = 4 UpperCAmelCase__ = 3_2 UpperCAmelCase__ = (3_2, 3_2) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = torch.device(__UpperCAmelCase ) UpperCAmelCase__ = (batch_size, num_channels) + sizes UpperCAmelCase__ = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase ) UpperCAmelCase__ = {"hidden_states": hidden_states} if include_temb: UpperCAmelCase__ = 1_2_8 UpperCAmelCase__ = randn_tensor((batch_size, temb_channels) , generator=__UpperCAmelCase , device=__UpperCAmelCase ) if include_res_hidden_states_tuple: UpperCAmelCase__ = torch.manual_seed(1 ) UpperCAmelCase__ = (randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase ),) if include_encoder_hidden_states: UpperCAmelCase__ = floats_tensor((batch_size, 3_2, 3_2) ).to(__UpperCAmelCase ) if include_skip_sample: UpperCAmelCase__ = randn_tensor(((batch_size, 3) + sizes) , generator=__UpperCAmelCase , device=__UpperCAmelCase ) return dummy_input def lowercase_ (self : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase__ = { "in_channels": 3_2, "out_channels": 3_2, "temb_channels": 1_2_8, } if self.block_type == "up": UpperCAmelCase__ = 3_2 if self.block_type == "mid": init_dict.pop("out_channels" ) UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict def lowercase_ (self : List[str] , __UpperCAmelCase : Any ) -> str: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase__ = self.block_class(**__UpperCAmelCase ) unet_block.to(__UpperCAmelCase ) unet_block.eval() with torch.no_grad(): UpperCAmelCase__ = unet_block(**__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase__ = output[0] self.assertEqual(output.shape , self.output_shape ) UpperCAmelCase__ = output[0, -1, -3:, -3:] UpperCAmelCase__ = torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase ) assert torch_all_close(output_slice.flatten() , __UpperCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def lowercase_ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase__ = self.block_class(**__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() UpperCAmelCase__ = model(**__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase__ = output[0] UpperCAmelCase__ = torch.device(__UpperCAmelCase ) UpperCAmelCase__ = randn_tensor(output.shape , device=__UpperCAmelCase ) UpperCAmelCase__ = torch.nn.functional.mse_loss(__UpperCAmelCase , __UpperCAmelCase ) loss.backward()
65
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _a : """simple docstring""" @property def __A ( self : Union[str, Any] ): return self.get_dummy_input() @property def __A ( self : int ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def __A ( self : Union[str, Any] , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[Any]=False , ): A_ = 4 A_ = 32 A_ = (32, 32) A_ = torch.manual_seed(0 ) A_ = torch.device(UpperCAmelCase ) A_ = (batch_size, num_channels) + sizes A_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ) A_ = {"hidden_states": hidden_states} if include_temb: A_ = 128 A_ = randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase , device=UpperCAmelCase ) if include_res_hidden_states_tuple: A_ = torch.manual_seed(1 ) A_ = (randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ),) if include_encoder_hidden_states: A_ = floats_tensor((batch_size, 32, 32) ).to(UpperCAmelCase ) if include_skip_sample: A_ = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase , device=UpperCAmelCase ) return dummy_input def __A ( self : Optional[int] ): A_ = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": A_ = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) A_ = self.dummy_input return init_dict, inputs_dict def __A ( self : List[str] , UpperCAmelCase : Optional[Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) unet_block.to(UpperCAmelCase ) unet_block.eval() with torch.no_grad(): A_ = unet_block(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] self.assertEqual(output.shape , self.output_shape ) A_ = output[0, -1, -3:, -3:] A_ = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) assert torch_all_close(output_slice.flatten() , UpperCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def __A ( self : Union[str, Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() A_ = model(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] A_ = torch.device(UpperCAmelCase ) A_ = randn_tensor(output.shape , device=UpperCAmelCase ) A_ = torch.nn.functional.mse_loss(UpperCAmelCase , UpperCAmelCase ) loss.backward()
312
0
from decimal import Decimal, getcontext from math import ceil, factorial def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) _UpperCAmelCase : Union[str, Any] = precision _UpperCAmelCase : int = ceil(precision / 14 ) _UpperCAmelCase : Optional[int] = 426_880 * Decimal(10_005 ).sqrt() _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : List[Any] = 13_591_409 _UpperCAmelCase : Any = Decimal(lowerCamelCase_ ) for k in range(1 , lowerCamelCase_ ): _UpperCAmelCase : Dict = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCamelCase_ ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCamelCase__ = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
358
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
0
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return EnvironmentCommand() class UpperCamelCase ( snake_case_ ): @staticmethod def _lowercase ( UpperCAmelCase__ : ArgumentParser ) -> Tuple: _a : List[str] = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCAmelCase__ ) def _lowercase ( self : str ) -> List[str]: _a : int = huggingface_hub.__version__ _a : Any = """not installed""" _a : str = """NA""" if is_torch_available(): import torch _a : List[Any] = torch.__version__ _a : Dict = torch.cuda.is_available() _a : Any = """not installed""" if is_transformers_available(): import transformers _a : List[Any] = transformers.__version__ _a : Union[str, Any] = """not installed""" if is_accelerate_available(): import accelerate _a : Optional[int] = accelerate.__version__ _a : Dict = """not installed""" if is_xformers_available(): import xformers _a : List[Any] = xformers.__version__ _a : Dict = { """`diffusers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """PyTorch version (GPU?)""": f"""{pt_version} ({pt_cuda_available})""", """Huggingface_hub version""": hub_version, """Transformers version""": transformers_version, """Accelerate version""": accelerate_version, """xFormers version""": xformers_version, """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCAmelCase__ ) ) return info @staticmethod def _lowercase ( UpperCAmelCase__ : int ) -> int: return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
294
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['PerceiverFeatureExtractor'] _snake_case = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
294
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCAmelCase__ : Union[str, Any] =logging.getLogger(__name__) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> int: return (preds == labels).mean() @dataclass class __lowercase : __A = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __A = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __A = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __A = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowercase : __A = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __A = field(metadata={"""help""": """Should contain the data files for the task."""} ) __A = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _lowercase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase , lowerCamelCase , lowerCamelCase =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , _UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: lowerCamelCase =processors[data_args.task_name]() lowerCamelCase =processor.get_labels() lowerCamelCase =len(_UpperCAmelCase ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCamelCase =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowerCamelCase =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCamelCase =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_UpperCAmelCase ) -> Dict: lowerCamelCase =np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_UpperCAmelCase , p.label_ids )} # Data collator lowerCamelCase =DataCollatorWithPadding(_UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCamelCase =Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , compute_metrics=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase =trainer.evaluate() lowerCamelCase =os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(_UpperCAmelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , _UpperCAmelCase , _UpperCAmelCase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(_UpperCAmelCase ) return results def _lowercase ( _UpperCAmelCase ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
371
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _lowercase ( _UpperCAmelCase = "isbn/0140328726" ) -> dict: lowerCamelCase =olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: lowerCamelCase =F"""{olid} is not a valid Open Library olid""" raise ValueError(_UpperCAmelCase ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def _lowercase ( _UpperCAmelCase ) -> dict: lowerCamelCase ={ """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } lowerCamelCase ={better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowerCamelCase =[ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] lowerCamelCase =data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase =""", """.join(_UpperCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: UpperCAmelCase__ : List[str] =input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.") continue print(F"\nSearching Open Library for ISBN: {isbn}...\n") try: UpperCAmelCase__ : Dict =summarize_book(get_openlibrary_data(F"isbn/{isbn}")) print('''\n'''.join(F"{key}: {value}" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"Sorry, there are no results for ISBN: {isbn}.")
262
0
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def UpperCamelCase_ ( snake_case_ : Optional[int] , snake_case_ : Optional[Any]=10 ) -> Tuple: '''simple docstring''' __lowerCAmelCase = [] for _ in range(snake_case_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def UpperCamelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : str=10 ) -> Tuple: '''simple docstring''' __lowerCAmelCase = [] for step in range(snake_case_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(snake_case_ , """schedule.bin""" ) torch.save(scheduler.state_dict() , snake_case_ ) __lowerCAmelCase = torch.load(snake_case_ ) scheduler.load_state_dict(snake_case_ ) return lrs @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def a ( self : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delta=SCREAMING_SNAKE_CASE__ ) def a ( self : int ) -> List[Any]: __lowerCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) __lowerCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowerCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(1_00 ): __lowerCAmelCase = criterion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def a ( self : Optional[Any] ) -> int: __lowerCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) __lowerCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowerCAmelCase = Adafactor( params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=SCREAMING_SNAKE_CASE__ , weight_decay=0.0 , relative_step=SCREAMING_SNAKE_CASE__ , scale_parameter=SCREAMING_SNAKE_CASE__ , warmup_init=SCREAMING_SNAKE_CASE__ , ) for _ in range(10_00 ): __lowerCAmelCase = criterion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None _SCREAMING_SNAKE_CASE : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _SCREAMING_SNAKE_CASE : int = 10 def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> List[Any]: self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delta=SCREAMING_SNAKE_CASE__ , msg=SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] ) -> str: __lowerCAmelCase = {"""num_warmup_steps""": 2, """num_training_steps""": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __lowerCAmelCase = { get_constant_schedule: ({}, [1_0.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"""num_warmup_steps""": 4}, [0.0, 2.5, 5.0, 7.5, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 8.7_5, 7.5, 6.2_5, 5.0, 3.7_5, 2.5, 1.2_5], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 9.6_1, 8.5_3, 6.9_1, 5.0, 3.0_8, 1.4_6, 0.3_8], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, """num_cycles""": 2}, [0.0, 5.0, 1_0.0, 8.5_3, 5.0, 1.4_6, 1_0.0, 8.5_3, 5.0, 1.4_6], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, """power""": 2.0, """lr_end""": 1e-7}, [0.0, 5.0, 1_0.0, 7.6_5_6, 5.6_2_5, 3.9_0_6, 2.5, 1.4_0_6, 0.6_2_5, 0.1_5_6], ), get_inverse_sqrt_schedule: ( {"""num_warmup_steps""": 2}, [0.0, 5.0, 1_0.0, 8.1_6_5, 7.0_7_1, 6.3_2_5, 5.7_7_4, 5.3_4_5, 5.0, 4.7_1_4], ), } for scheduler_func, data in scheds.items(): __lowerCAmelCase , __lowerCAmelCase = data __lowerCAmelCase = scheduler_func(self.optimizer , **SCREAMING_SNAKE_CASE__ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __lowerCAmelCase = unwrap_schedule(SCREAMING_SNAKE_CASE__ , self.num_steps ) self.assertListAlmostEqual( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , tol=1e-2 , msg=f"""failed for {scheduler_func} in normal scheduler""" , ) __lowerCAmelCase = scheduler_func(self.optimizer , **SCREAMING_SNAKE_CASE__ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(SCREAMING_SNAKE_CASE__ ) # wrap to test picklability of the schedule __lowerCAmelCase = unwrap_and_save_reload_schedule(SCREAMING_SNAKE_CASE__ , self.num_steps ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , msg=f"""failed for {scheduler_func} in save and reload""" ) class _lowercase : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: __lowerCAmelCase = fn def __call__( self : Any , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: return self.fn(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @classmethod def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: __lowerCAmelCase = list(map(self , scheduler.lr_lambdas ) )
229
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class _lowercase ( nn.Module , UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = 32 _SCREAMING_SNAKE_CASE : int = 4 _SCREAMING_SNAKE_CASE : int = 4 _SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False _SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1280, 1280) _SCREAMING_SNAKE_CASE : int = 2 _SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 _SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None _SCREAMING_SNAKE_CASE : int = 1280 _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : bool = False def a ( self : Dict , SCREAMING_SNAKE_CASE__ : jax.random.KeyArray ) -> FrozenDict: # init input tensors __lowerCAmelCase = (1, self.in_channels, self.sample_size, self.sample_size) __lowerCAmelCase = jnp.zeros(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) __lowerCAmelCase = jnp.ones((1,) , dtype=jnp.intaa ) __lowerCAmelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __lowerCAmelCase , __lowerCAmelCase = jax.random.split(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )["params"] def a ( self : int ) -> List[str]: __lowerCAmelCase = self.block_out_channels __lowerCAmelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowerCAmelCase = self.num_attention_heads or self.attention_head_dim # input __lowerCAmelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __lowerCAmelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __lowerCAmelCase = FlaxTimestepEmbedding(SCREAMING_SNAKE_CASE__ , dtype=self.dtype ) __lowerCAmelCase = self.only_cross_attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = (num_attention_heads,) * len(self.down_block_types ) # down __lowerCAmelCase = [] __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(SCREAMING_SNAKE_CASE__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowerCAmelCase = FlaxCrossAttnDownBlockaD( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __lowerCAmelCase = FlaxDownBlockaD( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = down_blocks # mid __lowerCAmelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __lowerCAmelCase = [] __lowerCAmelCase = list(reversed(SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = list(reversed(SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = list(reversed(SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = reversed_block_out_channels[min(i + 1 , len(SCREAMING_SNAKE_CASE__ ) - 1 )] __lowerCAmelCase = i == len(SCREAMING_SNAKE_CASE__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": __lowerCAmelCase = FlaxCrossAttnUpBlockaD( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , prev_output_channel=SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __lowerCAmelCase = FlaxUpBlockaD( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , prev_output_channel=SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = output_channel __lowerCAmelCase = up_blocks # out __lowerCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __lowerCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(SCREAMING_SNAKE_CASE__ , jnp.ndarray ): __lowerCAmelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(SCREAMING_SNAKE_CASE__ , jnp.ndarray ) and len(timesteps.shape ) == 0: __lowerCAmelCase = timesteps.astype(dtype=jnp.floataa ) __lowerCAmelCase = jnp.expand_dims(SCREAMING_SNAKE_CASE__ , 0 ) __lowerCAmelCase = self.time_proj(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.time_embedding(SCREAMING_SNAKE_CASE__ ) # 2. pre-process __lowerCAmelCase = jnp.transpose(SCREAMING_SNAKE_CASE__ , (0, 2, 3, 1) ) __lowerCAmelCase = self.conv_in(SCREAMING_SNAKE_CASE__ ) # 3. down __lowerCAmelCase = (sample,) for down_block in self.down_blocks: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase , __lowerCAmelCase = down_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train ) else: __lowerCAmelCase , __lowerCAmelCase = down_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __lowerCAmelCase = () for down_block_res_sample, down_block_additional_residual in zip( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __lowerCAmelCase = new_down_block_res_samples # 4. mid __lowerCAmelCase = self.mid_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __lowerCAmelCase = down_block_res_samples[-(self.layers_per_block + 1) :] __lowerCAmelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = up_block( SCREAMING_SNAKE_CASE__ , temb=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ , deterministic=not train , ) else: __lowerCAmelCase = up_block(SCREAMING_SNAKE_CASE__ , temb=SCREAMING_SNAKE_CASE__ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ , deterministic=not train ) # 6. post-process __lowerCAmelCase = self.conv_norm_out(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = nn.silu(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.conv_out(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = jnp.transpose(SCREAMING_SNAKE_CASE__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=SCREAMING_SNAKE_CASE__ )
229
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple: lowercase__ : int = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
