code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : bytes ) -> Optional[Any]: """simple docstring""" return "".join([hex(__lowerCamelCase )[2:].zfill(2 ).upper() for byte in list(__lowerCamelCase )] ) def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> str: """simple docstring""" if (len(__lowerCamelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__lowerCamelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(__lowerCamelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
224
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _lowercase : Tuple = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = ['pixel_values'] def __init__( self : Optional[Any], lowerCamelCase : bool = True, lowerCamelCase : Union[int, float] = 1 / 255, lowerCamelCase : bool = True, lowerCamelCase : int = 8, **lowerCamelCase : Tuple, )-> None: super().__init__(**lowerCamelCase ) lowerCamelCase__ : int =do_rescale lowerCamelCase__ : Dict =rescale_factor lowerCamelCase__ : Union[str, Any] =do_pad lowerCamelCase__ : Union[str, Any] =pad_size def snake_case ( self : int, lowerCamelCase : np.ndarray, lowerCamelCase : float, lowerCamelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCamelCase : int )-> np.ndarray: return rescale(lowerCamelCase, scale=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase ) def snake_case ( self : Optional[Any], lowerCamelCase : np.ndarray, lowerCamelCase : int, lowerCamelCase : Optional[Union[str, ChannelDimension]] = None )-> List[Any]: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =get_image_size(lowerCamelCase ) lowerCamelCase__ : List[str] =(old_height // size + 1) * size - old_height lowerCamelCase__ : List[str] =(old_width // size + 1) * size - old_width return pad(lowerCamelCase, ((0, pad_height), (0, pad_width)), mode='''symmetric''', data_format=lowerCamelCase ) def snake_case ( self : List[Any], lowerCamelCase : ImageInput, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[float] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, lowerCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST, **lowerCamelCase : Union[str, Any], )-> Dict: lowerCamelCase__ : List[str] =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Tuple =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : str =do_pad if do_pad is not None else self.do_pad lowerCamelCase__ : int =pad_size if pad_size is not None else self.pad_size lowerCamelCase__ : Optional[int] =make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowerCamelCase__ : Tuple =[to_numpy_array(lowerCamelCase ) for image in images] if do_rescale: lowerCamelCase__ : Tuple =[self.rescale(image=lowerCamelCase, scale=lowerCamelCase ) for image in images] if do_pad: lowerCamelCase__ : Tuple =[self.pad(lowerCamelCase, size=lowerCamelCase ) for image in images] lowerCamelCase__ : int =[to_channel_dimension_format(lowerCamelCase, lowerCamelCase ) for image in images] lowerCamelCase__ : Dict ={'''pixel_values''': images} return BatchFeature(data=lowerCamelCase, tensor_type=lowerCamelCase )
238
0
"""simple docstring""" def lowerCAmelCase_ ( __A, __A, __A, __A ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = [False] * len(__A ) UpperCAmelCase__ = [] queue.append(__A ) UpperCAmelCase__ = True while queue: UpperCAmelCase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__A ) UpperCAmelCase__ = True UpperCAmelCase__ = u return visited[t] def lowerCAmelCase_ ( __A, __A, __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = [-1] * (len(__A )) UpperCAmelCase__ = 0 while bfs(__A, __A, __A, __A ): UpperCAmelCase__ = float("Inf" ) UpperCAmelCase__ = sink while s != source: # Find the minimum value in select path UpperCAmelCase__ = min(__A, graph[parent[s]][s] ) UpperCAmelCase__ = parent[s] max_flow += path_flow UpperCAmelCase__ = sink while v != source: UpperCAmelCase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase__ = parent[v] return max_flow UpperCamelCase__ = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] UpperCamelCase__ , UpperCamelCase__ = 0, 5 print(ford_fulkerson(graph, source, sink))
350
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = 'facebook/bart-large-mnli' __UpperCAmelCase : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) __UpperCAmelCase : Optional[int] = 'text_classifier' __UpperCAmelCase : int = AutoTokenizer __UpperCAmelCase : Dict = AutoModelForSequenceClassification __UpperCAmelCase : int = ['text', ['text']] __UpperCAmelCase : Optional[int] = ['text'] def lowercase_ (self : List[Any] ) -> List[str]: """simple docstring""" super().setup() UpperCAmelCase__ = self.model.config UpperCAmelCase__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): UpperCAmelCase__ = int(__UpperCAmelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = labels return self.pre_processor( [text] * len(__UpperCAmelCase ) , [f"""This example is {label}""" for label in labels] , return_tensors="pt" , padding="max_length" , ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = outputs.logits UpperCAmelCase__ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
143
0
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowercase__ = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) lowercase__ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) lowercase__ = BeautifulSoup(res.text, 'html.parser') lowercase__ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"https://google.com{link.get('href')}")
290
'''simple docstring''' import warnings from functools import wraps from typing import Callable def UpperCamelCase_( snake_case : Callable ): '''simple docstring''' @wraps(snake_case ) def _inner_fn(*snake_case : Optional[int] , **snake_case : List[Any] ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , snake_case , ) return fn(*snake_case , **snake_case ) return _inner_fn
85
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCamelCase : @staticmethod def snake_case_ (*__a , **__a ) -> List[str]: pass @is_pipeline_test @require_vision class _lowerCamelCase ( unittest.TestCase ): @require_torch def snake_case_ (self ) -> Optional[int]: UpperCamelCase = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase = image_classifier(__a , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__a ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) UpperCamelCase = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__a ) , [ [ {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, ], [ {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, ], [ {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, ], [ {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, ], [ {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, ], ] , ) @require_tf def snake_case_ (self ) -> Tuple: UpperCamelCase = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase = image_classifier(__a , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(__a ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) UpperCamelCase = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__a ) , [ [ {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, ], [ {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, ], [ {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, ], [ {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, ], [ {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, {"score": 0.333, "label": ANY(__a )}, ], ] , ) @slow @require_torch def snake_case_ (self ) -> List[str]: UpperCamelCase = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase = image_classifier(__a , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__a ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) UpperCamelCase = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__a ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def snake_case_ (self ) -> Optional[int]: UpperCamelCase = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase = image_classifier(__a , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__a ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) UpperCamelCase = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__a ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
244
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
244
1
'''simple docstring''' def __lowerCamelCase ( A__ , A__ ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCamelCase = str(bin(A__ ) )[2:] # remove the leading "0b" UpperCamelCase = str(bin(A__ ) )[2:] # remove the leading "0b" UpperCamelCase = max(len(A__ ) , len(A__ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(A__ ) , b_binary.zfill(A__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
28
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> bool: lowerCamelCase__ : Union[str, Any] = [int(UpperCamelCase ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(UpperCamelCase ) == 4 and all(0 <= int(UpperCamelCase ) <= 254 for octet in octets ) if __name__ == "__main__": _A : List[str] =input().strip() _A : Any ='''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(F'{ip} is a {valid_or_invalid} IP v4 address.')
360
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Any = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] lowerCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase__ : Union[str, Any] = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], """do_convert_rgb""": True, } lowerCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] , **UpperCamelCase__: Optional[int] ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Any , **UpperCamelCase__: List[str] ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: str , **UpperCamelCase__: int ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Tuple = self.get_tokenizer() lowerCamelCase__ : Any = self.get_rust_tokenizer() lowerCamelCase__ : str = self.get_image_processor() lowerCamelCase__ : str = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__ : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) lowerCamelCase__ : Any = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__ : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Optional[int] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : str = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) lowerCamelCase__ : Optional[int] = self.get_image_processor(do_normalize=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=UpperCamelCase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Optional[Any] = self.get_image_processor() lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : int = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Tuple = self.prepare_image_inputs() lowerCamelCase__ : str = image_processor(UpperCamelCase__ , return_tensors="""np""" ) lowerCamelCase__ : Optional[int] = processor(images=UpperCamelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : int = self.get_image_processor() lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__ : Optional[Any] = processor(text=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Optional[int] = self.get_image_processor() lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : Optional[Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Dict = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__ : Any = self.prepare_image_inputs() lowerCamelCase__ : Optional[int] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : Any = processor.batch_decode(UpperCamelCase__ ) lowerCamelCase__ : int = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : int = self.get_tokenizer() lowerCamelCase__ : Optional[Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__ : Tuple = self.prepare_image_inputs() lowerCamelCase__ : str = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
129
0
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Union[str, Any]: if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Tuple = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: lowerCamelCase__ : Union[str, Any] = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: lowerCamelCase__ : Any = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): lowerCamelCase__ : int = [element for element in set_a if element in set_b] if alternative_union: lowerCamelCase__ : int = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: lowerCamelCase__ : Dict = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = {"""a""", """b""", """c""", """d""", """e"""} _UpperCAmelCase : Tuple = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
50
'''simple docstring''' def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[str] = abs(UpperCAmelCase_ ) _UpperCamelCase : int = 0 while n > 0: res += n % 1_0 n //= 1_0 return res def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[Any] = abs(UpperCAmelCase_ ) return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 ) def A__ ( UpperCAmelCase_ ): return sum(int(UpperCAmelCase_ ) for c in str(abs(UpperCAmelCase_ ) ) ) def A__ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCAmelCase_ , UpperCAmelCase_ ) -> None: _UpperCamelCase : str = f'{func.__name__}({value})' _UpperCamelCase : Tuple = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(UpperCAmelCase_ )} -- {timing:.4f} seconds' ) for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(UpperCAmelCase_ , UpperCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
83
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class A : def __init__( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=13 , lowerCAmelCase_ : Optional[Any]=10 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : int=37 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Dict=10 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Union[str, Any]=0.9 , lowerCAmelCase_ : str=None , ) -> int: """simple docstring""" _a = parent _a = batch_size _a = image_size _a = num_channels _a = patch_size _a = tubelet_size _a = num_frames _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = mask_ratio _a = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _a = (image_size // patch_size) ** 2 _a = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _a = int(mask_ratio * self.seq_length ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _a = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" _a = VideoMAEModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = VideoMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _a = torch.ones((self.num_masks,) ) _a = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _a = mask.expand(self.batch_size , -1 ).bool() _a = model(lowerCAmelCase_ , lowerCAmelCase_ ) # model only returns predictions for masked patches _a = mask.sum().item() _a = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( _a ,_a ,unittest.TestCase ): lowercase_ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase_ = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _a = VideoMAEModelTester(self ) _a = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False ) -> Tuple: """simple docstring""" _a = copy.deepcopy(lowerCAmelCase_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _a = torch.ones((self.model_tester.num_masks,) ) _a = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _a = mask.expand(self.model_tester.batch_size , -1 ).bool() _a = bool_masked_pos.to(lowerCAmelCase_ ) if return_labels: if model_class in [ *get_values(lowerCAmelCase_ ), ]: _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def __lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" pass def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def __lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) @slow def __lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = VideoMAEModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" if not self.has_attentions: pass else: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True for model_class in self.all_model_classes: _a = self.model_tester.seq_length - self.model_tester.num_masks _a = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _a = True _a = False _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _a = len(lowerCAmelCase_ ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase_ ) ) _a = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ): _a = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = outputs.hidden_states _a = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _a = self.model_tester.seq_length - self.model_tester.num_masks _a = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def snake_case_ (): '''simple docstring''' _a = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) _a = np.load(UpperCamelCase ) return list(UpperCamelCase ) @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _a = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( lowerCAmelCase_ ) _a = self.default_image_processor _a = prepare_video() _a = image_processor(lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _a = model(**lowerCAmelCase_ ) # verify the logits _a = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _a = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(lowerCAmelCase_ ) _a = self.default_image_processor _a = prepare_video() _a = image_processor(lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # add boolean mask, indicating which patches to mask _a = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) _a = torch.load(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _a = model(**lowerCAmelCase_ ) # verify the logits _a = torch.Size([1, 14_08, 15_36] ) _a = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=lowerCAmelCase_ ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _a = torch.tensor([0.5_1_4_2] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _a = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=lowerCAmelCase_ ).to( lowerCAmelCase_ ) with torch.no_grad(): _a = model(**lowerCAmelCase_ ) _a = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) )
356
'''simple docstring''' def snake_case_ (UpperCamelCase : str , UpperCamelCase : Any ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def snake_case_ (UpperCamelCase : Any , UpperCamelCase : str=0 ): '''simple docstring''' return sorted(UpperCamelCase , key=lambda UpperCamelCase : x[column] ) def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Union[str, Any]=float('''inf''' ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , UpperCamelCase ): _a = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _a = current_dis return min_dis def snake_case_ (UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : List[str]=float('''inf''' ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , UpperCamelCase ): for j in range(max(0 , i - 6 ) , UpperCamelCase ): _a = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _a = current_dis return min_dis def snake_case_ (UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : int ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(UpperCamelCase , UpperCamelCase ) # recursion _a = points_counts // 2 _a = closest_pair_of_points_sqr( UpperCamelCase , points_sorted_on_y[:mid] , UpperCamelCase ) _a = closest_pair_of_points_sqr( UpperCamelCase , points_sorted_on_y[mid:] , points_counts - mid ) _a = min(UpperCamelCase , UpperCamelCase ) _a = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(UpperCamelCase ) _a = dis_between_closest_in_strip( UpperCamelCase , len(UpperCamelCase ) , UpperCamelCase ) return min(UpperCamelCase , UpperCamelCase ) def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : List[str] ): '''simple docstring''' _a = column_based_sort(UpperCamelCase , column=0 ) _a = column_based_sort(UpperCamelCase , column=1 ) return ( closest_pair_of_points_sqr( UpperCamelCase , UpperCamelCase , UpperCamelCase ) ) ** 0.5 if __name__ == "__main__": _snake_case : int = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
179
0
'''simple docstring''' import argparse import os import re UpperCamelCase = '''src/diffusers''' # Pattern that looks at the indentation in a line. UpperCamelCase = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase = re.compile(R'''\[([^\]]+)\]''') def SCREAMING_SNAKE_CASE( __lowercase ) -> str: A: int = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase="" , __lowercase=None , __lowercase=None ) -> str: A: str = 0 A: Dict = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 A: Tuple = ['\n'.join(lines[:index] )] else: A: Tuple = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). A: Tuple = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: A: List[Any] = [lines[index + 1]] index += 1 else: A: Union[str, Any] = [] else: blocks.append('''\n'''.join(A__ ) ) A: List[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: def _inner(__lowercase ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=None ) -> List[str]: # If no key is provided, we use a noop. def noop(__lowercase ): return x if key is None: A: List[Any] = noop # Constants are all uppercase, they go first. A: List[str] = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. A: List[str] = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. A: Any = [obj for obj in objects if not key(A__ )[0].isupper()] A: List[Any] = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def SCREAMING_SNAKE_CASE( __lowercase ) -> List[str]: # This inner function sort imports between [ ]. def _replace(__lowercase ): A: int = match.groups()[0] if "," not in imports: return F"""[{imports}]""" A: Any = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A: Optional[int] = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(A__ )] ) + "]" A: Tuple = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. A: str = 2 if lines[1].strip() == '[' else 1 A: int = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] A: Optional[int] = sort_objects(A__ , key=lambda __lowercase : x[1] ) A: Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: A: Optional[Any] = _re_bracket_content.sub(_replace , lines[1] ) else: A: str = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A: Optional[Any] = keys[:-1] A: Any = get_indent(lines[1] ) + ', '.join([F"""\"{k}\"""" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line A: Optional[Any] = _re_bracket_content.sub(_replace , A__ ) return import_statement def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=True ) -> Union[str, Any]: with open(A__ , '''r''' ) as f: A: List[str] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 A: str = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. A: Optional[int] = main_blocks[block_idx] A: int = block.split('''\n''' ) # Get to the start of the imports. A: int = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: A: Tuple = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. A: str = '\n'.join(block_lines[line_idx:-1] ) A: Union[str, Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. A: Tuple = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend A: Tuple = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. A: Optional[int] = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. A: List[str] = [(i, key) for i, key in enumerate(A__ ) if key is not None] A: Tuple = [x[0] for x in sorted(A__ , key=lambda __lowercase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. A: int = 0 A: List[str] = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: A: Union[str, Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. A: Optional[Any] = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def SCREAMING_SNAKE_CASE( __lowercase=True ) -> Tuple: A: str = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: A: Any = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: A: Optional[Any] = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"""Would overwrite {len(A__ )} files, run `make style`.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') UpperCamelCase = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
319
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = KandinskyVaaControlnetPipeline __lowerCamelCase = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowerCamelCase = False @property def __a ( self ) -> List[Any]: '''simple docstring''' return 32 @property def __a ( self ) -> int: '''simple docstring''' return 32 @property def __a ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def __a ( self ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def __a ( self ) -> List[Any]: '''simple docstring''' return 100 @property def __a ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Tuple = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case__ : Tuple = UNetaDConditionModel(**__UpperCamelCase ) return model @property def __a ( self ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __a ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : int = self.dummy_unet snake_case__ : Tuple = self.dummy_movq snake_case__ : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=__UpperCamelCase , ) snake_case__ : str = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> int: '''simple docstring''' snake_case__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCamelCase ) # create hint snake_case__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : Any = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : str = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : int = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = 'cpu' snake_case__ : Any = self.get_dummy_components() snake_case__ : Optional[Any] = self.pipeline_class(**__UpperCamelCase ) snake_case__ : Dict = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[Any] = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) snake_case__ : Dict = output.images snake_case__ : Any = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] snake_case__ : Optional[int] = image[0, -3:, -3:, -1] snake_case__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ : str = np.array( [0.6_9_5_9_8_2_6, 0.8_6_8_2_7_9, 0.7_5_5_8_0_9_2, 0.6_8_7_6_9_4_6_7, 0.8_5_8_0_5_8_0_4, 0.6_5_9_7_7_4_9_6, 0.4_4_8_8_5_3_0_2, 0.5_9_5_9_1_1_1, 0.4_2_5_1_5_9_5] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) snake_case__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) snake_case__ : List[str] = torch.from_numpy(np.array(__UpperCamelCase ) ).float() / 2_5_5.0 snake_case__ : Dict = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case__ : int = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCamelCase ) snake_case__ : int = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) snake_case__ : List[Any] = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[int] = 'A robot, 4k photo' snake_case__ : List[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ , snake_case__ : Tuple = pipe_prior( __UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() snake_case__ : List[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ : Dict = pipeline( image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , hint=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=100 , output_type='np' , ) snake_case__ : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
143
0
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _a : Tuple = logging.getLogger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = "sequence-classification" def __init__( self , a__ ): if type(a__ ) == dict: _lowerCAmelCase : Optional[Any] = Namespace(**a__ ) _lowerCAmelCase : Tuple = glue_output_modes[hparams.task] _lowerCAmelCase : str = glue_tasks_num_labels[hparams.task] super().__init__(a__ , a__ , self.mode ) def __A ( self , **a__ ): return self.model(**a__ ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase : str = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _lowerCAmelCase : List[Any] = self(**a__ ) _lowerCAmelCase : Any = outputs[0] _lowerCAmelCase : Dict = self.trainer.lr_schedulers[0]["""scheduler"""] _lowerCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __A ( self ): _lowerCAmelCase : List[str] = self.hparams _lowerCAmelCase : Optional[Any] = processors[args.task]() _lowerCAmelCase : List[str] = processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase : Dict = self._feature_file(a__ ) if os.path.exists(a__ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , a__ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) _lowerCAmelCase : Optional[int] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase : Union[str, Any] = convert_examples_to_features( a__ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , a__ ) torch.save(a__ , a__ ) def __A ( self , a__ , a__ , a__ = False ): _lowerCAmelCase : int = """dev""" if mode == """test""" else mode _lowerCAmelCase : Optional[Any] = self._feature_file(a__ ) logger.info("""Loading features from cached file %s""" , a__ ) _lowerCAmelCase : List[str] = torch.load(a__ ) _lowerCAmelCase : Tuple = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase : Any = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase : Optional[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase : List[Any] = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase : int = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a__ , a__ , a__ , a__ ) , batch_size=a__ , shuffle=a__ , ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Dict = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _lowerCAmelCase : Tuple = self(**a__ ) _lowerCAmelCase : Optional[int] = outputs[:2] _lowerCAmelCase : str = logits.detach().cpu().numpy() _lowerCAmelCase : int = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase : Union[str, Any] = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase : str = np.argmax(a__ , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase : List[Any] = np.squeeze(a__ ) _lowerCAmelCase : int = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) _lowerCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase : List[str] = [[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase : List[Any] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , a__ , a__ )} _lowerCAmelCase : Union[str, Any] = dict(results.items() ) _lowerCAmelCase : Union[str, Any] = results return ret, preds_list, out_label_list def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = self._eval_end(a__ ) _lowerCAmelCase : Dict = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __A ( self , a__ ): _lowerCAmelCase : List[str] = self._eval_end(a__ ) _lowerCAmelCase : str = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __A ( a__ , a__ ): BaseTransformer.add_model_specific_args(a__ , a__ ) parser.add_argument( """--max_seq_length""" , default=128 , type=a__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=a__ , required=a__ , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=a__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(_lowerCamelCase ,os.getcwd() ) _lowerCAmelCase : Optional[Any] = GLUETransformer.add_model_specific_args(_lowerCamelCase ,os.getcwd() ) _lowerCAmelCase : Dict = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase : str = os.path.join( """./results""" ,f"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" ,) os.makedirs(args.output_dir ) _lowerCAmelCase : Union[str, Any] = GLUETransformer(_lowerCamelCase ) _lowerCAmelCase : List[Any] = generic_train(_lowerCamelCase ,_lowerCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir ,"""checkpoint-epoch=*.ckpt""" ) ,recursive=_lowerCamelCase ) ) _lowerCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_lowerCamelCase ) if __name__ == "__main__": main()
350
"""simple docstring""" from manim import * class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self ): _lowerCAmelCase : Any = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase : List[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _lowerCAmelCase : List[str] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Any = [mem.copy() for i in range(6 )] _lowerCAmelCase : Optional[int] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Tuple = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Optional[Any] = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Dict = Text("""CPU""" , font_size=24 ) _lowerCAmelCase : str = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) _lowerCAmelCase : Dict = [mem.copy() for i in range(4 )] _lowerCAmelCase : Any = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Tuple = Text("""GPU""" , font_size=24 ) _lowerCAmelCase : Optional[int] = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) _lowerCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Any = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : List[str] = Text("""Model""" , font_size=24 ) _lowerCAmelCase : Any = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) _lowerCAmelCase : Tuple = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCAmelCase : List[str] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) cpu_targs.append(a__ ) _lowerCAmelCase : Any = [mem.copy() for i in range(6 )] _lowerCAmelCase : List[str] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : int = Text("""Loaded Checkpoint""" , font_size=24 ) _lowerCAmelCase : Optional[int] = Group(a__ , a__ ).arrange(a__ , aligned_edge=a__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase : List[str] = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) _lowerCAmelCase : int = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _lowerCAmelCase : List[Any] = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ ) , Write(a__ ) ) self.play(Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) _lowerCAmelCase : int = [] _lowerCAmelCase : List[Any] = [] for i, rect in enumerate(a__ ): _lowerCAmelCase : Tuple = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) first_animations.append(GrowFromCenter(a__ , run_time=1 ) ) _lowerCAmelCase : Optional[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(*a__ ) self.wait()
126
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = num_heads UpperCamelCase__ = window_size UpperCamelCase__ = mlp_ratio UpperCamelCase__ = qkv_bias UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = drop_path_rate UpperCamelCase__ = hidden_act UpperCamelCase__ = use_absolute_embeddings UpperCamelCase__ = patch_norm UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = initializer_range UpperCamelCase__ = is_training UpperCamelCase__ = scope UpperCamelCase__ = use_labels UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = encoder_stride def UpperCAmelCase_ (self ): UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ (self ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = SwinvaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = SwinvaForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = SwinvaForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = SwinvaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self ): UpperCamelCase__ = SwinvaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 ) def UpperCAmelCase_ (self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def UpperCAmelCase_ (self ): pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True for model_class in self.all_model_classes: UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = outputs.attentions UpperCamelCase__ = len(self.model_tester.depths ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = config.window_size**2 UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): UpperCamelCase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCamelCase__ = 2 self.assertEqual(out_len + added_hidden_states , len(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = outputs.hidden_states UpperCamelCase__ = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Swinv2 has a different seq_length UpperCamelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCamelCase__ = outputs.reshaped_hidden_states self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = reshaped_hidden_states[0].shape UpperCamelCase__ = ( reshaped_hidden_states[0].view(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCamelCase__ = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = 3 UpperCamelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCamelCase__ = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCAmelCase_ (self ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = SwinvaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: UpperCamelCase__ = model_class(config=SCREAMING_SNAKE_CASE_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class __A( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ (self ): return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
244
from __future__ import annotations from typing import Generic, TypeVar lowerCamelCase_ = TypeVar('''T''') class __A( Generic[T] ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __A( Generic[T] ): """simple docstring""" def __init__(self ): # map from node name to the node object UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # merge 2 disjoint sets self.link(self.find_set(SCREAMING_SNAKE_CASE_ ) , self.find_set(SCREAMING_SNAKE_CASE_ ) ) class __A( Generic[T] ): """simple docstring""" def __init__(self ): # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # add an edge with the given weight self.add_node(SCREAMING_SNAKE_CASE_ ) self.add_node(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def UpperCAmelCase_ (self ): UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda SCREAMING_SNAKE_CASE_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(SCREAMING_SNAKE_CASE_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) disjoint_set.union(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return graph
244
1
'''simple docstring''' from math import sqrt def a_ ( __snake_case : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __snake_case : int = 1_0001 ) -> int: """simple docstring""" lowerCamelCase_ =0 lowerCamelCase_ =1 while count != nth and number < 3: number += 1 if is_prime(__snake_case ): count += 1 while count != nth: number += 2 if is_prime(__snake_case ): count += 1 return number if __name__ == "__main__": print(F"""{solution() = }""")
6
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a_ : Tuple = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Tuple = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : Union[str, Any] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : int = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } a_ : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } a_ : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } a_ : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : Dict = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] =VOCAB_FILES_NAMES lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : Dict =DPRContextEncoderTokenizer class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] =DPRQuestionEncoderTokenizer a_ : Union[str, Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) a_ : Dict = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCamelCase__ ) class __UpperCamelCase : def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) elif titles is None or texts is None: lowerCamelCase_ =titles if texts is None else texts return super().__call__( lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles] lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages assert len(lowerCAmelCase ) == len( lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.''' lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ ={ '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase ) ] } if return_attention_mask is not False: lowerCamelCase_ =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ =attention_mask return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ): """simple docstring""" lowerCamelCase_ =reader_input['''input_ids'''] lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ ) lowerCamelCase_ =[] for doc_id in sorted_docs: lowerCamelCase_ =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ =sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =[] for start_index, start_score in enumerate(lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase ) lowerCamelCase_ =[] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowerCamelCase_ =end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : int =VOCAB_FILES_NAMES lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION lowercase : int =['input_ids', 'attention_mask'] lowercase : Dict =DPRReaderTokenizer
6
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[Any] = len(lowerCamelCase_ ) + 1 lowerCAmelCase : List[str] = len(lowerCamelCase_ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowerCAmelCase : Any = [[0 for i in range(lowerCamelCase_ )] for j in range(lowerCamelCase_ )] # since string of zero length match pattern of zero length lowerCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1, lowerCamelCase_ ): lowerCAmelCase : List[str] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1, lowerCamelCase_ ): lowerCAmelCase : List[Any] = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1, lowerCamelCase_ ): for j in range(1, lowerCamelCase_ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowerCAmelCase : str = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowerCAmelCase : Tuple = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowerCAmelCase : List[Any] = dp[i - 1][j] else: lowerCAmelCase : Union[str, Any] = 0 else: lowerCAmelCase : int = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __A : Dict = 'aab' __A : Union[str, Any] = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'{input_string} matches the given pattern {pattern}') else: print(F'{input_string} does not match with the given pattern {pattern}')
138
