code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: """simple docstring""" a_ : Optional[int] = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=__A , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=__A , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=__A , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=__A , default='data/dump' , help='The dump file prefix.' ) a_ : str = parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": a_ : Any = BertTokenizer.from_pretrained(args.tokenizer_name ) a_ : Dict = tokenizer.special_tokens_map['cls_token'] # `[CLS]` a_ : Optional[int] = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": a_ : List[str] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) a_ : Optional[int] = tokenizer.special_tokens_map['cls_token'] # `<s>` a_ : Any = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": a_ : Union[str, Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) a_ : Any = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` a_ : Tuple = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: a_ : List[Any] = fp.readlines() logger.info('Start encoding' ) logger.info(F"""{len(__A )} examples to process.""" ) a_ : Tuple = [] a_ : Dict = 0 a_ : Any = 1_00_00 a_ : Optional[int] = time.time() for text in data: a_ : Optional[Any] = F"""{bos} {text.strip()} {sep}""" a_ : Optional[Any] = tokenizer.encode(__A , add_special_tokens=__A ) rslt.append(__A ) iter += 1 if iter % interval == 0: a_ : Dict = time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) a_ : Optional[int] = time.time() logger.info('Finished binarization' ) logger.info(F"""{len(__A )} examples processed.""" ) a_ : List[Any] = F"""{args.dump_file}.{args.tokenizer_name}.pickle""" a_ : List[str] = tokenizer.vocab_size if vocab_size < (1 << 16): a_ : List[str] = [np.uintaa(__A ) for d in rslt] else: a_ : List[Any] = [np.intaa(__A ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(__A , 'wb' ) as handle: pickle.dump(rslt_ , __A , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
32
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class A: '''simple docstring''' def __init__( self : str , A_ : Optional[Any] , ) -> str: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = 2 lowerCamelCase_ = 99 lowerCamelCase_ = 0 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.02 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = 'last' lowerCamelCase_ = True lowerCamelCase_ = None lowerCamelCase_ = 0 def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) lowerCamelCase_ = None if self.use_input_lengths: lowerCamelCase_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a__ ( self : int , A_ : List[str] , A_ : List[Any] , A_ : str , A_ : List[Any] , A_ : int , A_ : Tuple , A_ : Optional[int] , A_ : Optional[int] , A_ : str , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertModel(config=A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} lowerCamelCase_ = model(A_ ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : Tuple , A_ : List[str] , A_ : int , A_ : List[Any] , A_ : Any , A_ : Any , A_ : Dict , A_ : str , A_ : List[Any] , A_ : Union[str, Any] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = TFFlaubertWithLMHeadModel(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , A_ : Tuple , A_ : Any , A_ : Any , A_ : List[Any] , A_ : Dict , A_ : List[Any] , A_ : Union[str, Any] , A_ : Optional[int] , A_ : List[Any] , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertForQuestionAnsweringSimple(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[int] , A_ : List[Any] , A_ : str , A_ : List[str] , A_ : Dict , A_ : Optional[Any] , A_ : Tuple , A_ : str , A_ : Optional[int] , A_ : Tuple , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertForSequenceClassification(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : Dict , A_ : Optional[Any] , A_ : List[Any] , A_ : int , A_ : Any , A_ : Union[str, Any] , A_ : str , A_ : Any , A_ : Union[str, Any] , A_ : List[str] , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFFlaubertForTokenClassification(config=A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : List[Any] , A_ : Optional[int] , A_ : List[Any] , A_ : Optional[int] , A_ : Tuple , A_ : Union[str, Any] , A_ : int , A_ : str , A_ : Tuple , A_ : str , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.num_choices lowerCamelCase_ = TFFlaubertForMultipleChoice(config=A_ ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False def a__ ( self : Union[str, Any] , A_ : Any , A_ : List[Any] , A_ : Union[str, Any] , A_ : str , A_ : List[str] ) -> Optional[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = TFFlaubertModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , emb_dim=37 ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) lowerCamelCase_ = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" lowerCamelCase_ = model(A_ )[0] lowerCamelCase_ = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. lowerCamelCase_ = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
204
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __lowercase = logging.get_logger('''transformers.models.speecht5''') __lowercase = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __lowercase = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __lowercase = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __lowercase = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __lowercase = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __lowercase = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __lowercase = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __lowercase = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __lowercase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __lowercase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowercase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowercase = [] __lowercase = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __lowercase = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __lowercase = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __lowercase = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' for attribute in key.split('''.''' ): __UpperCamelCase :List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: __UpperCamelCase :int = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: __UpperCamelCase :int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __UpperCamelCase :Dict = value elif weight_type == "weight_g": __UpperCamelCase :List[str] = value elif weight_type == "weight_v": __UpperCamelCase :List[Any] = value elif weight_type == "bias": __UpperCamelCase :Any = value elif weight_type == "running_mean": __UpperCamelCase :List[str] = value elif weight_type == "running_var": __UpperCamelCase :Optional[int] = value elif weight_type == "num_batches_tracked": __UpperCamelCase :Optional[int] = value else: __UpperCamelCase :Union[str, Any] = value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __UpperCamelCase , __UpperCamelCase :Dict = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[str] = [] if task == "s2t": __UpperCamelCase :Any = hf_model.speechta.encoder.prenet.feature_encoder __UpperCamelCase :Any = MAPPING_S2T __UpperCamelCase :str = IGNORE_KEYS_S2T elif task == "t2s": __UpperCamelCase :str = None __UpperCamelCase :str = MAPPING_T2S __UpperCamelCase :Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": __UpperCamelCase :Dict = hf_model.speechta.encoder.prenet.feature_encoder __UpperCamelCase :Optional[int] = MAPPING_S2S __UpperCamelCase :Any = IGNORE_KEYS_S2S else: raise ValueError(f"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(f"""{name} was ignored""" ) continue __UpperCamelCase :Dict = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) __UpperCamelCase :List[Any] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __UpperCamelCase , __UpperCamelCase :Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: __UpperCamelCase :Optional[Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __UpperCamelCase :List[str] = True if "*" in mapped_key: __UpperCamelCase :List[Any] = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] __UpperCamelCase :List[str] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: __UpperCamelCase :Optional[Any] = '''weight_g''' elif "weight_v" in name: __UpperCamelCase :Any = '''weight_v''' elif "bias" in name: __UpperCamelCase :Union[str, Any] = '''bias''' elif "weight" in name: __UpperCamelCase :Tuple = '''weight''' elif "running_mean" in name: __UpperCamelCase :Tuple = '''running_mean''' elif "running_var" in name: __UpperCamelCase :Optional[int] = '''running_var''' elif "num_batches_tracked" in name: __UpperCamelCase :List[Any] = '''num_batches_tracked''' else: __UpperCamelCase :List[str] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = full_name.split('''conv_layers.''' )[-1] __UpperCamelCase :List[Any] = name.split('''.''' ) __UpperCamelCase :int = int(items[0] ) __UpperCamelCase :Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __UpperCamelCase :Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __UpperCamelCase :List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __UpperCamelCase :Tuple = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __UpperCamelCase :int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ): '''simple docstring''' if config_path is not None: __UpperCamelCase :Optional[Any] = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: __UpperCamelCase :Tuple = SpeechTaConfig() if task == "s2t": __UpperCamelCase :Any = config.max_text_positions __UpperCamelCase :Any = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": __UpperCamelCase :List[str] = 1_876 __UpperCamelCase :List[str] = 600 __UpperCamelCase :Optional[Any] = config.max_speech_positions __UpperCamelCase :Tuple = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": __UpperCamelCase :Any = 1_876 __UpperCamelCase :Tuple = config.max_speech_positions __UpperCamelCase :Tuple = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(f"""Unknown task name: {task}""" ) if vocab_path: __UpperCamelCase :List[str] = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __UpperCamelCase :Dict = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) __UpperCamelCase :Optional[Any] = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) __UpperCamelCase :str = SpeechTaFeatureExtractor() __UpperCamelCase :List[Any] = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) __UpperCamelCase :List[str] = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __lowercase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
361