302
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
1
def _UpperCamelCase ( lowercase__ = 1000000 ): __SCREAMING_SNAKE_CASE : List[str] = set(range(3 , lowercase__ , 2 ) ) primes.add(2 ) for p in range(3 , lowercase__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowercase__ , lowercase__ ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = [float(lowercase__ ) for n in range(limit + 1 )] for p in primes: for n in range(lowercase__ , limit + 1 , lowercase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
9
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
199
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : Optional[Any] =logging.get_logger(__name__) A_ : Dict ={ """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class __a ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = "convnextv2" def __init__( self , a__=3 , a__=4 , a__=4 , a__=None , a__=None , a__="gelu" , a__=0.02 , a__=1e-12 , a__=0.0 , a__=2_24 , a__=None , a__=None , **a__ , ): super().__init__(**a__ ) _lowerCamelCase = num_channels _lowerCamelCase = patch_size _lowerCamelCase = num_stages _lowerCamelCase = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes _lowerCamelCase = [3, 3, 9, 3] if depths is None else depths _lowerCamelCase = hidden_act _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = drop_path_rate _lowerCamelCase = image_size _lowerCamelCase = ['stem'] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices( out_features=a__ , out_indices=a__ , stage_names=self.stage_names )
80
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def SCREAMING_SNAKE_CASE_ ( )-> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _lowerCamelCase = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: assert _test_patching.open is open _lowerCamelCase = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def SCREAMING_SNAKE_CASE_ ( )-> Tuple: # pandas.read_csv is not present in _test_patching _lowerCamelCase = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , snake_case ): pass def SCREAMING_SNAKE_CASE_ ( )-> Any: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point _lowerCamelCase = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , snake_case ) is None with patch_submodule(_test_patching , 'len' , snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def SCREAMING_SNAKE_CASE_ ( )-> Any: _lowerCamelCase = '__test_patch_submodule_start_and_stop_mock__' _lowerCamelCase = patch_submodule(_test_patching , 'open' , snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def SCREAMING_SNAKE_CASE_ ( )-> Tuple: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _lowerCamelCase = '__test_patch_submodule_successive_join__' _lowerCamelCase = '__test_patch_submodule_successive_dirname__' _lowerCamelCase = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , snake_case ): with patch_submodule(_test_patching , 'os.rename' , snake_case ): with patch_submodule(_test_patching , 'os.path.dirname' , snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , snake_case ): with patch_submodule(_test_patching , 'os.path.join' , snake_case ): with patch_submodule(_test_patching , 'os.path.dirname' , snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: _lowerCamelCase = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , snake_case ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , snake_case ): pass
80
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCAmelCase__ = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def _a ( a :Dict , a :Optional[int] ) -> List[str]: inspect_dataset(a , a ) a = path + '''.py''' assert script_name in os.listdir(a ) assert "__pycache__" not in os.listdir(a ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def _a ( a :Any , a :Optional[Any] ) -> Union[str, Any]: inspect_metric(a , a ) a = path + '''.py''' assert script_name in os.listdir(a ) assert "__pycache__" not in os.listdir(a ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def _a ( a :Union[str, Any] , a :List[Any] , a :Optional[Any] ) -> List[str]: a = get_dataset_config_info(a , config_name=a ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def _a ( a :str , a :Tuple , a :Any ) -> Tuple: with pytest.raises(a ): get_dataset_config_info(a , config_name=a ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def _a ( a :Any , a :Union[str, Any] ) -> Optional[Any]: a = get_dataset_config_names(a ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def _a ( a :Optional[int] , a :Optional[Any] , a :Optional[Any] ) -> List[Any]: a = get_dataset_infos(a ) assert list(infos.keys() ) == expected_configs a = expected_configs[0] assert expected_config in infos a = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def _a ( a :str , a :Union[str, Any] , a :Union[str, Any] ) -> Any: a = get_dataset_infos(a ) assert expected_config in infos a = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def _a ( a :Dict , a :Any , a :Optional[int] ) -> Tuple: with pytest.raises(a ): get_dataset_split_names(a , config_name=a )
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( snake_case__ ): _lowercase : int = (DPMSolverSinglestepScheduler,) _lowercase : Optional[Any] = (('num_inference_steps', 2_5),) def UpperCAmelCase ( self : Dict , **UpperCAmelCase : List[Any] ) -> Optional[Any]: __lowerCAmelCase: Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ) -> Any: __lowerCAmelCase: Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase: int = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: int = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Union[str, Any] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: Dict = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase: Optional[int] = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase: str = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: str = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> str: pass def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Any=0 , **UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: Tuple = dict(self.forward_default_kwargs ) __lowerCAmelCase: Tuple = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: Tuple = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Dict = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: List[str] = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: Dict = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: if scheduler is None: __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.scheduler_classes[0] __lowerCAmelCase: List[str] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = 1_0 __lowerCAmelCase: Dict = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Dict = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Any = 5_0 __lowerCAmelCase: int = self.dummy_model() __lowerCAmelCase: List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase: List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCAmelCase: Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Dict = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __lowerCAmelCase: Tuple = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Union[str, Any] = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) __lowerCAmelCase: Dict = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Optional[Any] ) -> str: self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self : List[Any] ) -> str: self.check_over_configs(variance_type=UpperCAmelCase ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self : Any ) -> int: __lowerCAmelCase: Any = self.full_loop() __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.full_loop(use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: str = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCAmelCase: List[str] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: int = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase: Any = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase: List[str] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Union[str, Any] = self.dummy_model() __lowerCAmelCase: int = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Any = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
322
0
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def a ( __a ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def a ( __a , __a , __a ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = np.nan for i in range(__a ): UpperCamelCase__ :List[str] = features[:, labels == i] UpperCamelCase__ :str = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ :List[str] = data - column_reshape(__a ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__a , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ :List[str] = np.dot(__a , centered_data.T ) return covariance_sum / features.shape[1] def a ( __a , __a , __a ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ :Tuple = features.mean(1 ) UpperCamelCase__ :Optional[Any] = np.nan for i in range(__a ): UpperCamelCase__ :str = features[:, labels == i] UpperCamelCase__ :Dict = data.shape[1] UpperCamelCase__ :Union[str, Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__a ) - column_reshape(__a ) , (column_reshape(__a ) - column_reshape(__a )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ :str = device_data * np.dot( column_reshape(__a ) - column_reshape(__a ) , (column_reshape(__a ) - column_reshape(__a )).T , ) return covariance_sum / features.shape[1] def a ( __a , __a ) -> np.ndarray: '''simple docstring''' if features.any(): UpperCamelCase__ :str = features.mean(1 ) # Center the dataset UpperCamelCase__ :Any = features - np.reshape(__a , (data_mean.size, 1) ) UpperCamelCase__ :Optional[int] = np.dot(__a , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ :Any = np.linalg.eigh(__a ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ :int = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ :List[str] = np.dot(filtered_eigenvectors.T , __a ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__a ) logging.error('''Dataset empty''' ) raise AssertionError def a ( __a , __a , __a , __a ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ :Any = eigh( covariance_between_classes(__a , __a , __a ) , covariance_within_classes(__a , __a , __a ) , ) UpperCamelCase__ :str = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Tuple = np.linalg.svd(__a ) UpperCamelCase__ :List[str] = svd_matrix[:, 0:dimensions] UpperCamelCase__ :List[str] = np.dot(filtered_svd_matrix.T , __a ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=__a ) logging.error('''Dataset empty''' ) raise AssertionError def a ( ) -> None: '''simple docstring''' UpperCamelCase__ :Any = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ :Optional[Any] = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__a ) as error_info: UpperCamelCase__ :Any = linear_discriminant_analysis( __a , __a , __a , __a ) if isinstance(__a , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def a ( ) -> None: '''simple docstring''' UpperCamelCase__ :int = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ :Union[str, Any] = 2 UpperCamelCase__ :List[Any] = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__a ) as error_info: UpperCamelCase__ :Dict = principal_component_analysis(__a , __a ) if not np.allclose(__a , __a ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
219
'''simple docstring''' from __future__ import annotations __snake_case = list[list[int]] # assigning initial values to the grid __snake_case = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __snake_case = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a ( __a , __a , __a , __a ) -> bool: '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a ( __a ) -> tuple[int, int] | None: '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a ( __a ) -> Matrix | None: '''simple docstring''' if location := find_empty_location(__a ): UpperCamelCase__ , UpperCamelCase__ :Optional[int] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__a , __a , __a , __a ): UpperCamelCase__ :Tuple = digit if sudoku(__a ) is not None: return grid UpperCamelCase__ :Union[str, Any] = 0 return None def a ( __a ) -> None: '''simple docstring''' for row in grid: for cell in row: print(__a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __snake_case = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
219
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] ) ->list: '''simple docstring''' if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence a : Tuple = gray_code_sequence_string(lowerCAmelCase_ ) # # convert them to integers for i in range(len(lowerCAmelCase_ ) ): a : Optional[int] = int(sequence[i] , 2 ) return sequence def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Any] ) ->list: '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] a : Any = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits a : List[Any] = gray_code_sequence_string(bit_count - 1 ) a : str = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): a : List[str] = '''0''' + smaller_sequence[i] sequence.append(lowerCAmelCase_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): a : Optional[Any] = '''1''' + smaller_sequence[i] sequence.append(lowerCAmelCase_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
105
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case__: '''simple docstring''' @staticmethod def lowercase_ ( *__lowercase , **__lowercase ) -> Union[str, Any]: pass @is_pipeline_test @require_vision @require_torch class snake_case__( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowercase_ ( self , __lowercase , __lowercase , __lowercase ) -> List[str]: lowerCAmelCase_ : Union[str, Any] = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCAmelCase_ : str = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def lowercase_ ( self , __lowercase , __lowercase ) -> str: lowerCAmelCase_ : Tuple = object_detector(examples[0] , threshold=0.0 ) lowerCAmelCase_ : Dict = len(__lowercase ) self.assertGreater(__lowercase , 0 ) self.assertEqual( __lowercase , [ { '''score''': ANY(__lowercase ), '''label''': ANY(__lowercase ), '''box''': {'''xmin''': ANY(__lowercase ), '''ymin''': ANY(__lowercase ), '''xmax''': ANY(__lowercase ), '''ymax''': ANY(__lowercase )}, } for i in range(__lowercase ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def lowercase_ ( self ) -> List[str]: pass @require_torch def lowercase_ ( self ) -> int: lowerCAmelCase_ : Union[str, Any] = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCAmelCase_ : Union[str, Any] = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 6_7, '''ymin''': 2_7_4, '''xmax''': 9_3, '''ymax''': 2_9_7}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, ] , ) lowerCAmelCase_ : Union[str, Any] = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 6_7, '''ymin''': 2_7_4, '''xmax''': 9_3, '''ymax''': 2_9_7}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, ] ] , ) @require_torch @slow def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : Any = pipeline('''zero-shot-object-detection''' ) lowerCAmelCase_ : Dict = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ] , ) lowerCAmelCase_ : Tuple = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ], [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def lowercase_ ( self ) -> List[str]: pass @require_torch @slow def lowercase_ ( self ) -> Optional[int]: lowerCAmelCase_ : Any = 0.2 lowerCAmelCase_ : List[Any] = pipeline('''zero-shot-object-detection''' ) lowerCAmelCase_ : Optional[Any] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=__lowercase , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, ] , ) @require_torch @slow def lowercase_ ( self ) -> Optional[int]: lowerCAmelCase_ : Dict = 2 lowerCAmelCase_ : Union[str, Any] = pipeline('''zero-shot-object-detection''' ) lowerCAmelCase_ : Optional[Any] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=__lowercase , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, ] , )
262
0
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> list[int]: '''simple docstring''' __UpperCamelCase : Any = [0 for i in range(len(_lowerCamelCase))] # initialize interval's left pointer and right pointer __UpperCamelCase , __UpperCamelCase : str = 0, 0 for i in range(1 , len(_lowerCamelCase)): # case when current index is inside the interval if i <= right_pointer: __UpperCamelCase : Dict = min(right_pointer - i + 1 , z_result[i - left_pointer]) __UpperCamelCase : Dict = min_edge while go_next(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: __UpperCamelCase , __UpperCamelCase : Union[str, Any] = i, i + z_result[i] - 1 return z_result def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : list[int] , _lowerCamelCase : str) -> bool: '''simple docstring''' return i + z_result[i] < len(_lowerCamelCase) and s[z_result[i]] == s[i + z_result[i]] def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : str) -> int: '''simple docstring''' __UpperCamelCase : Any = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string __UpperCamelCase : List[Any] = z_function(pattern + input_str) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowerCamelCase): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
151