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCAmelCase__ ( lowerCamelCase_ : Any): '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCAmelCase__ : Dict = name.replace('''img_encoder.pos_embed''' ,'''vision_model.embeddings.position_embeddings''') if "img_encoder.patch_embed.proj" in name: lowerCAmelCase__ : int = name.replace('''img_encoder.patch_embed.proj''' ,'''vision_model.embeddings.patch_embeddings.projection''') if "img_encoder.patch_embed.norm" in name: lowerCAmelCase__ : Optional[int] = name.replace('''img_encoder.patch_embed.norm''' ,'''vision_model.embeddings.layernorm''') if "img_encoder.layers" in name: lowerCAmelCase__ : Tuple = name.replace('''img_encoder.layers''' ,'''vision_model.encoder.stages''') if "blocks" in name and "res" not in name: lowerCAmelCase__ : Dict = name.replace('''blocks''' ,'''layers''') if "attn" in name and "pre_assign" not in name: lowerCAmelCase__ : Optional[int] = name.replace('''attn''' ,'''self_attn''') if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''proj''' ,'''out_proj''') if "pre_assign_attn.attn.proj" in name: lowerCAmelCase__ : List[Any] = name.replace('''pre_assign_attn.attn.proj''' ,'''pre_assign_attn.attn.out_proj''') if "norm1" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''norm1''' ,'''layer_norm1''') if "norm2" in name and "pre_assign" not in name: lowerCAmelCase__ : int = name.replace('''norm2''' ,'''layer_norm2''') if "img_encoder.norm" in name: lowerCAmelCase__ : List[Any] = name.replace('''img_encoder.norm''' ,'''vision_model.layernorm''') # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase__ : List[Any] = name.replace('''text_encoder.token_embedding''' ,'''text_model.embeddings.token_embedding''') if "text_encoder.positional_embedding" in name: lowerCAmelCase__ : Tuple = name.replace('''text_encoder.positional_embedding''' ,'''text_model.embeddings.position_embedding.weight''') if "text_encoder.transformer.resblocks." in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''text_encoder.transformer.resblocks.''' ,'''text_model.encoder.layers.''') if "ln_1" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''ln_1''' ,'''layer_norm1''') if "ln_2" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''ln_2''' ,'''layer_norm2''') if "c_fc" in name: lowerCAmelCase__ : Optional[Any] = name.replace('''c_fc''' ,'''fc1''') if "c_proj" in name: lowerCAmelCase__ : List[str] = name.replace('''c_proj''' ,'''fc2''') if "text_encoder" in name: lowerCAmelCase__ : str = name.replace('''text_encoder''' ,'''text_model''') if "ln_final" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('''ln_final''' ,'''final_layer_norm''') # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase__ : Tuple = name.replace('''img_projector.linear_hidden.''' ,'''visual_projection.''') if "img_projector.linear_out." in name: lowerCAmelCase__ : Optional[Any] = name.replace('''img_projector.linear_out.''' ,'''visual_projection.3.''') if "text_projector.linear_hidden" in name: lowerCAmelCase__ : Tuple = name.replace('''text_projector.linear_hidden''' ,'''text_projection''') if "text_projector.linear_out" in name: lowerCAmelCase__ : Dict = name.replace('''text_projector.linear_out''' ,'''text_projection.3''') return name def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : List[str]): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase__ : List[str] = orig_state_dict.pop(lowerCamelCase_) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ : Tuple = key.split('''.''') lowerCAmelCase__ , lowerCAmelCase__ : List[str] = int(key_split[2]), int(key_split[4]) lowerCAmelCase__ : Any = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase__ : Tuple = val[:dim, :] lowerCAmelCase__ : Dict = val[dim : dim * 2, :] lowerCAmelCase__ : List[str] = val[-dim:, :] else: lowerCAmelCase__ : List[Any] = val[:dim] lowerCAmelCase__ : List[str] = val[dim : dim * 2] lowerCAmelCase__ : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ : Dict = key.split('''.''') lowerCAmelCase__ : List[str] = int(key_split[3]) lowerCAmelCase__ : Any = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ : Tuple = val[:dim, :] lowerCAmelCase__ : Union[str, Any] = val[ dim : dim * 2, : ] lowerCAmelCase__ : List[Any] = val[-dim:, :] else: lowerCAmelCase__ : Union[str, Any] = val[:dim] lowerCAmelCase__ : List[str] = val[dim : dim * 2] lowerCAmelCase__ : str = val[-dim:] else: lowerCAmelCase__ : int = rename_key(lowerCamelCase_) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase__ : Dict = val.squeeze_() else: lowerCAmelCase__ : Tuple = val return orig_state_dict def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : str = Image.open(requests.get(lowerCamelCase_ ,stream=lowerCamelCase_).raw) return im @torch.no_grad() def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : int ,lowerCamelCase_ : Tuple="groupvit-gcc-yfcc" ,lowerCamelCase_ : int=False): '''simple docstring''' lowerCAmelCase__ : Dict = GroupViTConfig() lowerCAmelCase__ : Dict = GroupViTModel(lowerCamelCase_).eval() lowerCAmelCase__ : Optional[int] = torch.load(lowerCamelCase_ ,map_location='''cpu''')['''model'''] lowerCAmelCase__ : List[Any] = convert_state_dict(lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ , lowerCAmelCase__ : Any = model.load_state_dict(lowerCamelCase_ ,strict=lowerCamelCase_) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCamelCase_) == 0) # verify result lowerCAmelCase__ : Optional[Any] = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''') lowerCAmelCase__ : Tuple = prepare_img() lowerCAmelCase__ : Dict = processor(text=['''a photo of a cat''', '''a photo of a dog'''] ,images=lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors='''pt''') with torch.no_grad(): lowerCAmelCase__ : str = model(**lowerCamelCase_) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase__ : Union[str, Any] = torch.tensor([[13.3523, 6.3629]]) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase__ : Tuple = torch.tensor([[16.1873, 8.6230]]) else: raise ValueError(f"""Model name {model_name} not supported.""") assert torch.allclose(outputs.logits_per_image ,lowerCamelCase_ ,atol=1E-3) processor.save_pretrained(lowerCamelCase_) model.save_pretrained(lowerCamelCase_) print('''Successfully saved processor and model to''' ,lowerCamelCase_) if push_to_hub: print('''Pushing to the hub...''') processor.push_to_hub(lowerCamelCase_ ,organization='''nielsr''') model.push_to_hub(lowerCamelCase_ ,organization='''nielsr''') if __name__ == "__main__": __snake_case : int =argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) __snake_case : Tuple =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
129
0
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase: Optional[Any] = logging.get_logger(__name__) lowerCAmelCase: List[Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} lowerCAmelCase: Any = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } lowerCAmelCase: Union[str, Any] = { '''abeja/gpt-neox-japanese-2.7b''': 2_0_4_8, } def lowerCamelCase__ ( _A , _A ): with open(_lowercase , 'r' , encoding='utf-8' ) as f: a : List[Any] = json.loads(f.read() ) a : List[str] = collections.OrderedDict() a : str = collections.OrderedDict() a : Tuple = collections.OrderedDict() with open(_lowercase , 'r' , encoding='utf-8' ) as f: a : List[Any] = f.readlines() a : Tuple = [[t.rstrip('\n' )] if (t == "," or "," not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(_lowercase ): a : Optional[int] = b a : Dict = idx for wd in b: a : Tuple = idx return vocab, raw_vocab, ids_to_tokens, emoji class a__( a__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str]="<|endoftext|>" , __snake_case : Any="<|endoftext|>" , __snake_case : Optional[int]="<|startoftext|>" , __snake_case : List[Any]="<|endoftext|>" , __snake_case : Optional[int]=False , **__snake_case : List[Any] , ): super().__init__( unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , do_clean_text=lowerCAmelCase__ , **lowerCAmelCase__ , ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError( F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError( F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) a : List[Any] = do_clean_text a : Any = load_vocab_and_emoji(lowerCAmelCase__ , lowerCAmelCase__ ) a : Tuple = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def lowercase_ ( self : Any ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def lowercase_ ( self : Tuple ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def lowercase_ ( self : Any , __snake_case : str ): return self.subword_tokenizer.tokenize(lowerCAmelCase__ , clean=self.do_clean_text ) def lowercase_ ( self : int , __snake_case : Optional[Any] ): return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) ) def lowercase_ ( self : str , __snake_case : Optional[int] ): return self.subword_tokenizer.convert_id_to_token(lowerCAmelCase__ ) def lowercase_ ( self : Optional[Any] , __snake_case : Optional[int] ): a : Optional[int] = "".join(lowerCAmelCase__ ).strip() return out_string def lowercase_ ( self : Tuple , __snake_case : Any ): a : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: a : str = input_ids[-self.model_max_length :] return input_ids def lowercase_ ( self : str , __snake_case : int , __snake_case : Any = None ): a : List[Any] = 0 if os.path.isdir(lowerCAmelCase__ ): a : Optional[int] = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) a : Any = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: a : Any = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) a : int = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) a : Union[str, Any] = token_index writer.write(','.join(lowerCAmelCase__ ) + '\n' ) index += 1 with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , lowerCAmelCase__ ) return vocab_file, emoji_file class a__( a__ ): def __init__( self : Any , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): a : List[str] = vocab # same as swe a : Dict = ids_to_tokens # same as bpe a : List[str] = emoji a : Optional[int] = np.max([len(lowerCAmelCase__ ) for w in self.vocab.keys()] ) a : List[str] = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) a : List[Any] = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) a : Tuple = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) a : Any = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) a : str = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) a : Tuple = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) a : Dict = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" a : List[Any] = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" a : int = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : Optional[int] ): return len(self.ids_to_tokens ) def lowercase_ ( self : List[Any] , __snake_case : Dict ): a : Optional[int] = self.content_repattera.sub('<URL>' , lowerCAmelCase__ ) a : Tuple = self.content_repattera.sub('<EMAIL>' , lowerCAmelCase__ ) a : int = self.content_repattera.sub('<TEL>' , lowerCAmelCase__ ) a : Union[str, Any] = self.content_repattera.sub('<DATE>' , lowerCAmelCase__ ) a : Dict = self.content_repattera.sub('<DATE>' , lowerCAmelCase__ ) a : Any = self.content_repattera.sub('<PRICE>' , lowerCAmelCase__ ) a : int = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: a : Tuple = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def lowercase_ ( self : List[str] , __snake_case : List[str] , __snake_case : Tuple=False ): a : Optional[int] = text.replace(' ' , '<SP>' ) a : Any = text.replace(' ' , '<SP>' ) a : Tuple = text.replace('\r\n' , '<BR>' ) a : Optional[Any] = text.replace('\n' , '<BR>' ) a : str = text.replace('\r' , '<BR>' ) a : Optional[int] = text.replace('\t' , '<TAB>' ) a : str = text.replace('—' , 'ー' ) a : Optional[Any] = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: a : Any = text.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if clean: a : Optional[Any] = self.clean_text(lowerCAmelCase__ ) def check_simbol(__snake_case : Optional[Any] ): a : Optional[int] = x.encode() if len(lowerCAmelCase__ ) == 1 and len(lowerCAmelCase__ ) == 2: a : Tuple = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC2_A1 and c <= 0xC2_BF) or (c >= 0xC7_80 and c <= 0xC7_83) or (c >= 0xCA_B9 and c <= 0xCB_BF) or (c >= 0xCC_80 and c <= 0xCD_A2) ): return True return False def checkuae(__snake_case : Tuple ): a : List[Any] = x.encode() if len(lowerCAmelCase__ ) == 1 and len(lowerCAmelCase__ ) == 3: a : Union[str, Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE2_80_80 and c <= 0xE2_B0_7F: return True return False a : List[Any] = 0 a : Tuple = [] while pos < len(lowerCAmelCase__ ): a : str = min(len(lowerCAmelCase__ ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 a : Any = [] # (token_id, token, pos) for e in range(lowerCAmelCase__ , lowerCAmelCase__ , -1 ): a : List[str] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowerCAmelCase__ ) > 2: a : int = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowerCAmelCase__ ) > 0: # the smallest token_id is adopted a : List[Any] = sorted(lowerCAmelCase__ , key=lambda __snake_case : x[0] )[0] result.append(lowerCAmelCase__ ) a : Any = e else: a : Optional[Any] = pos + 1 a : Optional[Any] = text[pos:end] if check_simbol(lowerCAmelCase__ ): result.append('<KIGOU>' ) elif checkuae(lowerCAmelCase__ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) a : List[Any] = end return result def lowercase_ ( self : Optional[int] , __snake_case : List[str] , __snake_case : Dict="\n" ): a : List[Any] = [] a : Dict = [] a : Tuple = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowerCAmelCase__ ) > 0: words.append(bytearray(lowerCAmelCase__ ).decode('utf-8' , errors='replace' ) ) a : Any = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(lowerCAmelCase__ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: words.append(bytearray(lowerCAmelCase__ ).decode('utf-8' , errors='replace' ) ) a : Any = "".join(lowerCAmelCase__ ) return text
363
'''simple docstring''' lowerCAmelCase: Union[str, Any] = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) lowerCAmelCase: Optional[Any] = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 1_2, 'Pm': 1_5, 'Em': 1_8, 'Zm': 2_1, 'Ym': 2_4, } def lowerCamelCase__ ( _A , _A , _A ): a : Optional[int] = from_type.lower().strip('s' ) a : Optional[Any] = to_type.lower().strip('s' ) a : Dict = UNIT_SYMBOL.get(_A , _A ) a : Optional[Any] = UNIT_SYMBOL.get(_A , _A ) if from_sanitized not in METRIC_CONVERSION: a : Optional[Any] = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(_A )}""" ) raise ValueError(_A ) if to_sanitized not in METRIC_CONVERSION: a : Union[str, Any] = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(_A )}""" ) raise ValueError(_A ) a : List[Any] = METRIC_CONVERSION[from_sanitized] a : int = METRIC_CONVERSION[to_sanitized] a : Tuple = 1 if from_exponent > to_exponent: a : Optional[int] = from_exponent - to_exponent else: a : Optional[Any] = -(to_exponent - from_exponent) return value * pow(10 , _A ) if __name__ == "__main__": from doctest import testmod testmod()
96
0
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _A (lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> np.ndarray: '''simple docstring''' _a = cva.getAffineTransform(snake_case_ , snake_case_ ) return cva.warpAffine(snake_case_ , snake_case_ , (rows, cols) ) if __name__ == "__main__": # read original image a_ : Union[str, Any] = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value a_ : Optional[int] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape a_ , a_ : List[Any] = gray_img.shape # set different points to rotate image a_ : Optional[int] = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) a_ : Tuple = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) a_ : Dict = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) a_ : str = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list a_ : List[str] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations a_ : List[str] = plt.figure(1) a_ : Optional[Any] = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
168
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__( self ): '''simple docstring''' __A : Union[str, Any] = 1 __A : Any = 3 __A : List[str] = (32, 32) __A : List[str] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase ) return image @property def UpperCamelCase__( self ): '''simple docstring''' torch.manual_seed(0 ) __A : List[Any] = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__lowerCamelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def UpperCamelCase__( self ): '''simple docstring''' torch.manual_seed(0 ) __A : Any = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCamelCase__( self ): '''simple docstring''' torch.manual_seed(0 ) __A : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __A : int = self.dummy_cond_unet_upscale __A : Union[str, Any] = DDPMScheduler() __A : Dict = DDIMScheduler(prediction_type='''v_prediction''' ) __A : int = self.dummy_vae __A : int = self.dummy_text_encoder __A : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __A : Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __A : Any = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __A : Dict = StableDiffusionUpscalePipeline( unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=350 , ) __A : str = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : List[str] = '''A painting of a squirrel eating a burger''' __A : Any = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __A : List[str] = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __A : Union[str, Any] = output.images __A : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __A : str = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=__lowerCamelCase , )[0] __A : Tuple = image[0, -3:, -3:, -1] __A : int = image_from_tuple[0, -3:, -3:, -1] __A : Dict = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __A : str = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__( self ): '''simple docstring''' __A : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __A : Dict = self.dummy_cond_unet_upscale __A : List[str] = DDPMScheduler() __A : str = DDIMScheduler(prediction_type='''v_prediction''' ) __A : Optional[int] = self.dummy_vae __A : Optional[Any] = self.dummy_text_encoder __A : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __A : List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __A : int = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __A : Any = StableDiffusionUpscalePipeline( unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=350 , ) __A : Any = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : Any = '''A painting of a squirrel eating a burger''' __A : Any = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __A : Union[str, Any] = output.images assert image.shape[0] == 2 __A : Optional[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __A : Any = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __A : Union[str, Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = self.dummy_cond_unet_upscale __A : int = DDPMScheduler() __A : List[Any] = DDIMScheduler(prediction_type='''v_prediction''' ) __A : Optional[Any] = self.dummy_vae __A : List[str] = self.dummy_text_encoder __A : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __A : Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __A : int = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __A : Union[str, Any] = unet.half() __A : Optional[int] = text_encoder.half() # make sure here that pndm scheduler skips prk __A : Optional[int] = StableDiffusionUpscalePipeline( unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=350 , ) __A : Union[str, Any] = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : Union[str, Any] = '''A painting of a squirrel eating a burger''' __A : Optional[Any] = torch.manual_seed(0 ) __A : Tuple = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=2 , output_type='''np''' , ).images __A : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __A : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) __A : str = '''stabilityai/stable-diffusion-x4-upscaler''' __A : Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() __A : Union[str, Any] = '''a cat sitting on a park bench''' __A : Union[str, Any] = torch.manual_seed(0 ) __A : Optional[Any] = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , output_type='''np''' , ) __A : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __A : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) __A : Optional[int] = '''stabilityai/stable-diffusion-x4-upscaler''' __A : Optional[int] = StableDiffusionUpscalePipeline.from_pretrained( __lowerCamelCase , torch_dtype=torch.floataa , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() __A : Dict = '''a cat sitting on a park bench''' __A : Any = torch.manual_seed(0 ) __A : Optional[int] = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , output_type='''np''' , ) __A : Any = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def UpperCamelCase__( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __A : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __A : List[str] = '''stabilityai/stable-diffusion-x4-upscaler''' __A : Dict = StableDiffusionUpscalePipeline.from_pretrained( __lowerCamelCase , torch_dtype=torch.floataa , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __A : Tuple = '''a cat sitting on a park bench''' __A : Tuple = torch.manual_seed(0 ) __A : List[str] = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , output_type='''np''' , ) __A : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
179
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( __a ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ : Dict = '''BridgeTowerImageProcessor''' UpperCamelCase_ : Optional[int] = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : List[Any] , ): SCREAMING_SNAKE_CASE : int = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask SCREAMING_SNAKE_CASE : List[Any] = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def _A ( self : List[str] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[str] ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _A ( self : int , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def _A ( self : Any ): SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
369
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _A = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
242
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ lowerCAmelCase = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ lowerCAmelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'] , ) def UpperCAmelCase__ ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :Optional[Any]="binary" , lowerCamelCase_ :int=None , lowerCamelCase_ :List[Any]="warn" , ): """simple docstring""" lowerCamelCase__ : List[str] =recall_score( lowerCamelCase_ , lowerCamelCase_ , labels=lowerCamelCase_ , pos_label=lowerCamelCase_ , average=lowerCamelCase_ , sample_weight=lowerCamelCase_ , zero_division=lowerCamelCase_ , ) return {"recall": float(lowerCamelCase_ ) if score.size == 1 else score}
126
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( A__ , A__ ): UpperCAmelCase_ :List[str] = "focalnet" def __init__( self , __A=224 , __A=4 , __A=3 , __A=96 , __A=False , __A=[192, 384, 768, 768] , __A=[2, 2, 6, 2] , __A=[2, 2, 2, 2] , __A=[3, 3, 3, 3] , __A="gelu" , __A=4.0 , __A=0.0 , __A=0.1 , __A=False , __A=1E-4 , __A=False , __A=False , __A=False , __A=0.0_2 , __A=1E-5 , __A=32 , __A=None , __A=None , **__A , ) -> List[Any]: super().__init__(**__A ) lowerCAmelCase_ :List[str] = image_size lowerCAmelCase_ :str = patch_size lowerCAmelCase_ :Optional[Any] = num_channels lowerCAmelCase_ :Dict = embed_dim lowerCAmelCase_ :Dict = use_conv_embed lowerCAmelCase_ :List[str] = hidden_sizes lowerCAmelCase_ :List[Any] = depths lowerCAmelCase_ :Tuple = focal_levels lowerCAmelCase_ :Union[str, Any] = focal_windows lowerCAmelCase_ :Any = hidden_act lowerCAmelCase_ :Dict = mlp_ratio lowerCAmelCase_ :Tuple = hidden_dropout_prob lowerCAmelCase_ :str = drop_path_rate lowerCAmelCase_ :Dict = use_layerscale lowerCAmelCase_ :Optional[int] = layerscale_value lowerCAmelCase_ :int = use_post_layernorm lowerCAmelCase_ :int = use_post_layernorm_in_modulation lowerCAmelCase_ :List[Any] = normalize_modulator lowerCAmelCase_ :str = initializer_range lowerCAmelCase_ :int = layer_norm_eps lowerCAmelCase_ :Tuple = encoder_stride lowerCAmelCase_ :str = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names )
1
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def _snake_case ( lowercase__ : str = "laptop" ) -> DataFrame: '''simple docstring''' lowerCAmelCase_ :Dict = f"""https://www.amazon.in/laptop/s?k={product}""" lowerCAmelCase_ :List[str] = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } lowerCAmelCase_ :List[Any] = BeautifulSoup(requests.get(lowercase__ , headers=lowercase__ ).text ) # Initialize a Pandas dataframe with the column titles lowerCAmelCase_ :Union[str, Any] = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: lowerCAmelCase_ :str = item.ha.text lowerCAmelCase_ :Dict = """https://www.amazon.in/""" + item.ha.a["""href"""] lowerCAmelCase_ :int = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: lowerCAmelCase_ :Dict = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: lowerCAmelCase_ :int = """Not available""" try: lowerCAmelCase_ :str = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: lowerCAmelCase_ :Optional[Any] = """""" try: lowerCAmelCase_ :str = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 1_0_0 ) except ValueError: lowerCAmelCase_ :Union[str, Any] = float("""nan""" ) except AttributeError: pass lowerCAmelCase_ :Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowerCAmelCase_ :List[Any] = """ """ lowerCAmelCase_ :Tuple = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": __UpperCAmelCase = 'headphones' get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
1
1
from math import sqrt def __lowerCAmelCase ( a__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCAmelCase ( a__ = 1_0001 ) -> int: __a = 0 __a = 1 while count != nth and number < 3: number += 1 if is_prime(a__ ): count += 1 while count != nth: number += 2 if is_prime(a__ ): count += 1 return number if __name__ == "__main__": print(F"{solution() = }")
6
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : str = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset UpperCAmelCase__ : Union[str, Any] ='''bert-base-cased''' UpperCAmelCase__ : int ='''google/pegasus-xsum''' UpperCAmelCase__ : List[str] =[''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] UpperCAmelCase__ : List[str] =['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] UpperCAmelCase__ : Optional[int] ='''patrickvonplaten/t5-tiny-random''' UpperCAmelCase__ : Any ='''sshleifer/bart-tiny-random''' UpperCAmelCase__ : Optional[int] ='''sshleifer/tiny-mbart''' UpperCAmelCase__ : Dict ='''sshleifer/tiny-marian-en-de''' def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Any: lowerCamelCase ='\n'.join(__a ) Path(__a ).open("""w""" ).writelines(__a ) def _lowercase ( _UpperCAmelCase ) -> int: for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , F"""{split}.source""" ) , __a ) _dump_articles(os.path.join(__a , F"""{split}.target""" ) , __a ) return tmp_dir class __A ( snake_case_ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =AutoTokenizer.from_pretrained(_A ) lowerCamelCase =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCamelCase =max(len(tokenizer.encode(_A ) ) for a in ARTICLES ) lowerCamelCase =max(len(tokenizer.encode(_A ) ) for a in SUMMARIES ) lowerCamelCase =4 lowerCamelCase =8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCamelCase ='ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. lowerCamelCase =SeqaSeqDataset( _A , data_dir=_A , type_path="""train""" , max_source_length=_A , max_target_length=_A , src_lang=_A , tgt_lang=_A , ) lowerCamelCase =DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_A , _A ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCamelCase =shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =AutoTokenizer.from_pretrained(_A ) lowerCamelCase =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCamelCase =max(len(tokenizer.encode(_A ) ) for a in ARTICLES ) lowerCamelCase =max(len(tokenizer.encode(_A ) ) for a in SUMMARIES ) lowerCamelCase =4 lowerCamelCase =LegacySeqaSeqDataset( _A , data_dir=_A , type_path="""train""" , max_source_length=20 , max_target_length=_A , ) lowerCamelCase =DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _snake_case ( self ): lowerCamelCase =AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) lowerCamelCase =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCamelCase =tmp_dir.joinpath("""train.source""" ).open().readlines() lowerCamelCase =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_A , _A , 128 , _A ) lowerCamelCase ={x.name for x in tmp_dir.iterdir()} lowerCamelCase ={x.name for x in save_dir.iterdir()} lowerCamelCase =save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_A ) < len(_A ) assert len(_A ) == 1 assert len(packed_examples[0] ) == sum(len(_A ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" ) def _snake_case ( self ): if not FAIRSEQ_AVAILABLE: return lowerCamelCase =self._get_dataset(max_len=64 ) lowerCamelCase =64 lowerCamelCase =ds.make_dynamic_sampler(_A , required_batch_size_multiple=_A ) lowerCamelCase =[len(_A ) for x in batch_sampler] assert len(set(_A ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_A ) == len(_A ) # no dropped or added examples lowerCamelCase =DataLoader(_A , batch_sampler=_A , collate_fn=ds.collate_fn , num_workers=2 ) lowerCamelCase =[] lowerCamelCase =[] for batch in data_loader: lowerCamelCase =batch['input_ids'].shape lowerCamelCase =src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCamelCase =np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(_A ) if num_src_tokens > (max_tokens * 1.1): failures.append(_A ) assert num_src_per_batch[0] == max(_A ) if failures: raise AssertionError(f"""too many tokens in {len(_A )} batches""" ) def _snake_case ( self ): lowerCamelCase =self._get_dataset(max_len=512 ) lowerCamelCase =2 lowerCamelCase =ds.make_sortish_sampler(_A , shuffle=_A ) lowerCamelCase =DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 ) lowerCamelCase =DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 , sampler=_A ) lowerCamelCase =tokenizer.pad_token_id def count_pad_tokens(UpperCAmelCase_ , UpperCAmelCase_="input_ids" ): return [batch[k].eq(_A ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_A , k="""labels""" ) ) < sum(count_pad_tokens(_A , k="""labels""" ) ) assert sum(count_pad_tokens(_A ) ) < sum(count_pad_tokens(_A ) ) assert len(_A ) == len(_A ) def _snake_case ( self , UpperCAmelCase_=1000 , UpperCAmelCase_=128 ): if os.getenv("""USE_REAL_DATA""" , _A ): lowerCamelCase ='examples/seq2seq/wmt_en_ro' lowerCamelCase =max_len * 2 * 64 if not Path(_A ).joinpath("""train.len""" ).exists(): save_len_file(_A , _A ) else: lowerCamelCase ='examples/seq2seq/test_data/wmt_en_ro' lowerCamelCase =max_len * 4 save_len_file(_A , _A ) lowerCamelCase =AutoTokenizer.from_pretrained(_A ) lowerCamelCase =SeqaSeqDataset( _A , data_dir=_A , type_path="""train""" , max_source_length=_A , max_target_length=_A , n_obs=_A , ) return ds, max_tokens, tokenizer def _snake_case ( self ): lowerCamelCase =self._get_dataset() lowerCamelCase =set(DistributedSortishSampler(_A , 256 , num_replicas=2 , rank=0 , add_extra_examples=_A ) ) lowerCamelCase =set(DistributedSortishSampler(_A , 256 , num_replicas=2 , rank=1 , add_extra_examples=_A ) ) assert idsa.intersection(_A ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =AutoTokenizer.from_pretrained(_A , use_fast=_A ) if tok_name == MBART_TINY: lowerCamelCase =SeqaSeqDataset( _A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , ) lowerCamelCase =train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCamelCase =SeqaSeqDataset( _A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , ) lowerCamelCase =train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_A ) == 1 if tok_name == BART_TINY else len(_A ) == 0
350
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =(1 - _cos) / 2 lowerCamelCase =1 - _cos lowerCamelCase =1 + alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =(1 + _cos) / 2 lowerCamelCase =-1 - _cos lowerCamelCase =1 + alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =_sin / 2 lowerCamelCase =0 lowerCamelCase =-ba lowerCamelCase =1 + alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =1 - alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 + alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =10 ** (gain_db / 40) lowerCamelCase =1 + alpha * big_a lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha * big_a lowerCamelCase =1 + alpha / big_a lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha / big_a lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =10 ** (gain_db / 40) lowerCamelCase =(big_a + 1) - (big_a - 1) * _cos lowerCamelCase =(big_a + 1) + (big_a - 1) * _cos lowerCamelCase =(big_a - 1) - (big_a + 1) * _cos lowerCamelCase =(big_a - 1) + (big_a + 1) * _cos lowerCamelCase =2 * sqrt(_UpperCAmelCase ) * alpha lowerCamelCase =big_a * (pmc + aaa) lowerCamelCase =2 * big_a * mpc lowerCamelCase =big_a * (pmc - aaa) lowerCamelCase =ppmc + aaa lowerCamelCase =-2 * pmpc lowerCamelCase =ppmc - aaa lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =10 ** (gain_db / 40) lowerCamelCase =(big_a + 1) - (big_a - 1) * _cos lowerCamelCase =(big_a + 1) + (big_a - 1) * _cos lowerCamelCase =(big_a - 1) - (big_a + 1) * _cos lowerCamelCase =(big_a - 1) + (big_a + 1) * _cos lowerCamelCase =2 * sqrt(_UpperCAmelCase ) * alpha lowerCamelCase =big_a * (ppmc + aaa) lowerCamelCase =-2 * big_a * pmpc lowerCamelCase =big_a * (ppmc - aaa) lowerCamelCase =pmc + aaa lowerCamelCase =2 * mpc lowerCamelCase =pmc - aaa lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
262
0
"""simple docstring""" import torch from transformers import AutoModel class UpperCAmelCase_ ( torch.nn.Module): def __init__( self , a="sayef/fsner-bert-base-uncased" ) -> Tuple: super(a , self ).__init__() lowercase__ : str = AutoModel.from_pretrained(a , return_dict=a ) lowercase__ : Any = torch.nn.CosineSimilarity(3 , 1e-08 ) lowercase__ : Union[str, Any] = torch.nn.Softmax(dim=1 ) def _UpperCAmelCase ( self , **a ) -> List[str]: return self.bert(**a ).last_hidden_state def _UpperCAmelCase ( self , a ) -> Optional[Any]: return token_embeddings.sum(2 , keepdim=a ) def _UpperCAmelCase ( self , a , a , a=1 ) -> str: return self.softmax(T * self.cos(a , a ) ) def _UpperCAmelCase ( self , a , a ) -> str: lowercase__ : Union[str, Any] = W_supports['sizes'].tolist() lowercase__ : str = W_supports['start_token_id'].item() lowercase__ : str = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowercase__ : Any = self.BERT(**a ) lowercase__ : Any = self.BERT(**a ) lowercase__ : Tuple = None lowercase__ : Dict = None lowercase__ : str = W_supports['input_ids'] == start_token_id lowercase__ : List[str] = W_supports['input_ids'] == end_token_id for i, size in enumerate(a ): if i == 0: lowercase__ : int = 0 else: lowercase__ : Dict = support_sizes[i - 1] lowercase__ : Dict = S[s : s + size][start_token_masks[s : s + size]] lowercase__ : int = S[s : s + size][end_token_masks[s : s + size]] lowercase__ : Any = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowercase__ : int = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowercase__ : Tuple = torch.vstack((p_starts, p_start) ) lowercase__ : Tuple = torch.vstack((p_ends, p_end) ) else: lowercase__ : Optional[int] = p_start lowercase__ : Optional[int] = p_end return p_starts, p_ends
77
"""simple docstring""" import socket def _snake_case ( ): _lowerCamelCase : List[Any] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _lowerCamelCase : Union[str, Any] = socket.gethostname() _lowerCamelCase : List[Any] = 12312 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: _lowerCamelCase : int = sock.recv(1024 ) if not data: break out_file.write(lowercase__ ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
96
0
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _snake_case (UpperCAmelCase_ , unittest.TestCase): __A : Any =DebertaTokenizer __A : List[str] =True __A : Optional[Any] =DebertaTokenizerFast def UpperCamelCase__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCAmelCase_ : List[str] = dict(zip(__lowercase ,range(len(__lowercase ) ) ) ) UpperCAmelCase_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase_ : Dict = {'''unk_token''': '''[UNK]'''} UpperCAmelCase_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowercase ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(__lowercase ) ) def UpperCamelCase__ ( self ,**_snake_case ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__lowercase ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : List[Any] = '''lower newer''' UpperCAmelCase_ : Union[str, Any] = '''lower newer''' return input_text, output_text def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Any = '''lower newer''' UpperCAmelCase_ : Optional[int] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCAmelCase_ : Optional[int] = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase ,__lowercase ) UpperCAmelCase_ : str = tokens + [tokenizer.unk_token] UpperCAmelCase_ : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) ,__lowercase ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = tokenizer("Hello" ,"World" ) UpperCAmelCase_ : Optional[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] ,__lowercase ) @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) UpperCAmelCase_ : Dict = tokenizer.encode("sequence builders" ,add_special_tokens=__lowercase ) UpperCAmelCase_ : List[Any] = tokenizer.encode("multi-sequence build" ,add_special_tokens=__lowercase ) UpperCAmelCase_ : Tuple = tokenizer.encode( "sequence builders" ,add_special_tokens=__lowercase ,add_prefix_space=__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer.encode( "sequence builders" ,"multi-sequence build" ,add_special_tokens=__lowercase ,add_prefix_space=__lowercase ) UpperCAmelCase_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowercase ) UpperCAmelCase_ : Dict = tokenizer.build_inputs_with_special_tokens(__lowercase ,__lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCAmelCase_ : str = tokenizer_class.from_pretrained("microsoft/deberta-base" ) UpperCAmelCase_ : Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCAmelCase_ : int = tokenizer(__lowercase ,padding=__lowercase ) UpperCAmelCase_ : List[Any] = [tokenizer.decode(__lowercase ,skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off UpperCAmelCase_ : Tuple = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCAmelCase_ : Optional[Any] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data ,__lowercase ) for expected, decoded in zip(__lowercase ,__lowercase ): self.assertEqual(__lowercase ,__lowercase )
366
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Tuple = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = val def a__ ( _SCREAMING_SNAKE_CASE : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Dict = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ : Optional[int] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase_ : Union[str, Any] = value else: UpperCAmelCase_ : int = value return new_state_dict def a__ ( _SCREAMING_SNAKE_CASE : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ : str = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : List[Any] = in_proj_weight[:2_56, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[:2_56] UpperCAmelCase_ : Dict = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ : Dict = in_proj_bias[2_56:5_12] UpperCAmelCase_ : int = in_proj_weight[-2_56:, :] UpperCAmelCase_ : Dict = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : str = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[:2_56, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[:2_56] UpperCAmelCase_ : Optional[Any] = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ : List[str] = in_proj_bias[2_56:5_12] UpperCAmelCase_ : Optional[int] = in_proj_weight[-2_56:, :] UpperCAmelCase_ : List[Any] = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ : int = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) UpperCAmelCase_ : Union[str, Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ : List[str] = in_proj_weight_cross_attn[:2_56, :] UpperCAmelCase_ : Dict = in_proj_bias_cross_attn[:2_56] UpperCAmelCase_ : List[Any] = in_proj_weight_cross_attn[2_56:5_12, :] UpperCAmelCase_ : int = in_proj_bias_cross_attn[2_56:5_12] UpperCAmelCase_ : int = in_proj_weight_cross_attn[-2_56:, :] UpperCAmelCase_ : str = in_proj_bias_cross_attn[-2_56:] def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image.size UpperCAmelCase_ : int = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = 8_00 if "detection" in checkpoint_url else 10_00 UpperCAmelCase_ : str = target_max_size / current_max_size UpperCAmelCase_ : Tuple = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = F.to_tensor(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = F.normalize(_SCREAMING_SNAKE_CASE , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" logger.info("Converting model..." ) # load original state dict UpperCAmelCase_ : Union[str, Any] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = rename_backbone_keys(_SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(_SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ : Any = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ : Optional[Any] = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = val # create HuggingFace model and load state dict UpperCAmelCase_ : str = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCAmelCase_ : str = 15 UpperCAmelCase_ : str = 2 UpperCAmelCase_ : Union[str, Any] = {0: "table", 1: "table rotated"} UpperCAmelCase_ : Tuple = idalabel UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} else: UpperCAmelCase_ : Tuple = 1_25 UpperCAmelCase_ : Tuple = 6 UpperCAmelCase_ : Union[str, Any] = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } UpperCAmelCase_ : str = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = DetrImageProcessor( format="coco_detection" , max_size=8_00 if "detection" in checkpoint_url else 10_00 ) UpperCAmelCase_ : Optional[int] = TableTransformerForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # verify our conversion UpperCAmelCase_ : Optional[Any] = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" UpperCAmelCase_ : Dict = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = Image.open(_SCREAMING_SNAKE_CASE ).convert("RGB" ) UpperCAmelCase_ : int = normalize(resize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) if "detection" in checkpoint_url: UpperCAmelCase_ : Any = (1, 15, 3) UpperCAmelCase_ : Optional[int] = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) UpperCAmelCase_ : Dict = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: UpperCAmelCase_ : Union[str, Any] = (1, 1_25, 7) UpperCAmelCase_ : List[str] = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) UpperCAmelCase_ : Any = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) UpperCAmelCase_ : List[str] = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCamelCase = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
67
0
"""simple docstring""" import random def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[int] = num - 1 lowercase__ : Optional[int] = 0 while s % 2 == 0: lowercase__ : Optional[Any] = s // 2 t += 1 for _ in range(5 ): lowercase__ : List[str] = random.randrange(2 , num - 1 ) lowercase__ : Any = pow(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if v != 1: lowercase__ : Optional[Any] = 0 while v != (num - 1): if i == t - 1: return False else: lowercase__ : str = i + 1 lowercase__ : Optional[Any] = (v**2) % num return True def a_ ( _lowerCAmelCase : int ): '''simple docstring''' if num < 2: return False lowercase__ : Dict = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_lowerCAmelCase ) def a_ ( _lowerCAmelCase : int = 1024 ): '''simple docstring''' while True: lowercase__ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_lowerCAmelCase ): return num if __name__ == "__main__": _UpperCamelCase : Any = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
77
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: A: List[Any] = torch.load(__lowercase , map_location='''cpu''' ) return sd def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=rename_keys_prefix ) -> Optional[Any]: A: Tuple = OrderedDict() A: Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue A: int = key for name_pair in rename_keys_prefix: A: Optional[int] = new_key.replace(name_pair[0] , name_pair[1] ) A: Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately A: int = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: A: Optional[Any] = '''pretraining''' if "vcr" in checkpoint_path: A: Optional[int] = {'''visual_embedding_dim''': 5_1_2} elif "vqa_advanced" in checkpoint_path: A: Optional[Any] = {'''visual_embedding_dim''': 2_0_4_8} elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8} elif "nlvr" in checkpoint_path: A: Tuple = {'''visual_embedding_dim''': 1_0_2_4} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 5_1_2} A: List[str] = '''multichoice''' elif "vqa_advanced" in checkpoint_path: A: List[str] = {'''visual_embedding_dim''': 2_0_4_8} A: Optional[int] = '''vqa_advanced''' elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9} A: Union[str, Any] = '''vqa''' elif "nlvr" in checkpoint_path: A: Optional[int] = { '''visual_embedding_dim''': 1_0_2_4, '''num_labels''': 2, } A: str = '''nlvr''' A: Union[str, Any] = VisualBertConfig(**__lowercase ) # Load State Dict A: Union[str, Any] = load_state_dict(__lowercase ) A: str = get_new_dict(__lowercase , __lowercase ) if model_type == "pretraining": A: Optional[Any] = VisualBertForPreTraining(__lowercase ) elif model_type == "vqa": A: Optional[Any] = VisualBertForQuestionAnswering(__lowercase ) elif model_type == "nlvr": A: Union[str, Any] = VisualBertForVisualReasoning(__lowercase ) elif model_type == "multichoice": A: Any = VisualBertForMultipleChoice(__lowercase ) model.load_state_dict(__lowercase ) # Save Checkpoints Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class UpperCAmelCase ( A_ ): A__ : str = "data2vec-vision" def __init__(self : Optional[Any] , snake_case__ : Optional[int]=7_68 , snake_case__ : str=12 , snake_case__ : Union[str, Any]=12 , snake_case__ : Tuple=30_72 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Dict=0.0 , snake_case__ : Tuple=0.0 , snake_case__ : str=0.02 , snake_case__ : str=1e-12 , snake_case__ : List[str]=2_24 , snake_case__ : Dict=16 , snake_case__ : Union[str, Any]=3 , snake_case__ : Optional[int]=False , snake_case__ : List[Any]=False , snake_case__ : str=False , snake_case__ : Any=False , snake_case__ : List[str]=0.1 , snake_case__ : Any=0.1 , snake_case__ : str=True , snake_case__ : Union[str, Any]=[3, 5, 7, 11] , snake_case__ : Tuple=[1, 2, 3, 6] , snake_case__ : Optional[int]=True , snake_case__ : List[str]=0.4 , snake_case__ : Any=2_56 , snake_case__ : Optional[int]=1 , snake_case__ : Dict=False , snake_case__ : List[Any]=2_55 , **snake_case__ : str , ) -> int: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : str = hidden_size snake_case : int = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Optional[int] = intermediate_size snake_case : Optional[int] = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : Tuple = initializer_range snake_case : str = layer_norm_eps snake_case : int = image_size snake_case : Optional[int] = patch_size snake_case : Any = num_channels snake_case : List[str] = use_mask_token snake_case : int = use_absolute_position_embeddings snake_case : Any = use_relative_position_bias snake_case : Union[str, Any] = use_shared_relative_position_bias snake_case : Optional[int] = layer_scale_init_value snake_case : List[str] = drop_path_rate snake_case : str = use_mean_pooling # decode head attributes (semantic segmentation) snake_case : Any = out_indices snake_case : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) snake_case : int = use_auxiliary_head snake_case : str = auxiliary_loss_weight snake_case : List[Any] = auxiliary_channels snake_case : Union[str, Any] = auxiliary_num_convs snake_case : Union[str, Any] = auxiliary_concat_input snake_case : Optional[int] = semantic_loss_ignore_index class UpperCAmelCase ( A_ ): A__ : List[str] = version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> float: '''simple docstring''' return 1e-4