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __lowercase = logging.getLogger(__name__) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = """token-classification""" def __init__( self , __lowercase) -> str: if type(__lowercase) == dict: __UpperCamelCase :List[Any] = Namespace(**__lowercase) __UpperCamelCase :Dict = import_module('''tasks''') try: __UpperCamelCase :str = getattr(__lowercase , hparams.task_type) __UpperCamelCase :TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""") __UpperCamelCase :Tuple = self.token_classification_task.get_labels(hparams.labels) __UpperCamelCase :Tuple = CrossEntropyLoss().ignore_index super().__init__(__lowercase , len(self.labels) , self.mode) def UpperCamelCase__ ( self , **__lowercase) -> List[Any]: return self.model(**__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Any: __UpperCamelCase :str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __UpperCamelCase :Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCamelCase :Dict = self(**__lowercase) __UpperCamelCase :str = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :List[Any] = self.hparams for mode in ["train", "dev", "test"]: __UpperCamelCase :int = self._feature_file(__lowercase) if os.path.exists(__lowercase) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __lowercase) __UpperCamelCase :Any = torch.load(__lowercase) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir) __UpperCamelCase :Any = self.token_classification_task.read_examples_from_file(args.data_dir , __lowercase) __UpperCamelCase :Union[str, Any] = self.token_classification_task.convert_examples_to_features( __lowercase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet''']) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__lowercase , pad_on_left=bool(self.config.model_type in ['''xlnet''']) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __lowercase) torch.save(__lowercase , __lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = False) -> DataLoader: __UpperCamelCase :Tuple = self._feature_file(__lowercase) logger.info('''Loading features from cached file %s''' , __lowercase) __UpperCamelCase :str = torch.load(__lowercase) __UpperCamelCase :int = torch.tensor([f.input_ids for f in features] , dtype=torch.long) __UpperCamelCase :Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) if features[0].token_type_ids is not None: __UpperCamelCase :str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) else: __UpperCamelCase :Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long) # HACK(we will not use this anymore soon) __UpperCamelCase :int = torch.tensor([f.label_ids for f in features] , dtype=torch.long) return DataLoader( TensorDataset(__lowercase , __lowercase , __lowercase , __lowercase) , batch_size=__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Dict: """Compute validation""" "" __UpperCamelCase :int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __UpperCamelCase :Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCamelCase :Any = self(**__lowercase) __UpperCamelCase , __UpperCamelCase :Tuple = outputs[:2] __UpperCamelCase :List[str] = logits.detach().cpu().numpy() __UpperCamelCase :List[str] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __lowercase) -> List[str]: __UpperCamelCase :Tuple = torch.stack([x['''val_loss'''] for x in outputs]).mean() __UpperCamelCase :str = np.concatenate([x['''pred'''] for x in outputs] , axis=0) __UpperCamelCase :Any = np.argmax(__lowercase , axis=2) __UpperCamelCase :str = np.concatenate([x['''target'''] for x in outputs] , axis=0) __UpperCamelCase :List[str] = dict(enumerate(self.labels)) __UpperCamelCase :Tuple = [[] for _ in range(out_label_ids.shape[0])] __UpperCamelCase :Any = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) __UpperCamelCase :Any = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__lowercase , __lowercase), '''precision''': precision_score(__lowercase , __lowercase), '''recall''': recall_score(__lowercase , __lowercase), '''f1''': fa_score(__lowercase , __lowercase), } __UpperCamelCase :Dict = dict(results.items()) __UpperCamelCase :List[str] = results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __lowercase) -> int: # when stable __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[Any] = self._eval_end(__lowercase) __UpperCamelCase :Tuple = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __lowercase) -> int: # updating to test_epoch_end instead of deprecated test_end __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[int] = self._eval_end(__lowercase) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __UpperCamelCase :Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __lowercase , __lowercase) -> Union[str, Any]: # Add NER specific options BaseTransformer.add_model_specific_args(__lowercase , __lowercase) parser.add_argument( '''--task_type''' , default='''NER''' , type=__lowercase , help='''Task type to fine tune in training (e.g. NER, POS, etc)''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__lowercase , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__lowercase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') return parser if __name__ == "__main__": __lowercase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __lowercase = NERTransformer.add_model_specific_args(parser, os.getcwd()) __lowercase = parser.parse_args() __lowercase = NERTransformer(args) __lowercase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __lowercase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) __lowercase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
105
0
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __A : Tuple = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def lowercase ( __snake_case : str = "dhaka" , __snake_case : int = 5 ): lowercase_ : Dict = min(__snake_case , 5_0 ) # Prevent abuse! lowercase_ : Optional[int] = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } lowercase_ : int = requests.get('''https://www.google.com/search''' , params=__snake_case , headers=__snake_case ) lowercase_ : List[Any] = BeautifulSoup(html.text , '''html.parser''' ) lowercase_ : Tuple = ''''''.join( re.findall(r'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) lowercase_ : Union[str, Any] = json.dumps(__snake_case ) lowercase_ : Optional[int] = json.loads(__snake_case ) lowercase_ : Dict = re.findall( r'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , __snake_case , ) if not matched_google_image_data: return 0 lowercase_ : Optional[int] = re.sub( r'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(__snake_case ) , ) lowercase_ : Optional[Any] = re.findall( r'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , __snake_case , ) for index, fixed_full_res_image in enumerate(__snake_case ): if index >= max_images: return index lowercase_ : List[str] = bytes(__snake_case , '''ascii''' ).decode( '''unicode-escape''' ) lowercase_ : Any = bytes(__snake_case , '''ascii''' ).decode( '''unicode-escape''' ) lowercase_ : Any = urllib.request.build_opener() lowercase_ : List[str] = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(__snake_case ) lowercase_ : Dict = F'''query_{query.replace(' ' , '_' )}''' if not os.path.exists(__snake_case ): os.makedirs(__snake_case ) urllib.request.urlretrieve( # noqa: S310 __snake_case , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: __A : Union[str, Any] = download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print('''Please provide a search term.''') raise
33
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCamelCase__ : def __init__(self : List[Any] , snake_case_ : int , snake_case_ : List[str]=1_3 , snake_case_ : Tuple=7 , snake_case_ : List[Any]=True , snake_case_ : List[Any]=True , snake_case_ : Dict=True , snake_case_ : Optional[int]=True , snake_case_ : str=9_9 , snake_case_ : Dict=6_4 , snake_case_ : Any=3_2 , snake_case_ : str=5 , snake_case_ : int=4 , snake_case_ : List[Any]=3_7 , snake_case_ : Any="gelu" , snake_case_ : Dict=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : str=5_1_2 , snake_case_ : Any=1_6 , snake_case_ : str=2 , snake_case_ : int=0.02 , snake_case_ : Union[str, Any]=3 , snake_case_ : Optional[Any]=4 , snake_case_ : List[Any]=None , ): __a : Any = parent __a : Optional[int] = batch_size __a : Any = seq_length __a : int = is_training __a : Optional[int] = use_input_mask __a : List[Any] = use_token_type_ids __a : Dict = use_labels __a : Tuple = vocab_size __a : str = hidden_size __a : List[Any] = embedding_size __a : List[Any] = num_hidden_layers __a : str = num_attention_heads __a : str = intermediate_size __a : Union[str, Any] = hidden_act __a : Optional[Any] = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Union[str, Any] = max_position_embeddings __a : Any = type_vocab_size __a : int = type_sequence_label_size __a : int = initializer_range __a : int = num_labels __a : Union[str, Any] = num_choices __a : Dict = scope def lowerCAmelCase (self : str ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : List[Any] = None if self.use_input_mask: __a : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[Any] = None if self.use_token_type_ids: __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Dict = None __a : List[str] = None __a : Optional[Any] = None if self.use_labels: __a : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __a : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase (self : int ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase (self : str , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : int , snake_case_ : int , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Any ): __a : Any = MobileBertModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : List[str] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) __a : Optional[Any] = model(snake_case_ , token_type_ids=snake_case_ ) __a : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase (self : Any , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : str , snake_case_ : List[Any] ): __a : str = MobileBertForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase (self : Tuple , snake_case_ : Any , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Dict ): __a : Optional[Any] = MobileBertForNextSentencePrediction(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : int = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase (self : Any , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Optional[Any] ): __a : str = MobileBertForPreTraining(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Union[str, Any] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , next_sentence_label=snake_case_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase (self : Dict , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Dict , snake_case_ : int , snake_case_ : int , snake_case_ : str , snake_case_ : str ): __a : str = MobileBertForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Optional[Any] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase (self : Optional[int] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Optional[int] ): __a : Any = self.num_labels __a : Union[str, Any] = MobileBertForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __a : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase (self : List[Any] , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Optional[int] ): __a : Union[str, Any] = self.num_labels __a : str = MobileBertForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Any = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase (self : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Union[str, Any] ): __a : Union[str, Any] = self.num_choices __a : List[str] = MobileBertForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Any = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase (self : Optional[Any] ): __a : Optional[Any] = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : int = config_and_inputs __a : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __lowercase ,__lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Any = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Union[str, Any] = True def lowerCAmelCase (self : str , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Union[str, Any]=False ): __a : List[str] = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): __a : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ ) __a : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowerCAmelCase (self : Tuple ): __a : List[Any] = MobileBertModelTester(self ) __a : int = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def lowerCAmelCase (self : Union[str, Any] ): self.config_tester.run_common_tests() def lowerCAmelCase (self : Optional[Any] ): __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case_ ) def lowerCAmelCase (self : str ): __a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case_ ) def lowerCAmelCase (self : Tuple ): __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case_ ) def lowerCAmelCase (self : Dict ): __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case_ ) def lowerCAmelCase (self : int ): __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case_ ) def lowerCAmelCase (self : List[Any] ): __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case_ ) def lowerCAmelCase (self : int ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case_ ) def lowerCAmelCase (self : Tuple ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case_ ) def __UpperCamelCase ( lowerCAmelCase__ : str ): return torch.tensor( lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ , ) lowercase__ =1e-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase (self : Any ): __a : Dict = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(snake_case_ ) __a : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): __a : str = model(snake_case_ )[0] __a : List[Any] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape , snake_case_ ) __a : Union[str, Any] = torch.tensor( [ [ [-2.473_6526E07, 8.269_1656E04, 1.652_1838E05], [-5.754_1704E-01, 3.905_6022E00, 4.401_1507E00], [2.604_7359E00, 1.567_7652E00, -1.732_4188E-01], ] ] , device=snake_case_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __a : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __a : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