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCamelCase__ : '''simple docstring''' def __init__( self :Optional[Any] , a :Optional[Any] , a :Dict=1_3 , a :Tuple=7 , a :List[Any]=True , a :List[str]=True , a :List[Any]=True , a :Optional[Any]=True , a :Union[str, Any]=9_9 , a :int=3_2 , a :Optional[Any]=2 , a :List[str]=4 , a :Optional[Any]=3_7 , a :Union[str, Any]="gelu" , a :Optional[int]=0.1 , a :Dict=0.1 , a :Tuple=5_1_2 , a :Union[str, Any]=1_6 , a :int=2 , a :Any=0.02 , a :Union[str, Any]=False , a :int=True , a :str="None" , a :Union[str, Any]=3 , a :str=4 , a :List[Any]=None , ) -> Tuple: __UpperCamelCase : Tuple = parent __UpperCamelCase : List[str] = batch_size __UpperCamelCase : Optional[Any] = seq_length __UpperCamelCase : Any = is_training __UpperCamelCase : Dict = use_input_mask __UpperCamelCase : List[str] = use_token_type_ids __UpperCamelCase : Optional[int] = use_labels __UpperCamelCase : Optional[Any] = vocab_size __UpperCamelCase : Optional[Any] = hidden_size __UpperCamelCase : Dict = num_hidden_layers __UpperCamelCase : Any = num_attention_heads __UpperCamelCase : str = intermediate_size __UpperCamelCase : Union[str, Any] = hidden_act __UpperCamelCase : Union[str, Any] = hidden_dropout_prob __UpperCamelCase : Optional[Any] = attention_probs_dropout_prob __UpperCamelCase : Tuple = max_position_embeddings __UpperCamelCase : Tuple = type_vocab_size __UpperCamelCase : Any = type_sequence_label_size __UpperCamelCase : int = initializer_range __UpperCamelCase : Dict = num_labels __UpperCamelCase : Dict = num_choices __UpperCamelCase : List[str] = relative_attention __UpperCamelCase : Union[str, Any] = position_biased_input __UpperCamelCase : Any = pos_att_type __UpperCamelCase : Optional[Any] = scope def _lowerCamelCase ( self :List[Any] ) -> List[Any]: __UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Tuple = None if self.use_input_mask: __UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : List[Any] = None if self.use_token_type_ids: __UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Optional[int] = None __UpperCamelCase : List[Any] = None if self.use_labels: __UpperCamelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : List[str] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self :Optional[int] , a :int , a :List[Any] , a :Optional[int] , a :Union[str, Any] , a :Union[str, Any] , a :str , a :int ) -> Optional[int]: __UpperCamelCase : List[str] = TFDebertaVaModel(config=a ) __UpperCamelCase : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCamelCase : Optional[Any] = [input_ids, input_mask] __UpperCamelCase : Optional[int] = model(a ) __UpperCamelCase : Any = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self :str , a :List[Any] , a :Dict , a :Tuple , a :Union[str, Any] , a :str , a :Optional[int] , a :Optional[int] ) -> Optional[int]: __UpperCamelCase : List[Any] = TFDebertaVaForMaskedLM(config=a ) __UpperCamelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self :List[Any] , a :Optional[int] , a :Optional[Any] , a :int , a :Optional[int] , a :Any , a :Dict , a :List[Any] ) -> Optional[int]: __UpperCamelCase : Optional[int] = self.num_labels __UpperCamelCase : int = TFDebertaVaForSequenceClassification(config=a ) __UpperCamelCase : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Optional[int] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self :Optional[Any] , a :int , a :Dict , a :Union[str, Any] , a :Tuple , a :Tuple , a :Union[str, Any] , a :str ) -> int: __UpperCamelCase : Tuple = self.num_labels __UpperCamelCase : str = TFDebertaVaForTokenClassification(config=a ) __UpperCamelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Union[str, Any] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self :List[str] , a :List[Any] , a :Union[str, Any] , a :List[str] , a :Union[str, Any] , a :Optional[Any] , a :Union[str, Any] , a :Tuple ) -> int: __UpperCamelCase : List[Any] = TFDebertaVaForQuestionAnswering(config=a ) __UpperCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Tuple = model(a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self :List[str] ) -> List[Any]: __UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : List[Any] = config_and_inputs __UpperCamelCase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( __lowercase , __lowercase , unittest.TestCase): '''simple docstring''' _A = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _A = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _A = False _A = False def _lowerCamelCase ( self :Dict ) -> str: __UpperCamelCase : Dict = TFDebertaVaModelTester(self ) __UpperCamelCase : int = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _lowerCamelCase ( self :Tuple ) -> Optional[int]: self.config_tester.run_common_tests() def _lowerCamelCase ( self :List[Any] ) -> List[str]: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self :Optional[int] ) -> List[Any]: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def _lowerCamelCase ( self :Optional[Any] ) -> str: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def _lowerCamelCase ( self :Optional[Any] ) -> Dict: __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def _lowerCamelCase ( self :Any ) -> Optional[Any]: __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @slow def _lowerCamelCase ( self :int ) -> int: __UpperCamelCase : Tuple = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(a ) @require_tf class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def _lowerCamelCase ( self :Optional[Any] ) -> Any: pass @slow def _lowerCamelCase ( self :Any ) -> Optional[int]: __UpperCamelCase : List[Any] = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) __UpperCamelCase : List[Any] = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __UpperCamelCase : Optional[Any] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCamelCase : str = model(a , attention_mask=a )[0] __UpperCamelCase : Optional[int] = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , a , atol=1E-4 )
151
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" __a = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __a = [144, 192, 240] __a = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __a = [96, 120, 144] __a = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __a = [64, 80, 96] __a = [16, 16, 24, 48, 64, 80, 320] __a = 0.05 __a = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): __a = 512 __a = 16 __a = 21 __a = """pascal-voc-id2label.json""" else: __a = 1000 __a = """imagenet-1k-id2label.json""" __a = """huggingface/label-files""" __a = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) __a = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int=False ): """simple docstring""" for i in range(1 , 6 ): if f"layer_{i}." in name: __a = name.replace(f"layer_{i}." , f"encoder.layer.{i - 1}." ) if "conv_1." in name: __a = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: __a = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: __a = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: __a = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: __a = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: __a = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: __a = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: __a = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: __a = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f".{i}.{j}." in name: __a = name.replace(f".{i}.{j}." , f".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f".{i}.{j}." in name: __a = name.replace(f".{i}.{j}." , f".{i}." ) if "expand_1x1" in name: __a = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: __a = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: __a = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if f".global_rep.{i}.weight" in name: __a = name.replace(f".global_rep.{i}.weight" , """.layernorm.weight""" ) if f".global_rep.{i}.bias" in name: __a = name.replace(f".global_rep.{i}.bias" , """.layernorm.bias""" ) if ".global_rep." in name: __a = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: __a = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: __a = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: __a = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: __a = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: __a = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: __a = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: __a = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: __a = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: __a = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: __a = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: __a = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): __a = """mobilevit.""" + name return name def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str]=False ): """simple docstring""" if base_model: __a = """""" else: __a = """mobilevit.""" for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if key[:8] == "encoder.": __a = key[8:] if "qkv" in key: __a = key.split(""".""" ) __a = int(key_split[0][6:] ) - 1 __a = int(key_split[3] ) __a = model.get_submodule(f"{model_prefix}encoder.layer.{layer_num}" ) __a = layer.transformer.layer[transformer_num].attention.attention.all_head_size __a = ( f"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val[:dim] __a = val[dim : dim * 2] __a = val[-dim:] else: __a = val return orig_state_dict def lowerCAmelCase__ ( ): """simple docstring""" __a = """http://images.cocodataset.org/val2017/000000039769.jpg""" __a = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str]=False ): """simple docstring""" __a = get_mobilevit_config(_SCREAMING_SNAKE_CASE ) # load original state_dict __a = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): __a = MobileViTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ).eval() else: __a = MobileViTForImageClassification(_SCREAMING_SNAKE_CASE ).eval() __a = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileViTImageProcessor __a = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) __a = image_processor(images=prepare_img() , return_tensors="""pt""" ) __a = model(**_SCREAMING_SNAKE_CASE ) __a = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __a = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __a = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __a = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __a = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __a = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __a = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: __a = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) __a = model_mapping[mobilevit_name] image_processor.push_to_hub(_SCREAMING_SNAKE_CASE , organization="""apple""" ) model.push_to_hub(_SCREAMING_SNAKE_CASE , organization="""apple""" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
302
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self : Dict , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Any=77 , __lowercase : Optional[int]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ): '''simple docstring''' super().__init__() __a = num_attention_heads __a = attention_head_dim __a = num_attention_heads * attention_head_dim __a = additional_embeddings __a = time_embed_dim or inner_dim __a = embedding_proj_dim or embedding_dim __a = clip_embed_dim or embedding_dim __a = Timesteps(__lowercase , __lowercase , 0 ) __a = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) if embedding_proj_norm_type is None: __a = None elif embedding_proj_norm_type == "layer": __a = nn.LayerNorm(__lowercase ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) __a = nn.Linear(__lowercase , __lowercase ) if encoder_hid_proj_type is None: __a = None elif encoder_hid_proj_type == "linear": __a = nn.Linear(__lowercase , __lowercase ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) __a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) ) if added_emb_type == "prd": __a = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) ) elif added_emb_type is None: __a = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) __a = nn.ModuleList( [ BasicTransformerBlock( __lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn="""gelu""" , attention_bias=__lowercase , ) for d in range(__lowercase ) ] ) if norm_in_type == "layer": __a = nn.LayerNorm(__lowercase ) elif norm_in_type is None: __a = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) __a = nn.LayerNorm(__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) __a = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) __a = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , __lowercase , persistent=__lowercase ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = {} def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ): if hasattr(__lowercase , """set_processor""" ): __a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , __lowercase , __lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ) return processors def UpperCamelCase_ ( self : List[str] , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' __a = len(self.attn_processors.keys() ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict ): if hasattr(__lowercase , """set_processor""" ): if not isinstance(__lowercase , __lowercase ): module.set_processor(__lowercase ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , __lowercase , __lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ): '''simple docstring''' __a = hidden_states.shape[0] __a = timestep if not torch.is_tensor(__lowercase ): __a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0: __a = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device ) __a = self.time_proj(__lowercase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __a = timesteps_projected.to(dtype=self.dtype ) __a = self.time_embedding(__lowercase ) if self.embedding_proj_norm is not None: __a = self.embedding_proj_norm(__lowercase ) __a = self.embedding_proj(__lowercase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __a = self.encoder_hidden_states_proj(__lowercase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) __a = self.proj_in(__lowercase ) __a = self.positional_embedding.to(hidden_states.dtype ) __a = [] __a = 0 if encoder_hidden_states is not None: additional_embeds.append(__lowercase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __a = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __a = hidden_states[:, None, :] __a = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __a = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 ) additional_embeds.append(__lowercase ) __a = torch.cat( __lowercase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __a = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __a = F.pad( __lowercase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __a = hidden_states + positional_embeddings if attention_mask is not None: __a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 __a = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 ) __a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __a = self.norm_in(__lowercase ) for block in self.transformer_blocks: __a = block(__lowercase , attention_mask=__lowercase ) __a = self.norm_out(__lowercase ) if self.prd_embedding is not None: __a = hidden_states[:, -1] else: __a = hidden_states[:, additional_embeddings_len:] __a = self.proj_to_clip_embeddings(__lowercase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : Tuple ): '''simple docstring''' __a = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
302
1
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ): lowerCAmelCase = {} lowerCAmelCase = job['started_at'] lowerCAmelCase = job['completed_at'] lowerCAmelCase = date_parser.parse(_UpperCAmelCase ) lowerCAmelCase = date_parser.parse(_UpperCAmelCase ) lowerCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) lowerCAmelCase = start lowerCAmelCase = end lowerCAmelCase = duration_in_min return job_info def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase = None if token is not None: lowerCAmelCase = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} lowerCAmelCase = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' lowerCAmelCase = requests.get(_UpperCAmelCase , headers=_UpperCAmelCase ).json() lowerCAmelCase = {} try: job_time.update({job['name']: extract_time_from_single_job(_UpperCAmelCase ) for job in result['jobs']} ) lowerCAmelCase = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_UpperCAmelCase ): lowerCAmelCase = requests.get(url + F'&page={i + 2}' , headers=_UpperCAmelCase ).json() job_time.update({job['name']: extract_time_from_single_job(_UpperCAmelCase ) for job in result['jobs']} ) return job_time except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') __UpperCamelCase : Union[str, Any] = parser.parse_args() __UpperCamelCase : Any = get_job_time(args.workflow_run_id) __UpperCamelCase : List[str] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v['duration']}''')
367
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ): """simple docstring""" lowerCAmelCase = size if size is not None else {'shortest_edge': 20} lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_flip_channel_order def UpperCamelCase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class a ( a__ , unittest.TestCase ): snake_case__ = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MobileViTImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , 'do_resize' ) ) self.assertTrue(hasattr(_snake_case , 'size' ) ) self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
309
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Any = logging.get_logger(__name__) a__ : int = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowercase_ ( a__ ): __UpperCAmelCase = 'vit_msn' def __init__( self , a=7_68 , a=12 , a=12 , a=30_72 , a="gelu" , a=0.0 , a=0.0 , a=0.02 , a=1e-06 , a=2_24 , a=16 , a=3 , a=True , **a , ): super().__init__(**a ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias
80
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a__ : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase_ ( a__ ): __UpperCAmelCase = ['pixel_values'] def __init__( self , a = True , a = None , a = PILImageResampling.BICUBIC , a = True , a = None , a = True , a = 1 / 2_55 , a = True , a = None , a = None , a = True , **a , ): super().__init__(**a ) UpperCamelCase__ = size if size is not None else {"shortest_edge": 2_24} UpperCamelCase__ = get_size_dict(a , default_to_square=a ) UpperCamelCase__ = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCamelCase__ = get_size_dict(a , default_to_square=a , param_name="crop_size" ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase__ = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase__ = do_convert_rgb def __a ( self , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ): UpperCamelCase__ = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCamelCase__ = get_resize_output_image_size(a , size=size["shortest_edge"] , default_to_square=a ) return resize(a , size=a , resample=a , data_format=a , **a ) def __a ( self , a , a , a = None , **a , ): UpperCamelCase__ = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(a , size=(size["height"], size["width"]) , data_format=a , **a ) def __a ( self , a , a , a = None , **a , ): return rescale(a , scale=a , data_format=a , **a ) def __a ( self , a , a , a , a = None , **a , ): return normalize(a , mean=a , std=a , data_format=a , **a ) def __a ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ): UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(a , param_name="size" , default_to_square=a ) UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(a , param_name="crop_size" , default_to_square=a ) UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase__ = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase__ = [convert_to_rgb(a ) for image in images] # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(a ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=a , size=a , resample=a ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=a , mean=a , std=a ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(a , a ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=a , tensor_type=a )
80