10
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
10
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[str] ={ 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class __A ( UpperCamelCase__ , UpperCamelCase__ ): a__ : int = """focalnet""" def __init__(self : Optional[int] , __a : int=224 , __a : List[str]=4 , __a : int=3 , __a : List[Any]=96 , __a : str=False , __a : List[Any]=[192, 384, 768, 768] , __a : Any=[2, 2, 6, 2] , __a : int=[2, 2, 2, 2] , __a : List[str]=[3, 3, 3, 3] , __a : Dict="gelu" , __a : Tuple=4.0 , __a : Dict=0.0 , __a : List[str]=0.1 , __a : str=False , __a : Any=1E-4 , __a : Tuple=False , __a : Any=False , __a : Optional[int]=False , __a : Any=0.02 , __a : Dict=1E-5 , __a : str=32 , __a : Dict=None , __a : str=None , **__a : str , ): super().__init__(**__a ) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = use_conv_embed UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = focal_levels UpperCAmelCase_ = focal_windows UpperCAmelCase_ = hidden_act UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = use_layerscale UpperCAmelCase_ = layerscale_value UpperCAmelCase_ = use_post_layernorm UpperCAmelCase_ = use_post_layernorm_in_modulation UpperCAmelCase_ = normalize_modulator UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = encoder_stride UpperCAmelCase_ = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : int | None = None , snake_case_ : int | None = None ) -> None: '''simple docstring''' if start is None: UpperCAmelCase_ = 0 if end is None: UpperCAmelCase_ = len(snake_case_ ) - 1 if start >= end: return UpperCAmelCase_ = (start + end) // 2 slowsort(snake_case_ , snake_case_ , snake_case_ ) slowsort(snake_case_ , mid + 1 , snake_case_ ) if sequence[end] < sequence[mid]: UpperCAmelCase_ , UpperCAmelCase_ = sequence[mid], sequence[end] slowsort(snake_case_ , snake_case_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
1
1
"""simple docstring""" from collections import namedtuple lowerCAmelCase_ = namedtuple('from_to', 'from_ to') lowerCAmelCase_ = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.0_0_1, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), 'cubicyard': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), 'cubicfoot': from_to(0.0_2_8, 3_5.3_1_4_7), 'cup': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid \'from_type\' value: {from_type!r} Supported values are:\n""" + ''', '''.join(lowerCAmelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid \'to_type\' value: {to_type!r}. Supported values are:\n""" + ''', '''.join(lowerCAmelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
"""simple docstring""" def _A ( lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ): a =f'''Input value of [number={number}] must be an integer''' raise TypeError(lowercase ) if number < 1: a =f'''Input value of [number={number}] must be > 0''' raise ValueError(lowercase ) a =1 for i in range(1 , lowercase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
81
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
262
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = "vivit" def __init__( self : Dict ,_snake_case : List[Any]=224 ,_snake_case : List[Any]=32 ,_snake_case : Tuple=[2, 16, 16] ,_snake_case : Any=3 ,_snake_case : List[str]=768 ,_snake_case : Optional[Any]=12 ,_snake_case : Any=12 ,_snake_case : Dict=3_072 ,_snake_case : str="gelu_fast" ,_snake_case : Any=0.0 ,_snake_case : Tuple=0.0 ,_snake_case : Union[str, Any]=0.02 ,_snake_case : Optional[Any]=1e-06 ,_snake_case : Any=True ,**_snake_case : Any ,) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Optional[Any] = initializer_range lowercase__ : Any = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Any = num_frames lowercase__ : Dict = tubelet_size lowercase__ : int = num_channels lowercase__ : str = qkv_bias super().__init__(**_snake_case )
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase_ = 'UperNetConfig' class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.Convad( in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,) lowercase__ : Tuple = nn.BatchNormad(_snake_case ) lowercase__ : List[str] = nn.ReLU() def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.conv(_snake_case ) lowercase__ : List[str] = self.batch_norm(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" super().__init__() lowercase__ : List[Any] = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Any = input for layer in self.layers: lowercase__ : int = layer(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None: """simple docstring""" super().__init__() lowercase__ : int = pool_scales lowercase__ : Dict = align_corners lowercase__ : Optional[Any] = in_channels lowercase__ : Optional[Any] = channels lowercase__ : int = [] for i, pool_scale in enumerate(_snake_case ): lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]: """simple docstring""" lowercase__ : int = [] for ppm in self.blocks: lowercase__ : Any = ppm(_snake_case ) lowercase__ : int = nn.functional.interpolate( _snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowercase__ : str = config lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__ : Optional[Any] = in_channels lowercase__ : Any = config.hidden_size lowercase__ : Optional[Any] = False lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) # PSP Module lowercase__ : Dict = UperNetPyramidPoolingModule( self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,) lowercase__ : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) # FPN Module lowercase__ : Any = nn.ModuleList() lowercase__ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 ) lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) lowercase__ : int = UperNetConvModule( len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Dict = inputs[-1] lowercase__ : Optional[int] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 ) lowercase__ : List[str] = self.bottleneck(_snake_case ) return output def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path lowercase__ : List[Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:] lowercase__ : int = laterals[i - 1] + nn.functional.interpolate( laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners ) # build outputs lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Any = nn.functional.interpolate( fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) lowercase__ : Any = torch.cat(_snake_case ,dim=1 ) lowercase__ : Any = self.fpn_bottleneck(_snake_case ) lowercase__ : str = self.classifier(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None: """simple docstring""" super().__init__() lowercase__ : int = config lowercase__ : Dict = config.auxiliary_in_channels lowercase__ : Optional[int] = config.auxiliary_channels lowercase__ : List[Any] = config.auxiliary_num_convs lowercase__ : List[Any] = config.auxiliary_concat_input lowercase__ : str = in_index lowercase__ : Any = (kernel_size // 2) * dilation lowercase__ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) if self.num_convs == 0: lowercase__ : List[str] = nn.Identity() else: lowercase__ : Dict = nn.Sequential(*_snake_case ) if self.concat_input: lowercase__ : int = UperNetConvModule( self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 ) lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : str = encoder_hidden_states[self.in_index] lowercase__ : List[str] = self.convs(_snake_case ) if self.concat_input: lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) ) lowercase__ : Dict = self.classifier(_snake_case ) return output class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = UperNetConfig lowerCAmelCase : str = "pixel_values" lowerCAmelCase : Dict = True def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : List[Any] = value lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels ) lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( _snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case ) lowercase__ : Optional[int] = outputs.feature_maps lowercase__ : Tuple = self.decode_head(_snake_case ) lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : List[str] = None if self.auxiliary_head is not None: lowercase__ : str = self.auxiliary_head(_snake_case ) lowercase__ : Dict = nn.functional.interpolate( _snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__ : Tuple = (logits,) + outputs[1:] else: lowercase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
302
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( UpperCamelCase_ ): _a = ['''image_processor''', '''tokenizer'''] _a = '''CLIPImageProcessor''' _a = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self : Optional[Any] , A_ : Union[str, Any]=None , A_ : List[Any]=None , **A_ : int): lowerCAmelCase_ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , A_ , ) lowerCAmelCase_ : str = kwargs.pop('''feature_extractor''') lowerCAmelCase_ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(A_ , A_) def __call__( self : Optional[Any] , A_ : Dict=None , A_ : int=None , A_ : str=None , **A_ : List[str]): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''') if text is not None: lowerCAmelCase_ : str = self.tokenizer(A_ , return_tensors=A_ , **A_) if images is not None: lowerCAmelCase_ : str = self.image_processor(A_ , return_tensors=A_ , **A_) if text is not None and images is not None: lowerCAmelCase_ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A_) , tensor_type=A_) def UpperCAmelCase__ ( self : Any , *A_ : Tuple , **A_ : List[str]): return self.tokenizer.batch_decode(*A_ , **A_) def UpperCAmelCase__ ( self : str , *A_ : List[str] , **A_ : Tuple): return self.tokenizer.decode(*A_ , **A_) @property def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : Tuple = self.tokenizer.model_input_names lowerCAmelCase_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
103
'''simple docstring''' import re from filelock import FileLock try: import nltk __UpperCAmelCase =True except (ImportError, ModuleNotFoundError): __UpperCAmelCase =False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __lowerCAmelCase ( UpperCamelCase__ ) -> str: re.sub('''<n>''' , '''''' , UpperCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase__ ) )
67
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowercase_ = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: warnings.warn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) requires_backends(_SCREAMING_SNAKE_CASE , 'sklearn' ) return (preds == labels).mean() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: warnings.warn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) requires_backends(_SCREAMING_SNAKE_CASE , 'sklearn' ) lowercase__ = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: warnings.warn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) requires_backends(_SCREAMING_SNAKE_CASE , 'sklearn' ) lowercase__ = pearsonr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] lowercase__ = spearmanr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: warnings.warn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) requires_backends(_SCREAMING_SNAKE_CASE , 'sklearn' ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ), F"""Predictions and labels have mismatched lengths {len(_SCREAMING_SNAKE_CASE )} and {len(_SCREAMING_SNAKE_CASE )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif task_name == "sst-2": return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif task_name == "mrpc": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif task_name == "sts-b": return pearson_and_spearman(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif task_name == "qqp": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif task_name == "qnli": return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif task_name == "rte": return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif task_name == "wnli": return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif task_name == "hans": return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: warnings.warn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) requires_backends(_SCREAMING_SNAKE_CASE , 'sklearn' ) if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError(F"""Predictions and labels have mismatched lengths {len(_SCREAMING_SNAKE_CASE )} and {len(_SCREAMING_SNAKE_CASE )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError(_SCREAMING_SNAKE_CASE )
269
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = 'xlnet' _UpperCamelCase : Optional[Any] = ['mems'] _UpperCamelCase : Union[str, Any] = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : str , a : int=32_000 , a : Any=1_024 , a : Optional[Any]=24 , a : str=16 , a : int=4_096 , a : List[str]="gelu" , a : Any=True , a : Dict="bi" , a : str=0.02 , a : List[str]=1E-1_2 , a : Tuple=0.1 , a : Optional[Any]=512 , a : Tuple=None , a : Union[str, Any]=True , a : int=False , a : int=False , a : Tuple=-1 , a : Any=False , a : Tuple="last" , a : List[str]=True , a : Optional[Any]="tanh" , a : List[Any]=0.1 , a : int=5 , a : List[Any]=5 , a : Optional[int]=5 , a : Dict=1 , a : Optional[Any]=2 , **a : List[Any] , )-> List[str]: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = n_layer lowercase__ = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) lowercase__ = d_model // n_head lowercase__ = ff_activation lowercase__ = d_inner lowercase__ = untie_r lowercase__ = attn_type lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = dropout lowercase__ = mem_len lowercase__ = reuse_len lowercase__ = bi_data lowercase__ = clamp_len lowercase__ = same_length lowercase__ = summary_type lowercase__ = summary_use_proj lowercase__ = summary_activation lowercase__ = summary_last_dropout lowercase__ = start_n_top lowercase__ = end_n_top lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , a , ) lowercase__ = kwargs['use_cache'] lowercase__ = use_mems_eval lowercase__ = use_mems_train super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Union[str, Any] )-> List[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
269
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "data2vec-vision" def __init__(self : Optional[Any] , UpperCAmelCase_ : int=768 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Optional[int]=3_072 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : List[str]=1E-1_2 , UpperCAmelCase_ : Optional[Any]=224 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=[3, 5, 7, 11] , UpperCAmelCase_ : Tuple=[1, 2, 3, 6] , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Any=0.4 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Optional[Any]=255 , **UpperCAmelCase_ : str , ) ->Tuple: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: List[Any] =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Optional[int] =num_attention_heads lowerCamelCase__: Dict =intermediate_size lowerCamelCase__: Optional[Any] =hidden_act lowerCamelCase__: int =hidden_dropout_prob lowerCamelCase__: Dict =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =initializer_range lowerCamelCase__: Union[str, Any] =layer_norm_eps lowerCamelCase__: Optional[int] =image_size lowerCamelCase__: Optional[int] =patch_size lowerCamelCase__: str =num_channels lowerCamelCase__: Union[str, Any] =use_mask_token lowerCamelCase__: Optional[Any] =use_absolute_position_embeddings lowerCamelCase__: Optional[int] =use_relative_position_bias lowerCamelCase__: int =use_shared_relative_position_bias lowerCamelCase__: Optional[int] =layer_scale_init_value lowerCamelCase__: List[Any] =drop_path_rate lowerCamelCase__: int =use_mean_pooling # decode head attributes (semantic segmentation) lowerCamelCase__: Optional[Any] =out_indices lowerCamelCase__: Tuple =pool_scales # auxiliary head attributes (semantic segmentation) lowerCamelCase__: str =use_auxiliary_head lowerCamelCase__: Optional[int] =auxiliary_loss_weight lowerCamelCase__: Optional[Any] =auxiliary_channels lowerCamelCase__: Union[str, Any] =auxiliary_num_convs lowerCamelCase__: List[str] =auxiliary_concat_input lowerCamelCase__: int =semantic_loss_ignore_index class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE_ (self : int) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def SCREAMING_SNAKE_CASE_ (self : Any) ->float: '''simple docstring''' return 1E-4
10
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : Dict = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : str = 'fnet' def __init__( self , __UpperCamelCase=3_20_00 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu_new" , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=4 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=False , __UpperCamelCase=5_12 , __UpperCamelCase=3 , __UpperCamelCase=1 , __UpperCamelCase=2 , **__UpperCamelCase , ) -> str: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) __UpperCamelCase : Dict = vocab_size __UpperCamelCase : Tuple = max_position_embeddings __UpperCamelCase : List[str] = hidden_size __UpperCamelCase : int = num_hidden_layers __UpperCamelCase : List[str] = intermediate_size __UpperCamelCase : str = hidden_act __UpperCamelCase : List[str] = hidden_dropout_prob __UpperCamelCase : Optional[int] = initializer_range __UpperCamelCase : Dict = type_vocab_size __UpperCamelCase : str = layer_norm_eps __UpperCamelCase : Optional[Any] = use_tpu_fourier_optimizations __UpperCamelCase : int = tpu_short_seq_length
171
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Union[str, Any] = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
171
1
'''simple docstring''' from maths.prime_check import is_prime def a_ ( lowerCamelCase : int ): if not isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(lowerCamelCase ) if is_prime(lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
4
class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = val __a = None __a = None def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: __a = Node(__lowercase ) else: self.left.insert(__lowercase ) elif val > self.val: if self.right is None: __a = Node(__lowercase ) else: self.right.insert(__lowercase ) else: __a = val def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if root: inorder(root.left , _SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) == 0: return arr __a = Node(arr[0] ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. __a = [] inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
302
0
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow _SCREAMING_SNAKE_CASE = False class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict , _A : Any=32 ) -> int: """simple docstring""" set_seed(0 ) snake_case_ : Optional[int] = UNetaDModel(sample_size=_A , in_channels=3 , out_channels=3 ) snake_case_ : Union[str, Any] = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1 ) return model, optimizer @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: """simple docstring""" snake_case_ : List[Any] = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable snake_case_ : int = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=_A , ) snake_case_ : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=_A , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) snake_case_ : Any = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(_A ) for _ in range(4 )] snake_case_ : Optional[int] = [torch.randn((4, 3, 32, 32) ).to(_A ) for _ in range(4 )] snake_case_ : List[str] = [torch.randint(0 , 1000 , (4,) ).long().to(_A ) for _ in range(4 )] # train with a DDPM scheduler snake_case_ : Dict = self.get_model_optimizer(resolution=32 ) model.train().to(_A ) for i in range(4 ): optimizer.zero_grad() snake_case_ : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) snake_case_ : str = model(_A , timesteps[i] ).sample snake_case_ : Dict = torch.nn.functional.mse_loss(_A , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM snake_case_ : List[str] = self.get_model_optimizer(resolution=32 ) model.train().to(_A ) for i in range(4 ): optimizer.zero_grad() snake_case_ : Any = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) snake_case_ : int = model(_A , timesteps[i] ).sample snake_case_ : Tuple = torch.nn.functional.mse_loss(_A , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_A , _A , atol=1E-5 ) ) self.assertTrue(torch.allclose(_A , _A , atol=1E-5 ) )
353
from __future__ import annotations import pandas as pd def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Optional[Any] = [0] * no_of_processes snake_case_ : Tuple = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__a ): snake_case_ : Union[str, Any] = burst_time[i] snake_case_ : Optional[Any] = 0 snake_case_ : Dict = 0 snake_case_ : Any = 9_99_99_99_99 snake_case_ : Tuple = 0 snake_case_ : List[Any] = False # Process until all processes are completed while complete != no_of_processes: for j in range(__a ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: snake_case_ : str = remaining_time[j] snake_case_ : Any = j snake_case_ : List[str] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 snake_case_ : Any = remaining_time[short] if minm == 0: snake_case_ : Dict = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 snake_case_ : List[str] = False # Find finish time of current process snake_case_ : List[str] = increment_time + 1 # Calculate waiting time snake_case_ : Any = finish_time - arrival_time[short] snake_case_ : Any = finar - burst_time[short] if waiting_time[short] < 0: snake_case_ : Optional[int] = 0 # Increment time increment_time += 1 return waiting_time def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Tuple = [0] * no_of_processes for i in range(__a ): snake_case_ : str = burst_time[i] + waiting_time[i] return turn_around_time def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : int = 0 snake_case_ : Optional[Any] = 0 for i in range(__a ): snake_case_ : int = total_waiting_time + waiting_time[i] snake_case_ : Optional[Any] = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") _SCREAMING_SNAKE_CASE = int(input()) _SCREAMING_SNAKE_CASE = [0] * no_of_processes _SCREAMING_SNAKE_CASE = [0] * no_of_processes _SCREAMING_SNAKE_CASE = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = map(int, input().split()) _SCREAMING_SNAKE_CASE = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _SCREAMING_SNAKE_CASE = burst_time _SCREAMING_SNAKE_CASE = no_of_processes _SCREAMING_SNAKE_CASE = waiting_time _SCREAMING_SNAKE_CASE = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) _SCREAMING_SNAKE_CASE = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
88
0
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ): """simple docstring""" if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __a = grid[0] for row_n in range(1 , len(_SCREAMING_SNAKE_CASE ) ): __a = grid[row_n] __a = fill_row(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = grid[row_n] return grid[-1][-1] def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list ): """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(_SCREAMING_SNAKE_CASE ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
302
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Dict =['pixel_values'] def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Dict , ): '''simple docstring''' super().__init__(**__lowercase ) __a = size if size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase ) __a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase , default_to_square=__lowercase , param_name="""crop_size""" ) __a = do_resize __a = do_rescale __a = do_normalize __a = do_center_crop __a = crop_size __a = size __a = resample __a = rescale_factor __a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __a = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "shortest_edge" in size: __a = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __a = (size["""height"""], size["""width"""]) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str ): '''simple docstring''' return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ): '''simple docstring''' return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Tuple , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : int = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : List[Any] , ): '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = do_rescale if do_rescale is not None else self.do_rescale __a = do_normalize if do_normalize is not None else self.do_normalize __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(__lowercase , param_name="""crop_size""" , default_to_square=__lowercase ) __a = resample if resample is not None else self.resample __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(__lowercase ) if not is_batched(__lowercase ): __a = [images] if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __a = [to_numpy_array(__lowercase ) for image in images] if do_resize: __a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __a = {"""pixel_values""": images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
302
1
from __future__ import annotations from collections.abc import MutableSequence class lowerCamelCase : """simple docstring""" def __init__( self : Union[str, Any], _UpperCAmelCase : int, _UpperCAmelCase : MutableSequence[float] ) -> Optional[Any]: """simple docstring""" if len(__lowerCAmelCase ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) SCREAMING_SNAKE_CASE__ : List[Any] = list(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = degree def __add__( self : List[str], _UpperCAmelCase : Polynomial ) -> str: """simple docstring""" if self.degree > polynomial_a.degree: SCREAMING_SNAKE_CASE__ : int = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree, __lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ : List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree, __lowerCAmelCase ) def __sub__( self : Union[str, Any], _UpperCAmelCase : Polynomial ) -> List[Any]: """simple docstring""" return self + polynomial_a * Polynomial(0, [-1] ) def __neg__( self : Dict ) -> int: """simple docstring""" return Polynomial(self.degree, [-c for c in self.coefficients] ) def __mul__( self : Any, _UpperCAmelCase : Polynomial ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree, __lowerCAmelCase ) def A_ ( self : str, _UpperCAmelCase : int | float ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = "" for i in range(self.degree, -1, -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__lowerCAmelCase ) return polynomial def __repr__( self : List[str] ) -> int: """simple docstring""" return self.__str__() def A_ ( self : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = [0] * self.degree for i in range(self.degree ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, __lowerCAmelCase ) def A_ ( self : Any, _UpperCAmelCase : int | float = 0 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = [0] * (self.degree + 2) SCREAMING_SNAKE_CASE__ : Dict = constant for i in range(self.degree + 1 ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, __lowerCAmelCase ) def __eq__( self : List[str], _UpperCAmelCase : object ) -> Any: """simple docstring""" if not isinstance(__lowerCAmelCase, __lowerCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple, _UpperCAmelCase : object ) -> Any: """simple docstring""" return not self.__eq__(__lowerCAmelCase )
358
def _a ( SCREAMING_SNAKE_CASE__ : str ) -> str: '''simple docstring''' if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) SCREAMING_SNAKE_CASE__ : List[Any] = "" while len(SCREAMING_SNAKE_CASE__ ) % 3 != 0: SCREAMING_SNAKE_CASE__ : str = "0" + bin_string SCREAMING_SNAKE_CASE__ : List[Any] = [ bin_string[index : index + 3] for index in range(len(SCREAMING_SNAKE_CASE__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: SCREAMING_SNAKE_CASE__ : List[Any] = 0 for index, val in enumerate(SCREAMING_SNAKE_CASE__ ): oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE__ ) ) oct_string += str(SCREAMING_SNAKE_CASE__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
191
0
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'owlvit_text_model' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[int]=4_9408 , _SCREAMING_SNAKE_CASE: Dict=512 , _SCREAMING_SNAKE_CASE: List[Any]=2048 , _SCREAMING_SNAKE_CASE: int=12 , _SCREAMING_SNAKE_CASE: Any=8 , _SCREAMING_SNAKE_CASE: Optional[Any]=16 , _SCREAMING_SNAKE_CASE: Tuple="quick_gelu" , _SCREAMING_SNAKE_CASE: str=1e-5 , _SCREAMING_SNAKE_CASE: Any=0.0 , _SCREAMING_SNAKE_CASE: int=0.02 , _SCREAMING_SNAKE_CASE: int=1.0 , _SCREAMING_SNAKE_CASE: Dict=0 , _SCREAMING_SNAKE_CASE: Optional[int]=4_9406 , _SCREAMING_SNAKE_CASE: str=4_9407 , **_SCREAMING_SNAKE_CASE: int , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = vocab_size __lowerCAmelCase : Optional[Any] = hidden_size __lowerCAmelCase : Tuple = intermediate_size __lowerCAmelCase : int = num_hidden_layers __lowerCAmelCase : Tuple = num_attention_heads __lowerCAmelCase : Any = max_position_embeddings __lowerCAmelCase : Optional[int] = hidden_act __lowerCAmelCase : Dict = layer_norm_eps __lowerCAmelCase : Tuple = attention_dropout __lowerCAmelCase : List[str] = initializer_range __lowerCAmelCase : Optional[Any] = initializer_factor @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, os.PathLike] , **_SCREAMING_SNAKE_CASE: Tuple) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE) __lowerCAmelCase , __lowerCAmelCase : Dict = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type") == "owlvit": __lowerCAmelCase : str = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'owlvit_vision_model' def __init__( self: Any , _SCREAMING_SNAKE_CASE: Tuple=768 , _SCREAMING_SNAKE_CASE: List[str]=3072 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Tuple=12 , _SCREAMING_SNAKE_CASE: Dict=3 , _SCREAMING_SNAKE_CASE: int=768 , _SCREAMING_SNAKE_CASE: Optional[int]=32 , _SCREAMING_SNAKE_CASE: Union[str, Any]="quick_gelu" , _SCREAMING_SNAKE_CASE: List[str]=1e-5 , _SCREAMING_SNAKE_CASE: int=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.02 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1.0 , **_SCREAMING_SNAKE_CASE: Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = hidden_size __lowerCAmelCase : Union[str, Any] = intermediate_size __lowerCAmelCase : List[str] = num_hidden_layers __lowerCAmelCase : List[Any] = num_attention_heads __lowerCAmelCase : Optional[int] = num_channels __lowerCAmelCase : Any = image_size __lowerCAmelCase : Optional[Any] = patch_size __lowerCAmelCase : Optional[int] = hidden_act __lowerCAmelCase : Tuple = layer_norm_eps __lowerCAmelCase : List[Any] = attention_dropout __lowerCAmelCase : List[Any] = initializer_range __lowerCAmelCase : List[str] = initializer_factor @classmethod def _SCREAMING_SNAKE_CASE ( cls: Tuple , _SCREAMING_SNAKE_CASE: Union[str, os.PathLike] , **_SCREAMING_SNAKE_CASE: List[Any]) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE) __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type") == "owlvit": __lowerCAmelCase : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'owlvit' SCREAMING_SNAKE_CASE = True def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Tuple=512 , _SCREAMING_SNAKE_CASE: Optional[Any]=2.6592 , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , **_SCREAMING_SNAKE_CASE: Tuple , ) -> int: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) if text_config is None: __lowerCAmelCase : Union[str, Any] = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values.") if vision_config is None: __lowerCAmelCase : Optional[int] = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values.") __lowerCAmelCase : str = OwlViTTextConfig(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = OwlViTVisionConfig(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = projection_dim __lowerCAmelCase : Dict = logit_scale_init_value __lowerCAmelCase : Any = return_dict __lowerCAmelCase : Union[str, Any] = 1.0 @classmethod def _SCREAMING_SNAKE_CASE ( cls: str , _SCREAMING_SNAKE_CASE: Union[str, os.PathLike] , **_SCREAMING_SNAKE_CASE: List[str]) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE) __lowerCAmelCase , __lowerCAmelCase : Tuple = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) @classmethod def _SCREAMING_SNAKE_CASE ( cls: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Dict , **_SCREAMING_SNAKE_CASE: Optional[int]) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = {} __lowerCAmelCase : Any = text_config __lowerCAmelCase : Dict = vision_config return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__) __lowerCAmelCase : str = self.text_config.to_dict() __lowerCAmelCase : int = self.vision_config.to_dict() __lowerCAmelCase : Dict = self.__class__.model_type return output class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self: Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ]) @property def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ]) @property def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> float: """simple docstring""" return 1e-4 def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: "ProcessorMixin" , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: Optional["TensorType"] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowerCAmelCase : str = super().generate_dummy_inputs( processor.tokenizer , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = super().generate_dummy_inputs( processor.image_processor , batch_size=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE) return {**text_input_dict, **image_input_dict} @property def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> int: """simple docstring""" return 14
269
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Optional[Any] = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off __snake_case : Any = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] __snake_case : str = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'whisper' SCREAMING_SNAKE_CASE = ['past_key_values'] SCREAMING_SNAKE_CASE = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: Any=5_1865 , _SCREAMING_SNAKE_CASE: Optional[Any]=80 , _SCREAMING_SNAKE_CASE: Optional[int]=6 , _SCREAMING_SNAKE_CASE: Any=4 , _SCREAMING_SNAKE_CASE: Dict=6 , _SCREAMING_SNAKE_CASE: Dict=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=1536 , _SCREAMING_SNAKE_CASE: List[str]=1536 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: str=0.0 , _SCREAMING_SNAKE_CASE: List[str]=5_0257 , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: Optional[int]="gelu" , _SCREAMING_SNAKE_CASE: Tuple=256 , _SCREAMING_SNAKE_CASE: str=0.0 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.02 , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Union[str, Any]=1500 , _SCREAMING_SNAKE_CASE: str=448 , _SCREAMING_SNAKE_CASE: Any=5_0256 , _SCREAMING_SNAKE_CASE: Any=5_0256 , _SCREAMING_SNAKE_CASE: List[str]=5_0256 , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: List[Any]=[220, 5_0256] , _SCREAMING_SNAKE_CASE: Dict=False , _SCREAMING_SNAKE_CASE: str=256 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: Tuple=0.05 , _SCREAMING_SNAKE_CASE: List[str]=10 , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: Any=0.0 , _SCREAMING_SNAKE_CASE: Optional[int]=10 , _SCREAMING_SNAKE_CASE: int=0 , _SCREAMING_SNAKE_CASE: Any=7 , **_SCREAMING_SNAKE_CASE: List[str] , ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = vocab_size __lowerCAmelCase : Optional[Any] = num_mel_bins __lowerCAmelCase : int = d_model __lowerCAmelCase : List[Any] = encoder_layers __lowerCAmelCase : List[Any] = encoder_attention_heads __lowerCAmelCase : List[str] = decoder_layers __lowerCAmelCase : Tuple = decoder_attention_heads __lowerCAmelCase : Any = decoder_ffn_dim __lowerCAmelCase : Tuple = encoder_ffn_dim __lowerCAmelCase : List[str] = dropout __lowerCAmelCase : Union[str, Any] = attention_dropout __lowerCAmelCase : Union[str, Any] = activation_dropout __lowerCAmelCase : Dict = activation_function __lowerCAmelCase : Tuple = init_std __lowerCAmelCase : str = encoder_layerdrop __lowerCAmelCase : int = decoder_layerdrop __lowerCAmelCase : Optional[int] = use_cache __lowerCAmelCase : Union[str, Any] = encoder_layers __lowerCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase : int = max_source_positions __lowerCAmelCase : Any = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase : Dict = classifier_proj_size __lowerCAmelCase : Dict = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase : int = apply_spec_augment __lowerCAmelCase : Union[str, Any] = mask_time_prob __lowerCAmelCase : str = mask_time_length __lowerCAmelCase : int = mask_time_min_masks __lowerCAmelCase : List[Any] = mask_feature_prob __lowerCAmelCase : Tuple = mask_feature_length __lowerCAmelCase : Any = mask_feature_min_masks __lowerCAmelCase : Union[str, Any] = median_filter_width super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , suppress_tokens=_SCREAMING_SNAKE_CASE , begin_suppress_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowerCAmelCase : List[str] = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ]) if self.use_past: __lowerCAmelCase : Tuple = {0: "batch"} else: __lowerCAmelCase : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction="inputs") return common_inputs def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: Optional["TensorType"] = None , _SCREAMING_SNAKE_CASE: int = 2_2050 , _SCREAMING_SNAKE_CASE: float = 5.0 , _SCREAMING_SNAKE_CASE: int = 220 , ) -> Mapping[str, Any]: """simple docstring""" __lowerCAmelCase : int = OrderedDict() __lowerCAmelCase : Optional[Any] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , time_duration=_SCREAMING_SNAKE_CASE , frequency=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[str] = encoder_inputs["input_features"].shape[2] __lowerCAmelCase : List[str] = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCAmelCase : List[Any] = super().generate_dummy_inputs( preprocessor.tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = encoder_inputs.pop("input_features") __lowerCAmelCase : List[Any] = decoder_inputs.pop("decoder_input_ids") if "past_key_values" in decoder_inputs: __lowerCAmelCase : int = decoder_inputs.pop("past_key_values") return dummy_inputs @property def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> float: """simple docstring""" return 1e-3
269
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase :Union[str, Any] = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
275
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCAmelCase :str = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase :int = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any]=8 ): """simple docstring""" __magic_name__ : List[str] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __magic_name__ : str = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : MultilingualCLIP , _A : XLMRobertaTokenizer , _A : UNetaDConditionModel , _A : Union[DDIMScheduler, DDPMScheduler] , _A : VQModel , ) -> int: super().__init__() self.register_modules( text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , movq=_A , ) __magic_name__ : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : Optional[Any] , _A : Optional[int] , _A : Dict , _A : str , _A : List[str] ) -> str: if latents is None: __magic_name__ : Any = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __magic_name__ : int = latents.to(_A ) __magic_name__ : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : List[Any] , _A : List[str] , _A : List[str] , _A : List[str] , _A : List[Any] , _A : str=None , ) -> Dict: __magic_name__ : Optional[Any] = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings __magic_name__ : str = self.tokenizer( _A , padding='max_length' , truncation=_A , max_length=77 , return_attention_mask=_A , add_special_tokens=_A , return_tensors='pt' , ) __magic_name__ : Optional[Any] = text_inputs.input_ids __magic_name__ : Optional[Any] = self.tokenizer(_A , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_A , _A ): __magic_name__ : str = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __magic_name__ : Union[str, Any] = text_input_ids.to(_A ) __magic_name__ : Dict = text_inputs.attention_mask.to(_A ) __magic_name__ , __magic_name__ : str = self.text_encoder( input_ids=_A , attention_mask=_A ) __magic_name__ : Tuple = prompt_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : int = text_encoder_hidden_states.repeat_interleave(_A , dim=0 ) __magic_name__ : Union[str, Any] = text_mask.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: __magic_name__ : List[str] if negative_prompt is None: __magic_name__ : Optional[Any] = [''] * batch_size elif type(_A ) is not type(_A ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(_A )} !=' F' {type(_A )}.' ) elif isinstance(_A , _A ): __magic_name__ : int = [negative_prompt] elif batch_size != len(_A ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(_A )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: __magic_name__ : Dict = negative_prompt __magic_name__ : List[str] = self.tokenizer( _A , padding='max_length' , max_length=77 , truncation=_A , return_attention_mask=_A , add_special_tokens=_A , return_tensors='pt' , ) __magic_name__ : Optional[int] = uncond_input.input_ids.to(_A ) __magic_name__ : Optional[Any] = uncond_input.attention_mask.to(_A ) __magic_name__ , __magic_name__ : int = self.text_encoder( input_ids=_A , attention_mask=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __magic_name__ : List[str] = negative_prompt_embeds.shape[1] __magic_name__ : str = negative_prompt_embeds.repeat(1 , _A ) __magic_name__ : Dict = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A ) __magic_name__ : Any = uncond_text_encoder_hidden_states.shape[1] __magic_name__ : Optional[int] = uncond_text_encoder_hidden_states.repeat(1 , _A , 1 ) __magic_name__ : Tuple = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _A , -1 ) __magic_name__ : List[Any] = uncond_text_mask.repeat_interleave(_A , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] ) __magic_name__ : str = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __magic_name__ : str = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowerCAmelCase ( self : Dict , _A : List[Any]=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __magic_name__ : List[Any] = torch.device(F'cuda:{gpu_id}' ) __magic_name__ : Dict = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def __lowerCAmelCase ( self : List[Any] , _A : List[str]=0 ) -> str: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) __magic_name__ : int = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __magic_name__ : Optional[int] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __magic_name__ , __magic_name__ : Union[str, Any] = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) if self.safety_checker is not None: __magic_name__ , __magic_name__ : List[str] = cpu_offload_with_hook(self.safety_checker , _A , prev_module_hook=_A ) # We'll offload the last model manually. __magic_name__ : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : int ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : int , _A : Union[str, List[str]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Optional[Union[str, List[str]]] = None , _A : int = 512 , _A : int = 512 , _A : int = 100 , _A : float = 4.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , ) -> Optional[int]: if isinstance(_A , _A ): __magic_name__ : Optional[int] = 1 elif isinstance(_A , _A ): __magic_name__ : Union[str, Any] = len(_A ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(_A )}' ) __magic_name__ : Tuple = self._execution_device __magic_name__ : Any = batch_size * num_images_per_prompt __magic_name__ : int = guidance_scale > 1.0 __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = self._encode_prompt( _A , _A , _A , _A , _A ) if isinstance(_A , _A ): __magic_name__ : Union[str, Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __magic_name__ : Dict = torch.cat(_A , dim=0 ) if do_classifier_free_guidance: __magic_name__ : Dict = image_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : Optional[int] = negative_image_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_A ) self.scheduler.set_timesteps(_A , device=_A ) __magic_name__ : Tuple = self.scheduler.timesteps __magic_name__ : Optional[int] = self.unet.config.in_channels __magic_name__ , __magic_name__ : Dict = get_new_h_w(_A , _A , self.movq_scale_factor ) # create initial latent __magic_name__ : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _A , _A , _A , self.scheduler , ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __magic_name__ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __magic_name__ : Tuple = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} __magic_name__ : Union[str, Any] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: __magic_name__ , __magic_name__ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) __magic_name__ , __magic_name__ : Dict = noise_pred.chunk(2 ) __magic_name__ , __magic_name__ : List[str] = variance_pred.chunk(2 ) __magic_name__ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __magic_name__ : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __magic_name__ , __magic_name__ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : List[Any] = self.scheduler.step( _A , _A , _A , generator=_A , ).prev_sample # post-processing __magic_name__ : int = self.movq.decode(_A , force_not_quantize=_A )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __magic_name__ : Dict = image * 0.5 + 0.5 __magic_name__ : str = image.clamp(0 , 1 ) __magic_name__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __magic_name__ : str = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