216
0
def _UpperCAmelCase (UpperCamelCase_ : int = 1000 ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = 1, 1 _lowerCAmelCase : Optional[Any] = 2 while True: _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = fa + fa _lowerCAmelCase , _lowerCAmelCase : int = fa, f index += 1 for _ in str(UpperCamelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
159
from collections import namedtuple import requests from lxml import html # type: ignore _lowerCamelCase : Dict = namedtuple("covid_data", "cases deaths recovered") def _UpperCAmelCase (UpperCamelCase_ : str = "https://www.worldometers.info/coronavirus/" ): '''simple docstring''' _lowerCAmelCase : Dict = """//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(UpperCamelCase_ ).content ).xpath(UpperCamelCase_ ) ) _lowerCamelCase : Tuple = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
159
1
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase_ : Dict = logging.getLogger(__name__) def _lowerCamelCase ( ) -> Optional[int]: _a = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=lowercase , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=lowercase , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=lowercase , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=lowercase , default=1000 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=lowercase , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=lowercase , type=lowercase , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=lowercase , default=512 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=lowercase , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) _a = parser.parse_args() return args def _lowerCamelCase ( lowercase : List[Any] ) -> Tuple: def fn(lowercase : Optional[Any] ): return tokenizer(examples["text"] ) return fn def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = [] for i in range(len(tokenized_data["input_ids"] ) ): _a = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } _a = tf.train.Features(feature=lowercase ) _a = tf.train.Example(features=lowercase ) _a = example.SerializeToString() records.append(lowercase ) return records def _lowerCamelCase ( lowercase : Dict ) -> str: _a = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: _a = min(len(lowercase ) , args.limit ) _a = dataset.select(range(lowercase ) ) print(F'Limiting the dataset to {args.limit} entries.' ) _a = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _a = os.path.join(args.output_dir , args.split ) if not os.path.exists(lowercase ): os.makedirs(lowercase ) else: _a = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. _a = tokenize_function(lowercase ) _a = dataset.map(lowercase , batched=lowercase , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(lowercase : Tuple ): # Concatenate all texts. _a = {k: sum(examples[k] , [] ) for k in examples.keys()} _a = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _a = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _a = { k: [t[i : i + args.max_length] for i in range(0 , lowercase , args.max_length )] for k, t in concatenated_examples.items() } return result _a = dataset_tokenized.map(lowercase , batched=lowercase , batch_size=1000 , num_proc=4 ) _a = 0 _a = 0 for shard in range(0 , len(lowercase ) , args.shard_size ): _a = grouped_dataset[shard : shard + args.shard_size] _a = len(dataset_snapshot["input_ids"] ) _a = os.path.join(lowercase , F'dataset-{shard_count}-{records_containing}.tfrecord' ) _a = get_serialized_examples(lowercase ) with tf.io.TFRecordWriter(lowercase ) as out_file: for i in range(len(lowercase ) ): _a = serialized_examples[i] out_file.write(lowercase ) print("Wrote file {} containing {} records".format(lowercase , lowercase ) ) shard_count += 1 total_records += records_containing with open(F'split-{args.split}-records-count.txt' , "w" ) as f: print(F'Total {args.split} records: {total_records}' , file=lowercase ) if __name__ == "__main__": lowerCAmelCase_ : Optional[Any] = parse_args() main(args)
63
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = """Normal""" if result[0][0] == 1: _SCREAMING_SNAKE_CASE = """Abnormality detected"""
343
0
'''simple docstring''' import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin A__ : Any = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = BartphoTokenizer A__ = False A__ = True def A_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' super().setUp() __snake_case : Any = ['▁This', '▁is', '▁a', '▁t', 'est'] __snake_case : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __snake_case : Tuple = {'unk_token': '<unk>'} __snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) __snake_case : int = BartphoTokenizer(__a , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Tuple , **__a : Dict ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__a ) def A_ ( self : Optional[Any] , __a : List[str] ) -> List[str]: '''simple docstring''' __snake_case : Dict = 'This is a là test' __snake_case : Tuple = 'This is a<unk><unk> test' return input_text, output_text def A_ ( self : int ) -> Optional[int]: '''simple docstring''' __snake_case : List[str] = BartphoTokenizer(__a , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case : Tuple = 'This is a là test' __snake_case : int = '▁This ▁is ▁a ▁l à ▁t est'.split() __snake_case : str = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __snake_case : Tuple = tokens + [tokenizer.unk_token] __snake_case : Union[str, Any] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
0
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def a_ ( _UpperCAmelCase : List[Any] ) -> Tuple: __snake_case : str = [] embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', f'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', f'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', f'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', f'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def a_ ( _UpperCAmelCase : int ,_UpperCAmelCase : Optional[int] ) -> List[str]: __snake_case : Tuple = [] attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def a_ ( _UpperCAmelCase : Union[str, Any] ) -> Dict: __snake_case : Union[str, Any] = [] token.append((f'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def a_ ( ) -> Optional[Any]: __snake_case : Any = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def a_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[Any] ) -> Tuple: __snake_case : List[str] = 'imagenet-1k-id2label.json' __snake_case : Dict = 10_00 __snake_case : Union[str, Any] = 'huggingface/label-files' __snake_case : str = num_labels __snake_case : str = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase ,_UpperCAmelCase ,repo_type='dataset' ) ) ,'r' ) ) __snake_case : Tuple = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __snake_case : Optional[Any] = idalabel __snake_case : str = {v: k for k, v in idalabel.items()} __snake_case : Dict = CvtConfig(num_labels=_UpperCAmelCase ,idalabel=_UpperCAmelCase ,labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' ,1 )[-1][4:6] == "13": __snake_case : Tuple = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' ,1 )[-1][4:6] == "21": __snake_case : str = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __snake_case : Dict = [2, 2, 20] __snake_case : Any = [3, 12, 16] __snake_case : Tuple = [1_92, 7_68, 10_24] __snake_case : str = CvtForImageClassification(_UpperCAmelCase ) __snake_case : List[Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) __snake_case : int = image_size __snake_case : int = torch.load(_UpperCAmelCase ,map_location=torch.device('cpu' ) ) __snake_case : List[Any] = OrderedDict() __snake_case : Union[str, Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __snake_case : Optional[Any] = list_of_state_dict + cls_token(_UpperCAmelCase ) __snake_case : Tuple = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): __snake_case : Optional[int] = list_of_state_dict + attention(_UpperCAmelCase ,_UpperCAmelCase ) __snake_case : str = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): __snake_case : List[str] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": A__ : Dict = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=3_8_4, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A__ : Tuple = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
0
1
from typing import TYPE_CHECKING from ..utils import _LazyModule lowerCAmelCase_ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _lowerCAmelCase ( )->Any: '''simple docstring''' snake_case_ = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , required=lowerCAmelCase_ , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=lowerCAmelCase_ , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=lowerCAmelCase_ , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=lowerCAmelCase_ , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=lowerCAmelCase_ , default=0 , help="cuda_id." , ) snake_case_ = parser.parse_args() return args def _lowerCAmelCase ( lowerCAmelCase_ :Dict , lowerCAmelCase_ :Union[str, Any] , lowerCAmelCase_ :Union[str, Any] )->Union[str, Any]: '''simple docstring''' if not len(lowerCAmelCase_ ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) snake_case_ , snake_case_ = imgs[0].size snake_case_ = Image.new("RGB" , size=(cols * w, rows * h) ) snake_case_ , snake_case_ = grid.size for i, img in enumerate(lowerCAmelCase_ ): grid.paste(lowerCAmelCase_ , box=(i % cols * w, i // cols * h) ) return grid def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Union[str, Any]="robotic cat with wings" , lowerCAmelCase_ :Any=7.5 , lowerCAmelCase_ :Dict=50 , lowerCAmelCase_ :int=1 , lowerCAmelCase_ :Union[str, Any]=42 , )->str: '''simple docstring''' snake_case_ = torch.Generator(pipeline.device ).manual_seed(lowerCAmelCase_ ) snake_case_ = pipeline( lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , ).images snake_case_ = int(math.sqrt(lowerCAmelCase_ ) ) snake_case_ = image_grid(lowerCAmelCase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images SCREAMING_SNAKE_CASE :Dict = parse_args() # Load models and create wrapper for stable diffusion SCREAMING_SNAKE_CASE :Optional[int] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') SCREAMING_SNAKE_CASE :Tuple = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') SCREAMING_SNAKE_CASE :List[str] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') SCREAMING_SNAKE_CASE :Optional[int] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') SCREAMING_SNAKE_CASE :List[Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) SCREAMING_SNAKE_CASE :Dict = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): SCREAMING_SNAKE_CASE :Union[str, Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: SCREAMING_SNAKE_CASE :Union[str, Any] = unet.to(torch.device('''cuda''', args.cuda_id)) SCREAMING_SNAKE_CASE :Optional[int] = pipeline.to(unet.device) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Optional[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) SCREAMING_SNAKE_CASE :Optional[Any] = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
159