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ (__lowercase , unittest.TestCase ): UpperCAmelCase__ : List[Any] = LongformerTokenizer UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : List[str] = LongformerTokenizerFast UpperCAmelCase__ : Any = True def lowerCamelCase__( self :Any ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a__ = dict(zip(_a ,range(len(_a ) ) ) ) a__ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a__ = {'''unk_token''': '''<unk>'''} a__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) a__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def lowerCamelCase__( self :Union[str, Any] ,**__snake_case :Union[str, Any] ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_a ) def lowerCamelCase__( self :Tuple ,**__snake_case :Optional[int] ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**_a ) def lowerCamelCase__( self :List[str] ,__snake_case :Dict ) -> Union[str, Any]: a__ = '''lower newer''' a__ = '''lower newer''' return input_text, output_text def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = self.tokenizer_class(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) a__ = '''lower newer''' a__ = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a__ = tokenizer.tokenize(_a ) # , add_prefix_space=True) self.assertListEqual(_a ,_a ) a__ = tokens + [tokenizer.unk_token] a__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a ) def lowerCamelCase__( self :Dict ) -> int: a__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' ,add_special_tokens=_a ) ,[0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' ,add_special_tokens=_a ) ,[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] ,) @slow def lowerCamelCase__( self :Optional[int] ) -> List[str]: a__ = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) a__ = tokenizer.encode('sequence builders' ,add_special_tokens=_a ) a__ = tokenizer.encode('multi-sequence build' ,add_special_tokens=_a ) a__ = tokenizer.encode( 'sequence builders' ,add_special_tokens=_a ,add_prefix_space=_a ) a__ = tokenizer.encode( 'sequence builders' ,'multi-sequence build' ,add_special_tokens=_a ,add_prefix_space=_a ) a__ = tokenizer.build_inputs_with_special_tokens(_a ) a__ = tokenizer.build_inputs_with_special_tokens(_a ,_a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCamelCase__( self :List[Any] ) -> Optional[int]: a__ = self.get_tokenizer() a__ = '''Encode this sequence.''' a__ = tokenizer.byte_encoder[''' '''.encode('utf-8' )[0]] # Testing encoder arguments a__ = tokenizer.encode(_a ,add_special_tokens=_a ,add_prefix_space=_a ) a__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_a ,_a ) a__ = tokenizer.encode(_a ,add_special_tokens=_a ,add_prefix_space=_a ) a__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_a ,_a ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) a__ = tokenizer.encode(_a ,add_special_tokens=_a ) a__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_a ,_a ) # Testing spaces after special tokens a__ = '''<mask>''' tokenizer.add_special_tokens( {'mask_token': AddedToken(_a ,lstrip=_a ,rstrip=_a )} ) # mask token has a left space a__ = tokenizer.convert_tokens_to_ids(_a ) a__ = '''Encode <mask> sequence''' a__ = '''Encode <mask>sequence''' a__ = tokenizer.encode(_a ) a__ = encoded.index(_a ) a__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_a ,_a ) a__ = tokenizer.encode(_a ) a__ = encoded.index(_a ) a__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_a ,_a ) def lowerCamelCase__( self :Optional[Any] ) -> Any: pass def lowerCamelCase__( self :int ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): a__ = self.rust_tokenizer_class.from_pretrained(_a ,**_a ) a__ = self.tokenizer_class.from_pretrained(_a ,**_a ) a__ = '''A, <mask> AllenNLP sentence.''' a__ = tokenizer_r.encode_plus(_a ,add_special_tokens=_a ,return_token_type_ids=_a ) a__ = tokenizer_p.encode_plus(_a ,add_special_tokens=_a ,return_token_type_ids=_a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) ,sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) ,sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) ,) a__ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) a__ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( _a ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _a ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def lowerCamelCase__( self :Dict ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] ,repeat=2 ): a__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname ,use_fast=_a ,add_prefix_space=_a ,trim_offsets=_a ) a__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] ,_a ) self.assertEqual(post_processor_state['add_prefix_space'] ,_a ) self.assertEqual(post_processor_state['trim_offsets'] ,_a ) def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): a__ = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a__ = F'{text_of_1_token} {text_of_1_token}' a__ = self.rust_tokenizer_class.from_pretrained( _a ,use_fast=_a ,add_prefix_space=_a ,trim_offsets=_a ) a__ = tokenizer_r(_a ,return_offsets_mapping=_a ,add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(_a ) + 1, len(_a ) + 1 + len(_a )) ,) a__ = self.rust_tokenizer_class.from_pretrained( _a ,use_fast=_a ,add_prefix_space=_a ,trim_offsets=_a ) a__ = tokenizer_r(_a ,return_offsets_mapping=_a ,add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(_a ) + 1, len(_a ) + 1 + len(_a )) ,) a__ = self.rust_tokenizer_class.from_pretrained( _a ,use_fast=_a ,add_prefix_space=_a ,trim_offsets=_a ) a__ = tokenizer_r(_a ,return_offsets_mapping=_a ,add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(_a ), len(_a ) + 1 + len(_a )) ,) a__ = self.rust_tokenizer_class.from_pretrained( _a ,use_fast=_a ,add_prefix_space=_a ,trim_offsets=_a ) a__ = tokenizer_r(_a ,return_offsets_mapping=_a ,add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(_a ), len(_a ) + 1 + len(_a )) ,) a__ = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a__ = self.rust_tokenizer_class.from_pretrained( _a ,use_fast=_a ,add_prefix_space=_a ,trim_offsets=_a ) a__ = tokenizer_r(_a ,return_offsets_mapping=_a ,add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) ,) a__ = self.rust_tokenizer_class.from_pretrained( _a ,use_fast=_a ,add_prefix_space=_a ,trim_offsets=_a ) a__ = tokenizer_r(_a ,return_offsets_mapping=_a ,add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(_a ), 1 + len(_a ) + 1 + len(_a )) ,) a__ = self.rust_tokenizer_class.from_pretrained( _a ,use_fast=_a ,add_prefix_space=_a ,trim_offsets=_a ) a__ = tokenizer_r(_a ,return_offsets_mapping=_a ,add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(_a ), 1 + len(_a ) + 1 + len(_a )) ,)
365
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger snake_case : Dict = get_logger(__name__) snake_case : str = r''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class snake_case_ : @add_start_docstrings(__snake_case ) def __call__( self :Dict ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ) -> jnp.ndarray: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class snake_case_ : @add_start_docstrings(__snake_case ) def __call__( self :List[str] ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ) -> jnp.ndarray: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class snake_case_ (lowerCamelCase_ ): @add_start_docstrings(__snake_case ) def __call__( self :Dict ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ,**__snake_case :Any ) -> jnp.ndarray: for processor in self: a__ = inspect.signature(processor.__call__ ).parameters if len(__snake_case ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'Make sure that all the required parameters: {list(function_args.keys() )} for ' F'{processor.__class__} are passed to the logits processor.' ) a__ = processor(__snake_case ,__snake_case ,__snake_case ,**__snake_case ) else: a__ = processor(__snake_case ,__snake_case ,__snake_case ) return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :float ) -> Tuple: if not isinstance(__snake_case ,__snake_case ) or not (temperature > 0): raise ValueError(F'`temperature` has to be a strictly positive float, but is {temperature}' ) a__ = temperature def __call__( self :Optional[int] ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: a__ = scores / self.temperature return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :Any ,__snake_case :float ,__snake_case :float = -float('Inf' ) ,__snake_case :int = 1 ) -> Dict: if not isinstance(__snake_case ,__snake_case ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(__snake_case ,__snake_case ) or (min_tokens_to_keep < 1): raise ValueError(F'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) a__ = top_p a__ = filter_value a__ = min_tokens_to_keep def __call__( self :Optional[int] ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: a__ , a__ = lax.top_k(__snake_case ,scores.shape[-1] ) a__ = jnp.full_like(__snake_case ,self.filter_value ) a__ = jax.nn.softmax(__snake_case ,axis=-1 ).cumsum(axis=-1 ) a__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well a__ = jnp.roll(__snake_case ,1 ) score_mask |= score_mask.at[:, 0].set(__snake_case ) # min tokens to keep a__ = score_mask.at[:, : self.min_tokens_to_keep].set(__snake_case ) a__ = jnp.where(__snake_case ,__snake_case ,__snake_case ) a__ = jax.lax.sort_key_val(__snake_case ,__snake_case )[-1] return next_scores class snake_case_ (lowerCamelCase_ ): def __init__( self :List[str] ,__snake_case :int ,__snake_case :float = -float('Inf' ) ,__snake_case :int = 1 ) -> Any: if not isinstance(__snake_case ,__snake_case ) or top_k <= 0: raise ValueError(F'`top_k` has to be a strictly positive integer, but is {top_k}' ) a__ = max(__snake_case ,__snake_case ) a__ = filter_value def __call__( self :int ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: a__ , a__ = scores.shape a__ = jnp.full(batch_size * vocab_size ,self.filter_value ) a__ = min(self.top_k ,scores.shape[-1] ) # Safety check a__ , a__ = lax.top_k(__snake_case ,__snake_case ) a__ = jnp.broadcast_to((jnp.arange(__snake_case ) * vocab_size)[:, None] ,(batch_size, topk) ).flatten() a__ = topk_scores.flatten() a__ = topk_indices.flatten() + shift a__ = next_scores_flat.at[topk_indices_flat].set(__snake_case ) a__ = next_scores_flat.reshape(__snake_case ,__snake_case ) return next_scores class snake_case_ (lowerCamelCase_ ): def __init__( self :int ,__snake_case :int ) -> str: a__ = bos_token_id def __call__( self :List[Any] ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: a__ = jnp.full(scores.shape ,-float('inf' ) ) a__ = 1 - jnp.bool_(cur_len - 1 ) a__ = jnp.where(__snake_case ,new_scores.at[:, self.bos_token_id].set(0 ) ,__snake_case ) return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :Union[str, Any] ,__snake_case :int ,__snake_case :int ) -> List[Any]: a__ = max_length a__ = eos_token_id def __call__( self :int ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: a__ = jnp.full(scores.shape ,-float('inf' ) ) a__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) a__ = jnp.where(__snake_case ,new_scores.at[:, self.eos_token_id].set(0 ) ,__snake_case ) return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :int ,__snake_case :int ) -> List[str]: if not isinstance(__snake_case ,__snake_case ) or min_length < 0: raise ValueError(F'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(__snake_case ,__snake_case ) or eos_token_id < 0: raise ValueError(F'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) a__ = min_length a__ = eos_token_id def __call__( self :Any ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied a__ = 1 - jnp.clip(cur_len - self.min_length ,0 ,1 ) a__ = jnp.where(__snake_case ,scores.at[:, self.eos_token_id].set(-float('inf' ) ) ,__snake_case ) return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Optional[int] ) -> Tuple: a__ = list(__snake_case ) a__ = begin_index def __call__( self :str ,__snake_case :List[str] ,__snake_case :str ,__snake_case :int ) -> str: a__ = 1 - jnp.bool_(cur_len - self.begin_index ) a__ = jnp.where(__snake_case ,scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) ,__snake_case ) return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :List[str] ,__snake_case :list ) -> List[Any]: a__ = list(__snake_case ) def __call__( self :Dict ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: a__ = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :Dict ,__snake_case :Optional[int] ) -> Union[str, Any]: a__ = dict(__snake_case ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. a__ = jnp.ones((max(force_token_map.keys() ) + 1) ,dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: a__ = force_token_array.at[index].set(__snake_case ) a__ = jnp.intaa(__snake_case ) def __call__( self :Optional[int] ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: def _force_token(__snake_case :Optional[Any] ): a__ = scores.shape[0] a__ = self.force_token_array[generation_idx] a__ = jnp.ones_like(__snake_case ,dtype=scores.dtype ) * -float('inf' ) a__ = jnp.zeros((batch_size, 1) ,dtype=scores.dtype ) a__ = lax.dynamic_update_slice(__snake_case ,__snake_case ,(0, current_token) ) return new_scores a__ = lax.cond( cur_len >= self.force_token_array.shape[0] ,lambda: scores ,lambda: lax.cond( self.force_token_array[cur_len] >= 0 ,lambda: _force_token(__snake_case ) ,lambda: scores ,) ,) return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :Any ,__snake_case :List[str] ,__snake_case :str ,__snake_case :List[Any] ) -> Optional[int]: a__ = generate_config.eos_token_id a__ = generate_config.no_timestamps_token_id a__ = generate_config.no_timestamps_token_id + 1 a__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__snake_case ,'max_initial_timestamp_index' ): a__ = generate_config.max_initial_timestamp_index else: a__ = model_config.vocab_size if self.max_initial_timestamp_index is None: a__ = model_config.vocab_size def __call__( self :Any ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Optional[Any] ) -> Tuple: # suppress <|notimestamps|> which is handled by without_timestamps a__ = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(__snake_case :List[str] ,__snake_case :Union[str, Any] ): a__ = jnp.where((cur_len - self.begin_index) >= 1 ,__snake_case ,__snake_case ) a__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin ,True and last_was_timestamp ,__snake_case ,) a__ = jnp.where((cur_len - self.begin_index) < 2 ,__snake_case ,__snake_case ) a__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin ,__snake_case ,__snake_case ,) return jnp.where( __snake_case ,jnp.where( penultimate_was_timestamp > 0 ,scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) ,scores_k.at[: self.eos_token_id].set(-float('inf' ) ) ,) ,__snake_case ,) a__ = jax.vmap(__snake_case )(__snake_case ,__snake_case ) a__ = jnp.where(cur_len == self.begin_index ,__snake_case ,__snake_case ) a__ = jnp.where( self.max_initial_timestamp_index is not None ,True and apply_max_initial_timestamp ,__snake_case ,) a__ = self.timestamp_begin + self.max_initial_timestamp_index a__ = jnp.where( __snake_case ,scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) ,__snake_case ,) # if sum of probability over timestamps is above any other token, sample timestamp a__ = jax.nn.log_softmax(__snake_case ,axis=-1 ) def handle_cumulative_probs(__snake_case :Dict ,__snake_case :List[Any] ): a__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] ,axis=-1 ) a__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob ,scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) ,__snake_case ,) a__ = jax.vmap(__snake_case )(__snake_case ,__snake_case ) return scores
109
0
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" assert ( isinstance(__UpperCamelCase , __UpperCamelCase ) and number_of_steps > 0 ), f"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1, 1 for _ in range(number_of_steps - 1 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
219
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) SCREAMING_SNAKE_CASE__ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
219
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __A =importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __A =[ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowerCamelCase_ ( lowerCamelCase__ ): if "://" in dataset_path: lowerCamelCase_ = dataset_path.split("://" )[1] return dataset_path def lowerCamelCase_ ( lowerCamelCase__ ): if fs is not None and fs.protocol != "file": return True else: return False def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = not is_remote_filesystem(lowerCamelCase__ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowerCamelCase__ ) , fs._strip_protocol(lowerCamelCase__ ) ) else: fs.mv(lowerCamelCase__ , lowerCamelCase__ , recursive=lowerCamelCase__ ) def lowerCamelCase_ ( ): if hasattr(fsspec.asyn , "reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = threading.Lock()
47
from collections import defaultdict def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = first_str.lower().strip() lowerCamelCase_ = second_str.lower().strip() # Remove whitespace lowerCamelCase_ = first_str.replace(" " , "" ) lowerCamelCase_ = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): return False # Default values for count should be 0 lowerCamelCase_ = defaultdict(lowerCamelCase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowerCamelCase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __A =input('''Enter the first string ''').strip() __A =input('''Enter the second string ''').strip() __A =check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
47
1
'''simple docstring''' # flake8: noqa # Lint as: python3 lowercase__ = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
151
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = "▁" lowercase__ = {"vocab_file": "spiece.model"} lowercase__ = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } lowercase__ = { "google/reformer-crime-and-punishment": 524288, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowercase_ : Dict , lowercase_ : Tuple="</s>" , lowercase_ : Dict="<unk>" , lowercase_ : Tuple=[] , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : List[str] , ) -> None: UpperCAmelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase : List[Any] = vocab_file UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase_ ( self : List[str] ) -> Dict[str, int]: UpperCAmelCase : int = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> str: UpperCAmelCase : Tuple = self.__dict__.copy() UpperCAmelCase : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , lowercase_ : Any ) -> List[str]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase : Dict = {} UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : str ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple ) -> Optional[int]: return self.sp_model.piece_to_id(lowercase_ ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] ) -> List[str]: if index < self.sp_model.get_piece_size(): UpperCAmelCase : Tuple = self.sp_model.IdToPiece(lowercase_ ) return token def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] ) -> Optional[int]: UpperCAmelCase : Dict = [] UpperCAmelCase : int = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token UpperCAmelCase : Any = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : int = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
151