275
1
"""simple docstring""" from collections import deque def a__ ( lowerCAmelCase ) -> Tuple: UpperCAmelCase__ : str = len(lowerCAmelCase ) UpperCAmelCase__ : Dict = deque() UpperCAmelCase__ : Any = [False for _ in range(lowerCAmelCase )] UpperCAmelCase__ : Tuple = [-1 for _ in range(lowerCAmelCase )] UpperCAmelCase__ : int = index_of[:] def strong_connect(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : str = index # the number when this node is seen UpperCAmelCase__ : Union[str, Any] = index # lowest rank node reachable from here index += 1 stack.append(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = True for w in g[v]: if index_of[w] == -1: UpperCAmelCase__ : int = strong_connect(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[str] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCAmelCase__ : str = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : int = stack.pop() UpperCAmelCase__ : Optional[int] = False component.append(lowerCAmelCase ) while w != v: UpperCAmelCase__ : Any = stack.pop() UpperCAmelCase__ : List[Any] = False component.append(lowerCAmelCase ) components.append(lowerCAmelCase ) return index UpperCAmelCase__ : str = [] for v in range(lowerCAmelCase ): if index_of[v] == -1: strong_connect(lowerCAmelCase , 0 , lowerCAmelCase ) return components def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: UpperCAmelCase__ : Dict = [[] for _ in range(lowerCAmelCase )] for u, v in edges: g[u].append(lowerCAmelCase ) return g if __name__ == "__main__": # Test _A = 7 _A = [0, 0, 1, 2, 3, 3, 4, 4, 6] _A = [1, 3, 2, 0, 1, 4, 5, 6, 5] _A = [(u, v) for u, v in zip(source, target)] _A = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
171
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _A = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""OwlViTFeatureExtractor"""] _A = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
171
1
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def __UpperCAmelCase ( snake_case_ : Tuple ) -> List[Any]: """simple docstring""" return "".join(sorted(__a ) ) def __UpperCAmelCase ( snake_case_ : Any ) -> Optional[Any]: """simple docstring""" return word_by_signature[signature(__a )] SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') SCREAMING_SNAKE_CASE : Dict = sorted({word.strip().lower() for word in data.splitlines()}) SCREAMING_SNAKE_CASE : Dict = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
350
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
0
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase_ ( _A ): def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , 'tf_padding' ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , 'depth_multiplier' ) ) class UpperCAmelCase_ : def __init__( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Any=1_3 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : str=3_2 , UpperCAmelCase__ : Any=0.25 , UpperCAmelCase__ : Union[str, Any]=8 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : int=1_0_2_4 , UpperCAmelCase__ : str=3_2 , UpperCAmelCase__ : List[Any]="relu6" , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[Any]=1_0 , UpperCAmelCase__ : Optional[Any]=None , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = depth_multiplier lowerCAmelCase = min_depth lowerCAmelCase = tf_padding lowerCAmelCase = int(last_hidden_size * depth_multiplier ) lowerCAmelCase = output_stride lowerCAmelCase = hidden_act lowerCAmelCase = classifier_dropout_prob lowerCAmelCase = use_labels lowerCAmelCase = is_training lowerCAmelCase = num_labels lowerCAmelCase = initializer_range lowerCAmelCase = scope def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self : int ) -> int: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Tuple: lowerCAmelCase = MobileNetVaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple ) -> Dict: lowerCAmelCase = self.num_labels lowerCAmelCase = MobileNetVaForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Optional[int] ) -> str: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _A , _A , unittest.TestCase ): lowerCamelCase : Optional[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowerCamelCase : int = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : List[str] = False lowerCamelCase : List[Any] = False lowerCamelCase : int = False def __UpperCAmelCase ( self : List[str] ) -> List[Any]: lowerCAmelCase = MobileNetVaModelTester(self ) lowerCAmelCase = MobileNetVaConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def __UpperCAmelCase ( self : str ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV1 does not use inputs_embeds' ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: pass @unittest.skip(reason='MobileNetV1 does not support input and output embeddings' ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: pass @unittest.skip(reason='MobileNetV1 does not output attentions' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: pass def __UpperCAmelCase ( self : Any ) -> Optional[int]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(UpperCamelCase__ ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __UpperCAmelCase ( self : List[Any] ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: def check_hidden_states_output(UpperCAmelCase__ : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict ): lowerCAmelCase = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCAmelCase = outputs.hidden_states lowerCAmelCase = 2_6 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = MobileNetVaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def a_ ( ): lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : int ) -> str: return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v1_1.0_224' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: lowerCAmelCase = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v1_1.0_224' ).to(UpperCamelCase__ ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**UpperCamelCase__ ) # verify the logits lowerCAmelCase = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCAmelCase = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) )
4
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' a__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _lowercase ( self : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Tuple: """simple docstring""" __magic_name__ = TextaTextGenerationPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) return generator, ["Something to write", "Something else"] def _lowercase ( self : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __magic_name__ = generator("""Something there""" ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": ANY(UpperCamelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) __magic_name__ = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], ] , ) __magic_name__ = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], ] , ) with self.assertRaises(UpperCamelCase__ ): generator(4 ) @require_torch def _lowercase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility __magic_name__ = generator("""Something there""" , do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": """"""}] ) __magic_name__ = 3 __magic_name__ = generator( """Something there""" , num_return_sequences=UpperCamelCase__ , num_beams=UpperCamelCase__ , ) __magic_name__ = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = generator("""This is a test""" , do_sample=UpperCamelCase__ , num_return_sequences=2 , return_tensors=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) __magic_name__ = generator.model.config.eos_token_id __magic_name__ = """<pad>""" __magic_name__ = generator( ["""This is a test""", """This is a second test"""] , do_sample=UpperCamelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCamelCase__ , ) self.assertEqual( UpperCamelCase__ , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def _lowercase ( self : int ) -> str: """simple docstring""" __magic_name__ = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility __magic_name__ = generator("""Something there""" , do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": """"""}] )
88
0
import os from datetime import datetime as dt from github import Github SCREAMING_SNAKE_CASE_ = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def __SCREAMING_SNAKE_CASE ( ) -> int: _UpperCAmelCase : Tuple = Github(os.environ["GITHUB_TOKEN"] ) _UpperCAmelCase : Tuple = g.get_repo("huggingface/diffusers" ) _UpperCAmelCase : Optional[Any] = repo.get_issues(state="open" ) for issue in open_issues: _UpperCAmelCase : Tuple = sorted(issue.get_comments() , key=lambda lowerCAmelCase : i.created_at , reverse=lowerCAmelCase ) _UpperCAmelCase : List[Any] = comments[0] if len(lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
189
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCAmelCase : Optional[int] = k.replace(lowerCAmelCase , lowerCAmelCase ) if k.startswith("encoder" ): _UpperCAmelCase : Tuple = k.replace(".attn" , ".self_attn" ) _UpperCAmelCase : str = k.replace("norm1" , "self_attn_layer_norm" ) _UpperCAmelCase : Optional[Any] = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): _UpperCAmelCase : Union[str, Any] = k.replace("norm1" , "self_attn_layer_norm" ) _UpperCAmelCase : Tuple = k.replace("norm2" , "encoder_attn_layer_norm" ) _UpperCAmelCase : Any = k.replace("norm3" , "final_layer_norm" ) return k def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> List[Any]: _UpperCAmelCase : int = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: _UpperCAmelCase : Dict = sd.pop(lowerCAmelCase ) _UpperCAmelCase : str = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd _UpperCAmelCase : Dict = v SCREAMING_SNAKE_CASE_ = ['START'] @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: int , lowerCAmelCase: int ) -> int: _UpperCAmelCase : Union[str, Any] = torch.load(lowerCAmelCase , map_location="cpu" ) _UpperCAmelCase : List[str] = model["model"] _UpperCAmelCase : List[str] = BlenderbotConfig.from_json_file(lowerCAmelCase ) _UpperCAmelCase : str = BlenderbotForConditionalGeneration(lowerCAmelCase ) _UpperCAmelCase : List[str] = m.model.state_dict().keys() _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[str] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCAmelCase : Tuple = rename_state_dict_key(lowerCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCAmelCase : Tuple = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowerCAmelCase ) m.model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) m.half() m.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
189
1
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): if index == r: for j in range(snake_case_ ): print(data[j],end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _A : Tuple = arr[i] combination_util(snake_case_,snake_case_,snake_case_,index + 1,snake_case_,i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # A temporary array to store all combination one by one _A : str = [0] * r # Print all combination using temporary array 'data[]' combination_util(snake_case_,snake_case_,snake_case_,0,snake_case_,0 ) if __name__ == "__main__": # Driver code to check the function above _snake_case = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
26
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase_ = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["DPTFeatureExtractor"] lowerCamelCase_ = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
191
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> None: _lowerCamelCase = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> list[list[int]]: if not isinstance(snake_case , snake_case ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) _lowerCamelCase = [] for current_row_idx in range(snake_case ): _lowerCamelCase = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def SCREAMING_SNAKE_CASE_ ( snake_case : list[list[int]] , snake_case : int )-> list[int]: _lowerCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _lowerCamelCase , _lowerCamelCase = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def SCREAMING_SNAKE_CASE_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , )-> None: _lowerCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] _lowerCamelCase = triangle[current_row_idx - 1][current_col_idx] _lowerCamelCase = above_to_left_elt + above_to_right_elt def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> list[list[int]]: if not isinstance(snake_case , snake_case ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) _lowerCamelCase = [[1]] for row_index in range(1 , snake_case ): _lowerCamelCase = [0] + result[-1] + [0] _lowerCamelCase = row_index + 1 # Calculate the number of distinct elements in a row _lowerCamelCase = sum(divmod(snake_case , 2 ) ) _lowerCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _lowerCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _lowerCamelCase = row_first_half + row_second_half result.append(snake_case ) return result def SCREAMING_SNAKE_CASE_ ( )-> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None: _lowerCamelCase = f'{func.__name__}({value})' _lowerCamelCase = timeit(f'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
80
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A_ : List[str] =logging.get_logger(__name__) A_ : Optional[Any] ={"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A_ : Tuple ={ """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A_ : Any ={ """junnyu/roformer_chinese_small""": 1_5_3_6, """junnyu/roformer_chinese_base""": 1_5_3_6, """junnyu/roformer_chinese_char_small""": 5_1_2, """junnyu/roformer_chinese_char_base""": 5_1_2, """junnyu/roformer_small_discriminator""": 1_2_8, """junnyu/roformer_small_generator""": 1_2_8, } A_ : List[str] ={ """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : List[Any] = RoFormerTokenizer def __init__( self , a__=None , a__=None , a__=True , a__="[UNK]" , a__="[SEP]" , a__="[PAD]" , a__="[CLS]" , a__="[MASK]" , a__=True , a__=None , **a__ , ): super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , tokenize_chinese_chars=a__ , strip_accents=a__ , **a__ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , a__ ) != do_lower_case or pre_tok_state.get('strip_accents' , a__ ) != strip_accents ): _lowerCamelCase = getattr(a__ , pre_tok_state.pop('type' ) ) _lowerCamelCase = do_lower_case _lowerCamelCase = strip_accents _lowerCamelCase = pre_tok_class(**a__ ) _lowerCamelCase = do_lower_case def __getstate__( self ): _lowerCamelCase = self.__dict__.copy() _lowerCamelCase = BertPreTokenizer() return state def __setstate__( self , a__ ): _lowerCamelCase = d _lowerCamelCase = self.__dict__['_tokenizer'].get_vocab() _lowerCamelCase = PreTokenizer.custom(JiebaPreTokenizer(a__ ) ) def snake_case_ ( self , a__ , a__=None ): _lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def snake_case_ ( self , a__ , a__=None , a__=None , a__=False , **a__ , ): _lowerCamelCase = BertPreTokenizer() return super().save_pretrained(a__ , a__ , a__ , a__ , **a__ )
80
1
def _lowercase ( lowercase__ ): return "".join(chr(ord(lowercase__ ) - 3_2 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
275
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def _lowercase ( lowercase__ ): __lowerCAmelCase : str = [] __lowerCAmelCase : List[Any] = [] __lowerCAmelCase : str = [] for rt in rc.restypes: __lowerCAmelCase : List[Any] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) __lowerCAmelCase : List[str] = {name: i for i, name in enumerate(lowercase__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) __lowerCAmelCase : List[Any] = torch.tensor( lowercase__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) __lowerCAmelCase : Optional[Any] = torch.tensor( lowercase__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) __lowerCAmelCase : Tuple = torch.tensor( lowercase__ , dtype=torch.floataa , device=protein['''aatype'''].device , ) __lowerCAmelCase : List[Any] = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein __lowerCAmelCase : Any = restype_atomaa_to_atomaa[protein_aatype] __lowerCAmelCase : Union[str, Any] = restype_atomaa_mask[protein_aatype] __lowerCAmelCase : int = residx_atomaa_mask __lowerCAmelCase : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back __lowerCAmelCase : int = restype_atomaa_to_atomaa[protein_aatype] __lowerCAmelCase : Union[str, Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask __lowerCAmelCase : str = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): __lowerCAmelCase : Optional[int] = rc.restype_atoa[restype_letter] __lowerCAmelCase : Optional[Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: __lowerCAmelCase : str = rc.atom_order[atom_name] __lowerCAmelCase : List[Any] = 1 __lowerCAmelCase : Union[str, Any] = restype_atomaa_mask[protein_aatype] __lowerCAmelCase : Any = residx_atomaa_mask return protein def _lowercase ( lowercase__ ): __lowerCAmelCase : Dict = tree_map(lambda lowercase__ : torch.tensor(lowercase__ , device=batch['''aatype'''].device ) , lowercase__ , np.ndarray ) __lowerCAmelCase : Tuple = tensor_tree_map(lambda lowercase__ : np.array(lowercase__ ) , make_atomaa_masks(lowercase__ ) ) return out
275
1
A__ = 256 # Modulus to hash a string A__ = 100_0003 def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: """simple docstring""" snake_case__ : str = len(__lowerCAmelCase ) snake_case__ : Optional[int] = len(__lowerCAmelCase ) if p_len > t_len: return False snake_case__ : str = 0 snake_case__ : Union[str, Any] = 0 snake_case__ : Dict = 1 # Calculating the hash of pattern and substring of text for i in range(__lowerCAmelCase ): snake_case__ : int = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case__ : str = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case__ : str = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case__ : Any = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _lowerCAmelCase ( ) -> None: """simple docstring""" snake_case__ : Optional[int] = '''abc1abc12''' snake_case__ : Dict = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' snake_case__ : int = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) and not rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 2) snake_case__ : int = '''ABABX''' snake_case__ : Any = '''ABABZABABYABABX''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 3) snake_case__ : Dict = '''AAAB''' snake_case__ : Union[str, Any] = '''ABAAAAAB''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 4) snake_case__ : Union[str, Any] = '''abcdabcy''' snake_case__ : Optional[Any] = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 5) snake_case__ : Dict = '''Lü''' snake_case__ : Optional[Any] = '''Lüsai''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : str = '''Lue''' assert not rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
44
import math import tensorflow as tf from packaging import version def _lowerCAmelCase ( __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ : List[str] = tf.convert_to_tensor(__lowerCAmelCase ) snake_case__ : Dict = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def _lowerCAmelCase ( __lowerCAmelCase ) -> List[str]: """simple docstring""" snake_case__ : Dict = tf.convert_to_tensor(__lowerCAmelCase ) snake_case__ : Tuple = tf.cast(math.pi , x.dtype ) snake_case__ : str = tf.cast(0.044_715 , x.dtype ) snake_case__ : int = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__lowerCAmelCase , 3 )) )) return x * cdf def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict = tf.convert_to_tensor(__lowerCAmelCase ) return x * tf.tanh(tf.math.softplus(__lowerCAmelCase ) ) def _lowerCAmelCase ( __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[str] = tf.convert_to_tensor(__lowerCAmelCase ) snake_case__ : str = tf.cast(0.044_715 , x.dtype ) snake_case__ : Optional[Any] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def _lowerCAmelCase ( __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[int] = tf.convert_to_tensor(__lowerCAmelCase ) snake_case__ : Optional[Any] = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" return tf.clip_by_value(_gelu(__lowerCAmelCase ) , -10 , 10 ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=-1 ) -> Optional[Any]: """simple docstring""" snake_case__ , snake_case__ : str = tf.split(__lowerCAmelCase , 2 , axis=__lowerCAmelCase ) return a * tf.math.sigmoid(__lowerCAmelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[int]: """simple docstring""" return tf.keras.activations.gelu(__lowerCAmelCase , approximate=__lowerCAmelCase ) A__ = tf.keras.activations.gelu A__ = approximate_gelu_wrap else: A__ = _gelu A__ = _gelu_new A__ = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[int]: """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
44
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Any = logging.get_logger(__name__) a__ : Tuple = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class lowercase_ ( a__ ): __UpperCAmelCase = 'blip_text_model' def __init__( self , a=3_05_24 , a=7_68 , a=7_68 , a=30_72 , a=7_68 , a=12 , a=8 , a=5_12 , a="gelu" , a=1e-12 , a=0.0 , a=0.0 , a=0.02 , a=3_05_22 , a=2 , a=0 , a=1_02 , a=True , a=True , **a , ): super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , sep_token_id=a , **a , ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = encoder_hidden_size UpperCamelCase__ = intermediate_size UpperCamelCase__ = projection_dim UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = hidden_act UpperCamelCase__ = initializer_range UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = is_decoder UpperCamelCase__ = use_cache @classmethod def __a ( cls , a , **a ): cls._set_token_in_kwargs(a ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(a , **a ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCamelCase__ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a , **a ) class lowercase_ ( a__ ): __UpperCAmelCase = 'blip_vision_model' def __init__( self , a=7_68 , a=30_72 , a=5_12 , a=12 , a=12 , a=3_84 , a=16 , a="gelu" , a=1e-5 , a=0.0 , a=1e-10 , **a , ): super().__init__(**a ) UpperCamelCase__ = hidden_size UpperCamelCase__ = intermediate_size UpperCamelCase__ = projection_dim UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = patch_size UpperCamelCase__ = image_size UpperCamelCase__ = initializer_range UpperCamelCase__ = attention_dropout UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = hidden_act @classmethod def __a ( cls , a , **a ): cls._set_token_in_kwargs(a ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCamelCase__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a , **a ) class lowercase_ ( a__ ): __UpperCAmelCase = 'blip' __UpperCAmelCase = True def __init__( self , a=None , a=None , a=5_12 , a=2.6592 , a=2_56 , **a , ): super().__init__(**a ) if text_config is None: UpperCamelCase__ = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: UpperCamelCase__ = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) UpperCamelCase__ = BlipTextConfig(**a ) UpperCamelCase__ = BlipVisionConfig(**a ) UpperCamelCase__ = self.vision_config.hidden_size UpperCamelCase__ = projection_dim UpperCamelCase__ = logit_scale_init_value UpperCamelCase__ = 1.0 UpperCamelCase__ = 0.02 UpperCamelCase__ = image_text_hidden_size @classmethod def __a ( cls , a , a , **a ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a ) def __a ( self ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.text_config.to_dict() UpperCamelCase__ = self.vision_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
80
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : str=1_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : int=3_7 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[Any]=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Optional[Any]=None , ) -> Optional[int]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : str ) -> Tuple: __lowerCAmelCase = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=lowerCAmelCase_ , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def lowercase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ) -> List[str]: __lowerCAmelCase = EsmForProteinFolding(config=lowerCAmelCase_ ).float() model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = False a_ = (EsmForProteinFolding,) if is_torch_available() else () a_ = () a_ = {} if is_torch_available() else {} a_ = False def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = EsmFoldModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Optional[Any] ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip('Does not support attention outputs' ) def lowercase ( self : Optional[int] ) -> List[str]: pass @unittest.skip def lowercase ( self : Dict ) -> int: pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase ( self : Optional[int] ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def lowercase ( self : Any ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self : Optional[Any] ) -> int: pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self : Union[str, Any] ) -> List[str]: pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self : str ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self : Union[str, Any] ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def lowercase ( self : int ) -> str: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def lowercase ( self : str ) -> Dict: pass @unittest.skip('ESMFold only has one output format.' ) def lowercase ( self : Any ) -> Dict: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def lowercase ( self : List[Any] ) -> List[str]: pass @unittest.skip('ESMFold does not support input chunking.' ) def lowercase ( self : int ) -> Dict: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def lowercase ( self : Dict ) -> Optional[int]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase ( self : Optional[Any] ) -> List[str]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase ( self : Any ) -> Tuple: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def lowercase ( self : Union[str, Any] ) -> int: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @require_torch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> Dict: __lowerCAmelCase = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() __lowerCAmelCase = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) __lowerCAmelCase = model(lowerCAmelCase_ )['positions'] __lowerCAmelCase = torch.tensor([2.58_28, 0.79_93, -10.93_34] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , lowerCAmelCase_ , atol=1e-4 ) )
207
from functools import lru_cache @lru_cache def a_ ( lowerCAmelCase_ : int ): if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
207
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str =logging.get_logger(__name__) lowerCamelCase : Optional[int] ={ '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class __a ( A__ ): _lowerCAmelCase : Any = '''realm''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : Dict=3_05_22 , SCREAMING_SNAKE_CASE : Dict=7_68 , SCREAMING_SNAKE_CASE : Tuple=1_28 , SCREAMING_SNAKE_CASE : Any=12 , SCREAMING_SNAKE_CASE : Optional[Any]=12 , SCREAMING_SNAKE_CASE : Optional[Any]=8 , SCREAMING_SNAKE_CASE : Optional[Any]=30_72 , SCREAMING_SNAKE_CASE : Any="gelu_new" , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : int=0.1 , SCREAMING_SNAKE_CASE : str=5_12 , SCREAMING_SNAKE_CASE : Tuple=2 , SCREAMING_SNAKE_CASE : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE : Optional[int]=1e-1_2 , SCREAMING_SNAKE_CASE : Union[str, Any]=2_56 , SCREAMING_SNAKE_CASE : Union[str, Any]=10 , SCREAMING_SNAKE_CASE : Union[str, Any]=1e-3 , SCREAMING_SNAKE_CASE : str=5 , SCREAMING_SNAKE_CASE : Any=3_20 , SCREAMING_SNAKE_CASE : Optional[Any]=13_35_37_18 , SCREAMING_SNAKE_CASE : str=50_00 , SCREAMING_SNAKE_CASE : Dict=1 , SCREAMING_SNAKE_CASE : Optional[int]=0 , SCREAMING_SNAKE_CASE : Optional[int]=2 , **SCREAMING_SNAKE_CASE : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # Common config UpperCamelCase__ : Union[str, Any] = vocab_size UpperCamelCase__ : Optional[Any] = max_position_embeddings UpperCamelCase__ : Tuple = hidden_size UpperCamelCase__ : Dict = retriever_proj_size UpperCamelCase__ : Dict = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : Dict = num_candidates UpperCamelCase__ : List[Any] = intermediate_size UpperCamelCase__ : Optional[int] = hidden_act UpperCamelCase__ : Optional[Any] = hidden_dropout_prob UpperCamelCase__ : Dict = attention_probs_dropout_prob UpperCamelCase__ : List[str] = initializer_range UpperCamelCase__ : Tuple = type_vocab_size UpperCamelCase__ : List[str] = layer_norm_eps # Reader config UpperCamelCase__ : int = span_hidden_size UpperCamelCase__ : Any = max_span_width UpperCamelCase__ : int = reader_layer_norm_eps UpperCamelCase__ : Union[str, Any] = reader_beam_size UpperCamelCase__ : Any = reader_seq_len # Retrieval config UpperCamelCase__ : int = num_block_records UpperCamelCase__ : List[str] = searcher_beam_size
189
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCamelCase : int =TypeVar('''T''') class __a ( Generic[T] ): _lowerCAmelCase : deque[T] # Cache store of keys _lowerCAmelCase : set[T] # References of the keys in cache _lowerCAmelCase : int = 1_0 # Maximum capacity of cache def __init__( self : List[str] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' UpperCamelCase__ : Tuple = deque() UpperCamelCase__ : Optional[int] = set() if not n: UpperCamelCase__ : Tuple = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: UpperCamelCase__ : Dict = n def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase__ : int = self.dq_store.pop() self.key_reference.remove(SCREAMING_SNAKE_CASE ) else: self.dq_store.remove(SCREAMING_SNAKE_CASE ) self.dq_store.appendleft(SCREAMING_SNAKE_CASE ) self.key_reference.add(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Dict ): '''simple docstring''' for k in self.dq_store: print(SCREAMING_SNAKE_CASE ) def __repr__( self : Union[str, Any] ): '''simple docstring''' return F'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : LRUCache[str | int] =LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
189
1
"""simple docstring""" from string import ascii_uppercase UpperCAmelCase__ = {str(ord(c) - 55): c for c in ascii_uppercase} def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int ) -> str: if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) _snake_case = '''''' _snake_case = 0 _snake_case = 0 while div != 1: _snake_case , _snake_case = divmod(__lowerCamelCase , __lowerCamelCase ) if base >= 11 and 9 < mod < 36: _snake_case = ALPHABET_VALUES[str(__lowerCamelCase )] else: _snake_case = str(__lowerCamelCase ) new_value += actual_value _snake_case = num // base _snake_case = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(__lowerCamelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
40
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowerCAmelCase__ : def __init__( self : Any , _lowerCamelCase : Optional[Any] , ): _snake_case = parent _snake_case = 13 _snake_case = 7 _snake_case = 30 _snake_case = self.seq_length + self.mem_len _snake_case = 15 _snake_case = True _snake_case = True _snake_case = 99 _snake_case = [10, 50, 80] _snake_case = 32 _snake_case = 32 _snake_case = 4 _snake_case = 8 _snake_case = 128 _snake_case = 2 _snake_case = 2 _snake_case = None _snake_case = 1 _snake_case = 0 _snake_case = 3 _snake_case = self.vocab_size - 1 _snake_case = 0.0_1 def lowercase ( self : Optional[int] ): _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def lowercase ( self : Any ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def lowercase ( self : Dict , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] ): _snake_case = TFTransfoXLModel(_lowerCamelCase ) _snake_case , _snake_case = model(_lowerCamelCase ).to_tuple() _snake_case = {'''input_ids''': input_ids_a, '''mems''': mems_a} _snake_case , _snake_case = model(_lowerCamelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowercase ( self : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple ): _snake_case = TFTransfoXLLMHeadModel(_lowerCamelCase ) _snake_case , _snake_case = model(_lowerCamelCase ).to_tuple() _snake_case = {'''input_ids''': input_ids_a, '''labels''': lm_labels} _snake_case , _snake_case = model(_lowerCamelCase ).to_tuple() _snake_case , _snake_case = model([input_ids_a, mems_a] ).to_tuple() _snake_case = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} _snake_case , _snake_case = model(_lowerCamelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowercase ( self : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] ): _snake_case = TFTransfoXLForSequenceClassification(_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : str ): _snake_case = self.prepare_config_and_inputs() ((_snake_case) , (_snake_case) , (_snake_case) , (_snake_case)) = config_and_inputs _snake_case = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __a = () if is_tf_available() else () __a = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __a = False __a = False __a = False __a = False def lowercase ( self : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def lowercase ( self : List[Any] ): _snake_case = TFTransfoXLModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , d_embed=37 ) def lowercase ( self : List[str] ): self.config_tester.run_common_tests() def lowercase ( self : Union[str, Any] ): self.model_tester.set_seed() _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_lowerCamelCase ) def lowercase ( self : str ): self.model_tester.set_seed() _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_lowerCamelCase ) def lowercase ( self : str ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_lowerCamelCase ) def lowercase ( self : str ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _snake_case = model.get_output_embeddings() assert isinstance(_lowerCamelCase , tf.keras.layers.Layer ) _snake_case = model.get_bias() assert name is None else: _snake_case = model.get_output_embeddings() assert x is None _snake_case = model.get_bias() assert name is None def lowercase ( self : Optional[Any] ): # TODO JP: Make TransfoXL XLA compliant pass @slow def lowercase ( self : int ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFTransfoXLModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def lowercase ( self : int ): pass @require_tf class lowerCAmelCase__ ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def lowercase ( self : List[Any] ): _snake_case = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off _snake_case = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _snake_case = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _snake_case = model.generate(_lowerCamelCase , max_length=200 , do_sample=_lowerCamelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , _lowerCamelCase )
40
1
'''simple docstring''' # Lint as: python3 import itertools import os import re a__ : int = re.compile(R'([A-Z]+)([A-Z][a-z])') a__ : str = re.compile(R'([a-z\d])([A-Z])') a__ : Tuple = re.compile(R'(?<!_)_(?!_)') a__ : Union[str, Any] = re.compile(R'(_{2,})') a__ : Dict = R'^\w+(\.\w+)*$' a__ : Optional[Any] = R'<>:/\|?*' def _UpperCamelCase ( __A ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = _uppercase_uppercase_re.sub(R"\1_\2" , __A ) UpperCamelCase__ = _lowercase_uppercase_re.sub(R"\1_\2" , __A ) return name.lower() def _UpperCamelCase ( __A ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = _single_underscore_re.split(__A ) UpperCamelCase__ = [_multiple_underscores_re.split(__A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__A ) if n != "" ) def _UpperCamelCase ( __A ) -> int: '''simple docstring''' if os.path.basename(__A ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(__A ) def _UpperCamelCase ( __A , __A ) -> str: '''simple docstring''' if os.path.basename(__A ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , __A ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(__A )}-{split}''' def _UpperCamelCase ( __A , __A , __A , __A=None ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = filename_prefix_for_split(__A , __A ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' UpperCamelCase__ = os.path.join(__A , __A ) return F'''{filepath}*''' def _UpperCamelCase ( __A , __A , __A , __A=None , __A=None ) -> Any: '''simple docstring''' UpperCamelCase__ = filename_prefix_for_split(__A , __A ) UpperCamelCase__ = os.path.join(__A , __A ) if shard_lengths: UpperCamelCase__ = len(__A ) UpperCamelCase__ = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(__A )] if filetype_suffix: UpperCamelCase__ = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: UpperCamelCase__ = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
80
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType a__ : Optional[List[str]] = None a__ : Dict = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image a__ : Any = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class lowercase_ : __UpperCAmelCase = True __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "PIL.Image.Image" __UpperCAmelCase = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) __UpperCAmelCase = field(default='Image' , init=a__ , repr=a__ ) def __call__( self ): return self.pa_type def __a ( self , a ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(a , a ): UpperCamelCase__ = np.array(a ) if isinstance(a , a ): return {"path": value, "bytes": None} elif isinstance(a , a ): return {"path": None, "bytes": value} elif isinstance(a , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a ) elif isinstance(a , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __a ( self , a , a=None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCamelCase__ = {} UpperCamelCase__ , UpperCamelCase__ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(a ): UpperCamelCase__ = PIL.Image.open(a ) else: UpperCamelCase__ = path.split("::" )[-1] try: UpperCamelCase__ = string_to_dict(a , config.HUB_DATASETS_URL )["repo_id"] UpperCamelCase__ = token_per_repo_id.get(a ) except ValueError: UpperCamelCase__ = None with xopen(a , "rb" , use_auth_token=a ) as f: UpperCamelCase__ = BytesIO(f.read() ) UpperCamelCase__ = PIL.Image.open(bytes_ ) else: UpperCamelCase__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __a ( self ): from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def __a ( self , a ): if pa.types.is_string(storage.type ): UpperCamelCase__ = pa.array([None] * len(a ) , type=pa.binary() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase__ = pa.array([None] * len(a ) , type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCamelCase__ = storage.field("bytes" ) else: UpperCamelCase__ = pa.array([None] * len(a ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCamelCase__ = storage.field("path" ) else: UpperCamelCase__ = pa.array([None] * len(a ) , type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase__ = pa.array( [encode_np_array(np.array(a ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCamelCase__ = pa.array([None] * len(a ) , type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(a , self.pa_type ) def __a ( self , a ): @no_op_if_value_is_null def path_to_bytes(a ): with xopen(a , "rb" ) as f: UpperCamelCase__ = f.read() return bytes_ UpperCamelCase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCamelCase__ = pa.array( [os.path.basename(a ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(a , self.pa_type ) def _UpperCamelCase ( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _UpperCamelCase ( __A ) -> bytes: '''simple docstring''' UpperCamelCase__ = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase__ = image.format else: UpperCamelCase__ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(__A , format=__A ) return buffer.getvalue() def _UpperCamelCase ( __A ) -> dict: '''simple docstring''' if hasattr(__A , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__A )} def _UpperCamelCase ( __A ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCamelCase__ = array.dtype UpperCamelCase__ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER UpperCamelCase__ = dtype.kind UpperCamelCase__ = dtype.itemsize UpperCamelCase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase__ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase__ = dtype_byteorder + dtype_kind + str(__A ) UpperCamelCase__ = np.dtype(__A ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) UpperCamelCase__ = PIL.Image.fromarray(array.astype(__A ) ) return {"path": None, "bytes": image_to_bytes(__A )} def _UpperCamelCase ( __A ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCamelCase__ , UpperCamelCase__ = first_non_null_value(__A ) if isinstance(__A , __A ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__A , np.ndarray ): UpperCamelCase__ = no_op_if_value_is_null(__A ) return [obj_to_image_dict_func(__A ) for obj in objs] elif isinstance(__A , PIL.Image.Image ): UpperCamelCase__ = no_op_if_value_is_null(__A ) return [obj_to_image_dict_func(__A ) for obj in objs] else: return objs else: return objs