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : str = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Tuple = '''umt5''' __UpperCamelCase : Tuple = ['''past_key_values'''] def __init__( self : str , lowerCAmelCase_ : Any=2_5_0_1_1_2 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : List[Any]=6_4 , lowerCAmelCase_ : List[Any]=1_0_2_4 , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : int=3_2 , lowerCAmelCase_ : Any=1_2_8 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : List[str]=1e-6 , lowerCAmelCase_ : int=1.0 , lowerCAmelCase_ : Dict="gated-gelu" , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="T5Tokenizer" , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : Any=0 , **lowerCAmelCase_ : Dict , ): """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase_ , tokenizer_class=lowerCAmelCase_ , tie_word_embeddings=lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A: List[Any] = vocab_size _A: Dict = d_model _A: int = d_kv _A: List[str] = d_ff _A: Any = num_layers _A: List[str] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _A: int = num_heads _A: str = relative_attention_num_buckets _A: Optional[Any] = relative_attention_max_distance _A: Tuple = dropout_rate _A: Union[str, Any] = layer_norm_epsilon _A: Optional[int] = initializer_factor _A: List[Any] = feed_forward_proj _A: int = use_cache _A: Tuple = self.feed_forward_proj.split('''-''' ) _A: List[Any] = act_info[-1] _A: int = act_info[0] == '''gated''' if len(lowerCAmelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase_ ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": _A: Tuple = '''gelu_new''' @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.d_model @property def __magic_name__ ( self : Dict ): """simple docstring""" return self.num_heads @property def __magic_name__ ( self : str ): """simple docstring""" return self.num_layers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: _A: List[str] = '''past_encoder_sequence + sequence''' _A: Optional[Any] = {0: '''batch'''} _A: List[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _A: Any = {0: '''batch''', 1: '''decoder_sequence'''} _A: List[str] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __magic_name__ ( self : int ): """simple docstring""" return 1_3 @property def __magic_name__ ( self : Tuple ): """simple docstring""" return 5e-4
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __UpperCamelCase : @staticmethod def __a ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: pass def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->Dict: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a : Optional[Any] = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): lowerCamelCase : Union[str, Any] =MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : Tuple = pipeline( "document-question-answering" , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a : Optional[int] = INVOICE_URL a : str = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) a : Union[str, Any] = "What is the placebo?" a : Dict = [ { "image": load_image(lowerCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Tuple = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> List[Any]: a : List[Any] = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) a : Dict = INVOICE_URL a : List[str] = "How many cats are there?" a : Tuple = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] a : Optional[int] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) a : Optional[int] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably a : List[Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" a : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes a : Optional[int] = "./tests/fixtures/tests_samples/COCO/000000039769.png" a : Tuple = [] a : Optional[int] = [] a : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> Tuple: a : int = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) a : List[str] = INVOICE_URL a : List[Any] = "What is the invoice number?" a : int = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : str = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> Optional[int]: a : List[str] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) a : Optional[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : str = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __a ( self ) -> str: a : Optional[int] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase__ ) a : int = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase__ , revision="3dc6de3" , ) a : List[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a : List[Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) a : Dict = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) # This model should also work if `image` is set to None a : Optional[Any] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __a ( self ) -> Tuple: a : int = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase__ ) a : Tuple = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase__ , revision="3dc6de3" , max_seq_len=50 , ) a : List[str] = INVOICE_URL a : Union[str, Any] = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : List[str] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) a : List[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) # This model should also work if `image` is set to None a : Any = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def __a ( self ) -> int: a : Tuple = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) a : Optional[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def __a ( self ) -> int: pass
105
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''xlm-roberta-xl''' def __init__( self : List[str] , UpperCAmelCase_ : Any=250_880 , UpperCAmelCase_ : Optional[int]=2_560 , UpperCAmelCase_ : Dict=36 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : int=10_240 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : str=514 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[Any]=1e-05 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str="absolute" , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : int , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Any = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : int = type_vocab_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : str = use_cache __UpperCAmelCase : Any = classifier_dropout class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" @property def lowerCamelCase_ ( self : str ): """simple docstring""" if self.task == "multiple-choice": __UpperCAmelCase : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
37
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __UpperCamelCase ( _UpperCAmelCase=None ): if subparsers is not None: __UpperCAmelCase : Optional[int] = subparsers.add_parser("env" ) else: __UpperCAmelCase : List[Any] = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file", default=_UpperCAmelCase, help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Dict = torch.__version__ __UpperCAmelCase : str = torch.cuda.is_available() __UpperCAmelCase : str = is_xpu_available() __UpperCAmelCase : List[Any] = is_npu_available() __UpperCAmelCase : Union[str, Any] = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ).to_dict() __UpperCAmelCase : List[str] = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": F"{pt_version} ({pt_cuda_available})", "PyTorch XPU available": str(_UpperCAmelCase ), "PyTorch NPU available": str(_UpperCAmelCase ), "System RAM": F"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB", } if pt_cuda_available: __UpperCAmelCase : int = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([F"- {prop}: {val}" for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) __UpperCAmelCase : Tuple = ( "\n".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else F"\t{accelerate_config}" ) print(_UpperCAmelCase ) __UpperCAmelCase : Any = accelerate_config return info def __UpperCamelCase ( ): __UpperCAmelCase : Tuple = env_command_parser() __UpperCAmelCase : Dict = parser.parse_args() env_command(_UpperCAmelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
37
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration SCREAMING_SNAKE_CASE :Optional[Any] = HfArgumentParser(InitializationArguments) SCREAMING_SNAKE_CASE :Dict = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization SCREAMING_SNAKE_CASE :Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks SCREAMING_SNAKE_CASE :int = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) SCREAMING_SNAKE_CASE :List[Any] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config SCREAMING_SNAKE_CASE :Optional[int] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
159
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE :Union[str, Any] = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys SCREAMING_SNAKE_CASE :List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
159
1
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowercase_ , "argv" , lowercase_ ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ )
23
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : Dict = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[str] = number_chain while number < 1000_0000: UpperCAmelCase_ : List[Any] = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
23
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BartphoTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" super().setUp() a = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) a = {'''unk_token''': '''<unk>'''} a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) a = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : str , **__UpperCAmelCase : Any ) ->List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __lowerCAmelCase ( self : str , __UpperCAmelCase : Union[str, Any] ) ->List[Any]: """simple docstring""" a = '''This is a là test''' a = '''This is a<unk><unk> test''' return input_text, output_text def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" a = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) a = '''This is a là test''' a = '''▁This ▁is ▁a ▁l à ▁t est'''.split() a = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a = tokens + [tokenizer.unk_token] a = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _a ( a :List[Any] ) -> Optional[int]: a = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def _a ( a :List[Any] , a :Optional[int] ) -> Dict: a = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def _a ( a :Any ) -> List[Any]: a = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def _a ( ) -> Optional[int]: a = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def _a ( a :Tuple , a :Optional[int] , a :List[Any] , a :Union[str, Any] ) -> Optional[int]: a = '''imagenet-1k-id2label.json''' a = 1_000 a = '''huggingface/label-files''' a = num_labels a = json.load(open(cached_download(hf_hub_url(a , a , repo_type='''dataset''' ) ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} a = a = CvtConfig(num_labels=a , idalabel=a , labelaid=a ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": a = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": a = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: a = [2, 2, 20] a = [3, 12, 16] a = [192, 768, 1_024] a = CvtForImageClassification(a ) a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) a = image_size a = torch.load(a , map_location=torch.device('''cpu''' ) ) a = OrderedDict() a = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: a = list_of_state_dict + cls_token(a ) a = list_of_state_dict + embeddings(a ) for cnt in range(config.depth[idx] ): a = list_of_state_dict + attention(a , a ) a = list_of_state_dict + final() for gg in list_of_state_dict: print(a ) for i in range(len(a ) ): a = original_weights[list_of_state_dict[i][1]] model.load_state_dict(a ) model.save_pretrained(a ) image_processor.save_pretrained(a ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase__ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
0