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin A_ : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') A_ : str = {'target_lang': 'fi', 'source_lang': 'en'} A_ : List[Any] = '>>zh<<' A_ : Optional[int] = 'Helsinki-NLP/' if is_torch_available(): A_ : Any = 'pt' elif is_tf_available(): A_ : Tuple = 'tf' else: A_ : List[str] = 'jax' @require_sentencepiece class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[int] =MarianTokenizer a : Union[str, Any] =False a : Optional[int] =True def _a ( self ): super().setUp() UpperCamelCase_: Dict = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] UpperCamelCase_: int = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCamelCase_: Dict = Path(self.tmpdirname ) save_json(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES['target_spm'] ) UpperCamelCase_: Any = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self , **_lowerCamelCase ): return MarianTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self , _lowerCamelCase ): return ( "This is a test", "This is a test", ) def _a ( self ): UpperCamelCase_: str = '</s>' UpperCamelCase_: Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(_lowerCamelCase ) , 9 ) def _a ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def _a ( self ): UpperCamelCase_: Optional[Any] = MarianTokenizer.from_pretrained(f'''{ORG_NAME}opus-mt-en-de''' ) UpperCamelCase_: List[str] = en_de_tokenizer(['I am a small frog'] , return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: List[str] = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(_lowerCamelCase , batch.input_ids[0] ) UpperCamelCase_: Union[str, Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_lowerCamelCase ) UpperCamelCase_: List[Any] = [x.name for x in Path(_lowerCamelCase ).glob('*' )] self.assertIn('source.spm' , _lowerCamelCase ) MarianTokenizer.from_pretrained(_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = self.get_tokenizer() UpperCamelCase_: Any = tok( ['I am a small frog' * 1_0_0_0, 'I am a small frog'] , padding=_lowerCamelCase , truncation=_lowerCamelCase , return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def _a ( self ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: Any = tok(['I am a tiny frog', 'I am a small frog'] , padding=_lowerCamelCase , return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def _a ( self ): # fmt: off UpperCamelCase_: Tuple = {'input_ids': [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def _a ( self ): UpperCamelCase_: Union[str, Any] = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) UpperCamelCase_: List[Any] = 'Tämä on testi' UpperCamelCase_: Dict = 'This is a test' UpperCamelCase_: Dict = [7_6, 7, 2_0_4_7, 2] UpperCamelCase_: List[str] = [6_9, 1_2, 1_1, 9_4_0, 2] UpperCamelCase_: Tuple = tokenizer(_lowerCamelCase ).input_ids self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: List[str] = tokenizer(text_target=_lowerCamelCase ).input_ids self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: str = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase )
355
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ : int = logging.get_logger(__name__) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : str =['''pixel_values'''] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = 1 / 2_5_5 , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: Any = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} UpperCamelCase_: Any = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Any = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} UpperCamelCase_: List[Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase , param_name='crop_size' ) UpperCamelCase_: Optional[int] = do_resize UpperCamelCase_: Tuple = do_rescale UpperCamelCase_: Dict = do_normalize UpperCamelCase_: Optional[int] = do_center_crop UpperCamelCase_: Tuple = crop_size UpperCamelCase_: Optional[int] = size UpperCamelCase_: Dict = resample UpperCamelCase_: Tuple = rescale_factor UpperCamelCase_: Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase_: Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = get_size_dict(_lowerCamelCase ) if "shortest_edge" in size: UpperCamelCase_: str = get_resize_output_image_size(_lowerCamelCase , size=size['shortest_edge'] , default_to_square=_lowerCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCamelCase_: Any = (size['height'], size['width']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: List[str] = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowerCamelCase , size=(size['height'], size['width']) , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase ): return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCamelCase_: List[str] = do_resize if do_resize is not None else self.do_resize UpperCamelCase_: str = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_: Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_: Optional[Any] = crop_size if crop_size is not None else self.crop_size UpperCamelCase_: List[str] = get_size_dict(_lowerCamelCase , param_name='crop_size' , default_to_square=_lowerCamelCase ) UpperCamelCase_: Tuple = resample if resample is not None else self.resample UpperCamelCase_: str = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_: Dict = image_mean if image_mean is not None else self.image_mean UpperCamelCase_: Dict = image_std if image_std is not None else self.image_std UpperCamelCase_: Any = size if size is not None else self.size UpperCamelCase_: Optional[Any] = get_size_dict(_lowerCamelCase ) if not is_batched(_lowerCamelCase ): UpperCamelCase_: Dict = [images] if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. UpperCamelCase_: List[str] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCamelCase_: List[str] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_center_crop: UpperCamelCase_: List[str] = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images] if do_rescale: UpperCamelCase_: int = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images] UpperCamelCase_: List[str] = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCamelCase_: Optional[int] = {'pixel_values': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
292
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : int = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class lowercase__ ( _a): UpperCamelCase_ = """encodec""" def __init__( self : List[str] , UpperCamelCase__ : Any=[1.5, 3.0, 6.0, 12.0, 24.0] , UpperCamelCase__ : int=2_4000 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Any=128 , UpperCamelCase__ : List[Any]=32 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : Optional[int]=[8, 5, 4, 2] , UpperCamelCase__ : str="weight_norm" , UpperCamelCase__ : List[str]=7 , UpperCamelCase__ : Optional[Any]=7 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[str]="reflect" , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : List[str]=1.0 , UpperCamelCase__ : str=1024 , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=True , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = target_bandwidths SCREAMING_SNAKE_CASE : Any = sampling_rate SCREAMING_SNAKE_CASE : Tuple = audio_channels SCREAMING_SNAKE_CASE : str = normalize SCREAMING_SNAKE_CASE : Any = chunk_length_s SCREAMING_SNAKE_CASE : List[Any] = overlap SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_filters SCREAMING_SNAKE_CASE : Dict = num_residual_layers SCREAMING_SNAKE_CASE : Union[str, Any] = upsampling_ratios SCREAMING_SNAKE_CASE : int = norm_type SCREAMING_SNAKE_CASE : Tuple = kernel_size SCREAMING_SNAKE_CASE : int = last_kernel_size SCREAMING_SNAKE_CASE : str = residual_kernel_size SCREAMING_SNAKE_CASE : Tuple = dilation_growth_rate SCREAMING_SNAKE_CASE : Dict = use_causal_conv SCREAMING_SNAKE_CASE : int = pad_mode SCREAMING_SNAKE_CASE : Optional[Any] = compress SCREAMING_SNAKE_CASE : str = num_lstm_layers SCREAMING_SNAKE_CASE : List[Any] = trim_right_ratio SCREAMING_SNAKE_CASE : Dict = codebook_size SCREAMING_SNAKE_CASE : List[Any] = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE : List[Any] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**snake_case_ ) @property def __A ( self : str ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __A ( self : Any ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __A ( self : Optional[Any] ): '''simple docstring''' return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
182
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Dict: _lowerCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _lowerCAmelCase : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : str = qkv_bias def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : str = 3_64 if """coco""" in model_name else 2_24 _lowerCAmelCase : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCAmelCase : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCAmelCase : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _lowerCAmelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=False ) -> List[str]: _lowerCAmelCase : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _lowerCAmelCase : List[Any] = tokenizer("""\n""" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : List[Any] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _lowerCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _lowerCAmelCase : Dict = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _lowerCAmelCase : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _lowerCAmelCase : int = key.replace("""t5""" , """language""" ) _lowerCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCAmelCase : Union[str, Any] = load_demo_image() _lowerCAmelCase : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCAmelCase : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCAmelCase : Tuple = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCAmelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _lowerCAmelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCAmelCase : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _lowerCAmelCase : Dict = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCAmelCase : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCAmelCase : List[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _lowerCAmelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _lowerCamelCase ) _lowerCAmelCase : int = input_ids.shape[1] _lowerCAmelCase : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
0
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __A = logging.get_logger(__name__) def __a ( lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : Dict ) -> Dict: '''simple docstring''' try: with open(_snake_case ,"""rb""" ) as flax_state_f: UpperCAmelCase_= from_bytes(_snake_case ,flax_state_f.read() ) except UnpicklingError as e: try: with open(_snake_case ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(_snake_case ,_snake_case ) def __a ( lowerCAmelCase_ : List[str] ,lowerCAmelCase_ : Optional[int] ) -> Any: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights UpperCAmelCase_= flatten_dict(jax.tree_util.tree_map(lambda lowerCAmelCase_ : x.dtype == jnp.bfloataa ,_snake_case ) ).values() if any(_snake_case ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) UpperCAmelCase_= jax.tree_util.tree_map( lambda lowerCAmelCase_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,_snake_case ) UpperCAmelCase_= "" UpperCAmelCase_= flatten_dict(_snake_case ,sep=""".""" ) UpperCAmelCase_= pt_model.state_dict() # keep track of unexpected & missing keys UpperCAmelCase_= [] UpperCAmelCase_= set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase_= flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: UpperCAmelCase_= flax_key_tuple_array[:-1] + ["weight"] UpperCAmelCase_= jnp.transpose(_snake_case ,(3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": UpperCAmelCase_= flax_key_tuple_array[:-1] + ["weight"] UpperCAmelCase_= flax_tensor.T elif flax_key_tuple_array[-1] == "scale": UpperCAmelCase_= flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(_snake_case ): UpperCAmelCase_= ( flax_key_tuple_string.replace("""_0""" ,""".0""" ) .replace("""_1""" ,""".1""" ) .replace("""_2""" ,""".2""" ) .replace("""_3""" ,""".3""" ) .replace("""_4""" ,""".4""" ) .replace("""_5""" ,""".5""" ) .replace("""_6""" ,""".6""" ) .replace("""_7""" ,""".7""" ) .replace("""_8""" ,""".8""" ) .replace("""_9""" ,""".9""" ) ) UpperCAmelCase_= ".".join(_snake_case ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCAmelCase_= np.asarray(_snake_case ) if not isinstance(_snake_case ,np.ndarray ) else flax_tensor UpperCAmelCase_= torch.from_numpy(_snake_case ) # remove from missing keys missing_keys.remove(_snake_case ) else: # weight is not expected by PyTorch model unexpected_keys.append(_snake_case ) pt_model.load_state_dict(_snake_case ) # re-transform missing_keys to list UpperCAmelCase_= list(_snake_case ) if len(_snake_case ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(_snake_case ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) return pt_model
369
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowercase ( unittest.TestCase): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: UpperCAmelCase_= tempfile.mkdtemp() UpperCAmelCase_= BlipImageProcessor() UpperCAmelCase_= GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCAmelCase_= BlipaProcessor(__UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **__UpperCAmelCase : Union[str, Any] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__UpperCAmelCase : str ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: UpperCAmelCase_= [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase_= [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: UpperCAmelCase_= BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_= self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase_= self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) UpperCAmelCase_= BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= self.prepare_image_inputs() UpperCAmelCase_= image_processor(__UpperCAmelCase , return_tensors="""np""" ) UpperCAmelCase_= processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= """lower newer""" UpperCAmelCase_= processor(text=__UpperCAmelCase ) UpperCAmelCase_= tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= """lower newer""" UpperCAmelCase_= self.prepare_image_inputs() UpperCAmelCase_= processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_= processor.batch_decode(__UpperCAmelCase ) UpperCAmelCase_= tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= """lower newer""" UpperCAmelCase_= self.prepare_image_inputs() UpperCAmelCase_= processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
277
0
import os import sys UpperCAmelCase_ = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCAmelCase_ = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCamelCase__ ( *A__ : Optional[int] , **A__ : Optional[Any] ): '''simple docstring''' return AutoConfig.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCamelCase__ ( *A__ : Dict , **A__ : str ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCamelCase__ ( *A__ : Optional[int] , **A__ : Any ): '''simple docstring''' return AutoModel.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCamelCase__ ( *A__ : List[str] , **A__ : List[str] ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCamelCase__ ( *A__ : Union[str, Any] , **A__ : int ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCamelCase__ ( *A__ : Optional[int] , **A__ : List[Any] ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCamelCase__ ( *A__ : Optional[int] , **A__ : int ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A__ , **A__ )
12
"""simple docstring""" from math import pi, sqrt, tan def _snake_case ( UpperCamelCase : float ): if side_length < 0: raise ValueError("""surface_area_cube() only accepts non-negative values""" ) return 6 * side_length**2 def _snake_case ( UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError("""surface_area_cuboid() only accepts non-negative values""" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _snake_case ( UpperCamelCase : float ): if radius < 0: raise ValueError("""surface_area_sphere() only accepts non-negative values""" ) return 4 * pi * radius**2 def _snake_case ( UpperCamelCase : float ): if radius < 0: raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" ) return 3 * pi * radius**2 def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if radius < 0 or height < 0: raise ValueError("""surface_area_cone() only accepts non-negative values""" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _snake_case ( UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( """surface_area_conical_frustum() only accepts non-negative values""" ) UpperCAmelCase : Tuple = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if radius < 0 or height < 0: raise ValueError("""surface_area_cylinder() only accepts non-negative values""" ) return 2 * pi * radius * (height + radius) def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError("""surface_area_torus() only accepts non-negative values""" ) if torus_radius < tube_radius: raise ValueError( """surface_area_torus() does not support spindle or self intersecting tori""" ) return 4 * pow(UpperCamelCase , 2 ) * torus_radius * tube_radius def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if length < 0 or width < 0: raise ValueError("""area_rectangle() only accepts non-negative values""" ) return length * width def _snake_case ( UpperCamelCase : float ): if side_length < 0: raise ValueError("""area_square() only accepts non-negative values""" ) return side_length**2 def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if base < 0 or height < 0: raise ValueError("""area_triangle() only accepts non-negative values""" ) return (base * height) / 2 def _snake_case ( UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("""Given three sides do not form a triangle""" ) UpperCAmelCase : Union[str, Any] = (sidea + sidea + sidea) / 2 UpperCAmelCase : Union[str, Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if base < 0 or height < 0: raise ValueError("""area_parallelogram() only accepts non-negative values""" ) return base * height def _snake_case ( UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError("""area_trapezium() only accepts non-negative values""" ) return 1 / 2 * (basea + basea) * height def _snake_case ( UpperCamelCase : float ): if radius < 0: raise ValueError("""area_circle() only accepts non-negative values""" ) return pi * radius**2 def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if radius_x < 0 or radius_y < 0: raise ValueError("""area_ellipse() only accepts non-negative values""" ) return pi * radius_x * radius_y def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("""area_rhombus() only accepts non-negative values""" ) return 1 / 2 * diagonal_a * diagonal_a def _snake_case ( UpperCamelCase : int , UpperCamelCase : float ): if not isinstance(UpperCamelCase , UpperCamelCase ) or sides < 3: raise ValueError( """area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides""" ) elif length < 0: raise ValueError( """area_reg_polygon() only accepts non-negative values as \ length of a side""" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"""Rectangle: {area_rectangle(1_0, 2_0) = }""") print(f"""Square: {area_square(1_0) = }""") print(f"""Triangle: {area_triangle(1_0, 1_0) = }""") print(f"""Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }""") print(f"""Parallelogram: {area_parallelogram(1_0, 2_0) = }""") print(f"""Rhombus: {area_rhombus(1_0, 2_0) = }""") print(f"""Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }""") print(f"""Circle: {area_circle(2_0) = }""") print(f"""Ellipse: {area_ellipse(1_0, 2_0) = }""") print("\nSurface Areas of various geometric shapes: \n") print(f"""Cube: {surface_area_cube(2_0) = }""") print(f"""Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }""") print(f"""Sphere: {surface_area_sphere(2_0) = }""") print(f"""Hemisphere: {surface_area_hemisphere(2_0) = }""") print(f"""Cone: {surface_area_cone(1_0, 2_0) = }""") print(f"""Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }""") print(f"""Cylinder: {surface_area_cylinder(1_0, 2_0) = }""") print(f"""Torus: {surface_area_torus(2_0, 1_0) = }""") print(f"""Equilateral Triangle: {area_reg_polygon(3, 1_0) = }""") print(f"""Square: {area_reg_polygon(4, 1_0) = }""") print(f"""Reqular Pentagon: {area_reg_polygon(5, 1_0) = }""")