80
1
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__( self , _lowercase , _lowercase = None , _lowercase = None ): """simple docstring""" super().__init__() _lowerCAmelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _lowerCAmelCase = torch.zeros(_lowercase , _lowercase ) else: _lowerCAmelCase = None _lowerCAmelCase = torch.nn.Parameter(_lowercase ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : VQModel _lowercase : CLIPTextModel _lowercase : CLIPTokenizer _lowercase : TransformeraDModel _lowercase : LearnedClassifierFreeSamplingEmbeddings _lowercase : VQDiffusionScheduler def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ): """simple docstring""" super().__init__() self.register_modules( vqvae=_lowercase , transformer=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = len(_lowercase ) if isinstance(_lowercase , _lowercase ) else 1 # get prompt text embeddings _lowerCAmelCase = self.tokenizer( _lowercase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _lowerCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] _lowerCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _lowerCAmelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_lowercase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase = prompt_embeds.repeat_interleave(_lowercase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _lowerCAmelCase = self.learned_classifier_free_sampling_embeddings.embeddings _lowerCAmelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(_lowercase , 1 , 1 ) else: _lowerCAmelCase = [""""""] * batch_size _lowerCAmelCase = text_input_ids.shape[-1] _lowerCAmelCase = self.tokenizer( _lowercase , padding="""max_length""" , max_length=_lowercase , truncation=_lowercase , return_tensors="""pt""" , ) _lowerCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _lowerCAmelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_lowercase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase = negative_prompt_embeds.shape[1] _lowerCAmelCase = negative_prompt_embeds.repeat(1 , _lowercase , 1 ) _lowerCAmelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _lowercase , _lowercase = 100 , _lowercase = 5.0 , _lowercase = 1.0 , _lowercase = 1 , _lowercase = None , _lowercase = None , _lowercase = "pil" , _lowercase = True , _lowercase = None , _lowercase = 1 , ): """simple docstring""" if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = 1 elif isinstance(_lowercase , _lowercase ): _lowerCAmelCase = len(_lowercase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(_lowercase )}' ) _lowerCAmelCase = batch_size * num_images_per_prompt _lowerCAmelCase = guidance_scale > 1.0 _lowerCAmelCase = self._encode_prompt(_lowercase , _lowercase , _lowercase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowercase , _lowercase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(_lowercase )}.' ) # get the initial completely masked latents unless the user supplied it _lowerCAmelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: _lowerCAmelCase = self.transformer.num_vector_embeds - 1 _lowerCAmelCase = torch.full(_lowercase , _lowercase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F' {self.transformer.num_vector_embeds - 1} (inclusive).' ) _lowerCAmelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) _lowerCAmelCase = self.scheduler.timesteps.to(self.device ) _lowerCAmelCase = latents for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the sample if we are doing classifier free guidance _lowerCAmelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _lowerCAmelCase = self.transformer(_lowercase , encoder_hidden_states=_lowercase , timestep=_lowercase ).sample if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase = model_output.chunk(2 ) _lowerCAmelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_lowercase , dim=1 , keepdim=_lowercase ) _lowerCAmelCase = self.truncate(_lowercase , _lowercase ) # remove `log(0)`'s (`-inf`s) _lowerCAmelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step(_lowercase , timestep=_lowercase , sample=_lowercase , generator=_lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowercase , _lowercase , _lowercase ) _lowerCAmelCase = self.vqvae.config.vq_embed_dim _lowerCAmelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _lowerCAmelCase = self.vqvae.quantize.get_codebook_entry(_lowercase , shape=_lowercase ) _lowerCAmelCase = self.vqvae.decode(_lowercase , force_not_quantize=_lowercase ).sample _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = torch.sort(_lowercase , 1 , descending=_lowercase ) _lowerCAmelCase = torch.exp(_lowercase ) _lowerCAmelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _lowerCAmelCase = torch.full_like(keep_mask[:, 0:1, :] , _lowercase ) _lowerCAmelCase = torch.cat((all_true, keep_mask) , dim=1 ) _lowerCAmelCase = keep_mask[:, :-1, :] _lowerCAmelCase = keep_mask.gather(1 , indices.argsort(1 ) ) _lowerCAmelCase = log_p_x_0.clone() _lowerCAmelCase = -torch.inf # -inf = log(0) return rv
364
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _lowerCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self , _lowercase = 1 , _lowercase = None , _lowercase = 0.0 , _lowercase = 50 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ): """simple docstring""" if isinstance(self.unet.config.sample_size , _lowercase ): _lowerCAmelCase = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _lowerCAmelCase = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _lowerCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowerCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase ).prev_sample _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
229
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a : List[Any] = logging.get_logger(__name__) _a : Union[str, Any] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = "bit" _UpperCamelCase : Union[str, Any] = ["preactivation", "bottleneck"] _UpperCamelCase : Dict = ["SAME", "VALID"] def __init__( self , a__=3 , a__=64 , a__=[256, 512, 1024, 2048] , a__=[3, 4, 6, 3] , a__="preactivation" , a__="relu" , a__=None , a__=32 , a__=0.0 , a__=False , a__=32 , a__=1 , a__=None , a__=None , **a__ , ): super().__init__(**a__ ) if layer_type not in self.layer_types: raise ValueError(F"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCAmelCase : List[str] = global_padding.upper() else: raise ValueError(F"Padding strategy {global_padding} not supported" ) _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : List[str] = embedding_size _lowerCAmelCase : Optional[Any] = hidden_sizes _lowerCAmelCase : List[str] = depths _lowerCAmelCase : Any = layer_type _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : List[Any] = global_padding _lowerCAmelCase : Optional[Any] = num_groups _lowerCAmelCase : Tuple = drop_path_rate _lowerCAmelCase : Any = embedding_dynamic_padding _lowerCAmelCase : Optional[Any] = output_stride _lowerCAmelCase : List[Any] = width_factor _lowerCAmelCase : Any = ["""stem"""] + [F"stage{idx}" for idx in range(1 , len(a__ ) + 1 )] _lowerCAmelCase , _lowerCAmelCase : int = get_aligned_output_features_output_indices( out_features=a__ , out_indices=a__ , stage_names=self.stage_names )
44
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 50 ) -> int: _lowerCAmelCase : int = [1] * (length + 1) for row_length in range(3 ,length + 1 ): for block_length in range(3 ,row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
44
1
'''simple docstring''' def a ( __a , __a ) -> bool: '''simple docstring''' UpperCamelCase__ :List[Any] = len(__a ) UpperCamelCase__ :Any = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): UpperCamelCase__ :List[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): UpperCamelCase__ :Tuple = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: UpperCamelCase__ :Union[str, Any] = subset[i - 1][j] if arr[i - 1] <= j: UpperCamelCase__ :Optional[int] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
219
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule __snake_case = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
219
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = F"""{sampling_rate}""" lowercase__ = '''1''' lowercase__ = '''f32le''' lowercase__ = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(lowerCamelCase_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowercase__ = ffmpeg_process.communicate(lowerCamelCase_ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error lowercase__ = output_stream[0] lowercase__ = np.frombuffer(lowerCamelCase_ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = "f32le" , ): '''simple docstring''' lowercase__ = F"""{sampling_rate}""" lowercase__ = '''1''' if format_for_conversion == "s16le": lowercase__ = 2 elif format_for_conversion == "f32le": lowercase__ = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) lowercase__ = platform.system() if system == "Linux": lowercase__ = '''alsa''' lowercase__ = '''default''' elif system == "Darwin": lowercase__ = '''avfoundation''' lowercase__ = ''':0''' elif system == "Windows": lowercase__ = '''dshow''' lowercase__ = '''default''' lowercase__ = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] lowercase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowercase__ = _ffmpeg_stream(lowerCamelCase_ , lowerCamelCase_ ) for item in iterator: yield item def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: lowercase__ = stream_chunk_s else: lowercase__ = chunk_length_s lowercase__ = ffmpeg_microphone(lowerCamelCase_ , lowerCamelCase_ , format_for_conversion=lowerCamelCase_ ) if format_for_conversion == "s16le": lowercase__ = np.intaa lowercase__ = 2 elif format_for_conversion == "f32le": lowercase__ = np.floataa lowercase__ = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: lowercase__ = chunk_length_s / 6 lowercase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowerCamelCase_ , (int, float) ): lowercase__ = [stride_length_s, stride_length_s] lowercase__ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowercase__ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowercase__ = datetime.datetime.now() lowercase__ = datetime.timedelta(seconds=lowerCamelCase_ ) for item in chunk_bytes_iter(lowerCamelCase_ , lowerCamelCase_ , stride=(stride_left, stride_right) , stream=lowerCamelCase_ ): # Put everything back in numpy scale lowercase__ = np.frombuffer(item['''raw'''] , dtype=lowerCamelCase_ ) lowercase__ = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) lowercase__ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False ): '''simple docstring''' lowercase__ = b'''''' lowercase__ , lowercase__ = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) lowercase__ = 0 for raw in iterator: acc += raw if stream and len(lowerCamelCase_ ) < chunk_len: lowercase__ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowerCamelCase_ ) >= chunk_len: # We are flushing the accumulator lowercase__ = (_stride_left, stride_right) lowercase__ = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: lowercase__ = False yield item lowercase__ = stride_left lowercase__ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowerCamelCase_ ) > stride_left: lowercase__ = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: lowercase__ = False yield item def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = 2**24 # 16Mo try: with subprocess.Popen(lowerCamelCase_ , stdout=subprocess.PIPE , bufsize=lowerCamelCase_ ) as ffmpeg_process: while True: lowercase__ = ffmpeg_process.stdout.read(lowerCamelCase_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
207
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : str=14, lowerCamelCase : List[str]=7, lowerCamelCase : Dict=True, lowerCamelCase : List[str]=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Any=True, lowerCamelCase : List[str]=99, lowerCamelCase : Optional[Any]=32, lowerCamelCase : Optional[int]=5, lowerCamelCase : List[Any]=4, lowerCamelCase : List[Any]=37, lowerCamelCase : List[str]="gelu", lowerCamelCase : Any=0.1, lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : List[Any]=512, lowerCamelCase : List[str]=16, lowerCamelCase : Dict=2, lowerCamelCase : Union[str, Any]=0.02, lowerCamelCase : Optional[int]=3, lowerCamelCase : Dict=4, lowerCamelCase : List[Any]=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_token_type_ids lowercase__ = use_input_mask lowercase__ = use_labels lowercase__ = use_mc_token_ids lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = self.vocab_size - 1 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = None if self.use_mc_token_ids: lowercase__ = ids_tensor([self.batch_size, self.num_choices], self.seq_length ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = self.get_config() lowercase__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : List[Any], lowerCamelCase : Union[str, Any], *lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = CTRLModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() model(lowerCamelCase, token_type_ids=lowerCamelCase, head_mask=lowerCamelCase ) model(lowerCamelCase, token_type_ids=lowerCamelCase ) lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ), config.n_layer ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int], *lowerCamelCase : Any ): '''simple docstring''' lowercase__ = CTRLLMHeadModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def lowercase__ ( self : List[str], lowerCamelCase : Tuple, lowerCamelCase : Optional[Any], lowerCamelCase : int, lowerCamelCase : Any, *lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = CTRLForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = model(lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) @require_torch class _UpperCAmelCase ( A__ ,A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowercase__ = (CTRLLMHeadModel,) if is_torch_available() else () lowercase__ = ( { """feature-extraction""": CTRLModel, """text-classification""": CTRLForSequenceClassification, """text-generation""": CTRLLMHeadModel, """zero-shot""": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False def lowercase__ ( self : Dict, lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Any, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = CTRLModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, n_embd=37 ) def lowercase__ ( self : Tuple ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*lowerCamelCase ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' pass @slow def lowercase__ ( self : Any ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = CTRLModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : List[Any] ): '''simple docstring''' pass @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Any ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(lowerCamelCase ) lowercase__ = torch.tensor( [[11_859, 0, 1_611, 8]], dtype=torch.long, device=lowerCamelCase ) # Legal the president is lowercase__ = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowercase__ = model.generate(lowerCamelCase, do_sample=lowerCamelCase ) self.assertListEqual(output_ids[0].tolist(), lowerCamelCase )
207
1
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __UpperCAmelCase = 8 def __lowerCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple=BITS ): a__: List[str] =x.device a__: Tuple =(x * 255).int().clamp(0 , 255 ) a__: int =2 ** torch.arange(bits - 1 , -1 , -1 , device=__magic_name__ ) a__: Dict =rearrange(__magic_name__ , "d -> d 1 1" ) a__: List[str] =rearrange(__magic_name__ , "b c h w -> b c 1 h w" ) a__: List[Any] =((x & mask) != 0).float() a__: str =rearrange(__magic_name__ , "b c d h w -> b (c d) h w" ) a__: List[str] =bits * 2 - 1 return bits def __lowerCamelCase ( __magic_name__ : Dict , __magic_name__ : Dict=BITS ): a__: List[Any] =x.device a__: int =(x > 0).int() a__: Optional[int] =2 ** torch.arange(bits - 1 , -1 , -1 , device=__magic_name__ , dtype=torch.intaa ) a__: int =rearrange(__magic_name__ , "d -> d 1 1" ) a__: int =rearrange(__magic_name__ , "b (c d) h w -> b c d h w" , d=8 ) a__: Optional[int] =reduce(x * mask , "b c d h w -> b c h w" , "sum" ) return (dec / 255).clamp(0.0 , 1.0 ) def __lowerCamelCase ( self : Dict , __magic_name__ : torch.FloatTensor , __magic_name__ : int , __magic_name__ : torch.FloatTensor , __magic_name__ : float = 0.0 , __magic_name__ : bool = True , __magic_name__ : Dict=None , __magic_name__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) a__: Optional[int] =timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas a__: int =self.alphas_cumprod[timestep] a__: Tuple =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod a__: List[str] =1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a__: Optional[int] =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" a__: Tuple =self.bit_scale if self.config.clip_sample: a__: Any =torch.clamp(__magic_name__ , -scale , __magic_name__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) a__: str =self._get_variance(__magic_name__ , __magic_name__ ) a__: int =eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide a__: int =(sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a__: Optional[int] =(1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a__: int =alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 a__: Optional[int] =model_output.device if torch.is_tensor(__magic_name__ ) else "cpu" a__: int =torch.randn(model_output.shape , dtype=model_output.dtype , generator=__magic_name__ ).to(__magic_name__ ) a__: int =self._get_variance(__magic_name__ , __magic_name__ ) ** 0.5 * eta * noise a__: List[Any] =prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__magic_name__ , pred_original_sample=__magic_name__ ) def __lowerCamelCase ( self : Optional[int] , __magic_name__ : torch.FloatTensor , __magic_name__ : int , __magic_name__ : torch.FloatTensor , __magic_name__ : str="epsilon" , __magic_name__ : Dict=None , __magic_name__ : bool = True , ): a__: Optional[int] =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: a__ , a__: List[str] =torch.split(__magic_name__ , sample.shape[1] , dim=1 ) else: a__: List[Any] =None # 1. compute alphas, betas a__: Any =self.alphas_cumprod[t] a__: Optional[Any] =self.alphas_cumprod[t - 1] if t > 0 else self.one a__: int =1 - alpha_prod_t a__: str =1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": a__: int =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": a__: Dict =model_output else: raise ValueError(F"Unsupported prediction_type {prediction_type}." ) # 3. Clip "predicted x_0" a__: Any =self.bit_scale if self.config.clip_sample: a__: List[str] =torch.clamp(__magic_name__ , -scale , __magic_name__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a__: Union[str, Any] =(alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t a__: Any =self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a__: List[Any] =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise a__: Any =0 if t > 0: a__: Optional[Any] =torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__magic_name__ ).to(model_output.device ) a__: List[str] =(self._get_variance(__magic_name__ , predicted_variance=__magic_name__ ) ** 0.5) * noise a__: List[str] =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__magic_name__ , pred_original_sample=__magic_name__ ) class lowerCamelCase__ ( _a ): def __init__( self : Dict , _a : UNetaDConditionModel , _a : Union[DDIMScheduler, DDPMScheduler] , _a : Optional[float] = 1.0 , ): super().__init__() a__: Tuple =bit_scale a__: str =( ddim_bit_scheduler_step if isinstance(_a , _a ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self : Optional[int] , _a : Optional[int] = 2_5_6 , _a : Optional[int] = 2_5_6 , _a : Optional[int] = 5_0 , _a : Optional[torch.Generator] = None , _a : Optional[int] = 1 , _a : Optional[str] = "pil" , _a : bool = True , **_a : Dict , ): a__: Union[str, Any] =torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_a , ) a__: Union[str, Any] =decimal_to_bits(_a ) * self.bit_scale a__: int =latents.to(self.device ) self.scheduler.set_timesteps(_a ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual a__: List[str] =self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 a__: Union[str, Any] =self.scheduler.step(_a , _a , _a ).prev_sample a__: Tuple =bits_to_decimal(_a ) if output_type == "pil": a__: Optional[Any] =self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
42
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCAmelCase = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } __UpperCAmelCase = { '''facebook/m2m100_418M''': 10_24, } # fmt: off __UpperCAmelCase = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class lowerCamelCase__ ( _a ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase = [] _lowerCAmelCase = [] def __init__( self : Dict , _a : Tuple , _a : List[Any] , _a : Tuple=None , _a : Dict=None , _a : Any="<s>" , _a : Union[str, Any]="</s>" , _a : str="</s>" , _a : int="<pad>" , _a : str="<unk>" , _a : Tuple="m2m100" , _a : Optional[Dict[str, Any]] = None , _a : str=8 , **_a : str , ): a__: str ={} if sp_model_kwargs is None else sp_model_kwargs a__: Optional[int] =language_codes a__: Dict =FAIRSEQ_LANGUAGE_CODES[language_codes] a__: Tuple ={lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code} a__: Any =kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_a ) for lang_code in fairseq_language_code if self.get_lang_token(_a ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_a , tgt_lang=_a , bos_token=_a , eos_token=_a , sep_token=_a , unk_token=_a , pad_token=_a , language_codes=_a , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_a , **_a , ) a__: Optional[Any] =vocab_file a__: Tuple =load_json(_a ) a__: Any ={v: k for k, v in self.encoder.items()} a__: List[str] =spm_file a__: str =load_spm(_a , self.sp_model_kwargs ) a__: Any =len(self.encoder ) a__: Dict ={ self.get_lang_token(_a ): self.encoder_size + i for i, lang_code in enumerate(_a ) } a__: List[Any] ={lang_code: self.encoder_size + i for i, lang_code in enumerate(_a )} a__: Dict ={v: k for k, v in self.lang_token_to_id.items()} a__: List[str] =src_lang if src_lang is not None else "en" a__: Any =tgt_lang a__: Tuple =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) a__: str =num_madeup_words @property def _lowerCamelCase ( self : int ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def _lowerCamelCase ( self : List[str] ): return self._src_lang @src_lang.setter def _lowerCamelCase ( self : Tuple , _a : str ): a__: Optional[int] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCamelCase ( self : int , _a : str ): return self.sp_model.encode(_a , out_type=_a ) def _lowerCamelCase ( self : Tuple , _a : int ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_a , self.encoder[self.unk_token] ) def _lowerCamelCase ( self : int , _a : int ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_a , self.unk_token ) def _lowerCamelCase ( self : Dict , _a : List[str] ): a__: str =[] a__: Union[str, Any] ="" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_a ) + token a__: Dict =[] else: current_sub_tokens.append(_a ) out_string += self.sp_model.decode(_a ) return out_string.strip() def _lowerCamelCase ( self : str , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) a__: Union[str, Any] =[1] * len(self.prefix_tokens ) a__: Optional[Any] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def _lowerCamelCase ( self : Optional[int] , _a : List[int] , _a : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self : Dict ): a__: List[Any] ={self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): a__: Dict =self.__dict__.copy() a__: Union[str, Any] =None return state def __setstate__( self : Tuple , _a : Dict ): a__: str =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__: Optional[Any] ={} a__: Optional[Any] =load_spm(self.spm_file , self.sp_model_kwargs ) def _lowerCamelCase ( self : Any , _a : str , _a : Optional[str] = None ): a__: Union[str, Any] =Path(_a ) if not save_dir.is_dir(): raise OSError(F"{save_directory} should be a directory" ) a__: Union[str, Any] =save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) a__: Optional[int] =save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , _a ) if os.path.abspath(self.spm_file ) != os.path.abspath(_a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _a ) elif not os.path.isfile(self.spm_file ): with open(_a , "wb" ) as fi: a__: str =self.sp_model.serialized_model_proto() fi.write(_a ) return (str(_a ), str(_a )) def _lowerCamelCase ( self : List[str] , _a : List[str] , _a : str = "en" , _a : Optional[List[str]] = None , _a : str = "ro" , **_a : Optional[Any] , ): a__: Tuple =src_lang a__: int =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_a , _a , **_a ) def _lowerCamelCase ( self : List[str] , _a : Dict , _a : Optional[str] , _a : Optional[str] , **_a : Optional[Any] ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) a__: Dict =src_lang a__: Optional[int] =self(_a , add_special_tokens=_a , **_a ) a__: Union[str, Any] =self.get_lang_id(_a ) a__: Tuple =tgt_lang_id return inputs def _lowerCamelCase ( self : List[Any] ): self.set_src_lang_special_tokens(self.src_lang ) def _lowerCamelCase ( self : List[Any] ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCamelCase ( self : Union[str, Any] , _a : str ): a__: Tuple =self.get_lang_token(_a ) a__: Optional[int] =self.lang_token_to_id[lang_token] a__: Any =[self.cur_lang_id] a__: Optional[Any] =[self.eos_token_id] def _lowerCamelCase ( self : str , _a : str ): a__: List[str] =self.get_lang_token(_a ) a__: Optional[Any] =self.lang_token_to_id[lang_token] a__: Optional[int] =[self.cur_lang_id] a__: Dict =[self.eos_token_id] def _lowerCamelCase ( self : Any , _a : str ): return self.lang_code_to_token[lang] def _lowerCamelCase ( self : int , _a : str ): a__: int =self.get_lang_token(_a ) return self.lang_token_to_id[lang_token] def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : Dict[str, Any] ): a__: Tuple =sentencepiece.SentencePieceProcessor(**__magic_name__ ) spm.Load(str(__magic_name__ ) ) return spm def __lowerCamelCase ( __magic_name__ : str ): with open(__magic_name__ , "r" ) as f: return json.load(__magic_name__ ) def __lowerCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : str ): with open(__magic_name__ , "w" ) as f: json.dump(__magic_name__ , __magic_name__ , indent=2 )
42
1
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _A : """simple docstring""" def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int): if dst_width < 0 or dst_height < 0: raise ValueError("Destination width/height should be > 0") a : Union[str, Any] = img a : Optional[int] = img.shape[1] a : Dict = img.shape[0] a : Dict = dst_width a : Any = dst_height a : str = self.src_w / self.dst_w a : Dict = self.src_h / self.dst_h a : Dict = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta) * 255 ) def __snake_case ( self : Tuple): for i in range(self.dst_h): for j in range(self.dst_w): a : List[str] = self.img[self.get_y(__UpperCAmelCase)][self.get_x(__UpperCAmelCase)] def __snake_case ( self : Dict , __UpperCAmelCase : int): return int(self.ratio_x * x) def __snake_case ( self : Optional[int] , __UpperCAmelCase : int): return int(self.ratio_y * y) if __name__ == "__main__": __lowercase , __lowercase = 800, 600 __lowercase = imread("""image_data/lena.jpg""", 1) __lowercase = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
40
"""simple docstring""" def lowercase ( A_ , A_ )-> float: '''simple docstring''' if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(A_ ) * abs(A_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
40
1
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : int = (PNDMScheduler,) UpperCamelCase_ : List[Any] = (("""num_inference_steps""", 50),) def _snake_case ( self : Tuple , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Any: '''simple docstring''' A: Optional[Any] = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**SCREAMING_SNAKE_CASE_ ) return config def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Dict ) -> List[str]: '''simple docstring''' A: List[str] = dict(self.forward_default_kwargs ) A: Union[str, Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE_ ) A: int = self.dummy_sample A: Optional[int] = 0.1 * sample A: List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A: List[str] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals A: int = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals A: Union[str, Any] = dummy_past_residuals[:] A: Any = scheduler.step_prk(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample A: Union[str, Any] = new_scheduler.step_prk(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A: Union[str, Any] = scheduler.step_plms(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample A: Tuple = new_scheduler.step_plms(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' pass def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = dict(self.forward_default_kwargs ) A: Optional[Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = self.dummy_sample A: Tuple = 0.1 * sample A: List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A: Union[str, Any] = self.get_scheduler_config() A: Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals (must be after setting timesteps) A: str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE_ ) A: List[str] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residual (must be after setting timesteps) A: str = dummy_past_residuals[:] A: str = scheduler.step_prk(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample A: Any = new_scheduler.step_prk(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A: int = scheduler.step_plms(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample A: Union[str, Any] = new_scheduler.step_plms(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self : List[Any] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A: List[Any] = self.scheduler_classes[0] A: Any = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_ ) A: List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) A: List[str] = 10 A: str = self.dummy_model() A: str = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.prk_timesteps ): A: Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: str = scheduler.step_prk(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): A: Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Dict = scheduler.step_plms(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample return sample def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' A: List[str] = dict(self.forward_default_kwargs ) A: Optional[int] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE_ ) for scheduler_class in self.scheduler_classes: A: Optional[int] = self.get_scheduler_config() A: List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) A: List[str] = self.dummy_sample A: Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE_ , '''set_timesteps''' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE_ , '''set_timesteps''' ): A: Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A: Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A: Dict = dummy_past_residuals[:] A: List[Any] = scheduler.step_prk(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample A: Union[str, Any] = scheduler.step_prk(SCREAMING_SNAKE_CASE_ , 1 , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A: Optional[int] = scheduler.step_plms(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample A: Dict = scheduler.step_plms(SCREAMING_SNAKE_CASE_ , 1 , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _snake_case ( self : Any ) -> Dict: '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] ) -> Any: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE_ ) A: Optional[int] = self.scheduler_classes[0] A: List[str] = self.get_scheduler_config(steps_offset=1 ) A: int = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def _snake_case ( self : Any ) -> List[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> List[str]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> str: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' A: Union[str, Any] = 27 for scheduler_class in self.scheduler_classes: A: int = self.dummy_sample A: List[Any] = 0.1 * sample A: str = self.get_scheduler_config() A: List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): A: str = scheduler.step_prk(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample def _snake_case ( self : int ) -> str: '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): A: List[str] = self.scheduler_classes[0] A: Tuple = self.get_scheduler_config() A: List[str] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _snake_case ( self : int ) -> Tuple: '''simple docstring''' A: Optional[int] = self.full_loop() A: int = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) A: Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def _snake_case ( self : Dict ) -> Tuple: '''simple docstring''' A: List[str] = self.full_loop(prediction_type='''v_prediction''' ) A: List[str] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) A: str = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def _snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' A: str = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE_ , beta_start=0.01 ) A: str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) A: Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def _snake_case ( self : Union[str, Any] ) -> int: '''simple docstring''' A: int = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE_ , beta_start=0.01 ) A: List[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) A: int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
334
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() UpperCamelCase = logging.get_logger('''transformers.models.encodec''') UpperCamelCase = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } UpperCamelCase = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } UpperCamelCase = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } UpperCamelCase = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } UpperCamelCase = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } UpperCamelCase = [] UpperCamelCase = [] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: for attribute in key.split('''.''' ): A: Union[str, Any] = getattr(__lowercase , __lowercase ) if weight_type is not None: A: Tuple = getattr(__lowercase , __lowercase ).shape else: A: str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A: Dict = value elif weight_type == "weight_g": A: Tuple = value elif weight_type == "weight_v": A: Any = value elif weight_type == "bias": A: str = value elif weight_type == "running_mean": A: List[Any] = value elif weight_type == "running_var": A: Dict = value elif weight_type == "num_batches_tracked": A: List[str] = value elif weight_type == "weight_ih_l0": A: Dict = value elif weight_type == "weight_hh_l0": A: Optional[int] = value elif weight_type == "bias_ih_l0": A: List[Any] = value elif weight_type == "bias_hh_l0": A: str = value elif weight_type == "weight_ih_l1": A: Optional[int] = value elif weight_type == "weight_hh_l1": A: int = value elif weight_type == "bias_ih_l1": A: Optional[Any] = value elif weight_type == "bias_hh_l1": A: str = value else: A: Optional[int] = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: A , A: Any = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: A: Any = [] if model_name == "encodec_24khz" or "encodec_32khz": A: List[str] = MAPPING_24K elif model_name == "encodec_48khz": A: List[Any] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__lowercase , __lowercase ): logger.info(F"""{name} was ignored""" ) continue A: Optional[int] = False for key, mapped_key in MAPPING.items(): if "*" in key: A , A: Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: A: str = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue A: Optional[Any] = True if "*" in mapped_key: A: Any = name.split(__lowercase )[0].split('''.''' )[-2] A: Tuple = mapped_key.replace('''*''' , __lowercase ) if "weight_g" in name: A: str = '''weight_g''' elif "weight_v" in name: A: List[Any] = '''weight_v''' elif "weight_ih_l0" in name: A: Dict = '''weight_ih_l0''' elif "weight_hh_l0" in name: A: int = '''weight_hh_l0''' elif "bias_ih_l0" in name: A: Union[str, Any] = '''bias_ih_l0''' elif "bias_hh_l0" in name: A: Tuple = '''bias_hh_l0''' elif "weight_ih_l1" in name: A: int = '''weight_ih_l1''' elif "weight_hh_l1" in name: A: Optional[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: A: Dict = '''bias_ih_l1''' elif "bias_hh_l1" in name: A: str = '''bias_hh_l1''' elif "bias" in name: A: Union[str, Any] = '''bias''' elif "weight" in name: A: Dict = '''weight''' elif "running_mean" in name: A: Tuple = '''running_mean''' elif "running_var" in name: A: Any = '''running_var''' elif "num_batches_tracked" in name: A: str = '''num_batches_tracked''' else: A: Tuple = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , ) -> Dict: if config_path is not None: A: Tuple = EncodecConfig.from_pretrained(__lowercase ) else: A: Union[str, Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A: Union[str, Any] = [8, 5, 4, 4] A: Dict = [2.2] A: List[Any] = 6_4 A: Optional[Any] = 3_2_0_0_0 A: List[Any] = 2_0_4_8 A: Optional[Any] = False A: int = False A: Union[str, Any] = False elif model_name == "encodec_48khz": A: Optional[int] = [8, 5, 4, 2] A: List[Any] = [3.0, 6.0, 1_2.0, 2_4.0] A: List[Any] = 4_8_0_0_0 A: int = 2 A: List[Any] = False A: Any = '''time_group_norm''' A: Optional[Any] = True A: Any = 1.0 A: Any = 0.0_1 else: raise ValueError(F"""Unknown model name: {model_name}""" ) A: str = EncodecModel(__lowercase ) A: Optional[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__lowercase ) A: Union[str, Any] = torch.load(__lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A: Optional[int] = original_checkpoint['''best_state'''] recursively_load_weights(__lowercase , __lowercase , __lowercase ) model.save_pretrained(__lowercase ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__lowercase ) model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
334
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __A = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase__ ( datasets.BuilderConfig ): a__ : int = 1_00_00 a__ : Optional[List[str]] = None a__ : Optional[datasets.Features] = None class lowerCamelCase__ ( datasets.ArrowBasedBuilder ): a__ : Optional[Any] = ParquetConfig def lowerCamelCase_ ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case : Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE__ , (str, list, tuple) ): snake_case : Optional[Any] = data_files if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case : Optional[Any] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case : Union[str, Any] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: snake_case : Dict = datasets.Features.from_arrow_schema(pq.read_schema(SCREAMING_SNAKE_CASE__ ) ) break splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE__ , gen_kwargs={"files": files} ) ) return splits def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example snake_case : Tuple = table_cast(SCREAMING_SNAKE_CASE__ , self.info.features.arrow_schema ) return pa_table def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : str = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE__ ) ): with open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: snake_case : Optional[int] = pq.ParquetFile(SCREAMING_SNAKE_CASE__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): snake_case : Optional[Any] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(SCREAMING_SNAKE_CASE__ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE__ )}: {e}''' ) raise
148
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) _A : List[Any] = 299792458 # Symbols _A , _A , _A , _A : Union[str, Any] = symbols('''ct x y z''') def UpperCamelCase_ ( snake_case_ : float ) -> float: '''simple docstring''' if velocity > c: raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("""Speed must be greater than or equal to 1!""" ) return velocity / c def UpperCamelCase_ ( snake_case_ : float ) -> float: '''simple docstring''' return 1 / sqrt(1 - beta(snake_case_ ) ** 2 ) def UpperCamelCase_ ( snake_case_ : float ) -> np.ndarray: '''simple docstring''' return np.array( [ [gamma(snake_case_ ), -gamma(snake_case_ ) * beta(snake_case_ ), 0, 0], [-gamma(snake_case_ ) * beta(snake_case_ ), gamma(snake_case_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def UpperCamelCase_ ( snake_case_ : float , snake_case_ : np.ndarray | None = None ) -> np.ndarray: '''simple docstring''' if event is None: __lowerCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(snake_case_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: _A : str = transform(29979245) print('''Example of four vector: ''') print(f'ct\' = {four_vector[0]}') print(f'x\' = {four_vector[1]}') print(f'y\' = {four_vector[2]}') print(f'z\' = {four_vector[3]}') # Substitute symbols with numerical values _A : int = {ct: c, x: 1, y: 1, z: 1} _A : Any = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'\n{numerical_vector}')
229
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): A__ : str =field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) A__ : ClassVar[Features] =Features({"""audio""": Audio()} ) A__ : ClassVar[Features] =Features({"""labels""": ClassLabel} ) A__ : str ="audio" A__ : str ="labels" def A_ ( self : List[Any] , UpperCAmelCase_ : Optional[Any] ): if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , UpperCAmelCase_ ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) SCREAMING_SNAKE_CASE__ = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ = self.label_schema.copy() SCREAMING_SNAKE_CASE__ = features[self.label_column] SCREAMING_SNAKE_CASE__ = label_schema return task_template @property def A_ ( self : Union[str, Any] ): return { self.audio_column: "audio", self.label_column: "labels", }
169
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : Tuple =FlaxAutoencoderKL @property def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = (32, 32) SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ = jax.random.uniform(UpperCAmelCase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } SCREAMING_SNAKE_CASE__ = self.dummy_input return init_dict, inputs_dict
169
1
from ....configuration_utils import PretrainedConfig from ....utils import logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = "trajectory_transformer" lowerCAmelCase_ = ["past_key_values"] lowerCAmelCase_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , _lowercase : Optional[Any]=1_00 , _lowercase : Union[str, Any]=5 , _lowercase : Tuple=1 , _lowercase : Any=1 , _lowercase : Union[str, Any]=2_49 , _lowercase : List[str]=6 , _lowercase : Optional[Any]=17 , _lowercase : Optional[int]=25 , _lowercase : Union[str, Any]=4 , _lowercase : str=4 , _lowercase : Optional[Any]=1_28 , _lowercase : Optional[Any]=0.1 , _lowercase : Optional[Any]=0.1 , _lowercase : Tuple=0.1 , _lowercase : List[str]=0.00_06 , _lowercase : Union[str, Any]=5_12 , _lowercase : Optional[int]=0.02 , _lowercase : Tuple=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[int]=True , _lowercase : List[Any]=1 , _lowercase : Any=5_02_56 , _lowercase : Tuple=5_02_56 , **_lowercase : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = action_weight SCREAMING_SNAKE_CASE__ = reward_weight SCREAMING_SNAKE_CASE__ = value_weight SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = block_size SCREAMING_SNAKE_CASE__ = action_dim SCREAMING_SNAKE_CASE__ = observation_dim SCREAMING_SNAKE_CASE__ = transition_dim SCREAMING_SNAKE_CASE__ = learning_rate SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kaiming_initializer_range SCREAMING_SNAKE_CASE__ = use_cache super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