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = UNetaDModel( sample_size=(32, 64), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("AttnDownBlock2D", "DownBlock2D"), up_block_types=("UpBlock2D", "AttnUpBlock2D"), ) return model @property def lowercase_ ( self : Any ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"), cross_attention_dim=10, ) return model @property def lowercase_ ( self : str ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( sample_size=(128, 64), in_channels=1, out_channels=1, latent_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"), up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"), ) UpperCamelCase__ = UNetaDModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("AttnDownBlock2D", "DownBlock2D"), up_block_types=("UpBlock2D", "AttnUpBlock2D"), ) return vqvae, unet @slow def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = Mel( x_res=self.dummy_unet.config.sample_size[1], y_res=self.dummy_unet.config.sample_size[0], ) UpperCamelCase__ = DDPMScheduler() UpperCamelCase__ = AudioDiffusionPipeline(vqvae=UpperCamelCase__, unet=self.dummy_unet, mel=UpperCamelCase__, scheduler=UpperCamelCase__ ) UpperCamelCase__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCamelCase__ = torch.Generator(device=UpperCamelCase__ ).manual_seed(42 ) UpperCamelCase__ = pipe(generator=UpperCamelCase__, steps=4 ) UpperCamelCase__ = output.audios[0] UpperCamelCase__ = output.images[0] UpperCamelCase__ = torch.Generator(device=UpperCamelCase__ ).manual_seed(42 ) UpperCamelCase__ = pipe(generator=UpperCamelCase__, steps=4, return_dict=UpperCamelCase__ ) UpperCamelCase__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCamelCase__ = np.frombuffer(image.tobytes(), dtype="uint8" )[:10] UpperCamelCase__ = np.frombuffer(image_from_tuple.tobytes(), dtype="uint8" )[:10] UpperCamelCase__ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCamelCase__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1], y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0], ) UpperCamelCase__ = DDIMScheduler() UpperCamelCase__ = self.dummy_vqvae_and_unet UpperCamelCase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_vqvae_and_unet[1], mel=UpperCamelCase__, scheduler=UpperCamelCase__ ) UpperCamelCase__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) np.random.seed(0 ) UpperCamelCase__ = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCamelCase__ = torch.Generator(device=UpperCamelCase__ ).manual_seed(42 ) UpperCamelCase__ = pipe(raw_audio=UpperCamelCase__, generator=UpperCamelCase__, start_step=5, steps=10 ) UpperCamelCase__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCamelCase__ = np.frombuffer(image.tobytes(), dtype="uint8" )[:10] UpperCamelCase__ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCamelCase__ = self.dummy_unet_condition UpperCamelCase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=UpperCamelCase__, mel=UpperCamelCase__, scheduler=UpperCamelCase__ ) UpperCamelCase__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) np.random.seed(0 ) UpperCamelCase__ = torch.rand((1, 1, 10) ) UpperCamelCase__ = pipe(generator=UpperCamelCase__, encoding=UpperCamelCase__ ) UpperCamelCase__ = output.images[0] UpperCamelCase__ = np.frombuffer(image.tobytes(), dtype="uint8" )[:10] UpperCamelCase__ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = torch_device UpperCamelCase__ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) UpperCamelCase__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCamelCase__ = torch.Generator(device=UpperCamelCase__ ).manual_seed(42 ) UpperCamelCase__ = pipe(generator=UpperCamelCase__ ) UpperCamelCase__ = output.audios[0] UpperCamelCase__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCamelCase__ = np.frombuffer(image.tobytes(), dtype="uint8" )[:10] UpperCamelCase__ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
368
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
0
'''simple docstring''' def _A ( A__ = 1000 ): """simple docstring""" __lowercase = 2**power __lowercase = 0 while n: __lowercase , __lowercase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
104
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class SCREAMING_SNAKE_CASE_ : __magic_name__: int = MBartConfig __magic_name__: str = {} __magic_name__: Union[str, Any] = "gelu" def __init__( self : List[str] , _A : Optional[int] , _A : List[Any]=13 , _A : List[Any]=7 , _A : Dict=True , _A : Tuple=False , _A : Optional[Any]=99 , _A : Dict=32 , _A : str=2 , _A : str=4 , _A : Tuple=37 , _A : Tuple=0.1 , _A : Union[str, Any]=0.1 , _A : Optional[int]=20 , _A : Dict=2 , _A : List[str]=1 , _A : Union[str, Any]=0 , ) -> List[Any]: """simple docstring""" snake_case_ : str = parent snake_case_ : List[str] = batch_size snake_case_ : List[str] = seq_length snake_case_ : Union[str, Any] = is_training snake_case_ : Optional[int] = use_labels snake_case_ : Dict = vocab_size snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : Optional[Any] = eos_token_id snake_case_ : Tuple = pad_token_id snake_case_ : int = bos_token_id def UpperCAmelCase_ ( self : List[str] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case_ : Union[str, Any] = prepare_mbart_inputs_dict(_A , _A , _A ) return config, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] , _A : Optional[Any] , _A : int ) -> str: """simple docstring""" snake_case_ : Dict = TFMBartModel(config=_A ).get_decoder() snake_case_ : Any = inputs_dict['input_ids'] snake_case_ : List[Any] = input_ids[:1, :] snake_case_ : Dict = inputs_dict['attention_mask'][:1, :] snake_case_ : Tuple = inputs_dict['head_mask'] snake_case_ : List[Any] = 1 # first forward pass snake_case_ : Any = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) snake_case_ : str = outputs.to_tuple() snake_case_ : int = past_key_values[1] def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , ): if attention_mask is None: snake_case_ : Optional[int] = tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ : str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: Tuple = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __magic_name__: int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __magic_name__: Union[str, Any] = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __magic_name__: Tuple = True __magic_name__: Tuple = False __magic_name__: Any = False def UpperCAmelCase_ ( self : Any , _A : Union[str, Any] , _A : List[Any] , _A : str , _A : int , _A : Dict ) -> Union[str, Any]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCAmelCase_ ( self : Dict ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFMBartModelTester(self ) snake_case_ : List[Any] = ConfigTester(self , config_class=_A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_sentencepiece @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): __magic_name__: Optional[int] = [ " UN Chief Says There Is No Military Solution in Syria", ] __magic_name__: Union[str, Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] __magic_name__: List[Any] = "facebook/mbart-large-en-ro" @cached_property def UpperCAmelCase_ ( self : str ) -> List[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ ( self : List[Any] ) -> Any: """simple docstring""" snake_case_ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase_ ( self : Optional[int] , **_A : str ) -> int: """simple docstring""" snake_case_ : List[str] = self.translate_src_text(**_A ) self.assertListEqual(self.expected_text , _A ) def UpperCAmelCase_ ( self : Union[str, Any] , **_A : Dict ) -> int: """simple docstring""" snake_case_ : Optional[Any] = self.tokenizer(self.src_text , **_A , return_tensors='tf' ) snake_case_ : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) snake_case_ : Any = self.tokenizer.batch_decode(_A , skip_special_tokens=_A ) return generated_words @slow def UpperCAmelCase_ ( self : str ) -> List[str]: """simple docstring""" self._assert_generated_batch_equal_expected()
352
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''MobileViTFeatureExtractor'''] _lowerCAmelCase = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
37
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} _lowerCAmelCase = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } _lowerCAmelCase = { '''AI-Sweden/gpt-sw3-126m''': 2048, '''AI-Sweden/gpt-sw3-350m''': 2048, '''AI-Sweden/gpt-sw3-1.6b''': 2048, '''AI-Sweden/gpt-sw3-6.7b''': 2048, '''AI-Sweden/gpt-sw3-20b''': 2048, } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: lowerCAmelCase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ : Dict = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) lowerCAmelCase__ : Tuple = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCAmelCase__ : Union[str, Any] = """<|endoftext|>""" if eos_token is None else eos_token lowerCAmelCase__ : Dict = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCAmelCase__ : Any = unk_token if pad_token is None else pad_token lowerCAmelCase__ : Dict = eos_token if bos_token is None else bos_token else: lowerCAmelCase__ : List[str] = """<pad>""" if pad_token is None else pad_token lowerCAmelCase__ : Optional[int] = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=__UpperCAmelCase ,remove_space=__UpperCAmelCase ,keep_accents=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCAmelCase ,) lowerCAmelCase__ : Optional[int] = do_lower_case lowerCAmelCase__ : Dict = remove_space lowerCAmelCase__ : Optional[Any] = keep_accents lowerCAmelCase__ : int = vocab_file lowerCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) # Used for whitespace normalization in input texts # fmt : off lowerCAmelCase__ : int = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCAmelCase__ : List[str] = re.compile( F"""[{''.join(map(__UpperCAmelCase ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(127 ,160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__( self ) -> Any: lowerCAmelCase__ : int = self.__dict__.copy() lowerCAmelCase__ : Optional[int] = None return state def __setstate__( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[str] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCAmelCase__ : Tuple = {} lowerCAmelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase_ ( self ) -> int: return len(self.sp_model ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Tuple = self.non_printing_characters_re.sub("""""" ,__UpperCAmelCase ) # Normalize whitespaces lowerCAmelCase__ : List[Any] = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization lowerCAmelCase__ : List[Any] = unicodedata.normalize("""NFC""" ,__UpperCAmelCase ) return text def UpperCAmelCase_ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[Any] = self.preprocess_text(__UpperCAmelCase ) return self.sp_model.encode(__UpperCAmelCase ,out_type=__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: return self.sp_model.PieceToId(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return self.sp_model.IdToPiece(__UpperCAmelCase ) @staticmethod def UpperCAmelCase_ ( __UpperCAmelCase ) -> str: return out_string def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : int = [] lowerCAmelCase__ : Optional[int] = """""" lowerCAmelCase__ : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Optional[Any] = [] else: current_sub_tokens.append(__UpperCAmelCase ) lowerCAmelCase__ : Any = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string def UpperCAmelCase_ ( self ) -> Dict[str, int]: lowerCAmelCase__ : Optional[int] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : Optional[int] = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase ,"""wb""" ) as fi: lowerCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Tuple = self.preprocess_text(__UpperCAmelCase ) lowerCAmelCase__ : int = self.sp_model.encode(__UpperCAmelCase ) else: lowerCAmelCase__ : int = [self.preprocess_text(__UpperCAmelCase ) for t in text] lowerCAmelCase__ : Any = self.sp_model.encode(__UpperCAmelCase ) if return_tensors is True or return_tensors == "pt": lowerCAmelCase__ : Tuple = torch.tensor(__UpperCAmelCase ) return token_ids def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return self.sp_model.decode(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[int]: lowerCAmelCase__ : List[Any] = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] lowerCAmelCase__ : Any = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(__UpperCAmelCase ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=__UpperCAmelCase )
37
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
169
from __future__ import annotations from statistics import mean def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0] * no_of_processes SCREAMING_SNAKE_CASE__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = burst_time[i] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = -1 for i in range(UpperCamelCase_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: SCREAMING_SNAKE_CASE__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: SCREAMING_SNAKE_CASE__ = i total_time += burst_time[target_process] completed += 1 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0] * no_of_processes for i in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case = 4 __snake_case = [2, 5, 3, 7] __snake_case = [0, 0, 0, 0] __snake_case = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
169
1