109
0
def lowercase ( A_ = 200 )-> int: '''simple docstring''' a : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] a : Union[str, Any] = [0] * (pence + 1) a : Union[str, Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(A_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
371
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __lowercase = logging.get_logger(__name__) @add_end_docstrings(_a ) class _A ( _a ): """simple docstring""" def __init__( self : List[Any] , **__UpperCAmelCase : List[Any]): super().__init__(**__UpperCAmelCase) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''') requires_backends(self , "vision") self.check_model_type(__UpperCAmelCase) def __call__( self : str , __UpperCAmelCase : Union[str, "Image.Image", List[Dict[str, Any]]] , __UpperCAmelCase : Union[str, List[str]] = None , **__UpperCAmelCase : List[Any] , ): if "text_queries" in kwargs: a : List[Any] = kwargs.pop("text_queries") if isinstance(__UpperCAmelCase , (str, Image.Image)): a : Any = {"image": image, "candidate_labels": candidate_labels} else: a : Optional[int] = image a : Optional[int] = super().__call__(__UpperCAmelCase , **__UpperCAmelCase) return results def __snake_case ( self : Optional[int] , **__UpperCAmelCase : List[Any]): a : str = {} if "threshold" in kwargs: a : Dict = kwargs["threshold"] if "top_k" in kwargs: a : str = kwargs["top_k"] return {}, {}, postprocess_params def __snake_case ( self : List[Any] , __UpperCAmelCase : Optional[Any]): a : Union[str, Any] = load_image(inputs["image"]) a : Any = inputs["candidate_labels"] if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : Optional[Any] = candidate_labels.split(",") a : Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(__UpperCAmelCase): a : int = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework) a : int = self.image_processor(__UpperCAmelCase , return_tensors=self.framework) yield { "is_last": i == len(__UpperCAmelCase) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __snake_case ( self : Dict , __UpperCAmelCase : Optional[int]): a : List[Any] = model_inputs.pop("target_size") a : Optional[int] = model_inputs.pop("candidate_label") a : List[Any] = model_inputs.pop("is_last") a : List[Any] = self.model(**__UpperCAmelCase) a : Union[str, Any] = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def __snake_case ( self : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : List[str]=None): a : Dict = [] for model_output in model_outputs: a : int = model_output["candidate_label"] a : Any = BaseModelOutput(__UpperCAmelCase) a : Optional[Any] = self.image_processor.post_process_object_detection( outputs=__UpperCAmelCase , threshold=__UpperCAmelCase , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): a : Any = outputs["scores"][index].item() a : str = self._get_bounding_box(outputs["boxes"][index][0]) a : Optional[Any] = {"score": score, "label": label, "box": box} results.append(__UpperCAmelCase) a : str = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase: x["score"] , reverse=__UpperCAmelCase) if top_k: a : Union[str, Any] = results[:top_k] return results def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : "torch.Tensor"): if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") a , a , a , a : List[Any] = box.int().tolist() a : str = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
226
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class A__ : A__ = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) A__ = field( default=A__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) A__ = field( default=A__ , metadata={'help': 'The column name of the images in the files.'} ) A__ = field(default=A__ , metadata={'help': 'A folder containing the training data.'} ) A__ = field(default=A__ , metadata={'help': 'A folder containing the validation data.'} ) A__ = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) A__ = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A__ = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def A ( self : Union[str, Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE ={} if self.train_dir is not None: _SCREAMING_SNAKE_CASE =self.train_dir if self.validation_dir is not None: _SCREAMING_SNAKE_CASE =self.validation_dir _SCREAMING_SNAKE_CASE =data_files if data_files else None @dataclass class A__ : A__ = field( default=A__ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) A__ = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) A__ = field( default=A__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) A__ = field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) A__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A__ = field(default=A__ , metadata={'help': 'Name or path of preprocessor config.'} ) A__ = field( default=A__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) A__ = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) A__ = field( default=A__ , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class A__ ( A__ ): A__ = field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def _lowerCAmelCase ( _UpperCamelCase : int ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _lowerCAmelCase ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _SCREAMING_SNAKE_CASE =training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _SCREAMING_SNAKE_CASE =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _SCREAMING_SNAKE_CASE =load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _SCREAMING_SNAKE_CASE =None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _UpperCamelCase ) and data_args.train_val_split > 0.0: _SCREAMING_SNAKE_CASE =ds['train'].train_test_split(data_args.train_val_split ) _SCREAMING_SNAKE_CASE =split['train'] _SCREAMING_SNAKE_CASE =split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE ={ 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _SCREAMING_SNAKE_CASE =ViTMAEConfig.from_pretrained(model_args.config_name , **_UpperCamelCase ) elif model_args.model_name_or_path: _SCREAMING_SNAKE_CASE =ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_UpperCamelCase ) else: _SCREAMING_SNAKE_CASE =ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _SCREAMING_SNAKE_CASE =ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_UpperCamelCase ) elif model_args.model_name_or_path: _SCREAMING_SNAKE_CASE =ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_UpperCamelCase ) else: _SCREAMING_SNAKE_CASE =ViTImageProcessor() # create model if model_args.model_name_or_path: _SCREAMING_SNAKE_CASE =ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _SCREAMING_SNAKE_CASE =ViTMAEForPreTraining(_UpperCamelCase ) if training_args.do_train: _SCREAMING_SNAKE_CASE =ds['train'].column_names else: _SCREAMING_SNAKE_CASE =ds['validation'].column_names if data_args.image_column_name is not None: _SCREAMING_SNAKE_CASE =data_args.image_column_name elif "image" in column_names: _SCREAMING_SNAKE_CASE ='image' elif "img" in column_names: _SCREAMING_SNAKE_CASE ='img' else: _SCREAMING_SNAKE_CASE =column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _SCREAMING_SNAKE_CASE =image_processor.size['shortest_edge'] else: _SCREAMING_SNAKE_CASE =(image_processor.size['height'], image_processor.size['width']) _SCREAMING_SNAKE_CASE =Compose( [ Lambda(lambda _UpperCamelCase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_UpperCamelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_UpperCamelCase : Dict ): _SCREAMING_SNAKE_CASE =[transforms(_UpperCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _SCREAMING_SNAKE_CASE =ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _SCREAMING_SNAKE_CASE =( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_UpperCamelCase ) # Compute absolute learning rate _SCREAMING_SNAKE_CASE =( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _SCREAMING_SNAKE_CASE =training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _SCREAMING_SNAKE_CASE =Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: _SCREAMING_SNAKE_CASE =None if training_args.resume_from_checkpoint is not None: _SCREAMING_SNAKE_CASE =training_args.resume_from_checkpoint elif last_checkpoint is not None: _SCREAMING_SNAKE_CASE =last_checkpoint _SCREAMING_SNAKE_CASE =trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _SCREAMING_SNAKE_CASE =trainer.evaluate() trainer.log_metrics('eval' , _UpperCamelCase ) trainer.save_metrics('eval' , _UpperCamelCase ) # Write model card and (optionally) push to hub _SCREAMING_SNAKE_CASE ={ 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
47
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class A__ ( A__ , A__ ): @register_to_config def __init__( self : Dict , _a : int = 768 , ) -> Union[str, Any]: '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE =nn.Parameter(torch.zeros(1 , _a ) ) _SCREAMING_SNAKE_CASE =nn.Parameter(torch.ones(1 , _a ) ) def A ( self : Tuple , _a : Optional[Union[str, torch.device]] = None , _a : Optional[torch.dtype] = None , ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =nn.Parameter(self.mean.to(_a ).to(_a ) ) _SCREAMING_SNAKE_CASE =nn.Parameter(self.std.to(_a ).to(_a ) ) return self def A ( self : Tuple , _a : str ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =(embeds - self.mean) * 1.0 / self.std return embeds def A ( self : List[str] , _a : Optional[Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =(embeds * self.std) + self.mean return embeds
47
1
from ... import PretrainedConfig __snake_case = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Dict = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __lowerCamelCase : Tuple = """nezha""" def __init__( self , snake_case__=2_1128 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=64 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0.1 , snake_case__=0 , snake_case__=2 , snake_case__=3 , snake_case__=True , **snake_case__ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : Tuple =vocab_size UpperCAmelCase : Optional[int] =hidden_size UpperCAmelCase : List[str] =num_hidden_layers UpperCAmelCase : Any =num_attention_heads UpperCAmelCase : Union[str, Any] =hidden_act UpperCAmelCase : Union[str, Any] =intermediate_size UpperCAmelCase : Optional[int] =hidden_dropout_prob UpperCAmelCase : List[Any] =attention_probs_dropout_prob UpperCAmelCase : int =max_position_embeddings UpperCAmelCase : List[Any] =max_relative_position UpperCAmelCase : int =type_vocab_size UpperCAmelCase : Tuple =initializer_range UpperCAmelCase : List[Any] =layer_norm_eps UpperCAmelCase : Optional[int] =classifier_dropout UpperCAmelCase : Dict =use_cache
78
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Dict = StableUnCLIPPipeline __lowerCamelCase : int = TEXT_TO_IMAGE_PARAMS __lowerCamelCase : int = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCamelCase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __lowerCamelCase : Optional[Any] = False def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int =32 UpperCAmelCase : Union[str, Any] =embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase : int =CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case__ , projection_dim=snake_case__ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase : Dict =PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=snake_case__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase : Tuple =DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=snake_case__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase : Optional[int] =StableUnCLIPImageNormalizer(embedding_dim=snake_case__ ) UpperCAmelCase : Any =DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase : List[str] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase : List[str] =CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase : Optional[int] =UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=snake_case__ , layers_per_block=1 , upcast_attention=snake_case__ , use_linear_projection=snake_case__ , ) torch.manual_seed(0 ) UpperCAmelCase : List[Any] =DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=snake_case__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase : Dict =AutoencoderKL() UpperCAmelCase : Tuple ={ # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCAmelCase__ ( self , snake_case__ , snake_case__=0 ) -> List[Any]: '''simple docstring''' if str(snake_case__ ).startswith('''mps''' ): UpperCAmelCase : Union[str, Any] =torch.manual_seed(snake_case__ ) else: UpperCAmelCase : Any =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase : str ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple =torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : List[Any] =torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=snake_case__ ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) UpperCAmelCase : Optional[int] =StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase : int =torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase : int =pipe('''anime turle''' , generator=snake_case__ , output_type='''np''' ) UpperCAmelCase : str =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase : List[str] =StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) UpperCAmelCase : str =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase : Any =pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase : Tuple =torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
78
1
from __future__ import annotations class __snake_case : def __init__( self , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : Tuple =order # a_{0} ... a_{k} UpperCAmelCase : List[Any] =[1.0] + [0.0] * order # b_{0} ... b_{k} UpperCAmelCase : List[Any] =[1.0] + [0.0] * order # x[n-1] ... x[n-k] UpperCAmelCase : int =[0.0] * self.order # y[n-1] ... y[n-k] UpperCAmelCase : Any =[0.0] * self.order def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' if len(__UpperCamelCase ) < self.order: UpperCAmelCase : Tuple =[1.0, *a_coeffs] if len(__UpperCamelCase ) != self.order + 1: UpperCAmelCase : Union[str, Any] =( f'''Expected a_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(__UpperCamelCase )}''' ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != self.order + 1: UpperCAmelCase : List[Any] =( f'''Expected b_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(__UpperCamelCase )}''' ) raise ValueError(__UpperCamelCase ) UpperCAmelCase : int =a_coeffs UpperCAmelCase : Dict =b_coeffs def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) UpperCAmelCase : Dict =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0] UpperCAmelCase : Optional[Any] =self.input_history[:-1] UpperCAmelCase : List[Any] =self.output_history[:-1] UpperCAmelCase : List[Any] =sample UpperCAmelCase : str =result return result
348
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : def __init__( self :List[Any] , __UpperCamelCase :Tuple , __UpperCamelCase :List[str]=13 , __UpperCamelCase :Any=30 , __UpperCamelCase :int=2 , __UpperCamelCase :Union[str, Any]=3 , __UpperCamelCase :Union[str, Any]=True , __UpperCamelCase :Optional[int]=True , __UpperCamelCase :List[str]=32 , __UpperCamelCase :List[Any]=5 , __UpperCamelCase :Dict=4 , __UpperCamelCase :List[str]=37 , __UpperCamelCase :str="gelu" , __UpperCamelCase :Union[str, Any]=0.1 , __UpperCamelCase :List[Any]=0.1 , __UpperCamelCase :Tuple=10 , __UpperCamelCase :Tuple=0.02 , __UpperCamelCase :int=None , ): A = parent A = batch_size A = image_size A = patch_size A = num_channels A = is_training A = use_labels A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = type_sequence_label_size A = initializer_range A = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A = (image_size // patch_size) ** 2 A = num_patches + 1 def lowerCamelCase ( self :Any ): A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self :Union[str, Any] ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase ( self :Dict , __UpperCamelCase :Dict , __UpperCamelCase :Any , __UpperCamelCase :Any ): A = ViTMSNModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :List[str] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :Optional[Any] ): A = self.type_sequence_label_size A = ViTMSNForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , labels=__UpperCamelCase ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A = 1 A = ViTMSNForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase ( self :Optional[Any] ): A = self.prepare_config_and_inputs() A, A, A = config_and_inputs A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () UpperCamelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowerCamelCase ( self :Optional[int] ): A = ViTMSNModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def lowerCamelCase ( self :Any ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def lowerCamelCase ( self :Union[str, Any] ): pass def lowerCamelCase ( self :int ): A, A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def lowerCamelCase ( self :Tuple ): A, A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCamelCase ( self :List[str] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCamelCase ( self :Dict ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def lowerCamelCase ( self :List[Any] ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = ViTMSNModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def A__ ( ): A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self :Union[str, Any] ): return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def lowerCamelCase ( self :Any ): torch.manual_seed(2 ) A = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(__UpperCamelCase ) A = self.default_image_processor A = prepare_img() A = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): A = model(**__UpperCamelCase ) # verify the logits A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) A = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
292
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[Any] = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
223
def A__ ( lowerCamelCase , lowerCamelCase ) -> list: UpperCamelCase_: Optional[int] = word.split() def justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: Tuple = max_width - width UpperCamelCase_: Optional[Any] = len(lowerCamelCase ) if len(lowerCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCamelCase_: List[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCamelCase_: Optional[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCamelCase_: List[str] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCamelCase ): num_spaces_between_words_list[i] += 1 UpperCamelCase_: Dict = [] for i in range(lowerCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCamelCase ) UpperCamelCase_: Optional[int] = [] UpperCamelCase_: list[str] = [] UpperCamelCase_: List[str] = 0 for word in words: if width + len(lowerCamelCase ) + len(lowerCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCamelCase ) width += len(lowerCamelCase ) else: # justify the line and add it to result answer.append(justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) # reset new line and new width UpperCamelCase_, UpperCamelCase_: List[str] = [word], len(lowerCamelCase ) UpperCamelCase_: List[str] = max_width - width - len(lowerCamelCase ) answer.append(""" """.join(lowerCamelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