219
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __lowerCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __lowerCamelCase : int = [0, 25, 50] __lowerCamelCase : Tuple = [25, 50, 75] __lowerCamelCase : List[str] = fuzz.membership.trimf(X, abca) __lowerCamelCase : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __lowerCamelCase : List[str] = np.ones(75) __lowerCamelCase : Tuple = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __lowerCamelCase : str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __lowerCamelCase : int = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __lowerCamelCase : Union[str, Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __lowerCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __lowerCamelCase : List[Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __lowerCamelCase : int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __lowerCamelCase : int = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __lowerCamelCase : str = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
219
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[int] = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class lowerCamelCase ( _UpperCAmelCase ): lowercase : List[Any] = 'mobilenet_v2' def __init__( self , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="relu6" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.8 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.001 , SCREAMING_SNAKE_CASE_=255 , **SCREAMING_SNAKE_CASE_ , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) UpperCamelCase : Dict = num_channels UpperCamelCase : str = image_size UpperCamelCase : List[str] = depth_multiplier UpperCamelCase : Dict = depth_divisible_by UpperCamelCase : int = min_depth UpperCamelCase : Optional[int] = expand_ratio UpperCamelCase : Any = output_stride UpperCamelCase : Tuple = first_layer_is_expansion UpperCamelCase : Optional[Any] = finegrained_output UpperCamelCase : Dict = hidden_act UpperCamelCase : Dict = tf_padding UpperCamelCase : List[Any] = classifier_dropout_prob UpperCamelCase : str = initializer_range UpperCamelCase : Optional[int] = layer_norm_eps UpperCamelCase : Tuple = semantic_loss_ignore_index class lowerCamelCase ( _UpperCAmelCase ): lowercase : Optional[Any] = version.parse('1.11' ) @property def a_ ( self ): return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def a_ ( self ): if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def a_ ( self ): return 1e-4
359
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase ( _UpperCAmelCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1 , ): UpperCamelCase : Tuple = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : Optional[Any] = seq_length UpperCamelCase : int = is_training UpperCamelCase : Union[str, Any] = use_input_mask UpperCamelCase : Union[str, Any] = use_token_type_ids UpperCamelCase : Dict = use_labels UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : Tuple = num_hidden_layers UpperCamelCase : Any = num_attention_heads UpperCamelCase : int = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : Optional[Any] = hidden_dropout_prob UpperCamelCase : str = attention_probs_dropout_prob UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : Optional[Any] = type_vocab_size UpperCamelCase : int = type_sequence_label_size UpperCamelCase : Dict = initializer_range UpperCamelCase : Dict = num_labels UpperCamelCase : Tuple = num_choices UpperCamelCase : Optional[int] = scope UpperCamelCase : List[Any] = q_groups UpperCamelCase : Tuple = k_groups UpperCamelCase : Any = v_groups UpperCamelCase : List[str] = post_attention_groups UpperCamelCase : Tuple = intermediate_groups UpperCamelCase : int = output_groups def a_ ( self ): UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Tuple = None if self.use_input_mask: UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Optional[int] = None UpperCamelCase : List[Any] = None UpperCamelCase : Dict = None if self.use_labels: UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = SqueezeBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = SqueezeBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = SqueezeBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : str = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = self.num_labels UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = self.num_labels UpperCamelCase : str = SqueezeBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = self.num_choices UpperCamelCase : Tuple = SqueezeBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Tuple = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self ): UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = config_and_inputs UpperCamelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowercase : Dict = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase : Dict = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase : Dict = False lowercase : str = True lowercase : str = False def a_ ( self ): UpperCamelCase : Any = SqueezeBertModelTester(self ) UpperCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def a_ ( self ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[Any] = SqueezeBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def a_ ( self ): UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) UpperCamelCase : Dict = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase : Optional[Any] = torch.Size((1, 3) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
27
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer lowercase : int = logging.get_logger(__name__) lowercase : Optional[int] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase : List[Any] = { "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } lowercase : Tuple = { "bert-base-uncased": 512, "bert-large-uncased": 512, "bert-base-cased": 512, "bert-large-cased": 512, "bert-base-multilingual-uncased": 512, "bert-base-multilingual-cased": 512, "bert-base-chinese": 512, "bert-base-german-cased": 512, "bert-large-uncased-whole-word-masking": 512, "bert-large-cased-whole-word-masking": 512, "bert-large-uncased-whole-word-masking-finetuned-squad": 512, "bert-large-cased-whole-word-masking-finetuned-squad": 512, "bert-base-cased-finetuned-mrpc": 512, "bert-base-german-dbmdz-cased": 512, "bert-base-german-dbmdz-uncased": 512, "TurkuNLP/bert-base-finnish-cased-v1": 512, "TurkuNLP/bert-base-finnish-uncased-v1": 512, "wietsedv/bert-base-dutch-cased": 512, } lowercase : Optional[int] = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = VOCAB_FILES_NAMES __lowercase = PRETRAINED_VOCAB_FILES_MAP __lowercase = PRETRAINED_INIT_CONFIGURATION __lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase = BertTokenizer def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_="[UNK]" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="[PAD]" , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[MASK]" , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _snake_case = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) _snake_case = do_lower_case _snake_case = strip_accents _snake_case = tokenize_chinese_chars _snake_case = normalizer_class(**lowerCAmelCase_ ) _snake_case = do_lower_case def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" _snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
42
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class __UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1 , lowerCAmelCase_=False , **lowerCAmelCase_ ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _snake_case = vocab_size _snake_case = d_embed _snake_case = d_proj _snake_case = cutoffs + [vocab_size] _snake_case = [0] + self.cutoffs _snake_case = div_val _snake_case = self.cutoffs[0] _snake_case = len(self.cutoffs ) - 1 _snake_case = self.shortlist_size + self.n_clusters _snake_case = keep_order _snake_case = [] _snake_case = [] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if self.n_clusters > 0: _snake_case = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='zeros' , trainable=lowerCAmelCase_ , name='cluster_weight' ) _snake_case = self.add_weight( shape=(self.n_clusters,) , initializer='zeros' , trainable=lowerCAmelCase_ , name='cluster_bias' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: _snake_case = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_projs_._{i}' , ) self.out_projs.append(lowerCAmelCase_ ) else: self.out_projs.append(lowerCAmelCase_ ) _snake_case = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._weight' , ) _snake_case = self.add_weight( shape=(self.vocab_size,) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): _snake_case , _snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case = self.d_embed // (self.div_val**i) _snake_case = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_projs_._{i}' ) self.out_projs.append(lowerCAmelCase_ ) _snake_case = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._weight' , ) _snake_case = self.add_weight( shape=(r_idx - l_idx,) , initializer='zeros' , trainable=lowerCAmelCase_ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) super().build(lowerCAmelCase_ ) @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" _snake_case = x if proj is not None: _snake_case = tf.einsum('ibd,ed->ibe' , lowerCAmelCase_ , lowerCAmelCase_ ) return tf.einsum('ibd,nd->ibn' , lowerCAmelCase_ , lowerCAmelCase_ ) + b @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = shape_list(lowerCAmelCase_ ) _snake_case = tf.range(lp_size[0] , dtype=target.dtype ) _snake_case = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=False ): """simple docstring""" _snake_case = 0 if self.n_clusters == 0: _snake_case = self._logit(lowerCAmelCase_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: _snake_case = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ , axis=-1 ) else: _snake_case = shape_list(lowerCAmelCase_ ) _snake_case = [] _snake_case = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): _snake_case , _snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _snake_case = (target >= l_idx) & (target < r_idx) _snake_case = tf.where(lowerCAmelCase_ ) _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) - l_idx if self.div_val == 1: _snake_case = self.out_layers[0][0][l_idx:r_idx] _snake_case = self.out_layers[0][1][l_idx:r_idx] else: _snake_case = self.out_layers[i][0] _snake_case = self.out_layers[i][1] if i == 0: _snake_case = tf.concat([cur_W, self.cluster_weight] , 0 ) _snake_case = tf.concat([cur_b, self.cluster_bias] , 0 ) _snake_case = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[0] ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) else: _snake_case = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[i] ) _snake_case = tf.nn.log_softmax(lowerCAmelCase_ ) _snake_case = self.cutoffs[0] + i - 1 # No probability for the head cluster _snake_case = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCAmelCase_ ) if target is not None: _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCAmelCase_ , -cur_logprob , shape_list(lowerCAmelCase_ ) ) _snake_case = tf.concat(lowerCAmelCase_ , axis=-1 ) if target is not None: if return_mean: _snake_case = tf.reduce_mean(lowerCAmelCase_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCAmelCase_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCAmelCase_ , name=self.name , aggregation='mean' if return_mean else '' ) return out
42
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : str = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys _lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[Any] = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Union[str, Any] = "openai-gpt" __magic_name__ : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , lowerCAmelCase : Optional[Any]=40478 , lowerCAmelCase : str=512 , lowerCAmelCase : List[Any]=768 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : int=12 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Tuple=1E-5 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Optional[int]="cls_index" , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=True , lowerCAmelCase : int=0.1 , **lowerCAmelCase : Optional[int] , )-> str: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = n_positions UpperCAmelCase = n_embd UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = afn UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = attn_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = summary_type UpperCAmelCase = summary_use_proj UpperCAmelCase = summary_activation UpperCAmelCase = summary_first_dropout UpperCAmelCase = summary_proj_to_labels super().__init__(**lowerCAmelCase )
91
1
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =0 # if input_string is "aba" than new_input_string become "a|b|a" SCREAMING_SNAKE_CASE ='' SCREAMING_SNAKE_CASE ='' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(lowerCAmelCase_ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0 # length[i] shows the length of palindromic substring with center i SCREAMING_SNAKE_CASE =[1 for i in range(len(lowerCAmelCase_ ) )] # for each character in new_string find corresponding palindromic string SCREAMING_SNAKE_CASE =0 for j in range(len(lowerCAmelCase_ ) ): SCREAMING_SNAKE_CASE =1 if j > r else min(length[l + r - j] // 2, r - j + 1 ) while ( j - k >= 0 and j + k < len(lowerCAmelCase_ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 SCREAMING_SNAKE_CASE =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: SCREAMING_SNAKE_CASE =j - k + 1 # noqa: E741 SCREAMING_SNAKE_CASE =j + k - 1 # update max_length and start position if max_length < length[j]: SCREAMING_SNAKE_CASE =length[j] SCREAMING_SNAKE_CASE =j # create that string SCREAMING_SNAKE_CASE =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
334
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE =tempfile.mktemp() with open(snake_case ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case ) SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case ) finally: os.remove(snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _lowerCAmelCase ( cls : List[Any] ): SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(snake_case ) @classmethod def _lowerCAmelCase ( cls : Tuple ): try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def _lowerCAmelCase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : str ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case ) bert_tokenizer.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE =Trie() SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case ,['AB', 'C'] )
334
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): UpperCamelCase_ : Tuple = XCLIPTextConfig() # derive patch size from model name UpperCamelCase_ : Dict = model_name.find('patch' ) UpperCamelCase_ : Dict = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) UpperCamelCase_ : Optional[Any] = XCLIPVisionConfig(patch_size=lowerCamelCase , num_frames=lowerCamelCase ) if "large" in model_name: UpperCamelCase_ : Any = 768 UpperCamelCase_ : Any = 3072 UpperCamelCase_ : List[Any] = 12 UpperCamelCase_ : Any = 1024 UpperCamelCase_ : List[Any] = 4096 UpperCamelCase_ : Union[str, Any] = 16 UpperCamelCase_ : int = 24 UpperCamelCase_ : Any = 768 UpperCamelCase_ : List[str] = 3072 if model_name == "xclip-large-patch14-16-frames": UpperCamelCase_ : str = 336 UpperCamelCase_ : int = XCLIPConfig.from_text_vision_configs(lowerCamelCase , lowerCamelCase ) if "large" in model_name: UpperCamelCase_ : Union[str, Any] = 768 return config def __lowercase ( lowerCamelCase : Optional[Any] ): # text encoder if name == "token_embedding.weight": UpperCamelCase_ : Dict = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": UpperCamelCase_ : Dict = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: UpperCamelCase_ : List[Any] = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: UpperCamelCase_ : int = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: UpperCamelCase_ : Optional[Any] = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: UpperCamelCase_ : Any = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): UpperCamelCase_ : Any = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: UpperCamelCase_ : List[Any] = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: UpperCamelCase_ : Optional[Any] = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": UpperCamelCase_ : Dict = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": UpperCamelCase_ : Tuple = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): UpperCamelCase_ : Tuple = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: UpperCamelCase_ : Optional[Any] = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: UpperCamelCase_ : Any = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: UpperCamelCase_ : Union[str, Any] = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: UpperCamelCase_ : Optional[Any] = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: UpperCamelCase_ : List[str] = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: UpperCamelCase_ : Union[str, Any] = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: UpperCamelCase_ : Optional[Any] = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": UpperCamelCase_ : Dict = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): UpperCamelCase_ : Tuple = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): UpperCamelCase_ : Optional[Any] = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : Dict ): for key in orig_state_dict.copy().keys(): UpperCamelCase_ : int = orig_state_dict.pop(lowerCamelCase ) if "attn.in_proj" in key: UpperCamelCase_ : Optional[Any] = key.split('.' ) if key.startswith('visual' ): UpperCamelCase_ : Optional[Any] = key_split[3] UpperCamelCase_ : str = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCamelCase_ : Dict = val[ :dim, : ] UpperCamelCase_ : List[str] = val[ dim : dim * 2, : ] UpperCamelCase_ : List[Any] = val[ -dim:, : ] else: UpperCamelCase_ : Union[str, Any] = val[ :dim ] UpperCamelCase_ : Union[str, Any] = val[ dim : dim * 2 ] UpperCamelCase_ : str = val[ -dim: ] else: if "weight" in key: UpperCamelCase_ : List[Any] = val[ :dim, : ] UpperCamelCase_ : Dict = val[ dim : dim * 2, : ] UpperCamelCase_ : List[Any] = val[ -dim:, : ] else: UpperCamelCase_ : Any = val[:dim] UpperCamelCase_ : Dict = val[ dim : dim * 2 ] UpperCamelCase_ : List[str] = val[-dim:] elif key.startswith('mit' ): UpperCamelCase_ : int = key_split[2] UpperCamelCase_ : Optional[Any] = config.vision_config.mit_hidden_size if "weight" in key: UpperCamelCase_ : Optional[Any] = val[:dim, :] UpperCamelCase_ : Optional[Any] = val[dim : dim * 2, :] UpperCamelCase_ : int = val[-dim:, :] else: UpperCamelCase_ : str = val[:dim] UpperCamelCase_ : Optional[int] = val[dim : dim * 2] UpperCamelCase_ : Optional[int] = val[-dim:] else: UpperCamelCase_ : int = key_split[2] UpperCamelCase_ : List[Any] = config.text_config.hidden_size if "weight" in key: UpperCamelCase_ : Tuple = val[:dim, :] UpperCamelCase_ : Optional[int] = val[ dim : dim * 2, : ] UpperCamelCase_ : Optional[int] = val[-dim:, :] else: UpperCamelCase_ : List[Any] = val[:dim] UpperCamelCase_ : List[Any] = val[ dim : dim * 2 ] UpperCamelCase_ : int = val[-dim:] else: UpperCamelCase_ : Optional[int] = rename_key(lowerCamelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCamelCase_ : Optional[Any] = val.T UpperCamelCase_ : List[Any] = val return orig_state_dict def __lowercase ( lowerCamelCase : Dict ): if num_frames == 8: UpperCamelCase_ : List[Any] = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: UpperCamelCase_ : List[Any] = 'eating_spaghetti.npy' elif num_frames == 32: UpperCamelCase_ : Optional[Any] = 'eating_spaghetti_32_frames.npy' UpperCamelCase_ : str = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=lowerCamelCase , repo_type='dataset' , ) UpperCamelCase_ : Optional[Any] = np.load(lowerCamelCase ) return list(lowerCamelCase ) def __lowercase ( lowerCamelCase : str , lowerCamelCase : Tuple=None , lowerCamelCase : Union[str, Any]=False ): UpperCamelCase_ : Union[str, Any] = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } UpperCamelCase_ : Any = model_to_url[model_name] UpperCamelCase_ : Tuple = 8 if "16-frames" in model_name: UpperCamelCase_ : str = 16 elif "shot" in model_name: UpperCamelCase_ : int = 32 UpperCamelCase_ : Tuple = get_xclip_config(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : List[str] = XCLIPModel(lowerCamelCase ) model.eval() if "drive" in checkpoint_url: UpperCamelCase_ : Optional[Any] = 'pytorch_model.bin' gdown.cached_download(lowerCamelCase , lowerCamelCase , quiet=lowerCamelCase ) UpperCamelCase_ : Optional[int] = torch.load(lowerCamelCase , map_location='cpu' )['model'] else: UpperCamelCase_ : List[Any] = torch.hub.load_state_dict_from_url(lowerCamelCase )['model'] UpperCamelCase_ : int = convert_state_dict(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : int = XCLIPModel(lowerCamelCase ) UpperCamelCase_ : Optional[int] = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCamelCase_ : Optional[Any] = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 UpperCamelCase_ : List[str] = VideoMAEImageProcessor(size=lowerCamelCase ) UpperCamelCase_ : Optional[int] = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) UpperCamelCase_ : List[str] = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) UpperCamelCase_ : Optional[int] = XCLIPProcessor(image_processor=lowerCamelCase , tokenizer=lowerCamelCase ) UpperCamelCase_ : str = prepare_video(lowerCamelCase ) UpperCamelCase_ : Any = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=lowerCamelCase , return_tensors='pt' , padding=lowerCamelCase ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCamelCase_ : Optional[int] = model(**lowerCamelCase ) # Verify outputs UpperCamelCase_ : int = outputs.logits_per_video UpperCamelCase_ : Optional[int] = logits_per_video.softmax(dim=1 ) print('Probs:' , lowerCamelCase ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCamelCase_ : Union[str, Any] = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCamelCase_ : List[Any] = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": UpperCamelCase_ : List[Any] = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCamelCase_ : int = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": UpperCamelCase_ : List[str] = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCamelCase_ : Optional[int] = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCamelCase_ : int = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCamelCase_ : Any = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCamelCase_ : Dict = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCamelCase_ : Tuple = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCamelCase_ : List[Any] = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCamelCase_ : Optional[Any] = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCamelCase_ : int = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCamelCase_ : List[str] = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCamelCase_ : List[str] = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCamelCase_ : List[Any] = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCamelCase_ : List[Any] = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCamelCase_ : str = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(lowerCamelCase , organization='nielsr' ) processor.push_to_hub(lowerCamelCase , organization='nielsr' ) slow_tokenizer.push_to_hub(lowerCamelCase , organization='nielsr' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
358
a_ = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' a_ = [{'type': 'code', 'content': INSTALL_CONTENT}] a_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
50
0
def lowerCAmelCase ( _lowerCAmelCase : int ): """simple docstring""" if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence UpperCAmelCase__ = gray_code_sequence_string(_lowerCAmelCase ) # # convert them to integers for i in range(len(_lowerCAmelCase ) ): UpperCAmelCase__ = int(sequence[i] , 2 ) return sequence def lowerCAmelCase ( _lowerCAmelCase : int ): """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase__ = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase__ = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase__ = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase__ = "0" + smaller_sequence[i] sequence.append(_lowerCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase__ = "1" + smaller_sequence[i] sequence.append(_lowerCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
169
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """realm""" def __init__( self :str , lowerCamelCase :List[Any]=3_0522 , lowerCamelCase :Optional[int]=768 , lowerCamelCase :Any=128 , lowerCamelCase :Tuple=12 , lowerCamelCase :str=12 , lowerCamelCase :List[str]=8 , lowerCamelCase :List[str]=3072 , lowerCamelCase :List[str]="gelu_new" , lowerCamelCase :int=0.1 , lowerCamelCase :Optional[Any]=0.1 , lowerCamelCase :int=512 , lowerCamelCase :Union[str, Any]=2 , lowerCamelCase :str=0.02 , lowerCamelCase :Tuple=1e-12 , lowerCamelCase :Dict=256 , lowerCamelCase :int=10 , lowerCamelCase :List[str]=1e-3 , lowerCamelCase :str=5 , lowerCamelCase :Optional[int]=320 , lowerCamelCase :Union[str, Any]=1335_3718 , lowerCamelCase :str=5000 , lowerCamelCase :str=1 , lowerCamelCase :List[Any]=0 , lowerCamelCase :Tuple=2 , **lowerCamelCase :Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) # Common config UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = hidden_size UpperCAmelCase__ = retriever_proj_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = num_candidates UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = layer_norm_eps # Reader config UpperCAmelCase__ = span_hidden_size UpperCAmelCase__ = max_span_width UpperCAmelCase__ = reader_layer_norm_eps UpperCAmelCase__ = reader_beam_size UpperCAmelCase__ = reader_seq_len # Retrieval config UpperCAmelCase__ = num_block_records UpperCAmelCase__ = searcher_beam_size
169
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCAmelCase : __lowerCamelCase = 42 __lowerCamelCase = None __lowerCamelCase = None _snake_case = namedtuple("""CoinsDistribResult""", """moves excess""") def _A ( __magic_name__ ): if root is None: return 0 # Validation def count_nodes(__magic_name__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__magic_name__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__magic_name__ ) != count_coins(__magic_name__ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(__magic_name__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase__ , lowercase__ = get_distrib(node.left ) lowercase__ , lowercase__ = get_distrib(node.right ) lowercase__ = 1 - left_distrib_excess lowercase__ = 1 - right_distrib_excess lowercase__ = ( left_distrib_moves + right_distrib_moves + abs(__magic_name__ ) + abs(__magic_name__ ) ) lowercase__ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__magic_name__ , __magic_name__ ) return get_distrib(__magic_name__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
355
from __future__ import annotations def _A ( __magic_name__ , __magic_name__ ): lowercase__ = [] create_all_state(1 , __magic_name__ , __magic_name__ , [] , __magic_name__ ) return result def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): if level == 0: total_list.append(current_list[:] ) return for i in range(__magic_name__ , total_number - level + 2 ): current_list.append(__magic_name__ ) create_all_state(i + 1 , __magic_name__ , level - 1 , __magic_name__ , __magic_name__ ) current_list.pop() def _A ( __magic_name__ ): for i in total_list: print(*__magic_name__ ) if __name__ == "__main__": _snake_case = 4 _snake_case = 2 _snake_case = generate_all_combinations(n, k) print_all_state(total_list)
201
0
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : List[Any] = np.full((len(_SCREAMING_SNAKE_CASE ), sequence_length, 2) , _SCREAMING_SNAKE_CASE ) else: lowerCAmelCase__ : List[str] = np.full((len(_SCREAMING_SNAKE_CASE ), sequence_length) , _SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(_SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : Union[str, Any] = tensor[:sequence_length] else: lowerCAmelCase__ : str = tensor[:sequence_length] else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : Dict = tensor[:sequence_length] else: lowerCAmelCase__ : int = tensor[:sequence_length] return out_tensor.tolist() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowerCAmelCase__ : Any = ord(_SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True lowerCAmelCase__ : Any = unicodedata.category(_SCREAMING_SNAKE_CASE ) if cat.startswith('P' ): return True return False @dataclass class A__ ( lowerCAmelCase_ ): lowercase = 42 lowercase = True lowercase = None lowercase = None lowercase = -100 lowercase = 'pt' def _lowerCamelCase ( self : Optional[int] , a : str ): '''simple docstring''' import torch lowerCAmelCase__ : List[str] = 'label' if 'label' in features[0].keys() else 'labels' lowerCAmelCase__ : str = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowerCAmelCase__ : List[str] = self.tokenizer.pad( __a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' if labels is None else None , ) if labels is None: return batch lowerCAmelCase__ : Optional[Any] = torch.tensor(batch['entity_ids'] ).shape[1] lowerCAmelCase__ : Dict = self.tokenizer.padding_side if padding_side == "right": lowerCAmelCase__ : Any = [ list(__a ) + [self.label_pad_token_id] * (sequence_length - len(__a )) for label in labels ] else: lowerCAmelCase__ : str = [ [self.label_pad_token_id] * (sequence_length - len(__a )) + list(__a ) for label in labels ] lowerCAmelCase__ : int = [feature['ner_tags'] for feature in features] lowerCAmelCase__ : str = padding_tensor(__a , -1 , __a , __a ) lowerCAmelCase__ : List[Any] = [feature['original_entity_spans'] for feature in features] lowerCAmelCase__ : Optional[Any] = padding_tensor(__a , (-1, -1) , __a , __a ) lowerCAmelCase__ : Optional[Any] = {k: torch.tensor(__a , dtype=torch.intaa ) for k, v in batch.items()} return batch
212
'''simple docstring''' import torch from transformers import AutoModel class __UpperCamelCase ( torch.nn.Module ): def __init__( self , __a="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(__a , self ).__init__() __a : Tuple = AutoModel.from_pretrained(__a , return_dict=__a ) __a : int = torch.nn.CosineSimilarity(3 , 1E-0_8 ) __a : Union[str, Any] = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return self.bert(**__a ).last_hidden_state def __UpperCAmelCase ( self , __a ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=__a ) def __UpperCAmelCase ( self , __a , __a , __a=1 ): '''simple docstring''' return self.softmax(T * self.cos(__a , __a ) ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' __a : str = W_supports['sizes'].tolist() __a : Union[str, Any] = W_supports['start_token_id'].item() __a : Any = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __a : Tuple = self.BERT(**__a ) __a : str = self.BERT(**__a ) __a : Any = None __a : Dict = None __a : Dict = W_supports['input_ids'] == start_token_id __a : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(__a ): if i == 0: __a : Optional[int] = 0 else: __a : Union[str, Any] = support_sizes[i - 1] __a : int = S[s : s + size][start_token_masks[s : s + size]] __a : Union[str, Any] = S[s : s + size][end_token_masks[s : s + size]] __a : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __a : Dict = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __a : str = torch.vstack((p_starts, p_start) ) __a : str = torch.vstack((p_ends, p_end) ) else: __a : List[str] = p_start __a : int = p_end return p_starts, p_ends
27
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowerCAmelCase__ : __a = 42 __a = 42 class lowerCAmelCase__ : def __init__( self : int , _lowerCamelCase : int ): _snake_case = [[] for _ in range(_lowerCamelCase )] _snake_case = size def __getitem__( self : Optional[int] , _lowerCamelCase : int ): return iter(self._graph[vertex] ) @property def lowercase ( self : Optional[int] ): return self._size def lowercase ( self : List[Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(_lowerCamelCase , _lowerCamelCase ) ) def lowercase ( self : List[Any] , _lowerCamelCase : int , _lowerCamelCase : int ): _snake_case = deque([start_vertex] ) _snake_case = [None] * self.size _snake_case = 0 while queue: _snake_case = queue.popleft() _snake_case = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _snake_case = current_distance + edge.weight _snake_case = distances[edge.destination_vertex] if ( isinstance(_lowerCamelCase , _lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue _snake_case = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
40
"""simple docstring""" from __future__ import annotations from random import random class lowerCAmelCase__ : def __init__( self : str , _lowerCamelCase : int | None = None ): _snake_case = value _snake_case = random() _snake_case = None _snake_case = None def __repr__( self : int ): from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} , indent=1 ) def __str__( self : Optional[int] ): _snake_case = str(self.value ) + ''' ''' _snake_case = str(self.left or '''''' ) _snake_case = str(self.right or '''''' ) return value + left + right def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : int ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case = split(root.left , __lowerCamelCase ) return left, root else: _snake_case , _snake_case = split(root.right , __lowerCamelCase ) return root, right def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : Node | None ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case = merge(left.right , __lowerCamelCase ) return left else: _snake_case = merge(__lowerCamelCase , right.left ) return right def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : int ) -> Node | None: _snake_case = Node(__lowerCamelCase ) _snake_case , _snake_case = split(__lowerCamelCase , __lowerCamelCase ) return merge(merge(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : int ) -> Node | None: _snake_case , _snake_case = split(__lowerCamelCase , value - 1 ) _snake_case , _snake_case = split(__lowerCamelCase , __lowerCamelCase ) return merge(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : Node | None ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : str ) -> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case = insert(__lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case = erase(__lowerCamelCase , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def _UpperCAmelCase ( ) -> None: _snake_case = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) _snake_case = input() while args != "q": _snake_case = interact_treap(__lowerCamelCase , __lowerCamelCase ) print(__lowerCamelCase ) _snake_case = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
40
1
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
91
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = """▁""" UpperCAmelCase_ : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCAmelCase_ : str = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } UpperCAmelCase_ : str = { """facebook/xglm-564M""": 2048, } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self : List[Any] , lowercase_ : str , lowercase_ : Tuple="<s>" , lowercase_ : Any="</s>" , lowercase_ : Optional[int]="</s>" , lowercase_ : List[Any]="<s>" , lowercase_ : Union[str, Any]="<unk>" , lowercase_ : Union[str, Any]="<pad>" , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Tuple = [F'<madeupword{i}>' for i in range(self.num_madeup_words)] SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.get('''additional_special_tokens''' , []) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowercase_)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} SCREAMING_SNAKE_CASE_ : List[Any] = len(self.sp_model) SCREAMING_SNAKE_CASE_ : Optional[Any] = {F'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words)} self.fairseq_tokens_to_ids.update(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} SCREAMING_SNAKE_CASE_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_) if token_ids_a is None: return [1] + ([0] * len(lowercase_)) return [1] + ([0] * len(lowercase_)) + [1, 1] + ([0] * len(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a) * [0] @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return len(self.sp_model) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : str): '''simple docstring''' return self.sp_model.encode(lowercase_ , out_type=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : Union[str, Any]): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ : Optional[Any] = self.sp_model.PieceToId(lowercase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Optional[Any]): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = ''''''.join(lowercase_).replace(lowercase_ , ''' ''').strip() return out_string def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : Optional[str] = None): '''simple docstring''' if not os.path.isdir(lowercase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase_) elif not os.path.isfile(self.vocab_file): with open(lowercase_ , '''wb''') as fi: SCREAMING_SNAKE_CASE_ : int = self.sp_model.serialized_model_proto() fi.write(lowercase_) return (out_vocab_file,)
91
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :Dict = logging.get_logger(__name__) lowerCAmelCase__ :List[str] = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __a ( __lowerCamelCase ): _a : Tuple = 'speech_to_text_2' _a : Any = ['past_key_values'] _a : Dict = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _SCREAMING_SNAKE_CASE=10000 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1024 , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = d_model _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = use_cache _UpperCAmelCase = decoder_layers _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
357
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase__ :Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase__ :str = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' lowerCAmelCase__ :List[Any] = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' lowerCAmelCase__ :Optional[int] = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def lowerCAmelCase__ ( a__: int , a__: int , a__: Dict=False , a__: str=False , a__: Optional[int]=True , a__: Any=False , a__: str="dummy_doc" ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {doc: key_lines} _UpperCAmelCase = {doc: sys_lines} _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase , _UpperCAmelCase = reader.get_doc_mentions(a__ , key_doc_lines[doc] , a__ ) key_singletons_num += singletons_num if NP_only or min_span: _UpperCAmelCase = reader.set_annotated_parse_trees(a__ , key_doc_lines[doc] , a__ , a__ ) _UpperCAmelCase , _UpperCAmelCase = reader.get_doc_mentions(a__ , sys_doc_lines[doc] , a__ ) sys_singletons_num += singletons_num if NP_only or min_span: _UpperCAmelCase = reader.set_annotated_parse_trees(a__ , key_doc_lines[doc] , a__ , a__ ) if remove_nested: _UpperCAmelCase , _UpperCAmelCase = reader.remove_nested_coref_mentions(a__ , a__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _UpperCAmelCase , _UpperCAmelCase = reader.remove_nested_coref_mentions(a__ , a__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _UpperCAmelCase = reader.get_mention_assignments(a__ , a__ ) _UpperCAmelCase = reader.get_mention_assignments(a__ , a__ ) _UpperCAmelCase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( 'Number of resulting singleton clusters in the key ' F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' 'files, respectively' ) return doc_coref_infos def lowerCAmelCase__ ( a__: Any , a__: List[str] , a__: List[str] , a__: Optional[int] , a__: Optional[Any] , a__: Any , a__: Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = get_coref_infos(a__ , a__ , a__ , a__ , a__ , a__ ) _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = 0 for name, metric in metrics: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = evaluator.evaluate_documents(a__ , a__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(1_0 ) , F'''Recall: {recall * 1_0_0:.2f}''' , F''' Precision: {precision * 1_0_0:.2f}''' , F''' F1: {fa * 1_0_0:.2f}''' , ) if conll_subparts_num == 3: _UpperCAmelCase = (conll / 3) * 1_0_0 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({'conll_score': conll} ) return output_scores def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: _UpperCAmelCase = line.split()[5] if not parse_col == "-": _UpperCAmelCase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> str: """simple docstring""" _UpperCAmelCase = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: _UpperCAmelCase = util.check_gold_parse_annotation(_SCREAMING_SNAKE_CASE ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _UpperCAmelCase = evaluate( key_lines=_SCREAMING_SNAKE_CASE , sys_lines=_SCREAMING_SNAKE_CASE , metrics=_SCREAMING_SNAKE_CASE , NP_only=_SCREAMING_SNAKE_CASE , remove_nested=_SCREAMING_SNAKE_CASE , keep_singletons=_SCREAMING_SNAKE_CASE , min_span=_SCREAMING_SNAKE_CASE , ) return score
185
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : Tuple ) -> int: """simple docstring""" if n == 1 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return 0 elif n == 2: return 1 else: snake_case : List[str] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __lowerCAmelCase ( lowercase : Tuple ) -> int: """simple docstring""" snake_case : List[str] = 0 snake_case : Dict = 2 while digits < n: index += 1 snake_case : Union[str, Any] = len(str(fibonacci(_UpperCAmelCase ) ) ) return index def __lowerCAmelCase ( lowercase : Tuple = 1000 ) -> int: """simple docstring""" return fibonacci_digits_index(_UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
203
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=None , _UpperCAmelCase="no" , _UpperCAmelCase="29500" ) -> Tuple: lowerCamelCase__ : Dict = False lowerCamelCase__ : Dict = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): lowerCamelCase__ : Optional[Any] = True elif "IPython" in sys.modules: lowerCamelCase__ : Optional[Any] = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: lowerCamelCase__ : List[str] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , _UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: lowerCamelCase__ : Optional[Any] = 8 lowerCamelCase__ : List[str] = PrepareForLaunch(_UpperCAmelCase , distributed_type='TPU' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*_UpperCAmelCase ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port=_UpperCAmelCase , mixed_precision=_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = PrepareForLaunch(_UpperCAmelCase , distributed_type='MULTI_GPU' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase__ : int = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=2 ) -> Optional[Any]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): lowerCamelCase__ : Optional[Any] = PrepareForLaunch(_UpperCAmelCase , debug=_UpperCAmelCase ) start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' )
50
0
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
53
"""simple docstring""" def lowercase__ ( _UpperCAmelCase ) -> int: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowercase : List[Any] = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_UpperCAmelCase ) else: lowercase : str = sylvester(number - 1 ) lowercase : Union[str, Any] = num - 1 lowercase : List[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
53
1