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : str ) -> Optional[int]: UpperCAmelCase : Any = [] def A ( self : Union[str, Any] , __snake_case : str , __snake_case : Any , __snake_case : Dict , **__snake_case : List[Any] ) -> int: self.events.append('''on_init_end''' ) def A ( self : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : List[Any] , **__snake_case : List[Any] ) -> Dict: self.events.append('''on_train_begin''' ) def A ( self : Any , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Any , **__snake_case : List[Any] ) -> int: self.events.append('''on_train_end''' ) def A ( self : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[int] , **__snake_case : List[Any] ) -> int: self.events.append('''on_epoch_begin''' ) def A ( self : str , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[Any] , **__snake_case : str ) -> Optional[int]: self.events.append('''on_epoch_end''' ) def A ( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Any , **__snake_case : Any ) -> Optional[int]: self.events.append('''on_step_begin''' ) def A ( self : Any , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] , **__snake_case : Tuple ) -> Optional[Any]: self.events.append('''on_step_end''' ) def A ( self : Optional[Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : List[str] , **__snake_case : Any ) -> Dict: self.events.append('''on_evaluate''' ) def A ( self : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : int , **__snake_case : str ) -> Optional[Any]: self.events.append('''on_predict''' ) def A ( self : Dict , __snake_case : Any , __snake_case : int , __snake_case : Dict , **__snake_case : List[Any] ) -> Union[str, Any]: self.events.append('''on_save''' ) def A ( self : str , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Any , **__snake_case : Tuple ) -> List[Any]: self.events.append('''on_log''' ) def A ( self : List[str] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Tuple , **__snake_case : Optional[int] ) -> int: self.events.append('''on_prediction_step''' ) @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[Any] ) -> Optional[int]: UpperCAmelCase : Dict = tempfile.mkdtemp() def A ( self : Tuple ) -> Any: shutil.rmtree(self.output_dir ) def A ( self : Tuple , __snake_case : Optional[int]=0 , __snake_case : Any=0 , __snake_case : List[Any]=64 , __snake_case : int=64 , __snake_case : Union[str, Any]=None , __snake_case : Dict=False , **__snake_case : str ) -> List[Any]: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. UpperCAmelCase : Dict = RegressionDataset(length=__snake_case ) UpperCAmelCase : List[Any] = RegressionDataset(length=__snake_case ) UpperCAmelCase : Dict = RegressionModelConfig(a=__snake_case , b=__snake_case ) UpperCAmelCase : Tuple = RegressionPreTrainedModel(__snake_case ) UpperCAmelCase : Tuple = TrainingArguments(self.output_dir , disable_tqdm=__snake_case , report_to=[] , **__snake_case ) return Trainer( __snake_case , __snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , callbacks=__snake_case , ) def A ( self : Any , __snake_case : List[Any] , __snake_case : List[Any] ) -> Union[str, Any]: self.assertEqual(len(__snake_case ) , len(__snake_case ) ) # Order doesn't matter UpperCAmelCase : Dict = sorted(__snake_case , key=lambda __snake_case : cb.__name__ if isinstance(__snake_case , __snake_case ) else cb.__class__.__name__ ) UpperCAmelCase : str = sorted(__snake_case , key=lambda __snake_case : cb.__name__ if isinstance(__snake_case , __snake_case ) else cb.__class__.__name__ ) for cba, cba in zip(__snake_case , __snake_case ): if isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case ) elif isinstance(__snake_case , __snake_case ) and not isinstance(__snake_case , __snake_case ): self.assertEqual(__snake_case , cba.__class__ ) elif not isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ): self.assertEqual(cba.__class__ , __snake_case ) else: self.assertEqual(__snake_case , __snake_case ) def A ( self : Dict , __snake_case : List[str] ) -> int: UpperCAmelCase : Any = ['''on_init_end''', '''on_train_begin'''] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[int] = len(trainer.get_eval_dataloader() ) UpperCAmelCase : str = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(__snake_case ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def A ( self : Any ) -> List[Any]: UpperCAmelCase : Dict = self.get_trainer() UpperCAmelCase : Optional[Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) # Callbacks passed at init are added to the default callbacks UpperCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback UpperCAmelCase : List[str] = self.get_trainer(disable_tqdm=__snake_case ) UpperCAmelCase : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] UpperCAmelCase : Optional[Any] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__snake_case ) expected_callbacks.remove(__snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) UpperCAmelCase : Dict = self.get_trainer() UpperCAmelCase : Optional[Any] = trainer.pop_callback(__snake_case ) self.assertEqual(cb.__class__ , __snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) trainer.add_callback(__snake_case ) expected_callbacks.insert(0 , __snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) # We can also add, pop, or remove by instance UpperCAmelCase : Any = self.get_trainer() UpperCAmelCase : Union[str, Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(__snake_case ) expected_callbacks.remove(__snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) UpperCAmelCase : Optional[Any] = self.get_trainer() UpperCAmelCase : Dict = trainer.callback_handler.callbacks[0] UpperCAmelCase : str = trainer.pop_callback(__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) trainer.add_callback(__snake_case ) expected_callbacks.insert(0 , __snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) def A ( self : int ) -> Union[str, Any]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' , category=__snake_case ) UpperCAmelCase : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() UpperCAmelCase : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) ) # Independent log/save/eval UpperCAmelCase : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() UpperCAmelCase : List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) ) UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() UpperCAmelCase : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) ) UpperCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='''steps''' ) trainer.train() UpperCAmelCase : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) ) UpperCAmelCase : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='''epoch''' ) trainer.train() UpperCAmelCase : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) ) # A bit of everything UpperCAmelCase : List[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='''steps''' , ) trainer.train() UpperCAmelCase : Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: UpperCAmelCase : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(__snake_case ) in warn_mock.call_args[0][0]
23
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AltDiffusionPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def A ( self : Dict ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase : Dict = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCAmelCase : List[Any] = CLIPTextModel(__snake_case ) UpperCAmelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) UpperCAmelCase : Optional[int] = 77 UpperCAmelCase : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str]=0 ) -> Union[str, Any]: if str(__snake_case ).startswith('''mps''' ): UpperCAmelCase : str = torch.manual_seed(__snake_case ) else: UpperCAmelCase : Tuple = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Union[str, Any] ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def A ( self : Tuple ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Any = self.get_dummy_components() torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase : List[str] = RobertaSeriesModelWithTransformation(__snake_case ) UpperCAmelCase : str = text_encoder UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case ) UpperCAmelCase : str = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : Optional[int] = '''A photo of an astronaut''' UpperCAmelCase : List[Any] = alt_pipe(**__snake_case ) UpperCAmelCase : Optional[Any] = output.images UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : int = PNDMScheduler(skip_prk_steps=__snake_case ) torch.manual_seed(0 ) UpperCAmelCase : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase : Union[str, Any] = RobertaSeriesModelWithTransformation(__snake_case ) UpperCAmelCase : Union[str, Any] = text_encoder UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case ) UpperCAmelCase : Dict = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : int = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : Optional[int] = alt_pipe(**__snake_case ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[int] = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ) -> Any: # make sure here that pndm scheduler skips prk UpperCAmelCase : List[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=__snake_case ) UpperCAmelCase : Tuple = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Any = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = alt_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : Tuple ) -> int: UpperCAmelCase : int = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) UpperCAmelCase : Tuple = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=__snake_case , safety_checker=__snake_case ) UpperCAmelCase : Dict = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Tuple = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : List[Any] = alt_pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='''numpy''' ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
23
1
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : Optional[int] = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Dict = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Dict = [mem.copy() for i in range(6 )] _UpperCAmelCase : int = [mem.copy() for i in range(6 )] _UpperCAmelCase : List[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : List[str] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = Text("CPU" , font_size=24 ) _UpperCAmelCase : Optional[int] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : str = [mem.copy() for i in range(4 )] _UpperCAmelCase : Optional[int] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Dict = Text("GPU" , font_size=24 ) _UpperCAmelCase : List[Any] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Tuple = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : int = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = [] for i, rect in enumerate(lowerCamelCase__ ): rect.set_stroke(lowerCamelCase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _UpperCAmelCase : Optional[int] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowerCamelCase__ , buff=0.0 ) self.add(lowerCamelCase__ ) cpu_targs.append(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Tuple = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Loaded Checkpoint" , font_size=24 ) _UpperCAmelCase : Optional[int] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , aligned_edge=lowerCamelCase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _UpperCAmelCase : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Optional[Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowerCamelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.play(Write(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) ) _UpperCAmelCase : Any = [] _UpperCAmelCase : str = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : Dict = fill.copy().set_fill(lowerCamelCase__ , opacity=0.7 ) target.move_to(lowerCamelCase__ ) first_animations.append(GrowFromCenter(lowerCamelCase__ , run_time=1 ) ) _UpperCAmelCase : Dict = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Union[str, Any] , lowerCamelCase__ : T ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = data _UpperCAmelCase : Node[T] | None = None def __str__( self : Any ) ->str: '''simple docstring''' return F"""{self.data}""" class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) ->None: '''simple docstring''' _UpperCAmelCase : Node[T] | None = None def __iter__( self : List[str] ) ->Iterator[T]: '''simple docstring''' _UpperCAmelCase : Any = self.top while node: yield node.data _UpperCAmelCase : Dict = node.next def __str__( self : Dict ) ->str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __len__( self : Optional[int] ) ->int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self : List[Any] ) ->bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : T ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = Node(lowerCamelCase__ ) if not self.is_empty(): _UpperCAmelCase : Tuple = self.top _UpperCAmelCase : List[str] = node def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.top _UpperCAmelCase : Optional[Any] = self.top.next return pop_node.data def lowerCAmelCase__ ( self : Union[str, Any] ) ->T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self : List[Any] ) ->None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