223
1
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _a ( __a ): __a : List[Any] = CustomTokenizer pass
34
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ :int = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :int = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = LEDConfig lowerCamelCase = {} lowerCamelCase = '''gelu''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=20 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=4 , ) -> List[Any]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =eos_token_id _lowerCAmelCase =pad_token_id _lowerCAmelCase =bos_token_id _lowerCAmelCase =attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _lowerCAmelCase =self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _lowerCAmelCase =( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCAmelCase =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCAmelCase =tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _lowerCAmelCase =prepare_led_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =tf.concat( [tf.zeros_like(__UpperCAmelCase )[:, :-1], tf.ones_like(__UpperCAmelCase )[:, -1:]] , axis=-1 , ) _lowerCAmelCase =global_attention_mask return config, inputs_dict def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =TFLEDModel(config=__UpperCAmelCase ).get_decoder() _lowerCAmelCase =inputs_dict["""input_ids"""] _lowerCAmelCase =input_ids[:1, :] _lowerCAmelCase =inputs_dict["""attention_mask"""][:1, :] _lowerCAmelCase =1 # first forward pass _lowerCAmelCase =model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase =ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCAmelCase =tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCAmelCase =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCAmelCase =model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] _lowerCAmelCase =model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCAmelCase =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCAmelCase =output_from_no_past[:, -3:, random_slice_idx] _lowerCAmelCase =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1e-3 ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ) -> Tuple: if attention_mask is None: _lowerCAmelCase =tf.cast(tf.math.not_equal(__UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCAmelCase =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCAmelCase =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowerCamelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowerCamelCase = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase = True lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =TFLEDModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Any: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =tf.zeros_like(inputs_dict["""attention_mask"""] ) _lowerCAmelCase =2 _lowerCAmelCase =tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) _lowerCAmelCase =True _lowerCAmelCase =self.model_tester.seq_length _lowerCAmelCase =self.model_tester.encoder_seq_length def check_decoder_attentions_output(__UpperCAmelCase ): _lowerCAmelCase =outputs.decoder_attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__UpperCAmelCase ): _lowerCAmelCase =[t.numpy() for t in outputs.encoder_attentions] _lowerCAmelCase =[t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _lowerCAmelCase =True _lowerCAmelCase =False _lowerCAmelCase =False _lowerCAmelCase =model_class(__UpperCAmelCase ) _lowerCAmelCase =model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) _lowerCAmelCase =len(__UpperCAmelCase ) self.assertEqual(config.output_hidden_states , __UpperCAmelCase ) check_encoder_attentions_output(__UpperCAmelCase ) if self.is_encoder_decoder: _lowerCAmelCase =model_class(__UpperCAmelCase ) _lowerCAmelCase =model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCAmelCase ) check_decoder_attentions_output(__UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCAmelCase =True _lowerCAmelCase =model_class(__UpperCAmelCase ) _lowerCAmelCase =model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCAmelCase ) check_encoder_attentions_output(__UpperCAmelCase ) # Check attention is always last and order is fine _lowerCAmelCase =True _lowerCAmelCase =True _lowerCAmelCase =model_class(__UpperCAmelCase ) _lowerCAmelCase =model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , __UpperCAmelCase ) check_encoder_attentions_output(__UpperCAmelCase ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def _lowerCAmelCase ( self ) -> List[str]: pass def _lowerCAmelCase ( self ) -> str: # TODO: Head-masking not yet implement pass def _lowerCamelCase(__UpperCamelCase ) -> Tuple: return tf.constant(__UpperCamelCase , dtype=tf.intaa ) __A = 1E-4 @slow @require_tf class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here _lowerCAmelCase =_long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) _lowerCAmelCase =_long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) _lowerCAmelCase =prepare_led_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =model(**__UpperCAmelCase )[0] _lowerCAmelCase =(1, 10_24, 7_68) self.assertEqual(output.shape , __UpperCAmelCase ) # change to expected output here _lowerCAmelCase =tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1e-3 ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here _lowerCAmelCase =_long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) _lowerCAmelCase =_long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) _lowerCAmelCase =prepare_led_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =model(**__UpperCAmelCase )[0] _lowerCAmelCase =(1, 10_24, model.config.vocab_size) self.assertEqual(output.shape , __UpperCAmelCase ) # change to expected output here _lowerCAmelCase =tf.convert_to_tensor( [[33.65_07, 6.4_5_7_2, 16.80_89], [5.8_7_3_9, -2.4_2_3_8, 11.29_02], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1e-3 , rtol=1e-3 )
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
'''simple docstring''' def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert column_title.isupper() A_ : Union[str, Any] = 0 A_ : Optional[Any] = len(_UpperCAmelCase ) - 1 A_ : Dict = 0 while index >= 0: A_ : List[Any] = (ord(column_title[index] ) - 6_4) * pow(2_6 , _UpperCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
344
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def a ( _UpperCAmelCase : Any , _UpperCAmelCase : Any=None ): '''simple docstring''' __UpperCAmelCase : Optional[int] = None if token is not None: __UpperCAmelCase : Optional[Any] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'Bearer {token}'} __UpperCAmelCase : List[str] = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' __UpperCAmelCase : Union[str, Any] = requests.get(_UpperCAmelCase , headers=_UpperCAmelCase ).json() __UpperCAmelCase : Union[str, Any] = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __UpperCAmelCase : List[Any] = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(_UpperCAmelCase ): __UpperCAmelCase : Optional[Any] = requests.get(url + f'&page={i + 2}' , headers=_UpperCAmelCase ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def a ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str]=None ): '''simple docstring''' __UpperCAmelCase : List[Any] = None if token is not None: __UpperCAmelCase : Tuple = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'Bearer {token}'} __UpperCAmelCase : int = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' __UpperCAmelCase : str = requests.get(_UpperCAmelCase , headers=_UpperCAmelCase ).json() __UpperCAmelCase : List[Any] = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) __UpperCAmelCase : str = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(_UpperCAmelCase ): __UpperCAmelCase : Dict = requests.get(url + f'&page={i + 2}' , headers=_UpperCAmelCase ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def a ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : str = None if token is not None: __UpperCAmelCase : str = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'Bearer {token}'} __UpperCAmelCase : int = requests.get(_UpperCAmelCase , headers=_UpperCAmelCase , allow_redirects=_UpperCAmelCase ) __UpperCAmelCase : Optional[int] = result.headers['''Location'''] __UpperCAmelCase : Optional[int] = requests.get(_UpperCAmelCase , allow_redirects=_UpperCAmelCase ) __UpperCAmelCase : int = os.path.join(_UpperCAmelCase , f'{artifact_name}.zip' ) with open(_UpperCAmelCase , '''wb''' ) as fp: fp.write(response.content ) def a ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]=None ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : int = [] __UpperCAmelCase : List[Any] = None with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_UpperCAmelCase ) as f: for line in f: __UpperCAmelCase : Tuple = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __UpperCAmelCase : int = line[: line.index(''': ''' )] __UpperCAmelCase : Any = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed __UpperCAmelCase : str = line[len('''FAILED ''' ) :] failed_tests.append(_UpperCAmelCase ) elif filename == "job_name.txt": __UpperCAmelCase : Tuple = line if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( f'`errors` and `failed_tests` should have the same number of elements. Got {len(_UpperCAmelCase )} for `errors` ' f'and {len(_UpperCAmelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' ''' problem.''' ) __UpperCAmelCase : str = None if job_name and job_links: __UpperCAmelCase : Any = job_links.get(_UpperCAmelCase , _UpperCAmelCase ) # A list with elements of the form (line of error, error, failed test) __UpperCAmelCase : Dict = [x + [y] + [job_link] for x, y in zip(_UpperCAmelCase , _UpperCAmelCase )] return result def a ( _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=None ): '''simple docstring''' __UpperCAmelCase : str = [] __UpperCAmelCase : str = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(_UpperCAmelCase , job_links=_UpperCAmelCase ) ) return errors def a ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any]=None ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Counter() counter.update([x[1] for x in logs] ) __UpperCAmelCase : Dict = counter.most_common() __UpperCAmelCase : int = {} for error, count in counts: if error_filter is None or error not in error_filter: __UpperCAmelCase : Tuple = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} __UpperCAmelCase : Union[str, Any] = dict(sorted(r.items() , key=lambda _UpperCAmelCase : item[1]["count"] , reverse=_UpperCAmelCase ) ) return r def a ( _UpperCAmelCase : Dict ): '''simple docstring''' __UpperCAmelCase : List[str] = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): __UpperCAmelCase : Optional[int] = test.split('''/''' )[2] else: __UpperCAmelCase : Optional[Any] = None return test def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int=None ): '''simple docstring''' __UpperCAmelCase : Dict = [(x[0], x[1], get_model(x[2] )) for x in logs] __UpperCAmelCase : int = [x for x in logs if x[2] is not None] __UpperCAmelCase : Tuple = {x[2] for x in logs} __UpperCAmelCase : List[str] = {} for test in tests: __UpperCAmelCase : List[str] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __UpperCAmelCase : Tuple = counter.most_common() __UpperCAmelCase : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __UpperCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: __UpperCAmelCase : Tuple = {'''count''': n_errors, '''errors''': error_counts} __UpperCAmelCase : Optional[int] = dict(sorted(r.items() , key=lambda _UpperCAmelCase : item[1]["count"] , reverse=_UpperCAmelCase ) ) return r def a ( _UpperCAmelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = '''| no. | error | status |''' __UpperCAmelCase : List[str] = '''|-:|:-|:-|''' __UpperCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: __UpperCAmelCase : Tuple = reduced_by_error[error]['''count'''] __UpperCAmelCase : int = f'| {count} | {error[:1_00]} | |' lines.append(_UpperCAmelCase ) return "\n".join(_UpperCAmelCase ) def a ( _UpperCAmelCase : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''| model | no. of errors | major error | count |''' __UpperCAmelCase : List[Any] = '''|-:|-:|-:|-:|''' __UpperCAmelCase : Tuple = [header, sep] for model in reduced_by_model: __UpperCAmelCase : List[Any] = reduced_by_model[model]['''count'''] __UpperCAmelCase , __UpperCAmelCase : int = list(reduced_by_model[model]['''errors'''].items() )[0] __UpperCAmelCase : Dict = f'| {model} | {count} | {error[:60]} | {_count} |' lines.append(_UpperCAmelCase ) return "\n".join(_UpperCAmelCase ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") __A =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __A =get_job_links(args.workflow_run_id, token=args.token) __A ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __A =k.find(" / ") __A =k[index + len(" / ") :] __A =v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __A =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __A =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __A =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __A =counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __A =reduce_by_error(errors) __A =reduce_by_model(errors) __A =make_github_table(reduced_by_error) __A =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
226
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase_ = logging.get_logger(__name__) # TODO: upload to AWS UpperCamelCase_ = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): a_ : List[Any] = """retribert""" def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=8 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=1_28 , __UpperCAmelCase=0 , **__UpperCAmelCase , ) ->int: super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = share_encoders a_ = projection_dim
369
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def UpperCAmelCase__ ( self :List[Any] ) -> Dict: UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = 8 # DPR tok UpperCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] UpperCAmelCase = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) UpperCAmelCase = os.path.join(lowercase_ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok UpperCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCAmelCase = {'unk_token': '<unk>'} UpperCAmelCase = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) UpperCAmelCase = os.path.join(lowercase_ , BART_VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase = os.path.join(lowercase_ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase_ ) ) def UpperCAmelCase__ ( self :int ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def UpperCAmelCase__ ( self :List[Any] ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def UpperCAmelCase__ ( self :Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def UpperCAmelCase__ ( self :Optional[int] ) -> int: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self :List[Any] ) -> str: UpperCAmelCase = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def UpperCAmelCase__ ( self :Tuple ) -> Union[str, Any]: UpperCAmelCase = self.get_dummy_dataset() UpperCAmelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: UpperCAmelCase = dataset UpperCAmelCase = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def UpperCAmelCase__ ( self :Tuple , lowercase_ :bool ) -> Optional[int]: UpperCAmelCase = self.get_dummy_dataset() UpperCAmelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: UpperCAmelCase = os.path.join(self.tmpdirname , 'dataset' ) UpperCAmelCase = os.path.join(self.tmpdirname , 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) ) del dataset UpperCAmelCase = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: UpperCAmelCase = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , lowercase_ ) , ) return retriever def UpperCAmelCase__ ( self :List[str] ) -> Union[str, Any]: UpperCAmelCase = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) ) UpperCAmelCase = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' ) UpperCAmelCase = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(lowercase_ , open(lowercase_ , 'wb' ) ) UpperCAmelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) UpperCAmelCase = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def UpperCAmelCase__ ( self :Optional[Any] ) -> Dict: UpperCAmelCase = 1 UpperCAmelCase = self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self :Dict ) -> Optional[int]: UpperCAmelCase = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: UpperCAmelCase = self.get_dummy_dataset() retriever.save_pretrained(lowercase_ ) UpperCAmelCase = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self :int ) -> List[str]: UpperCAmelCase = 1 UpperCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> Optional[int]: UpperCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowercase_ ) UpperCAmelCase = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self :List[Any] ) -> Any: UpperCAmelCase = 1 UpperCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> int: UpperCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowercase_ ) UpperCAmelCase = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self :List[str] ) -> Optional[Any]: UpperCAmelCase = 1 UpperCAmelCase = self.get_dummy_legacy_index_retriever() UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self :List[str] ) -> Tuple: UpperCAmelCase = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowercase_ ) UpperCAmelCase = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase__ ( self :Optional[Any] ) -> List[Any]: import torch UpperCAmelCase = 1 UpperCAmelCase = self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase = [[5, 7], [10, 11]] UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase = retriever(lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertIsInstance(lowercase_ , np.ndarray ) UpperCAmelCase = retriever( lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ , return_tensors='pt' , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowercase_ , torch.Tensor ) self.assertIsInstance(lowercase_ , torch.Tensor ) self.assertIsInstance(lowercase_ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase__ ( self :List[Any] ) -> Dict: UpperCAmelCase = self.get_dpr_ctx_encoder_tokenizer() UpperCAmelCase = 1 UpperCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) retriever.set_ctx_encoder_tokenizer(lowercase_ ) UpperCAmelCase = [[5, 7], [10, 11]] UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase = retriever(lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ ) self.assertEqual( len(lowercase_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , lowercase_ ) # check for doc token related keys in dictionary.