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __magic_name__ : def __init__( self : Union[str, Any] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Tuple=2 ,_UpperCAmelCase : Optional[int]=32 ,_UpperCAmelCase : Any=16 ,_UpperCAmelCase : Tuple=3 ,_UpperCAmelCase : Any=True ,_UpperCAmelCase : List[Any]=True ,_UpperCAmelCase : Union[str, Any]=32 ,_UpperCAmelCase : Optional[int]=4 ,_UpperCAmelCase : str=[0, 1, 2, 3] ,_UpperCAmelCase : Optional[Any]=4 ,_UpperCAmelCase : int=37 ,_UpperCAmelCase : int="gelu" ,_UpperCAmelCase : Tuple=0.1 ,_UpperCAmelCase : Dict=0.1 ,_UpperCAmelCase : List[Any]=0.02 ,_UpperCAmelCase : str=3 ,_UpperCAmelCase : Dict=[1, 384, 24, 24] ,_UpperCAmelCase : str=True ,_UpperCAmelCase : Any=None ,): _a : Optional[Any] = parent _a : Any = batch_size _a : str = image_size _a : Any = patch_size _a : Dict = num_channels _a : int = is_training _a : str = use_labels _a : List[Any] = hidden_size _a : Dict = num_hidden_layers _a : int = backbone_out_indices _a : Any = num_attention_heads _a : Dict = intermediate_size _a : Dict = hidden_act _a : Optional[int] = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : Union[str, Any] = initializer_range _a : Tuple = num_labels _a : Any = backbone_featmap_shape _a : Any = scope _a : Dict = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _a : List[str] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def __lowercase ( self : Optional[Any] ): _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Dict = None if self.use_labels: _a : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) _a : Any = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ): _a : Union[str, Any] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [96, 192, 384, 768], 'num_groups': 2, } return DPTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,backbone_out_indices=self.backbone_out_indices ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_UpperCAmelCase ,initializer_range=self.initializer_range ,is_hybrid=self.is_hybrid ,backbone_config=_UpperCAmelCase ,backbone_featmap_shape=self.backbone_featmap_shape ,) def __lowercase ( self : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Optional[int] ): _a : Tuple = DPTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Optional[int] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : str ,_UpperCAmelCase : Dict ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Union[str, Any] ): _a : Dict = self.num_labels _a : List[Any] = DPTForDepthEstimation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Union[str, Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape ,(self.batch_size, self.image_size, self.image_size) ) def __lowercase ( self : str ,_UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : str ): _a : Union[str, Any] = self.num_labels _a : Union[str, Any] = DPTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Tuple = model(_UpperCAmelCase ,labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowercase ( self : Dict ): _a : Dict = self.prepare_config_and_inputs() _a , _a , _a : Any = config_and_inputs _a : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : List[Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCAmelCase : Tuple = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase : Dict = False lowerCAmelCase : Any = False lowerCAmelCase : Optional[Any] = False def __lowercase ( self : Optional[int] ): _a : Union[str, Any] = DPTModelTester(self ) _a : List[Any] = ConfigTester(self ,config_class=_UpperCAmelCase ,has_text_modality=_UpperCAmelCase ,hidden_size=37 ) def __lowercase ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds' ) def __lowercase ( self : List[Any] ): pass def __lowercase ( self : str ): _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase ,nn.Linear ) ) def __lowercase ( self : Dict ): _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_UpperCAmelCase ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : str = [*signature.parameters.keys()] _a : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_UpperCAmelCase ) def __lowercase ( self : Any ): _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def __lowercase ( self : List[str] ): _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_UpperCAmelCase ) def __lowercase ( self : Optional[int] ): _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def __lowercase ( self : str ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[Any] = True if model_class in get_values(_UpperCAmelCase ): continue _a : List[Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() _a : int = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase ) _a : str = model(**_UpperCAmelCase ).loss loss.backward() def __lowercase ( self : Optional[Any] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _a , _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[int] = False _a : Optional[int] = True if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue _a : Any = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() _a : Optional[Any] = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase ) _a : str = model(**_UpperCAmelCase ).loss loss.backward() def __lowercase ( self : Optional[Any] ): _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : List[str] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _a : Optional[Any] = model_class(config=_UpperCAmelCase ) # Skip the check for the backbone _a : Optional[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _a : int = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowercase ( self : Tuple ): pass @slow def __lowercase ( self : Tuple ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _a : int = DPTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowercase ( self : str ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : int = 'add' with self.assertRaises(_UpperCAmelCase ): _a : Dict = DPTForDepthEstimation(_UpperCAmelCase ) def __lowerCamelCase ( ) -> Tuple: _a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class __magic_name__ ( unittest.TestCase ): def __lowercase ( self : str ): _a : Optional[int] = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' ) _a : List[Any] = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(_UpperCAmelCase ) _a : Optional[int] = prepare_img() _a : str = image_processor(images=_UpperCAmelCase ,return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _a : int = model(**_UpperCAmelCase ) _a : Union[str, Any] = outputs.predicted_depth # verify the predicted depth _a : List[str] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape ,_UpperCAmelCase ) _a : Optional[Any] = torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 ,_UpperCAmelCase ,atol=1E-4 ) )
89
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: str , __UpperCAmelCase: str , __UpperCAmelCase: PreTrainedTokenizer , __UpperCAmelCase: int , __UpperCAmelCase: Optional[int] = None , ) -> List[Any]: UpperCamelCase__ : Dict = {} if train_file is not None: UpperCamelCase__ : str = [train_file] if eval_file is not None: UpperCamelCase__ : Union[str, Any] = [eval_file] if test_file is not None: UpperCamelCase__ : Tuple = [test_file] UpperCamelCase__ : Optional[Any] = datasets.load_dataset('''csv''' , data_files=__UpperCAmelCase ) UpperCamelCase__ : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) UpperCamelCase__ : str = features_name.pop(__UpperCAmelCase ) UpperCamelCase__ : List[str] = list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCamelCase__ : Optional[Any] = {label: i for i, label in enumerate(__UpperCAmelCase )} UpperCamelCase__ : Union[str, Any] = tokenizer.model_input_names UpperCamelCase__ : str = {} if len(__UpperCAmelCase ) == 1: for k in files.keys(): UpperCamelCase__ : Optional[int] = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' ) , batched=__UpperCAmelCase , ) elif len(__UpperCAmelCase ) == 2: for k in files.keys(): UpperCamelCase__ : Dict = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' , ) , batched=__UpperCAmelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCamelCase__ : Any = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase__ : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCamelCase__ : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase__ : str = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCamelCase__ : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase__ : int = labelaid[ex[label_name]] yield (d, label) UpperCamelCase__ : Tuple = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCamelCase__ : Optional[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCamelCase__ : int = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCamelCase__ : Dict = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCamelCase__ : Optional[Any] = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCamelCase__ : Union[str, Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCAmelCase_ = logging.getLogger(__name__) @dataclass class lowercase__ : '''simple docstring''' a : int = field(metadata={"help": "Which column contains the label"} ) a : str = field(default=__lowerCamelCase , metadata={"help": "The path of the training file"} ) a : Optional[str] = field(default=__lowerCamelCase , metadata={"help": "The path of the development file"} ) a : Optional[str] = field(default=__lowerCamelCase , metadata={"help": "The path of the test file"} ) a : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a : bool = field( default=__lowerCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class lowercase__ : '''simple docstring''' a : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : bool = field(default=__lowerCamelCase , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def lowerCAmelCase_ ( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " f"16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__UpperCAmelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) UpperCamelCase__ : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__UpperCAmelCase ) , labelaid=__UpperCAmelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): UpperCamelCase__ : str = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(__UpperCAmelCase: EvalPrediction ) -> Dict: UpperCamelCase__ : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCamelCase__ : Union[str, Any] = TFTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase__ : List[str] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCamelCase__ : Tuple = trainer.evaluate() UpperCamelCase__ : Optional[int] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(__UpperCAmelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) results.update(__UpperCAmelCase ) return results if __name__ == "__main__": main()
201
0
"""simple docstring""" import datasets from .evaluate import evaluate __snake_case : Optional[Any] = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' __snake_case : Optional[Any] = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' __snake_case : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: int) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string"), "prediction_text": datasets.Value("string")}, "references": { "id": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), }), }, }) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} __lowerCAmelCase : Any = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] __lowerCAmelCase : Dict = evaluate(dataset=_SCREAMING_SNAKE_CASE , predictions=_SCREAMING_SNAKE_CASE) return score
58
"""simple docstring""" import sys __snake_case : List[Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _lowercase ( __snake_case ) -> int: __lowerCAmelCase : int = 1 for digit in s: product *= int(__snake_case ) return product def _lowercase ( __snake_case = N ) -> int: __lowerCAmelCase : Optional[Any] = -sys.maxsize - 1 __lowerCAmelCase : Union[str, Any] = n[:13] __lowerCAmelCase : Dict = 13 while cur_index < len(__snake_case ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __lowerCAmelCase : List[str] = substr[1:] + n[cur_index] cur_index += 1 else: __lowerCAmelCase : Dict = max(__snake_case ,str_eval(__snake_case ) ) __lowerCAmelCase : Optional[int] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
58
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowercase = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
40
"""simple docstring""" import os import sys import unittest __lowercase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowercase = os.path.join(git_repo_path, """src""", """diffusers""") class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Any): a : List[Any] = find_backend(" if not is_torch_available():") self.assertEqual(__UpperCAmelCase , "torch") # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") a : Dict = find_backend(" if not (is_torch_available() and is_transformers_available()):") self.assertEqual(__UpperCAmelCase , "torch_and_transformers") # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") a : int = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):") self.assertEqual(__UpperCAmelCase , "torch_and_transformers_and_onnx") def __snake_case ( self : Union[str, Any]): a : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , __UpperCAmelCase) self.assertIn("torch_and_transformers" , __UpperCAmelCase) self.assertIn("flax_and_transformers" , __UpperCAmelCase) self.assertIn("torch_and_transformers_and_onnx" , __UpperCAmelCase) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"]) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"]) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"]) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"]) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"]) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"]) def __snake_case ( self : Tuple): a : Optional[int] = create_dummy_object("CONSTANT" , "'torch'") self.assertEqual(__UpperCAmelCase , "\nCONSTANT = None\n") a : Dict = create_dummy_object("function" , "'torch'") self.assertEqual( __UpperCAmelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n") a : Optional[Any] = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" a : int = create_dummy_object("FakeClass" , "'torch'") self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : List[str]): a : List[str] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" a : Tuple = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]}) self.assertEqual(dummy_files["torch"] , __UpperCAmelCase)
40
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE_ ( snake_case : int=None )-> Any: if subparsers is not None: _lowerCamelCase = subparsers.add_parser('test' ) else: _lowerCamelCase = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=snake_case , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=snake_case ) return parser def SCREAMING_SNAKE_CASE_ ( snake_case : str )-> Optional[int]: _lowerCamelCase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: _lowerCamelCase = script_name else: _lowerCamelCase = f'--config_file={args.config_file} {script_name}' _lowerCamelCase = ['accelerate-launch'] + test_args.split() _lowerCamelCase = execute_subprocess_async(snake_case , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: _lowerCamelCase = test_command_parser() _lowerCamelCase = parser.parse_args() test_command(snake_case ) if __name__ == "__main__": main()
80
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __a ( unittest.TestCase ): def snake_case_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case_ ( self ): _lowerCamelCase , _lowerCamelCase = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=a__ , dtype=jnp.bfloataa ) _lowerCamelCase , _lowerCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a__ , from_pt=a__ , dtype=jnp.bfloataa ) _lowerCamelCase = controlnet_params _lowerCamelCase = 'bird' _lowerCamelCase = jax.device_count() _lowerCamelCase = pipe.prepare_text_inputs([prompts] * num_samples ) _lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) _lowerCamelCase = pipe.prepare_image_inputs([canny_image] * num_samples ) _lowerCamelCase = jax.random.PRNGKey(0 ) _lowerCamelCase = jax.random.split(a__ , jax.device_count() ) _lowerCamelCase = replicate(a__ ) _lowerCamelCase = shard(a__ ) _lowerCamelCase = shard(a__ ) _lowerCamelCase = pipe( prompt_ids=a__ , image=a__ , params=a__ , prng_seed=a__ , num_inference_steps=50 , jit=a__ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) _lowerCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCamelCase = images[0, 2_53:2_56, 2_53:2_56, -1] _lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCamelCase = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def snake_case_ ( self ): _lowerCamelCase , _lowerCamelCase = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=a__ , dtype=jnp.bfloataa ) _lowerCamelCase , _lowerCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=a__ , from_pt=a__ , dtype=jnp.bfloataa ) _lowerCamelCase = controlnet_params _lowerCamelCase = 'Chef in the kitchen' _lowerCamelCase = jax.device_count() _lowerCamelCase = pipe.prepare_text_inputs([prompts] * num_samples ) _lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) _lowerCamelCase = pipe.prepare_image_inputs([pose_image] * num_samples ) _lowerCamelCase = jax.random.PRNGKey(0 ) _lowerCamelCase = jax.random.split(a__ , jax.device_count() ) _lowerCamelCase = replicate(a__ ) _lowerCamelCase = shard(a__ ) _lowerCamelCase = shard(a__ ) _lowerCamelCase = pipe( prompt_ids=a__ , image=a__ , params=a__ , prng_seed=a__ , num_inference_steps=50 , jit=a__ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) _lowerCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCamelCase = images[0, 2_53:2_56, 2_53:2_56, -1] _lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCamelCase = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
80
1
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowercase_ ( _snake_case ): if "model" in orig_key: SCREAMING_SNAKE_CASE__ : Union[str, Any] = orig_key.replace("""model.""" ,"""""" ) if "norm1" in orig_key: SCREAMING_SNAKE_CASE__ : str = orig_key.replace("""norm1""" ,"""attention.output.LayerNorm""" ) if "norm2" in orig_key: SCREAMING_SNAKE_CASE__ : Optional[Any] = orig_key.replace("""norm2""" ,"""output.LayerNorm""" ) if "norm" in orig_key: SCREAMING_SNAKE_CASE__ : Any = orig_key.replace("""norm""" ,"""LayerNorm""" ) if "transformer" in orig_key: SCREAMING_SNAKE_CASE__ : str = orig_key.split(""".""" )[0].split("""_""" )[-1] SCREAMING_SNAKE_CASE__ : List[str] = orig_key.replace(f'''transformer_{layer_num}''' ,f'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: SCREAMING_SNAKE_CASE__ : str = orig_key.replace("""mha.attn""" ,"""attention.self""" ) if "mha" in orig_key: SCREAMING_SNAKE_CASE__ : Optional[int] = orig_key.replace("""mha""" ,"""attention""" ) if "W_q" in orig_key: SCREAMING_SNAKE_CASE__ : Any = orig_key.replace("""W_q""" ,"""self.query""" ) if "W_k" in orig_key: SCREAMING_SNAKE_CASE__ : str = orig_key.replace("""W_k""" ,"""self.key""" ) if "W_v" in orig_key: SCREAMING_SNAKE_CASE__ : Tuple = orig_key.replace("""W_v""" ,"""self.value""" ) if "ff1" in orig_key: SCREAMING_SNAKE_CASE__ : Optional[Any] = orig_key.replace("""ff1""" ,"""intermediate.dense""" ) if "ff2" in orig_key: SCREAMING_SNAKE_CASE__ : Tuple = orig_key.replace("""ff2""" ,"""output.dense""" ) if "ff" in orig_key: SCREAMING_SNAKE_CASE__ : Any = orig_key.replace("""ff""" ,"""output.dense""" ) if "mlm_class" in orig_key: SCREAMING_SNAKE_CASE__ : List[str] = orig_key.replace("""mlm.mlm_class""" ,"""cls.predictions.decoder""" ) if "mlm" in orig_key: SCREAMING_SNAKE_CASE__ : int = orig_key.replace("""mlm""" ,"""cls.predictions.transform""" ) if "cls" not in orig_key: SCREAMING_SNAKE_CASE__ : str = """yoso.""" + orig_key return orig_key def lowercase_ ( _snake_case ,_snake_case ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ : str = orig_state_dict.pop(_snake_case ) if ("pooler" in key) or ("sen_class" in key): continue else: SCREAMING_SNAKE_CASE__ : int = val SCREAMING_SNAKE_CASE__ : Optional[int] = orig_state_dict["""cls.predictions.decoder.bias"""] SCREAMING_SNAKE_CASE__ : Tuple = torch.arange(_snake_case ).expand((1, -1) ) + 2 return orig_state_dict def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Optional[int] = torch.load(_snake_case ,map_location="""cpu""" )["""model_state_dict"""] SCREAMING_SNAKE_CASE__ : Dict = YosoConfig.from_json_file(_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = YosoForMaskedLM(_snake_case ) SCREAMING_SNAKE_CASE__ : str = convert_checkpoint_helper(config.max_position_embeddings ,_snake_case ) print(model.load_state_dict(_snake_case ) ) model.eval() model.save_pretrained(_snake_case ) print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase__ : List[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
25
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Dict = ['image_processor'] lowerCamelCase : str = 'SamImageProcessor' def __init__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.image_processor __lowerCamelCase : str = -10 __lowerCamelCase : List[str] = self.image_processor.size['longest_edge'] def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> BatchEncoding: __lowerCamelCase : Union[str, Any] = self.image_processor( SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # pop arguments that are not used in the foward but used nevertheless __lowerCamelCase : List[Any] = encoding_image_processor['original_sizes'] if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): # Checks if Torch or TF tensor __lowerCamelCase : Dict = original_sizes.numpy() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = self._check_and_preprocess_points( input_points=SCREAMING_SNAKE_CASE_ , input_labels=SCREAMING_SNAKE_CASE_ , input_boxes=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Tuple = self._normalize_and_convert( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , input_points=SCREAMING_SNAKE_CASE_ , input_labels=SCREAMING_SNAKE_CASE_ , input_boxes=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , ) return encoding_image_processor def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="pt" , ) -> Optional[int]: if input_points is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Union[str, Any] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , original_sizes[0] ) for point in input_points ] else: __lowerCamelCase : List[Any] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for point, original_size in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCamelCase , __lowerCamelCase : Tuple = self._pad_points_and_labels(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if input_labels is not None: __lowerCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if input_boxes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Union[str, Any] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , original_sizes[0] , is_bounding_box=SCREAMING_SNAKE_CASE_ ) for box in input_boxes ] else: __lowerCamelCase : Optional[int] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , is_bounding_box=SCREAMING_SNAKE_CASE_ ) for box, original_size in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] __lowerCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if input_boxes is not None: if return_tensors == "pt": __lowerCamelCase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # boxes batch size of 1 by default __lowerCamelCase : Union[str, Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCamelCase : List[str] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # boxes batch size of 1 by default __lowerCamelCase : str = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Dict = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCamelCase : Dict = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Tuple = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCamelCase : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Dict = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCamelCase : str = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Dict = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : List[str] = max([point.shape[0] for point in input_points] ) __lowerCamelCase : Union[str, Any] = [] for i, point in enumerate(SCREAMING_SNAKE_CASE_ ): if point.shape[0] != expected_nb_points: __lowerCamelCase : Optional[int] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __lowerCamelCase : List[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = processed_input_points return input_points, input_labels def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> np.ndarray: __lowerCamelCase , __lowerCamelCase : Tuple = original_size __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.image_processor._get_preprocess_shape(SCREAMING_SNAKE_CASE_ , longest_edge=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = deepcopy(SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) if is_bounding_box: __lowerCamelCase : Optional[int] = coords.reshape(-1 , 2 , 2 ) __lowerCamelCase : List[Any] = coords[..., 0] * (new_w / old_w) __lowerCamelCase : Dict = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCamelCase : Tuple = coords.reshape(-1 , 4 ) return coords def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ) -> Optional[Any]: if input_points is not None: if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): # Checks for TF or Torch tensor __lowerCamelCase : List[str] = input_points.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_points[0] , SCREAMING_SNAKE_CASE_ ): raise ValueError('Input points must be a list of list of floating points.' ) __lowerCamelCase : str = [np.array(SCREAMING_SNAKE_CASE_ ) for input_point in input_points] else: __lowerCamelCase : Optional[Any] = None if input_labels is not None: if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): __lowerCamelCase : Union[str, Any] = input_labels.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_labels[0] , SCREAMING_SNAKE_CASE_ ): raise ValueError('Input labels must be a list of list integers.' ) __lowerCamelCase : Any = [np.array(SCREAMING_SNAKE_CASE_ ) for label in input_labels] else: __lowerCamelCase : Dict = None if input_boxes is not None: if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): __lowerCamelCase : int = input_boxes.numpy().tolist() if ( not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_boxes[0] , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_boxes[0][0] , SCREAMING_SNAKE_CASE_ ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) __lowerCamelCase : List[Any] = [np.array(SCREAMING_SNAKE_CASE_ ).astype(np.floataa ) for box in input_boxes] else: __lowerCamelCase : Tuple = None return input_points, input_labels, input_boxes @property def lowercase_ ( self ) -> Dict: __lowerCamelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return self.image_processor.post_process_masks(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
185
0
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def a__ ( snake_case__ ) -> List[str]: lowerCamelCase = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def a__ ( snake_case__ ) -> int: lowerCamelCase , lowerCamelCase = emb.weight.shape lowerCamelCase = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) lowerCamelCase = emb.weight.data return lin_layer def a__ ( snake_case__ ) -> Tuple: lowerCamelCase = torch.load(snake_case__ , map_location="""cpu""" ) lowerCamelCase = Namespace(**checkpoint["""cfg"""]["""model"""] ) lowerCamelCase = checkpoint["""model"""] remove_ignore_keys_(snake_case__ ) lowerCamelCase = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowerCamelCase = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} lowerCamelCase = XGLMConfig( vocab_size=snake_case__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) lowerCamelCase = XGLMForCausalLM(snake_case__ ) lowerCamelCase = model.load_state_dict(snake_case__ , strict=snake_case__ ) print(snake_case__ ) lowerCamelCase = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCAmelCase : Union[str, Any] = parser.parse_args() lowerCAmelCase : Tuple = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
168
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , *_a , _a=None , _a=None , **_a ): """simple docstring""" super().__init__(*_a , **_a ) lowerCamelCase = eval_examples lowerCamelCase = post_process_function def _lowerCAmelCase ( self , _a=None , _a=None , _a=None , _a = "eval" ): """simple docstring""" lowerCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase = self.get_eval_dataloader(_a ) lowerCamelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase = self.compute_metrics lowerCamelCase = None lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCamelCase = time.time() try: lowerCamelCase = eval_loop( _a , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_a , metric_key_prefix=_a , ) finally: lowerCamelCase = compute_metrics lowerCamelCase = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( _a , _a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCamelCase = self.post_process_function(_a , _a , output.predictions ) lowerCamelCase = self.compute_metrics(_a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase = metrics.pop(_a ) metrics.update(output.metrics ) else: lowerCamelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , _a ) return metrics def _lowerCAmelCase ( self , _a , _a , _a=None , _a = "test" ): """simple docstring""" lowerCamelCase = self.get_test_dataloader(_a ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase = self.compute_metrics lowerCamelCase = None lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCamelCase = time.time() try: lowerCamelCase = eval_loop( _a , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_a , metric_key_prefix=_a , ) finally: lowerCamelCase = compute_metrics lowerCamelCase = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( _a , _a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase = self.post_process_function(_a , _a , output.predictions , """predict""" ) lowerCamelCase = self.compute_metrics(_a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase = metrics.pop(_a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_a )
168
1
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowercase__ ( __lowercase : List[str] ) -> Optional[int]: """simple docstring""" __UpperCamelCase = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , __lowercase ).groups()[0] class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : Dict=None , __A : List[str]=None ): __UpperCamelCase = file_names __UpperCamelCase = image_transform __UpperCamelCase = label_to_id def __len__( self : int ): return len(self.file_names ) def __getitem__( self : Tuple , __A : List[str] ): __UpperCamelCase = self.file_names[idx] __UpperCamelCase = PIL.Image.open(__A ) __UpperCamelCase = raw_image.convert('RGB' ) if self.image_transform is not None: __UpperCamelCase = self.image_transform(__A ) __UpperCamelCase = extract_label(__A ) if self.label_to_id is not None: __UpperCamelCase = self.label_to_id[label] return {"image": image, "label": label} def lowercase__ ( __lowercase : Tuple , __lowercase : Tuple ) -> List[str]: """simple docstring""" if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['lr'] __UpperCamelCase = int(config['num_epochs'] ) __UpperCamelCase = int(config['seed'] ) __UpperCamelCase = int(config['batch_size'] ) __UpperCamelCase = config['image_size'] if not isinstance(__lowercase , (list, tuple) ): __UpperCamelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": __UpperCamelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __UpperCamelCase = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: __UpperCamelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __UpperCamelCase = os.path.split(__lowercase )[-1].split('.' )[0] accelerator.init_trackers(__lowercase , __lowercase ) # Grab all the image filenames __UpperCamelCase = [os.path.join(args.data_dir , __lowercase ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences __UpperCamelCase = [extract_label(__lowercase ) for fname in file_names] __UpperCamelCase = list(set(__lowercase ) ) id_to_label.sort() __UpperCamelCase = {lbl: i for i, lbl in enumerate(__lowercase )} # Set the seed before splitting the data. np.random.seed(__lowercase ) torch.manual_seed(__lowercase ) torch.cuda.manual_seed_all(__lowercase ) # Split our filenames between train and validation __UpperCamelCase = np.random.permutation(len(__lowercase ) ) __UpperCamelCase = int(0.8 * len(__lowercase ) ) __UpperCamelCase = random_perm[:cut] __UpperCamelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop __UpperCamelCase = Compose([RandomResizedCrop(__lowercase , scale=(0.5, 1.0) ), ToTensor()] ) __UpperCamelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=__lowercase , label_to_id=__lowercase ) # For evaluation, we use a deterministic Resize __UpperCamelCase = Compose([Resize(__lowercase ), ToTensor()] ) __UpperCamelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__lowercase , label_to_id=__lowercase ) # Instantiate dataloaders. __UpperCamelCase = DataLoader(__lowercase , shuffle=__lowercase , batch_size=__lowercase , num_workers=4 ) __UpperCamelCase = DataLoader(__lowercase , shuffle=__lowercase , batch_size=__lowercase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = create_model('resnet50d' , pretrained=__lowercase , num_classes=len(__lowercase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __UpperCamelCase = False for param in model.get_classifier().parameters(): __UpperCamelCase = True # We normalize the batches of images to be a bit faster. __UpperCamelCase = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) __UpperCamelCase = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler __UpperCamelCase = OneCycleLR(optimizer=__lowercase , max_lr=__lowercase , epochs=__lowercase , steps_per_epoch=len(__lowercase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # We need to keep track of how many total steps we have iterated over __UpperCamelCase = 0 # We also need to keep track of the starting epoch so files are named properly __UpperCamelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) __UpperCamelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __UpperCamelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __UpperCamelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __UpperCamelCase = os.path.splitext(__lowercase )[0] if "epoch" in training_difference: __UpperCamelCase = int(training_difference.replace('epoch_' , '' ) ) + 1 __UpperCamelCase = None else: __UpperCamelCase = int(training_difference.replace('step_' , '' ) ) __UpperCamelCase = resume_step // len(__lowercase ) resume_step -= starting_epoch * len(__lowercase ) # Now we train the model for epoch in range(__lowercase , __lowercase ): model.train() if args.with_tracking: __UpperCamelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __UpperCamelCase = accelerator.skip_first_batches(__lowercase , __lowercase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __UpperCamelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __UpperCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __UpperCamelCase = (batch['image'] - mean) / std __UpperCamelCase = model(__lowercase ) __UpperCamelCase = torch.nn.functional.cross_entropy(__lowercase , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__lowercase , __lowercase ): __UpperCamelCase = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __UpperCamelCase = os.path.join(args.output_dir , __lowercase ) accelerator.save_state(__lowercase ) model.eval() __UpperCamelCase = 0 __UpperCamelCase = 0 for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. __UpperCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __UpperCamelCase = (batch['image'] - mean) / std with torch.no_grad(): __UpperCamelCase = model(__lowercase ) __UpperCamelCase = outputs.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['label']) ) __UpperCamelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __UpperCamelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(__lowercase ), 'epoch': epoch, } , step=__lowercase , ) if checkpointing_steps == "epoch": __UpperCamelCase = F'''epoch_{epoch}''' if args.output_dir is not None: __UpperCamelCase = os.path.join(args.output_dir , __lowercase ) accelerator.save_state(__lowercase ) if args.with_tracking: accelerator.end_training() def lowercase__ ( ) -> int: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=__lowercase , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=__lowercase , default=__lowercase , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=__lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=__lowercase , default=__lowercase , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=__lowercase , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(__lowercase , __lowercase ) if __name__ == "__main__": main()
53
'''simple docstring''' from __future__ import annotations from typing import Any class snake_case ( __lowerCamelCase ): """simple docstring""" pass class snake_case : """simple docstring""" def __init__( self : List[Any] , __A : Any ): __UpperCamelCase = data __UpperCamelCase = None def __iter__( self : Optional[Any] ): __UpperCamelCase = self __UpperCamelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(__A ) yield node.data __UpperCamelCase = node.next_node @property def _lowerCamelCase ( self : List[str] ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": a__ : Dict =Node(1) a__ : Optional[int] =Node(2) a__ : List[str] =Node(3) a__ : Optional[int] =Node(4) print(root_node.has_loop) # False a__ : str =root_node.next_node print(root_node.has_loop) # True a__ : Optional[int] =Node(5) a__ : List[Any] =Node(6) a__ : int =Node(5) a__ : Tuple =Node(6) print(root_node.has_loop) # False a__ : str =Node(1) print(root_node.has_loop) # False
53
1
def snake_case_ ( snake_case = 1_00_00_00 ) -> int: lowercase__: Dict = limit + 1 lowercase__: Optional[Any] = [0] * limit for first_term in range(1 , snake_case ): for n in range(snake_case , snake_case , snake_case ): lowercase__: Optional[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase__: str = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
363
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_28, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class __a ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> Any: '''simple docstring''' lowercase__: List[Any] = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> str: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) lowercase__: str = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , repo_id='test-config' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) lowercase__: Dict = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) lowercase__: Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id='valid_org/test-config-org' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) lowercase__: Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' CustomConfig.register_for_auto_class() lowercase__: Tuple = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowercase__: int = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__: List[Any] = c.n_embd + 1 # int lowercase__: Any = c.resid_pdrop + 1.0 # float lowercase__: Any = not c.scale_attn_weights # bool lowercase__: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(lowerCAmelCase__ , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(lowerCAmelCase__ , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCAmelCase__ , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCAmelCase__ , c.summary_type , 'mismatch for key: summary_type' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = PretrainedConfig() lowercase__: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCAmelCase__ , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowercase__: List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase__ , lowerCAmelCase__ )] if len(lowerCAmelCase__ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F' {", ".join(lowerCAmelCase__ )}.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__: str = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowercase__: str = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' # A mock response for an HTTP head request to emulate server down lowercase__: Optional[Any] = mock.Mock() lowercase__: Tuple = 500 lowercase__: Any = {} lowercase__: Dict = HTTPError lowercase__: Optional[Any] = {} # Download this model to make sure it's in the cache. lowercase__: Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowerCAmelCase__ ) as mock_head: lowercase__: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 lowercase__: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowercase__: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCAmelCase__ ) lowercase__: Optional[int] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCAmelCase__ , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__: str = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__: Dict = ['config.42.0.0.json'] lowercase__: int = 768 configuration.save_pretrained(lowerCAmelCase__ ) shutil.move(os.path.join(lowerCAmelCase__ , 'config.4.0.0.json' ) , os.path.join(lowerCAmelCase__ , 'config.42.0.0.json' ) ) lowercase__: Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowercase__: Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowercase__: Tuple = 'v4.0.0' lowercase__ , lowercase__: List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCAmelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__: Union[str, Any] = 'v3.0.0' lowercase__: Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
288