322
1
"""simple docstring""" import argparse from collections import defaultdict import yaml __UpperCAmelCase = 'docs/source/en/_toctree.yml' def _snake_case ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ :Any = defaultdict(lowercase__ ) lowerCAmelCase_ :Union[str, Any] = [] lowerCAmelCase_ :int = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(lowercase__ ) lowerCAmelCase_ :int = new_doc_list lowerCAmelCase_ :str = [key for key, value in counts.items() if value > 1] lowerCAmelCase_ :Tuple = [] for duplicate_key in duplicates: lowerCAmelCase_ :Any = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(lowercase__ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) lowerCAmelCase_ :int = sorted(lowercase__ , key=lambda lowercase__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowercase__ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(lowercase__ ) # Sort return overview_doc def _snake_case ( lowercase__ : Optional[Any]=False ) -> str: '''simple docstring''' with open(lowercase__ , encoding="""utf-8""" ) as f: lowerCAmelCase_ :int = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase_ :List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase_ :List[str] = content[api_idx]["""sections"""] # Then to the model doc lowerCAmelCase_ :int = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowerCAmelCase_ :Dict = api_doc[scheduler_idx]["""sections"""] lowerCAmelCase_ :Optional[Any] = clean_doc_toc(lowercase__ ) lowerCAmelCase_ :str = False if new_scheduler_doc != scheduler_doc: lowerCAmelCase_ :Optional[int] = True if overwrite: lowerCAmelCase_ :Tuple = new_scheduler_doc if diff: if overwrite: lowerCAmelCase_ :str = api_doc with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowercase__ , allow_unicode=lowercase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def _snake_case ( lowercase__ : Any=False ) -> int: '''simple docstring''' with open(lowercase__ , encoding="""utf-8""" ) as f: lowerCAmelCase_ :int = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase_ :Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase_ :Optional[int] = content[api_idx]["""sections"""] # Then to the model doc lowerCAmelCase_ :List[Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowerCAmelCase_ :Optional[int] = False lowerCAmelCase_ :Any = api_doc[pipeline_idx]["""sections"""] lowerCAmelCase_ :str = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowerCAmelCase_ :int = pipeline_doc["""section"""] lowerCAmelCase_ :Tuple = clean_doc_toc(lowercase__ ) if overwrite: lowerCAmelCase_ :List[str] = new_sub_pipeline_doc new_pipeline_docs.append(lowercase__ ) # sort overall pipeline doc lowerCAmelCase_ :Union[str, Any] = clean_doc_toc(lowercase__ ) if new_pipeline_docs != pipeline_docs: lowerCAmelCase_ :Tuple = True if overwrite: lowerCAmelCase_ :Optional[Any] = new_pipeline_docs if diff: if overwrite: lowerCAmelCase_ :Tuple = api_doc with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowercase__ , allow_unicode=lowercase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __UpperCAmelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
84
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Any , A : Optional[int]=None , A : Tuple=None , *A : Tuple , **A : List[str] ): super().__init__(*A , **A ) if config is None: assert isinstance(self.model , A ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) _UpperCAmelCase : str = self.model.config else: _UpperCAmelCase : List[str] = config _UpperCAmelCase : List[Any] = data_args _UpperCAmelCase : str = self.config.tgt_vocab_size if isinstance(self.config , A ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" " padding.." ) if self.args.label_smoothing == 0: _UpperCAmelCase : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase : Dict = label_smoothed_nll_loss def _A ( self : Tuple , A : int ): if self.optimizer is None: _UpperCAmelCase : Tuple = ["bias", "LayerNorm.weight"] _UpperCAmelCase : str = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] _UpperCAmelCase : int = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase : List[str] = Adafactor _UpperCAmelCase : List[Any] = {"scale_parameter": False, "relative_step": False} else: _UpperCAmelCase : List[str] = AdamW _UpperCAmelCase : List[str] = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } _UpperCAmelCase : List[Any] = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase : List[Any] = OSS( params=A , optim=A , **A , ) else: _UpperCAmelCase : Union[str, Any] = optimizer_cls(A , **A ) if self.lr_scheduler is None: _UpperCAmelCase : List[str] = self._get_lr_scheduler(A ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def _A ( self : List[str] , A : Optional[int] ): _UpperCAmelCase : List[str] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase : str = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase : str = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=A ) return scheduler def _A ( self : Tuple ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _A ( self : Any , A : Union[str, Any] , A : Union[str, Any] , A : List[Any] ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase : List[str] = model(**A , use_cache=A )[0] _UpperCAmelCase : int = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase : Any = model(**A , labels=A , use_cache=A )[:2] else: # compute label smoothed loss _UpperCAmelCase : Optional[int] = model(**A , use_cache=A )[0] _UpperCAmelCase : List[str] = torch.nn.functional.log_softmax(A , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.loss_fn(A , A , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _A ( self : List[str] , A : Optional[int] , A : Optional[int] ): _UpperCAmelCase : Union[str, Any] = inputs.pop("labels" ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._compute_loss(A , A , A ) return loss def _A ( self : List[str] , A : nn.Module , A : Dict[str, Union[torch.Tensor, Any]] , A : bool , A : Optional[List[str]] = None , ): _UpperCAmelCase : List[str] = self._prepare_inputs(A ) _UpperCAmelCase : Dict = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase : Dict = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **A , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase : int = self._pad_tensors_to_max_len(A , gen_kwargs["max_length"] ) _UpperCAmelCase : Any = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase : str = self._compute_loss(A , A , A ) _UpperCAmelCase : List[str] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase : str = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase : Optional[Any] = self._pad_tensors_to_max_len(A , gen_kwargs["max_length"] ) return (loss, logits, labels) def _A ( self : Dict , A : int , A : List[str] ): # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase : Union[str, Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" F""" padded to `max_length`={max_length}""" ) _UpperCAmelCase : Tuple = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase : Tuple = tensor return padded_tensor
31
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str]=8 ): '''simple docstring''' UpperCAmelCase__ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase__ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self : List[str] , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : DDPMScheduler , _UpperCAmelCase : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , movq=_UpperCAmelCase , ) UpperCAmelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ): """simple docstring""" if latents is None: UpperCAmelCase__ = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) UpperCAmelCase__ = latents.to(_UpperCAmelCase ) UpperCAmelCase__ = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase__ = torch.device(f'''cuda:{gpu_id}''' ) UpperCAmelCase__ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[Any]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCAmelCase__ = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=_UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase__ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase__ = cpu_offload_with_hook(_UpperCAmelCase , _UpperCAmelCase , prev_module_hook=_UpperCAmelCase ) # We'll offload the last model manually. UpperCAmelCase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_UpperCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_UpperCAmelCase ) def __call__( self : str , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 4.0 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = self._execution_device UpperCAmelCase__ = guidance_scale > 1.0 if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ = torch.cat(_UpperCAmelCase , dim=0 ) UpperCAmelCase__ = image_embeds.shape[0] * num_images_per_prompt if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ = torch.cat(_UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase__ = image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 ) UpperCAmelCase__ = negative_image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 ) UpperCAmelCase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_UpperCAmelCase ) self.scheduler.set_timesteps(_UpperCAmelCase , device=_UpperCAmelCase ) UpperCAmelCase__ = self.scheduler.timesteps UpperCAmelCase__ = self.unet.config.in_channels UpperCAmelCase__ = downscale_height_and_width(_UpperCAmelCase , _UpperCAmelCase , self.movq_scale_factor ) # create initial latent UpperCAmelCase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ = {'image_embeds': image_embeds} UpperCAmelCase__ = self.unet( sample=_UpperCAmelCase , timestep=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , added_cond_kwargs=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0] if do_classifier_free_guidance: UpperCAmelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase__ = noise_pred.chunk(2 ) UpperCAmelCase__ = variance_pred.chunk(2 ) UpperCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ = self.scheduler.step( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase , )[0] # post-processing UpperCAmelCase__ = self.movq.decode(_UpperCAmelCase , force_not_quantize=_UpperCAmelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: UpperCAmelCase__ = image * 0.5 + 0.5 UpperCAmelCase__ = image.clamp(0 , 1 ) UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
351
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
61
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Any = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
169
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : List[str] = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowercase =False class __magic_name__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa) pipe.to(snake_case) pipe.set_progress_bar_config(disable=snake_case) _UpperCAmelCase : Union[str, Any] =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg') _UpperCAmelCase : Dict =torch.manual_seed(0) _UpperCAmelCase : str =pipe.dual_guided( prompt='first prompt' , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case) _UpperCAmelCase : Union[str, Any] =VersatileDiffusionPipeline.from_pretrained(snake_case , torch_dtype=torch.floataa) pipe.to(snake_case) pipe.set_progress_bar_config(disable=snake_case) _UpperCAmelCase : List[Any] =generator.manual_seed(0) _UpperCAmelCase : Dict =pipe.dual_guided( prompt='first prompt' , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image).sum() < 1E-5, "Models don't have the same forward pass" def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa) pipe.to(snake_case) pipe.set_progress_bar_config(disable=snake_case) _UpperCAmelCase : List[str] ='cyberpunk 2077' _UpperCAmelCase : Dict =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg') _UpperCAmelCase : Any =torch.manual_seed(0) _UpperCAmelCase : Optional[int] =pipe.dual_guided( prompt=snake_case , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images _UpperCAmelCase : int =image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : List[str] =np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 _UpperCAmelCase : Dict ='A painting of a squirrel eating a burger ' _UpperCAmelCase : Union[str, Any] =torch.manual_seed(0) _UpperCAmelCase : str =pipe.text_to_image( prompt=snake_case , generator=snake_case , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy').images _UpperCAmelCase : Any =image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : str =np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 _UpperCAmelCase : int =pipe.image_variation(snake_case , generator=snake_case , output_type='numpy').images _UpperCAmelCase : Optional[Any] =image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : List[str] =np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1