78
"""simple docstring""" class A_ : """simple docstring""" def __init__( self :List[Any] , lowercase_ :int ) -> None: UpperCAmelCase = size UpperCAmelCase = [0] * size UpperCAmelCase = [0] * size @staticmethod def UpperCAmelCase__ ( lowercase_ :int ) -> int: return index | (index + 1) @staticmethod def UpperCAmelCase__ ( lowercase_ :int ) -> int: return (index & (index + 1)) - 1 def UpperCAmelCase__ ( self :Any , lowercase_ :int , lowercase_ :int ) -> None: UpperCAmelCase = value while index < self.size: UpperCAmelCase = self.get_prev(lowercase_ ) + 1 if current_left_border == index: UpperCAmelCase = value else: UpperCAmelCase = max(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = self.get_next(lowercase_ ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :int , lowercase_ :int ) -> int: right -= 1 # Because of right is exclusive UpperCAmelCase = 0 while left <= right: UpperCAmelCase = self.get_prev(lowercase_ ) if left <= current_left: UpperCAmelCase = max(lowercase_ , self.tree[right] ) UpperCAmelCase = current_left else: UpperCAmelCase = max(lowercase_ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
78
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def snake_case (__lowercase , __lowercase , __lowercase ) -> Any: '''simple docstring''' _snake_case : int = OmegaConf.load(__lowercase ) _snake_case : Tuple = torch.load(__lowercase , map_location="cpu" )["model"] _snake_case : Dict = list(state_dict.keys() ) # extract state_dict for VQVAE _snake_case : Any = {} _snake_case : List[str] = "first_stage_model." for key in keys: if key.startswith(__lowercase ): _snake_case : List[str] = state_dict[key] # extract state_dict for UNetLDM _snake_case : Optional[Any] = {} _snake_case : Tuple = "model.diffusion_model." for key in keys: if key.startswith(__lowercase ): _snake_case : Any = state_dict[key] _snake_case : Union[str, Any] = config.model.params.first_stage_config.params _snake_case : Any = config.model.params.unet_config.params _snake_case : List[str] = VQModel(**__lowercase ).eval() vqvae.load_state_dict(__lowercase ) _snake_case : Union[str, Any] = UNetLDMModel(**__lowercase ).eval() unet.load_state_dict(__lowercase ) _snake_case : str = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowercase , ) _snake_case : str = LDMPipeline(__lowercase , __lowercase , __lowercase ) pipeline.save_pretrained(__lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) __SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
284
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) @dataclass class lowercase_ ( __snake_case ): _lowerCamelCase = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **lowercase_ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _snake_case : List[str] = deprecated_arg[3:] _snake_case : Optional[int] = not kwargs.pop(lowercase_ ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) _snake_case : Tuple = kwargs.pop("tpu_name" , self.tpu_name ) _snake_case : Any = kwargs.pop("device_idx" , self.device_idx ) _snake_case : List[str] = kwargs.pop("eager_mode" , self.eager_mode ) _snake_case : List[str] = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**lowercase_ ) _lowerCamelCase = field( default=__snake_case , metadata={'help': 'Name of TPU'} , ) _lowerCamelCase = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) _lowerCamelCase = field(default=__snake_case , metadata={'help': 'Benchmark models in eager model.'} ) _lowerCamelCase = field( default=__snake_case , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) _snake_case : str = None if self.tpu: try: if self.tpu_name: _snake_case : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _snake_case : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _snake_case : Union[str, Any] = None return tpu @cached_property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _snake_case : List[str] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) _snake_case : Any = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU _snake_case : Any = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def UpperCamelCase ( self ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase ( self ): return self.n_gpu > 0
284
1
'''simple docstring''' from PIL import Image def UpperCAmelCase_ ( __lowerCamelCase : Image ,__lowerCamelCase : float ): def brightness(__lowerCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -255.0 <= level <= 255.0: raise ValueError("level must be between -255.0 (black) and 255.0 (white)" ) return img.point(__lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowerCAmelCase : int =change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
223
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : int = 1_00 ): lowercase_ :Tuple = n * (n + 1) * (2 * n + 1) / 6 lowercase_ :List[str] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'''{solution() = }''')
223
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MobileNetV2FeatureExtractor'''] __UpperCamelCase = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = ShapEImgaImgPipeline SCREAMING_SNAKE_CASE_ : Any = ["""image"""] SCREAMING_SNAKE_CASE_ : Optional[int] = ["""image"""] SCREAMING_SNAKE_CASE_ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] SCREAMING_SNAKE_CASE_ : Any = False @property def __A ( self ) -> Tuple: return 32 @property def __A ( self ) -> Optional[int]: return 32 @property def __A ( self ) -> List[str]: return self.time_input_dim * 4 @property def __A ( self ) -> Union[str, Any]: return 8 @property def __A ( self ) -> Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE = CLIPVisionModel(lowerCAmelCase__ ) return model @property def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = CLIPImageProcessor( crop_size=224 , do_center_crop=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def __A ( self ) -> str: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } SCREAMING_SNAKE_CASE = PriorTransformer(**lowerCAmelCase__ ) return model @property def __A ( self ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE = ShapERenderer(**lowerCAmelCase__ ) return model def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = self.dummy_prior SCREAMING_SNAKE_CASE = self.dummy_image_encoder SCREAMING_SNAKE_CASE = self.dummy_image_processor SCREAMING_SNAKE_CASE = self.dummy_renderer SCREAMING_SNAKE_CASE = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> List[str]: SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = output.images[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Union[str, Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = torch_device == 'cpu' SCREAMING_SNAKE_CASE = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) SCREAMING_SNAKE_CASE = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
38
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Dict: if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) _snake_case = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) ) return round(_SCREAMING_SNAKE_CASE , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
42
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase = TypeVar('T') __lowerCAmelCase = Union[List[T], Tuple[T, ...]] __lowerCAmelCase = Union[T, List[T], Dict[str, T]] __lowerCAmelCase = Union[str, bytes, os.PathLike]
341
0
from math import sqrt def __lowerCamelCase ( snake_case__ = 1_00_00_00 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(snake_case__ ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"{solution() = }")
125
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCamelCase = get_logger(__name__) class __UpperCAmelCase : __snake_case : Tuple = "dummy_data" __snake_case : List[Any] = "datasets" __snake_case : List[Any] = False def __init__( self: Any , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Union[Version, str] , UpperCAmelCase_: Optional[str] = None , UpperCAmelCase_: bool = False , UpperCAmelCase_: bool = True , UpperCAmelCase_: Optional[List[Callable]] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = dataset_name _SCREAMING_SNAKE_CASE = cache_dir _SCREAMING_SNAKE_CASE = use_local_dummy_data _SCREAMING_SNAKE_CASE = config # download_callbacks take a single url as input _SCREAMING_SNAKE_CASE = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _SCREAMING_SNAKE_CASE = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _SCREAMING_SNAKE_CASE = str(UpperCAmelCase_ ) # to be downloaded _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None @property def UpperCamelCase ( self: List[str] ): '''simple docstring''' if self._dummy_file is None: _SCREAMING_SNAKE_CASE = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _SCREAMING_SNAKE_CASE = cached_path( UpperCAmelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCAmelCase_ , force_extract=UpperCAmelCase_ ) return os.path.join(UpperCAmelCase_ , self.dummy_file_name ) @property def UpperCamelCase ( self: Any ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' if self._bucket_url is None: _SCREAMING_SNAKE_CASE = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def UpperCamelCase ( self: List[str] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def UpperCamelCase ( self: str , UpperCAmelCase_: str , *UpperCAmelCase_: Dict ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _SCREAMING_SNAKE_CASE = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _SCREAMING_SNAKE_CASE = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return self.create_dummy_data_dict(UpperCAmelCase_ , UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , (list, tuple) ): return self.create_dummy_data_list(UpperCAmelCase_ , UpperCAmelCase_ ) else: return self.create_dummy_data_single(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: int , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Any ): '''simple docstring''' return self.download_and_extract(UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' return self.download_and_extract(UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Dict , *UpperCAmelCase_: Tuple , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' return path def UpperCamelCase ( self: str ): '''simple docstring''' return {} def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): for single_url in single_urls: download_callback(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = single_urls download_callback(UpperCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = [os.path.join(UpperCAmelCase_ , urllib.parse.quote_plus(Path(UpperCAmelCase_ ).name ) ) for x in single_urls] else: _SCREAMING_SNAKE_CASE = single_urls _SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase_ , urllib.parse.quote_plus(Path(UpperCAmelCase_ ).name ) ) _SCREAMING_SNAKE_CASE = value # make sure that values are unique if all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _SCREAMING_SNAKE_CASE = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase ( self: int , UpperCAmelCase_: Dict , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _SCREAMING_SNAKE_CASE = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCAmelCase_ ) ) for url in data_url ) _SCREAMING_SNAKE_CASE = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _SCREAMING_SNAKE_CASE = [data_url[0]] * len(UpperCAmelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(UpperCAmelCase_ ) return dummy_data_list def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Dict , UpperCAmelCase_: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(UpperCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(UpperCAmelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' def _iter_archive_members(UpperCAmelCase_: Any ): # this preserves the order of the members inside the ZIP archive _SCREAMING_SNAKE_CASE = Path(self.dummy_file ).parent _SCREAMING_SNAKE_CASE = path.relative_to(UpperCAmelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _SCREAMING_SNAKE_CASE = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = Path(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = _iter_archive_members(UpperCAmelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(UpperCAmelCase_ ).as_posix(), file_path.open("""rb""" ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: List[Any] ): '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = [paths] for path in paths: if os.path.isfile(UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(UpperCAmelCase_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
125
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self , *lowercase , **lowercase ): """simple docstring""" requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCAmelCase_ ( cls , *lowercase , **lowercase ): """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCAmelCase_ ( cls , *lowercase , **lowercase ): """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
140
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[Any] , _A : TransformeraDModel , _A : AutoencoderKL , _A : KarrasDiffusionSchedulers , _A : Optional[Dict[int, str]] = None , ): """simple docstring""" super().__init__() self.register_modules(transformer=_A , vae=_A , scheduler=_A ) # create a imagenet -> id dictionary for easier use __SCREAMING_SNAKE_CASE : Optional[int] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = int(_A ) __SCREAMING_SNAKE_CASE : List[str] = dict(sorted(self.labels.items() ) ) def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, List[str]] ): """simple docstring""" if not isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Union[str, Any] = list(_A ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Dict , _A : List[int] , _A : float = 4.0 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : int = 50 , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = len(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.transformer.config.sample_size __SCREAMING_SNAKE_CASE : List[Any] = self.transformer.config.in_channels __SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_A , device=self.device , dtype=self.transformer.dtype , ) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(_A , device=self.device ).reshape(-1 ) __SCREAMING_SNAKE_CASE : Any = torch.tensor([1000] * batch_size , device=self.device ) __SCREAMING_SNAKE_CASE : Any = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input[: len(_A ) // 2] __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half, half] , dim=0 ) __SCREAMING_SNAKE_CASE : int = self.scheduler.scale_model_input(_A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = t if not torch.is_tensor(_A ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __SCREAMING_SNAKE_CASE : Any = latent_model_input.device.type == '''mps''' if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.floataa if is_mps else torch.floataa else: __SCREAMING_SNAKE_CASE : int = torch.intaa if is_mps else torch.intaa __SCREAMING_SNAKE_CASE : int = torch.tensor([timesteps] , dtype=_A , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE : Optional[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __SCREAMING_SNAKE_CASE : Optional[int] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __SCREAMING_SNAKE_CASE : Union[str, Any] = self.transformer( _A , timestep=_A , class_labels=_A ).sample # perform guidance if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = torch.split(_A , len(_A ) // 2 , dim=0 ) __SCREAMING_SNAKE_CASE : str = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half_eps, half_eps] , dim=0 ) __SCREAMING_SNAKE_CASE : List[str] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = torch.split(_A , _A , dim=1 ) else: __SCREAMING_SNAKE_CASE : List[Any] = noise_pred # compute previous image: x_t -> x_t-1 __SCREAMING_SNAKE_CASE : str = self.scheduler.step(_A , _A , _A ).prev_sample if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = latent_model_input.chunk(2 , dim=0 ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input __SCREAMING_SNAKE_CASE : List[Any] = 1 / self.vae.config.scaling_factor * latents __SCREAMING_SNAKE_CASE : List[str] = self.vae.decode(_A ).sample __SCREAMING_SNAKE_CASE : Any = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : int = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : str = self.numpy_to_pil(_A ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_A )
303
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ : Any = logging.get_logger(__name__) class _snake_case ( A__ ): _lowercase : Union[str, Any] = ['''pixel_values'''] def __init__( self , a = True , a = None , a = PIL.Image.BICUBIC , a = True , a = None , a = 1 / 255 , a = True , a = True , a = None , a = None , **a , ) -> None: super().__init__(**a) SCREAMING_SNAKE_CASE = size if size is not None else {'height': 256, 'width': 256} SCREAMING_SNAKE_CASE = get_size_dict(a) SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE = get_size_dict(a , param_name='crop_size') SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = resample SCREAMING_SNAKE_CASE = do_center_crop SCREAMING_SNAKE_CASE = crop_size SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE__ ( self , a , a , a = PIL.Image.BICUBIC , a = None , **a , ) -> np.ndarray: SCREAMING_SNAKE_CASE = get_size_dict(a) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''') return resize( a , size=(size['height'], size['width']) , resample=a , data_format=a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a , ) -> np.ndarray: SCREAMING_SNAKE_CASE = get_size_dict(a) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''') return center_crop(a , size=(size['height'], size['width']) , data_format=a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a , ) -> str: return rescale(a , scale=a , data_format=a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a = None , **a , ) -> np.ndarray: return normalize(a , mean=a , std=a , data_format=a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a=None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image: SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE = size if size is not None else self.size SCREAMING_SNAKE_CASE = get_size_dict(a) SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE = get_size_dict(a , param_name='crop_size') SCREAMING_SNAKE_CASE = make_list_of_images(a) if not valid_images(a): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images] if do_resize: SCREAMING_SNAKE_CASE = [self.resize(image=a , size=a , resample=a) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE = [self.center_crop(image=a , size=a) for image in images] if do_rescale: SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images] if do_normalize: SCREAMING_SNAKE_CASE = [self.normalize(image=a , mean=a , std=a) for image in images] SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images] SCREAMING_SNAKE_CASE = {'pixel_values': images} return BatchFeature(data=a , tensor_type=a)
355
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint a_ : Optional[int] = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } a_ : Optional[int] = { '169M': 7_68, '430M': 10_24, '1B5': 20_48, '3B': 25_60, '7B': 40_96, '14B': 51_20, } def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = list(state_dict.keys()) for name in state_dict_keys: SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCAmelCase) # emb -> embedding if name.startswith('emb.'): SCREAMING_SNAKE_CASE = name.replace('emb.' , 'embeddings.') # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0'): SCREAMING_SNAKE_CASE = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln') # att -> attention SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , _UpperCAmelCase) # ffn -> feed_forward SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , _UpperCAmelCase) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k'): SCREAMING_SNAKE_CASE = name.replace('.time_mix_k' , '.time_mix_key') # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v'): SCREAMING_SNAKE_CASE = name.replace('.time_mix_v' , '.time_mix_value') # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r'): SCREAMING_SNAKE_CASE = name.replace('.time_mix_r' , '.time_mix_receptance') if name != "head.weight": SCREAMING_SNAKE_CASE = 'rwkv.' + name SCREAMING_SNAKE_CASE = weight return state_dict def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=None): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.') SCREAMING_SNAKE_CASE = 5_0277 SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b') else: SCREAMING_SNAKE_CASE = PreTrainedTokenizerFast(tokenizer_file=_UpperCAmelCase) SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) tokenizer.save_pretrained(_UpperCAmelCase) # 2. Build the config SCREAMING_SNAKE_CASE = list(NUM_HIDDEN_LAYERS_MAPPING.keys()) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: SCREAMING_SNAKE_CASE = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.') if size not in possible_sizes: raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''') SCREAMING_SNAKE_CASE = RwkvConfig( vocab_size=_UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_UpperCAmelCase) # 3. Download model file then convert state_dict SCREAMING_SNAKE_CASE = hf_hub_download(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu') SCREAMING_SNAKE_CASE = convert_state_dict(_UpperCAmelCase) # 4. Split in shards and save SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = shard_checkpoint(_UpperCAmelCase) for shard_file, shard in shards.items(): torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase)) if index is not None: SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase) # Save the index as well with open(_UpperCAmelCase , 'w' , encoding='utf-8') as f: SCREAMING_SNAKE_CASE = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + '\n' f.write(_UpperCAmelCase) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.') SCREAMING_SNAKE_CASE = list(shards.keys()) del state_dict del shards gc.collect() for shard_file in shard_files: SCREAMING_SNAKE_CASE = torch.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase)) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCAmelCase , _UpperCAmelCase)) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.') SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase) model.push_to_hub(_UpperCAmelCase , max_shard_size='2GB') tokenizer.push_to_hub(_UpperCAmelCase) if __name__ == "__main__": a_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) a_ : Tuple = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
327
0