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any]=False ) ->Optional[int]: _SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): _SCREAMING_SNAKE_CASE = """segformer.encoder.""" + key if key.startswith("""backbone""" ): _SCREAMING_SNAKE_CASE = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _SCREAMING_SNAKE_CASE = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] _SCREAMING_SNAKE_CASE = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(__lowerCamelCase )-1}' ) if "norm" in key: _SCREAMING_SNAKE_CASE = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _SCREAMING_SNAKE_CASE = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] _SCREAMING_SNAKE_CASE = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(__lowerCamelCase )-1}' ) if "layer_norm1" in key: _SCREAMING_SNAKE_CASE = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: _SCREAMING_SNAKE_CASE = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 _SCREAMING_SNAKE_CASE = key[key.find("""block""" ) + len("""block""" )] _SCREAMING_SNAKE_CASE = key.replace(F'block{idx}' , F'block.{int(__lowerCamelCase )-1}' ) if "attn.q" in key: _SCREAMING_SNAKE_CASE = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: _SCREAMING_SNAKE_CASE = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: _SCREAMING_SNAKE_CASE = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: _SCREAMING_SNAKE_CASE = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: _SCREAMING_SNAKE_CASE = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: _SCREAMING_SNAKE_CASE = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: _SCREAMING_SNAKE_CASE = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) _SCREAMING_SNAKE_CASE = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _SCREAMING_SNAKE_CASE = key[key.find("""linear_c""" ) + len("""linear_c""" )] _SCREAMING_SNAKE_CASE = key.replace(F'linear_c{idx}' , F'linear_c.{int(__lowerCamelCase )-1}' ) if key.startswith("""head""" ): _SCREAMING_SNAKE_CASE = key.replace("""head""" , """classifier""" ) _SCREAMING_SNAKE_CASE = value return new_state_dict def lowerCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any ) ->str: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _SCREAMING_SNAKE_CASE = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) _SCREAMING_SNAKE_CASE = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE = kv_weight[ : config.hidden_sizes[i], : ] _SCREAMING_SNAKE_CASE = kv_bias[: config.hidden_sizes[i]] _SCREAMING_SNAKE_CASE = kv_weight[ config.hidden_sizes[i] :, : ] _SCREAMING_SNAKE_CASE = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase ( ) ->List[str]: _SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ) ->Tuple: _SCREAMING_SNAKE_CASE = SegformerConfig() _SCREAMING_SNAKE_CASE = False # set attributes based on model_name _SCREAMING_SNAKE_CASE = """huggingface/label-files""" if "segformer" in model_name: _SCREAMING_SNAKE_CASE = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: _SCREAMING_SNAKE_CASE = 150 _SCREAMING_SNAKE_CASE = """ade20k-id2label.json""" _SCREAMING_SNAKE_CASE = (1, 150, 128, 128) elif "city" in model_name: _SCREAMING_SNAKE_CASE = 19 _SCREAMING_SNAKE_CASE = """cityscapes-id2label.json""" _SCREAMING_SNAKE_CASE = (1, 19, 128, 128) else: raise ValueError(F'Model {model_name} not supported' ) elif "mit" in model_name: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = model_name[4:6] _SCREAMING_SNAKE_CASE = 1000 _SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE = (1, 1000) else: raise ValueError(F'Model {model_name} not supported' ) # set config attributes _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _SCREAMING_SNAKE_CASE = [64, 128, 320, 512] _SCREAMING_SNAKE_CASE = 256 elif size == "b2": _SCREAMING_SNAKE_CASE = [64, 128, 320, 512] _SCREAMING_SNAKE_CASE = 768 _SCREAMING_SNAKE_CASE = [3, 4, 6, 3] elif size == "b3": _SCREAMING_SNAKE_CASE = [64, 128, 320, 512] _SCREAMING_SNAKE_CASE = 768 _SCREAMING_SNAKE_CASE = [3, 4, 18, 3] elif size == "b4": _SCREAMING_SNAKE_CASE = [64, 128, 320, 512] _SCREAMING_SNAKE_CASE = 768 _SCREAMING_SNAKE_CASE = [3, 8, 27, 3] elif size == "b5": _SCREAMING_SNAKE_CASE = [64, 128, 320, 512] _SCREAMING_SNAKE_CASE = 768 _SCREAMING_SNAKE_CASE = [3, 6, 40, 3] else: raise ValueError(F'Size {size} not supported' ) # load image processor (only resize + normalize) _SCREAMING_SNAKE_CASE = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__lowerCamelCase , align=__lowerCamelCase , do_random_crop=__lowerCamelCase ) # prepare image _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="""pt""" ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict if encoder_only: _SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase , map_location=torch.device("""cpu""" ) ) else: _SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys _SCREAMING_SNAKE_CASE = rename_keys(__lowerCamelCase , encoder_only=__lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(__lowerCamelCase , __lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = SegformerForImageClassification(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE = SegformerForSemanticSegmentation(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # forward pass _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [ [-1.1_3_7_2e0_1, -1.2_7_8_7e0_1, -1.3_4_7_7e0_1], [-1.2_5_3_6e0_1, -1.4_1_9_4e0_1, -1.4_4_0_9e0_1], [-1.3_2_1_7e0_1, -1.4_8_8_8e0_1, -1.5_3_2_7e0_1], ], [ [-1.4_7_9_1e0_1, -1.7_1_2_2e0_1, -1.8_2_7_7e0_1], [-1.7_1_6_3e0_1, -1.9_1_9_2e0_1, -1.9_5_3_3e0_1], [-1.7_8_9_7e0_1, -1.9_9_9_1e0_1, -2.0_3_1_5e0_1], ], [ [7.6_7_2_3e-0_1, 4.1_9_2_1e-0_1, -7.7_8_7_8e-0_2], [4.7_7_7_2e-0_1, 9.5_5_5_7e-0_3, -2.8_0_8_2e-0_1], [3.6_0_3_2e-0_1, -2.4_8_2_6e-0_1, -5.1_1_6_8e-0_1], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _SCREAMING_SNAKE_CASE = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: _SCREAMING_SNAKE_CASE = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , __lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowercase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
58
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def lowerCamelCase ( __lowerCamelCase : str ) ->Optional[int]: def decorator(__lowerCamelCase : int ): _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(__lowerCamelCase , """handle_key""" , __lowerCamelCase ) return func return decorator def lowerCamelCase ( *__lowerCamelCase : List[str] ) ->Dict: def decorator(__lowerCamelCase : int ): _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(__lowerCamelCase , """handle_key""" , __lowerCamelCase ) return func return decorator class a_ ( snake_case_ ): '''simple docstring''' def __new__( cls , A , A , A ) -> int: _SCREAMING_SNAKE_CASE = super().__new__(cls , A , A , A ) if not hasattr(A , """key_handler""" ): setattr(A , """key_handler""" , {} ) setattr(A , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): _SCREAMING_SNAKE_CASE = getattr(A , """handle_key""" , [] ) for key in handled_keys: _SCREAMING_SNAKE_CASE = value return new_cls @staticmethod def snake_case_( cls ) -> str: _SCREAMING_SNAKE_CASE = get_character() if char != KEYMAP["undefined"]: _SCREAMING_SNAKE_CASE = ord(A ) _SCREAMING_SNAKE_CASE = cls.key_handler.get(A ) if handler: _SCREAMING_SNAKE_CASE = char return handler(cls ) else: return None def lowerCamelCase ( cls : Any ) ->Dict: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
58
1
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __lowerCamelCase : Union[str, Any] = 6_3_7_8_1_3_7.0 __lowerCamelCase : Optional[Any] = 6_3_5_6_7_5_2.3_1_4_2_4_5 __lowerCamelCase : Tuple = 637_8137 def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude UpperCamelCase : Optional[Any] = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE_ ) ) ) UpperCamelCase : Optional[int] = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius UpperCamelCase : int = haversine_distance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values UpperCamelCase : List[str] = (b_lata + b_lata) / 2 UpperCamelCase : str = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) UpperCamelCase : Optional[Any] = (sin(SCREAMING_SNAKE_CASE_ ) ** 2) * (cos(SCREAMING_SNAKE_CASE_ ) ** 2) UpperCamelCase : int = cos(sigma / 2 ) ** 2 UpperCamelCase : Optional[Any] = (sigma - sin(SCREAMING_SNAKE_CASE_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) UpperCamelCase : Tuple = (cos(SCREAMING_SNAKE_CASE_ ) ** 2) * (sin(SCREAMING_SNAKE_CASE_ ) ** 2) UpperCamelCase : Optional[int] = sin(sigma / 2 ) ** 2 UpperCamelCase : Any = (sigma + sin(SCREAMING_SNAKE_CASE_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
364
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : Dict = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :int = AlbertTokenizer _UpperCAmelCase :int = AlbertTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :List[str] = True _UpperCAmelCase :Optional[Any] = True def __UpperCamelCase( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase : List[str] = AlbertTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = "this is a test" UpperCamelCase : List[Any] = "this is a test" return input_text, output_text def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = "<pad>" UpperCamelCase : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(A_ ) , 3_0000 ) def __UpperCamelCase( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def __UpperCamelCase( self ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCamelCase : Any = self.get_tokenizer() UpperCamelCase : Optional[int] = self.get_rust_tokenizer() UpperCamelCase : List[Any] = "I was born in 92000, and this is falsé." UpperCamelCase : Optional[Any] = tokenizer.tokenize(A_ ) UpperCamelCase : Optional[int] = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase : Optional[Any] = tokenizer.encode(A_ , add_special_tokens=A_ ) UpperCamelCase : Optional[int] = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase : List[Any] = self.get_rust_tokenizer() UpperCamelCase : Union[str, Any] = tokenizer.encode(A_ ) UpperCamelCase : Optional[int] = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = AlbertTokenizer(A_ , keep_accents=A_ ) UpperCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(A_ , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [48, 25, 21, 1289] ) UpperCamelCase : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( A_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) UpperCamelCase : Optional[int] = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual(A_ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCamelCase : List[str] = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = AlbertTokenizer(A_ ) UpperCamelCase : Dict = tokenizer.encode("sequence builders" ) UpperCamelCase : Tuple = tokenizer.encode("multi-sequence build" ) UpperCamelCase : str = tokenizer.build_inputs_with_special_tokens(A_ ) UpperCamelCase : int = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
140
0
'''simple docstring''' a__ : List[Any] = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
80
'''simple docstring''' def _UpperCamelCase ( __A ) -> int: '''simple docstring''' UpperCamelCase__ = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _UpperCamelCase ( __A = 100 ) -> int: '''simple docstring''' UpperCamelCase__ = 1 UpperCamelCase__ = 2 for i in range(2 , max_n + 1 ): UpperCamelCase__ = pre_numerator UpperCamelCase__ = 2 * i // 3 if i % 3 == 0 else 1 UpperCamelCase__ = cur_numerator UpperCamelCase__ = e_cont * pre_numerator + temp return sum_digits(__A ) if __name__ == "__main__": print(F"""{solution() = }""")
80
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : Optional[Any] = """timesformer""" def __init__( self , UpperCAmelCase__=224 , UpperCAmelCase__=16 , UpperCAmelCase__=3 , UpperCAmelCase__=8 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3_072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.02 , UpperCAmelCase__=1e-6 , UpperCAmelCase__=True , UpperCAmelCase__="divided_space_time" , UpperCAmelCase__=0 , **UpperCAmelCase__ , ): super().__init__(**UpperCAmelCase__ ) A__ = image_size A__ = patch_size A__ = num_channels A__ = num_frames A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = qkv_bias A__ = attention_type A__ = drop_path_rate
198
from __future__ import annotations from random import random class UpperCamelCase : def __init__( self , UpperCAmelCase__ = None ): A__ = value A__ = random() A__ = None A__ = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self ): A__ = str(self.value ) + " " A__ = str(self.left or "" ) A__ = str(self.right or "" ) return value + left + right def UpperCamelCase ( _A : Node | None , _A : int )-> tuple[Node | None, Node | None]: """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: A__ , A__ = split(root.left , _A ) return left, root else: A__ , A__ = split(root.right , _A ) return root, right def UpperCamelCase ( _A : Node | None , _A : Node | None )-> Node | None: """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: A__ = merge(left.right , _A ) return left else: A__ = merge(_A , right.left ) return right def UpperCamelCase ( _A : Node | None , _A : int )-> Node | None: """simple docstring""" A__ = Node(_A ) A__ , A__ = split(_A , _A ) return merge(merge(_A , _A ) , _A ) def UpperCamelCase ( _A : Node | None , _A : int )-> Node | None: """simple docstring""" A__ , A__ = split(_A , value - 1 ) A__ , A__ = split(_A , _A ) return merge(_A , _A ) def UpperCamelCase ( _A : Node | None )-> None: """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def UpperCamelCase ( _A : Node | None , _A : str )-> Node | None: """simple docstring""" for arg in args.split(): if arg[0] == "+": A__ = insert(_A , int(arg[1:] ) ) elif arg[0] == "-": A__ = erase(_A , int(arg[1:] ) ) else: print("Unknown command" ) return root def UpperCamelCase ( )-> None: """simple docstring""" A__ = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) A__ = input() while args != "q": A__ = interact_treap(_A , _A ) print(_A ) A__ = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
198
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : Union[str, Any] = { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ["LayoutLMv3FeatureExtractor"] a_ : List[str] = ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys a_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
168
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : Union[str, Any] = { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ["LayoutLMv3FeatureExtractor"] a_ : List[str] = ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys a_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
168
1
'''simple docstring''' import os def a__ ( ): """simple docstring""" with open(os.path.dirname(a__ ) + """/p022_names.txt""" ) as file: __SCREAMING_SNAKE_CASE = str(file.readlines()[0] ) __SCREAMING_SNAKE_CASE = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 for i, name in enumerate(a__ ): for letter in name: name_score += ord(a__ ) - 64 total_score += (i + 1) * name_score __SCREAMING_SNAKE_CASE = 0 return total_score if __name__ == "__main__": print(solution())
356
'''simple docstring''' import os def a__ ( a__ = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(a__ ) , a__ ) ) as input_file: __SCREAMING_SNAKE_CASE = [ [int(a__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = len(matrix[0] ) __SCREAMING_SNAKE_CASE = [[-1 for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): __SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1 , a__ ): for i in range(a__ ): __SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , a__ ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
331
0
from __future__ import annotations import collections import pprint from pathlib import Path def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join(sorted(__lowerCamelCase ) ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list[str]: return word_by_signature[signature(__lowerCamelCase )] lowerCamelCase__ = Path(__file__).parent.joinpath("""words.txt""").read_text(encoding="""utf-8""") lowerCamelCase__ = sorted({word.strip().lower() for word in data.splitlines()}) lowerCamelCase__ = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowerCamelCase__ = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("""anagrams.txt""", """w""") as file: file.write("""all_anagrams = \n """) file.write(pprint.pformat(all_anagrams))
212
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _UpperCAmelCase ( __lowerCamelCase : str ) -> List[Any]: return 1 / (1 + np.exp(-z )) def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) -> Optional[Any]: return (-y * np.log(__lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> List[str]: _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__lowerCamelCase ) ) ) def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str=7_00_00 ) -> Optional[Any]: _snake_case = np.zeros(x.shape[1] ) for iterations in range(__lowerCamelCase ): _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) _snake_case = sigmoid_function(__lowerCamelCase ) _snake_case = np.dot(x.T , h - y ) / y.size _snake_case = theta - alpha * gradient # updating the weights _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) _snake_case = sigmoid_function(__lowerCamelCase ) _snake_case = cost_function(__lowerCamelCase , __lowerCamelCase ) if iterations % 1_00 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCAmelCase__ = datasets.load_iris() UpperCAmelCase__ = iris.data[:, :2] UpperCAmelCase__ = (iris.target != 0) * 1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = logistic_reg(alpha, x, y, max_iterations=70000) print('theta: ', theta) # printing the theta i.e our weights vector def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Union[str, Any]: return sigmoid_function( np.dot(__lowerCamelCase , __lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((UpperCAmelCase__) , (UpperCAmelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCAmelCase__) , (UpperCAmelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCAmelCase__) , (UpperCAmelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCAmelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCAmelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
288
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _lowercase : Tuple = None _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : Tuple = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _lowercase : List[Any] = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } _lowercase : Any = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } _lowercase : Dict = """▁""" class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : str = AlbertTokenizer def __init__( self : Union[str, Any] , lowerCAmelCase : Tuple=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[str]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Any="[CLS]" , lowerCAmelCase : int="[SEP]" , lowerCAmelCase : Any="<unk>" , lowerCAmelCase : List[str]="[SEP]" , lowerCAmelCase : Dict="<pad>" , lowerCAmelCase : Tuple="[CLS]" , lowerCAmelCase : List[Any]="[MASK]" , **lowerCAmelCase : Optional[int] , )-> List[Any]: """simple docstring""" UpperCAmelCase = ( AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase , normalized=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token ) super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , remove_space=lowerCAmelCase , keep_accents=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = do_lower_case UpperCAmelCase = remove_space UpperCAmelCase = keep_accents UpperCAmelCase = vocab_file UpperCAmelCase = False if not self.vocab_file else True def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ): copyfile(self.vocab_file , lowerCAmelCase ) return (out_vocab_file,)
91
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Any = ShapEPipeline __magic_name__ : Tuple = ["prompt"] __magic_name__ : Optional[int] = ["prompt"] __magic_name__ : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __magic_name__ : Optional[int] = False @property def a__( self : Optional[Any] )-> Dict: """simple docstring""" return 32 @property def a__( self : Dict )-> Dict: """simple docstring""" return 32 @property def a__( self : Optional[Any] )-> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def a__( self : List[str] )-> str: """simple docstring""" return 8 @property def a__( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def a__( self : Tuple )-> Optional[int]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase ) @property def a__( self : str )-> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } UpperCAmelCase = PriorTransformer(**lowerCAmelCase ) return model @property def a__( self : List[Any] )-> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } UpperCAmelCase = ShapERenderer(**lowerCAmelCase ) return model def a__( self : Any )-> Tuple: """simple docstring""" UpperCAmelCase = self.dummy_prior UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = self.dummy_tokenizer UpperCAmelCase = self.dummy_renderer UpperCAmelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=lowerCAmelCase , clip_sample=lowerCAmelCase , clip_sample_range=1.0 , ) UpperCAmelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def a__( self : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any]=0 )-> Optional[Any]: """simple docstring""" if str(lowerCAmelCase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase ) UpperCAmelCase = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) UpperCAmelCase = output.images[0] UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCAmelCase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = torch_device == '''cpu''' UpperCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase , relax_max_difference=lowerCAmelCase , ) def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase ) UpperCAmelCase = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = 1 UpperCAmelCase = 2 UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase = batch_size * [inputs[key]] UpperCAmelCase = pipe(**lowerCAmelCase , num_images_per_prompt=lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def a__( self : Dict )-> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) UpperCAmelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) UpperCAmelCase = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase = pipe( '''a shark''' , generator=lowerCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase )
91
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def A_ ( A__ ) -> Tuple: # A local function to see if a dot lands in the circle. def is_in_circle(A__ , A__ ) -> bool: a__ : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle a__ : List[str] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(A__ ) ) # The ratio of the area for circle to square is pi/4. a__ : Optional[Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def A_ ( A__ , A__ , A__ = 0.0 , A__ = 1.0 , ) -> float: return mean( function_to_integrate(uniform(A__ , A__ ) ) for _ in range(A__ ) ) * (max_value - min_value) def A_ ( A__ , A__ = 0.0 , A__ = 1.0 ) -> None: def identity_function(A__ ) -> float: return x a__ : List[Any] = area_under_curve_estimator( A__ , A__ , A__ , A__ ) a__ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def A_ ( A__ ) -> None: def function_to_integrate(A__ ) -> float: return sqrt(4.0 - x * x ) a__ : Dict = area_under_curve_estimator( A__ , A__ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
99
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''time_series_transformer''' lowerCamelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , lowercase = None , lowercase = None , lowercase = "student_t" , lowercase = "nll" , lowercase = 1 , lowercase = [1, 2, 3, 4, 5, 6, 7] , lowercase = "mean" , lowercase = 0 , lowercase = 0 , lowercase = 0 , lowercase = 0 , lowercase = None , lowercase = None , lowercase = 3_2 , lowercase = 3_2 , lowercase = 2 , lowercase = 2 , lowercase = 2 , lowercase = 2 , lowercase = True , lowercase = "gelu" , lowercase = 6_4 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 1_0_0 , lowercase = 0.02 , lowercase=True , **lowercase , ): """simple docstring""" A_ : Tuple = prediction_length A_ : Any = context_length or prediction_length A_ : Any = distribution_output A_ : Dict = loss A_ : int = input_size A_ : Any = num_time_features A_ : List[str] = lags_sequence A_ : List[Any] = scaling A_ : str = num_dynamic_real_features A_ : List[Any] = num_static_real_features A_ : Optional[int] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowercase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) A_ : Any = cardinality else: A_ : Any = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowercase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) A_ : int = embedding_dimension else: A_ : Tuple = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] A_ : Optional[int] = num_parallel_samples # Transformer architecture configuration A_ : Any = input_size * len(lowercase ) + self._number_of_features A_ : List[str] = d_model A_ : Union[str, Any] = encoder_attention_heads A_ : int = decoder_attention_heads A_ : int = encoder_ffn_dim A_ : str = decoder_ffn_dim A_ : Tuple = encoder_layers A_ : Tuple = decoder_layers A_ : List[str] = dropout A_ : str = attention_dropout A_ : List[Any] = activation_dropout A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Optional[int] = activation_function A_ : str = init_std A_ : int = use_cache super().__init__(is_encoder_decoder=lowercase , **lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
140
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 1_0_0 ) -> int: __lowerCamelCase : Any = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Any = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a ={ """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
113
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "SpeechT5FeatureExtractor" SCREAMING_SNAKE_CASE = "SpeechT5Tokenizer" def __init__( self , __lowerCAmelCase , __lowerCAmelCase ) -> Any: super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: lowercase__ : List[Any] = kwargs.pop('''audio''' , __lowerCAmelCase ) lowercase__ : Dict = kwargs.pop('''text''' , __lowerCAmelCase ) lowercase__ : Tuple = kwargs.pop('''text_target''' , __lowerCAmelCase ) lowercase__ : Tuple = kwargs.pop('''audio_target''' , __lowerCAmelCase ) lowercase__ : Optional[int] = kwargs.pop('''sampling_rate''' , __lowerCAmelCase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: lowercase__ : List[Any] = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase ) elif text is not None: lowercase__ : Union[str, Any] = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase ) else: lowercase__ : List[Any] = None if audio_target is not None: lowercase__ : Any = self.feature_extractor(audio_target=__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : List[str] = targets['''input_values'''] elif text_target is not None: lowercase__ : int = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : List[str] = targets['''input_ids'''] else: lowercase__ : str = None if inputs is None: return targets if targets is not None: lowercase__ : Optional[Any] = labels lowercase__ : Optional[int] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase__ : Optional[Any] = decoder_attention_mask return inputs def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: lowercase__ : List[str] = kwargs.pop('''input_values''' , __lowerCAmelCase ) lowercase__ : int = kwargs.pop('''input_ids''' , __lowerCAmelCase ) lowercase__ : str = kwargs.pop('''labels''' , __lowerCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: lowercase__ : Tuple = self.feature_extractor.pad(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) elif input_ids is not None: lowercase__ : List[Any] = self.tokenizer.pad(__lowerCAmelCase , **__lowerCAmelCase ) else: lowercase__ : List[str] = None if labels is not None: if "input_ids" in labels or (isinstance(__lowerCAmelCase , __lowerCAmelCase ) and "input_ids" in labels[0]): lowercase__ : List[Any] = self.tokenizer.pad(__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : List[str] = targets['''input_ids'''] else: lowercase__ : str = self.feature_extractor.feature_size lowercase__ : Tuple = self.feature_extractor.num_mel_bins lowercase__ : Optional[Any] = self.feature_extractor.pad(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Optional[int] = feature_size_hack lowercase__ : Optional[Any] = targets['''input_values'''] else: lowercase__ : str = None if inputs is None: return targets if targets is not None: lowercase__ : List[Any] = labels lowercase__ : str = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase__ : List[Any] = decoder_attention_mask return inputs def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase )
198
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : List[str] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __UpperCamelCase ( UpperCAmelCase = 100 ): lowercase__ : Dict = 1 lowercase__ : Optional[int] = 2 for i in range(2 , max_n + 1 ): lowercase__ : List[str] = pre_numerator lowercase__ : Optional[Any] = 2 * i // 3 if i % 3 == 0 else 1 lowercase__ : Union[str, Any] = cur_numerator lowercase__ : int = e_cont * pre_numerator + temp return sum_digits(UpperCAmelCase ) if __name__ == "__main__": print(F'{solution() = }')
198
1
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency __lowerCamelCase : List[str] = { '''E''': 12.70, '''T''': 9.06, '''A''': 8.17, '''O''': 7.51, '''I''': 6.97, '''N''': 6.75, '''S''': 6.33, '''H''': 6.09, '''R''': 5.99, '''D''': 4.25, '''L''': 4.03, '''C''': 2.78, '''U''': 2.76, '''M''': 2.41, '''W''': 2.36, '''F''': 2.23, '''G''': 2.02, '''Y''': 1.97, '''P''': 1.93, '''B''': 1.29, '''V''': 0.98, '''K''': 0.77, '''J''': 0.15, '''X''': 0.15, '''Q''': 0.10, '''Z''': 0.07, } __lowerCamelCase : List[str] = '''ETAOINSHRDLCUMWFGYPBVKJXQZ''' __lowerCamelCase : Optional[int] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> dict[str, int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : tuple ) -> str: """simple docstring""" return x[0] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = get_letter_count(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = """""".join(freq_to_letter[freq] ) SCREAMING_SNAKE_CASE__ = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__UpperCamelCase , reverse=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = get_frequency_order(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
357
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
204
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _A ( tf.keras.layers.Layer): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : str = pad_token_id SCREAMING_SNAKE_CASE_ : Any = max_length SCREAMING_SNAKE_CASE_ : Tuple = vocab SCREAMING_SNAKE_CASE_ : List[Any] = merges SCREAMING_SNAKE_CASE_ : str = BytePairTokenizer(_A , _A , sequence_length=_A ) @classmethod def UpperCAmelCase ( cls , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [' '.join(_A ) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE_ : Dict = tokenizer.get_vocab() return cls(_A , _A , *_A , **_A ) @classmethod def UpperCAmelCase ( cls , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTaTokenizer.from_pretrained(_A , *_A , **_A ) return cls.from_tokenizer(_A , *_A , **_A ) @classmethod def UpperCAmelCase ( cls , _SCREAMING_SNAKE_CASE ): """simple docstring""" return cls(**_A ) def UpperCAmelCase ( self ): """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.tf_tokenizer(_A ) SCREAMING_SNAKE_CASE_ : Any = tf.ones_like(_A ) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE_ : List[Any] = pad_model_inputs( _A , max_seq_length=_A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
253
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" return 1 def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int = 200 ): """simple docstring""" return two_pound(lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
331
0
"""simple docstring""" def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if n == 1 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return 0 elif n == 2: return 1 else: lowercase__ : Optional[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' lowercase__ : Union[str, Any] = 0 lowercase__ : str = 2 while digits < n: index += 1 lowercase__ : int = len(str(fibonacci(SCREAMING_SNAKE_CASE_ ) ) ) return index def snake_case__ ( SCREAMING_SNAKE_CASE_ : int = 1_000 ): '''simple docstring''' return fibonacci_digits_index(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
366
from __future__ import annotations import math def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' lowercase__ : int = str(SCREAMING_SNAKE_CASE_ ) lowercase__ : Union[str, Any] = [n] for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if len(str(SCREAMING_SNAKE_CASE_ ) ) > 3: if not is_prime(int(str(SCREAMING_SNAKE_CASE_ )[-3:] ) ) or not is_prime(int(str(SCREAMING_SNAKE_CASE_ )[:3] ) ): return False return True def snake_case__ ( SCREAMING_SNAKE_CASE_ : int = 11 ): '''simple docstring''' lowercase__ : list[int] = [] lowercase__ : Tuple = 13 while len(SCREAMING_SNAKE_CASE_ ) != count: if validate(SCREAMING_SNAKE_CASE_ ): lowercase__ : Optional[int] = list_truncated_nums(SCREAMING_SNAKE_CASE_ ) if all(is_prime(SCREAMING_SNAKE_CASE_ ) for i in list_nums ): list_truncated_primes.append(SCREAMING_SNAKE_CASE_ ) num += 2 return list_truncated_primes def snake_case__ ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(11)) = }''')
216
0
"""simple docstring""" def _A (__a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(__a ) for i in range(n - 1 ): for j in range(i + 1 , __a ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _A (__a ) -> int: """simple docstring""" if len(__a ) <= 1: return arr, 0 SCREAMING_SNAKE_CASE_ : int = len(__a ) // 2 SCREAMING_SNAKE_CASE_ : Tuple = arr[0:mid] SCREAMING_SNAKE_CASE_ : List[str] = arr[mid:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = count_inversions_recursive(__a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = count_inversions_recursive(__a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = _count_cross_inversions(__a , __a ) SCREAMING_SNAKE_CASE_ : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def _A (__a , __a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : Optional[int] = 0 while i < len(__a ) and j < len(__a ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__a ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__a ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _A () -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) SCREAMING_SNAKE_CASE_ : Dict = count_inversions_bf(__a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = count_inversions_recursive(__a ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __a ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() SCREAMING_SNAKE_CASE_ : Optional[int] = count_inversions_bf(__a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = count_inversions_recursive(__a ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __a ) # an empty list should also have zero inversions SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Tuple = count_inversions_bf(__a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = count_inversions_recursive(__a ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __a ) if __name__ == "__main__": main()
91
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) UpperCAmelCase_ : Dict = logging.getLogger(__name__) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30522, type=int) UpperCAmelCase_ : Optional[Any] = parser.parse_args() logger.info(f'''Loading data from {args.data_file}''') with open(args.data_file, """rb""") as fp: UpperCAmelCase_ : Union[str, Any] = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") UpperCAmelCase_ : Any = Counter() for tk_ids in data: counter.update(tk_ids) UpperCAmelCase_ : List[Any] = [0] * args.vocab_size for k, v in counter.items(): UpperCAmelCase_ : Dict = v logger.info(f'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
91
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowercase : _a = 4_2 _a = None _a = None def lowerCAmelCase_ ( ): _A : Any = Node(1 ) _A : List[str] = Node(2 ) _A : int = Node(3 ) _A : List[Any] = Node(4 ) _A : int = Node(5 ) return tree def lowerCAmelCase_ ( snake_case_ ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCAmelCase_ ( snake_case_ ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCAmelCase_ ( snake_case_ ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCAmelCase_ ( snake_case_ ): return (max(height(root.left ),height(root.right ) ) + 1) if root else 0 def lowerCAmelCase_ ( snake_case_ ): _A : Any = [] if root is None: return output _A : Any = deque([root] ) while process_queue: _A : List[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = [] def populate_output(snake_case_,snake_case_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left,level - 1 ) populate_output(root.right,level - 1 ) populate_output(a__,a__ ) return output def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = [] def populate_output(snake_case_,snake_case_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right,level - 1 ) populate_output(root.left,level - 1 ) populate_output(a__,a__ ) return output def lowerCAmelCase_ ( snake_case_ ): if root is None: return [] _A : Tuple = [] _A : Tuple = 0 _A : Union[str, Any] = height(a__ ) for h in range(1,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(a__,a__ ) ) _A : Tuple = 1 else: output.append(get_nodes_from_right_to_left(a__,a__ ) ) _A : str = 0 return output def lowerCAmelCase_ ( ): # Main function for testing. _A : List[str] = make_tree() print(f'''In-order Traversal: {inorder(a__ )}''' ) print(f'''Pre-order Traversal: {preorder(a__ )}''' ) print(f'''Post-order Traversal: {postorder(a__ )}''',"""\n""" ) print(f'''Height of Tree: {height(a__ )}''',"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(a__ ),"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1,height(a__ ) + 1 ): print(f'''Level {level}:''',get_nodes_from_left_to_right(a__,level=a__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(a__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
369
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): @register_to_config def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any: super().__init__() _A : int = num_attention_heads _A : Union[str, Any] = attention_head_dim _A : Tuple = num_attention_heads * attention_head_dim _A : Any = additional_embeddings _A : Any = time_embed_dim or inner_dim _A : List[str] = embedding_proj_dim or embedding_dim _A : Optional[int] = clip_embed_dim or embedding_dim _A : Union[str, Any] = Timesteps(_a , _a , 0 ) _A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a ) _A : Dict = nn.Linear(_a , _a ) if embedding_proj_norm_type is None: _A : int = None elif embedding_proj_norm_type == "layer": _A : Optional[Any] = nn.LayerNorm(_a ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _A : Optional[Any] = nn.Linear(_a , _a ) if encoder_hid_proj_type is None: _A : Union[str, Any] = None elif encoder_hid_proj_type == "linear": _A : Tuple = nn.Linear(_a , _a ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) ) if added_emb_type == "prd": _A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) ) elif added_emb_type is None: _A : Union[str, Any] = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _A : int = nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , ) for d in range(_a ) ] ) if norm_in_type == "layer": _A : Union[str, Any] = nn.LayerNorm(_a ) elif norm_in_type is None: _A : Tuple = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) _A : int = nn.LayerNorm(_a ) _A : str = nn.Linear(_a , _a ) _A : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) _A : Optional[int] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , _a , persistent=_a ) _A : Tuple = nn.Parameter(torch.zeros(1 , _a ) ) _A : Dict = nn.Parameter(torch.zeros(1 , _a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ) -> Dict[str, AttentionProcessor]: _A : List[str] = {} def fn_recursive_add_processors(_a , _a , _a ): if hasattr(_a , """set_processor""" ): _A : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def a__ ( self , _a ) -> List[str]: _A : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_a , _a , _a ): if hasattr(_a , """set_processor""" ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def a__ ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]: _A : Tuple = hidden_states.shape[0] _A : List[Any] = timestep if not torch.is_tensor(_a ): _A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: _A : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device ) _A : Dict = self.time_proj(_a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _A : Tuple = timesteps_projected.to(dtype=self.dtype ) _A : List[Any] = self.time_embedding(_a ) if self.embedding_proj_norm is not None: _A : Dict = self.embedding_proj_norm(_a ) _A : List[Any] = self.embedding_proj(_a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _A : List[Any] = self.encoder_hidden_states_proj(_a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) _A : Optional[int] = self.proj_in(_a ) _A : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) _A : Union[str, Any] = [] _A : List[str] = 0 if encoder_hidden_states is not None: additional_embeds.append(_a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _A : List[str] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _A : List[str] = hidden_states[:, None, :] _A : Dict = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 ) additional_embeds.append(_a ) _A : str = torch.cat( _a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _A : Union[str, Any] = F.pad( _a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _A : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 _A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 ) _A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _A : str = self.norm_in(_a ) for block in self.transformer_blocks: _A : List[Any] = block(_a , attention_mask=_a ) _A : Any = self.norm_out(_a ) if self.prd_embedding is not None: _A : int = hidden_states[:, -1] else: _A : Any = hidden_states[:, additional_embeddings_len:] _A : Union[str, Any] = self.proj_to_clip_embeddings(_a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_a ) def a__ ( self , _a ) -> Tuple: _A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
343
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class __snake_case ( UpperCamelCase_ ): @staticmethod @abstractmethod def UpperCAmelCase__ ( A_ : ArgumentParser): raise NotImplementedError() @abstractmethod def UpperCAmelCase__ ( self : List[str]): raise NotImplementedError()
103
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> str: SCREAMING_SNAKE_CASE = int(SCREAMING_SNAKE_CASE_ ) if decimal in (0, 1): # Exit cases for the recursion return str(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = divmod(SCREAMING_SNAKE_CASE_ , 2 ) return binary_recursive(SCREAMING_SNAKE_CASE_ ) + str(SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> str: SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ).strip() if not number: raise ValueError('No input value was provided' ) SCREAMING_SNAKE_CASE = '-' if number.startswith('-' ) else '' SCREAMING_SNAKE_CASE = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return F'{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE_ ) )}' if __name__ == "__main__": from doctest import testmod testmod()
113
0
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase_ : list[int] , UpperCamelCase_ : list[int] , UpperCamelCase_ : list[int] , UpperCamelCase_ : list[list[str]] , UpperCamelCase_ : int , ): '''simple docstring''' _lowerCAmelCase : List[str] = len(lowerCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , ) def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : Dict = [] depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCAmelCase__ ) print("""""" ) print(len(lowerCAmelCase__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
361
from __future__ import annotations from typing import Generic, TypeVar _lowerCamelCase : Dict = TypeVar("T") class __snake_case (Generic[T] ): def __init__( self : Dict , _UpperCAmelCase : T ) -> None: '''simple docstring''' _lowerCAmelCase : List[Any] = data _lowerCAmelCase : str = self _lowerCAmelCase : Tuple = 0 class __snake_case (Generic[T] ): def __init__( self : Optional[int] ) -> None: '''simple docstring''' _lowerCAmelCase : dict[T, DisjointSetTreeNode[T]] = {} def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : T ) -> None: '''simple docstring''' _lowerCAmelCase : int = DisjointSetTreeNode(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : T ) -> DisjointSetTreeNode[T]: '''simple docstring''' _lowerCAmelCase : List[str] = self.map[data] if elem_ref != elem_ref.parent: _lowerCAmelCase : Union[str, Any] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : DisjointSetTreeNode[T] , _UpperCAmelCase : DisjointSetTreeNode[T] ) -> None: '''simple docstring''' if nodea.rank > nodea.rank: _lowerCAmelCase : Dict = nodea else: _lowerCAmelCase : Union[str, Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : T , _UpperCAmelCase : T ) -> None: '''simple docstring''' self.link(self.find_set(_UpperCAmelCase ) , self.find_set(_UpperCAmelCase ) ) class __snake_case (Generic[T] ): def __init__( self : Optional[int] ) -> None: '''simple docstring''' _lowerCAmelCase : dict[T, dict[T, int]] = {} def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : T ) -> None: '''simple docstring''' if node not in self.connections: _lowerCAmelCase : int = {} def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : T , _UpperCAmelCase : T , _UpperCAmelCase : int ) -> None: '''simple docstring''' self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) _lowerCAmelCase : Any = weight _lowerCAmelCase : int = weight def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> GraphUndirectedWeighted[T]: '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Union[str, Any] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _UpperCAmelCase : x[2] ) # creating the disjoint set _lowerCAmelCase : Dict = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(_UpperCAmelCase ) # MST generation _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Any = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = edges[index] index += 1 _lowerCAmelCase : Dict = disjoint_set.find_set(_UpperCAmelCase ) _lowerCAmelCase : List[str] = disjoint_set.find_set(_UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) disjoint_set.union(_UpperCAmelCase , _UpperCAmelCase ) return graph
159
0