242
'''simple docstring''' import numpy as np class __magic_name__ : def __init__( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] =(0, 0) _UpperCAmelCase : Any =None _UpperCAmelCase : List[str] =0 _UpperCAmelCase : Dict =0 _UpperCAmelCase : Dict =0 def __eq__( self , snake_case) -> Dict: '''simple docstring''' return self.position == cell.position def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' print(self.position) class __magic_name__ : def __init__( self , snake_case=(5, 5)) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : List[str] =np.zeros(snake_case) _UpperCAmelCase : Optional[Any] =world_size[0] _UpperCAmelCase : Any =world_size[1] def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' print(self.w) def lowerCAmelCase ( self , snake_case) -> Any: '''simple docstring''' _UpperCAmelCase : str =[ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _UpperCAmelCase : int =cell.position[0] _UpperCAmelCase : Optional[Any] =cell.position[1] _UpperCAmelCase : Dict =[] for n in neughbour_cord: _UpperCAmelCase : List[str] =current_x + n[0] _UpperCAmelCase : int =current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _UpperCAmelCase : List[Any] =Cell() _UpperCAmelCase : Dict =(x, y) _UpperCAmelCase : Any =cell neighbours.append(snake_case) return neighbours def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : List[Any] =[] _UpperCAmelCase : Union[str, Any] =[] _open.append(__lowerCamelCase ) while _open: _UpperCAmelCase : List[str] =np.argmin([n.f for n in _open] ) _UpperCAmelCase : Optional[int] =_open[min_f] _closed.append(_open.pop(__lowerCamelCase ) ) if current == goal: break for n in world.get_neigbours(__lowerCamelCase ): for c in _closed: if c == n: continue _UpperCAmelCase : Tuple =current.g + 1 _UpperCAmelCase , _UpperCAmelCase : Any =n.position _UpperCAmelCase , _UpperCAmelCase : List[str] =goal.position _UpperCAmelCase : Optional[int] =(ya - ya) ** 2 + (xa - xa) ** 2 _UpperCAmelCase : Optional[Any] =n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(__lowerCamelCase ) _UpperCAmelCase : str =[] while current.parent is not None: path.append(current.position ) _UpperCAmelCase : Any =current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowercase =Gridworld() # Start position and goal lowercase =Cell() lowercase =(0, 0) lowercase =Cell() lowercase =(4, 4) print(F"""path from {start.position} to {goal.position}""") lowercase =astar(world, start, goal) # Just for visual reasons. for i in s: lowercase =1 print(world.w)
242
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class _UpperCamelCase ( lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = """dinat""" UpperCAmelCase_ = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase :Union[str, Any]=4 , lowerCamelCase :List[Any]=3 , lowerCamelCase :Dict=64 , lowerCamelCase :int=[3, 4, 6, 5] , lowerCamelCase :Union[str, Any]=[2, 4, 8, 16] , lowerCamelCase :Optional[Any]=7 , lowerCamelCase :str=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCamelCase :Union[str, Any]=3.0 , lowerCamelCase :List[str]=True , lowerCamelCase :int=0.0 , lowerCamelCase :Tuple=0.0 , lowerCamelCase :Union[str, Any]=0.1 , lowerCamelCase :Optional[int]="gelu" , lowerCamelCase :List[Any]=0.02 , lowerCamelCase :Optional[Any]=1e-5 , lowerCamelCase :str=0.0 , lowerCamelCase :int=None , lowerCamelCase :Optional[int]=None , **lowerCamelCase :Optional[int] , ) -> int: super().__init__(**lowerCamelCase ) UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = len(lowerCamelCase ) UpperCAmelCase__ = num_heads UpperCAmelCase__ = kernel_size UpperCAmelCase__ = dilations UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase__ = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) UpperCAmelCase__ = layer_scale_init_value UpperCAmelCase__ = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(lowerCamelCase ) + 1 )] UpperCAmelCase__ , UpperCAmelCase__ = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
169
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _lowerCAmelCase : List[str] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class _UpperCamelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Dict , lowerCamelCase :str , lowerCamelCase :bool , lowerCamelCase :str = None , lowerCamelCase :list = None ) -> Tuple: UpperCAmelCase__ = None UpperCAmelCase__ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) UpperCAmelCase__ = os.path.abspath("examples" ) for item in os.listdir(lowerCamelCase ): if item not in EXCLUDE_EXAMPLES: UpperCAmelCase__ = os.path.join(lowerCamelCase , lowerCamelCase ) if os.path.isfile(lowerCamelCase ) and ".py" in item_path: with self.subTest( tested_script=lowerCamelCase , feature_script=lowerCamelCase , tested_section="main()" if parser_only else "training_function()" , ): UpperCAmelCase__ = compare_against_test( os.path.join(lowerCamelCase , lowerCamelCase ) , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = "\n".join(lowerCamelCase ) if special_strings is not None: for string in special_strings: UpperCAmelCase__ = diff.replace(lowerCamelCase , "" ) self.assertEqual(lowerCamelCase , "" ) def UpperCAmelCase_ ( self :List[str] ) -> Any: self.one_complete_example("complete_nlp_example.py" , lowerCamelCase ) self.one_complete_example("complete_nlp_example.py" , lowerCamelCase ) def UpperCAmelCase_ ( self :str ) -> int: UpperCAmelCase__ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) UpperCAmelCase__ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.one_complete_example("complete_cv_example.py" , lowerCamelCase , lowerCamelCase , lowerCamelCase ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = False @classmethod def UpperCAmelCase_ ( cls :List[Any] ) -> Any: super().setUpClass() UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCAmelCase__ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def UpperCAmelCase_ ( cls :Union[str, Any] ) -> Optional[int]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCAmelCase_ ( self :Dict ) -> Dict: UpperCAmelCase__ = f''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def UpperCAmelCase_ ( self :Optional[int] ) -> Any: UpperCAmelCase__ = f''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() UpperCAmelCase__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def UpperCAmelCase_ ( self :Tuple ) -> Dict: UpperCAmelCase__ = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} '''.split() UpperCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=lowerCamelCase ) self.assertNotIn("epoch 0:" , lowerCamelCase ) self.assertIn("epoch 1:" , lowerCamelCase ) def UpperCAmelCase_ ( self :Dict ) -> int: UpperCAmelCase__ = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} '''.split() UpperCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=lowerCamelCase ) if torch.cuda.is_available(): UpperCAmelCase__ = torch.cuda.device_count() else: UpperCAmelCase__ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , lowerCamelCase ) self.assertIn("epoch 1:" , lowerCamelCase ) else: self.assertIn("epoch 0:" , lowerCamelCase ) self.assertIn("epoch 1:" , lowerCamelCase ) @slow def UpperCAmelCase_ ( self :Dict ) -> Optional[int]: UpperCAmelCase__ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): UpperCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=lowerCamelCase ) UpperCAmelCase__ = re.findall("({.+})" , lowerCamelCase ) UpperCAmelCase__ = [r for r in results if "accuracy" in r][-1] UpperCAmelCase__ = ast.literal_eval(lowerCamelCase ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def UpperCAmelCase_ ( self :int ) -> Optional[int]: UpperCAmelCase__ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase_ ( self :List[Any] ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: UpperCAmelCase__ = f''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "tracking" ) ) ) def UpperCAmelCase_ ( self :Any ) -> Dict: UpperCAmelCase__ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def UpperCAmelCase_ ( self :Any ) -> Optional[int]: UpperCAmelCase__ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
169
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : str =KandinskyVaaControlnetPipeline UpperCamelCase__ : Optional[Any] =["""image_embeds""", """negative_image_embeds""", """hint"""] UpperCamelCase__ : List[Any] =["""image_embeds""", """negative_image_embeds""", """hint"""] UpperCamelCase__ : List[Any] =[ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase__ : Union[str, Any] =False @property def __lowercase ( self ): """simple docstring""" return 32 @property def __lowercase ( self ): """simple docstring""" return 32 @property def __lowercase ( self ): """simple docstring""" return self.time_input_dim @property def __lowercase ( self ): """simple docstring""" return self.time_input_dim * 4 @property def __lowercase ( self ): """simple docstring""" return 100 @property def __lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : Tuple ={ 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __UpperCamelCase : Dict =UNetaDConditionModel(**lowerCamelCase__ ) return model @property def __lowercase ( self ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : Optional[int] =VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =self.dummy_unet __UpperCamelCase : Dict =self.dummy_movq __UpperCamelCase : Any =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , prediction_type='epsilon' , thresholding=lowerCamelCase__ , ) __UpperCamelCase : Optional[Any] ={ 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" __UpperCamelCase : Tuple =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __UpperCamelCase : List[str] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) # create hint __UpperCamelCase : Any =floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith('mps' ): __UpperCamelCase : Dict =torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : Dict =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : Tuple ={ 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] ='cpu' __UpperCamelCase : Dict =self.get_dummy_components() __UpperCamelCase : Optional[Any] =self.pipeline_class(**lowerCamelCase__ ) __UpperCamelCase : str =pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) __UpperCamelCase : Dict =output.images __UpperCamelCase : Optional[Any] =pipe( **self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0] __UpperCamelCase : Tuple =image[0, -3:, -3:, -1] __UpperCamelCase : Any =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase : int =np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) __UpperCamelCase : Tuple =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) __UpperCamelCase : List[Any] =torch.from_numpy(np.array(lowerCamelCase__ ) ).float() / 255.0 __UpperCamelCase : Tuple =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __UpperCamelCase : Tuple =KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) __UpperCamelCase : Dict =pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Tuple ='A robot, 4k photo' __UpperCamelCase : str =torch.Generator(device='cuda' ).manual_seed(0 ) __UpperCamelCase : Tuple =pipe_prior( lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __UpperCamelCase : Union[str, Any] =torch.Generator(device='cuda' ).manual_seed(0 ) __UpperCamelCase : Dict =pipeline( image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , hint=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=100 , output_type='np' , ) __UpperCamelCase : int =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
359
def A ( a_ ) -> bool: if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
245
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _a = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int=None ) -> List[str]: """simple docstring""" __lowerCAmelCase: Tuple = XLNetConfig.from_json_file(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = finetuning_task.lower() if finetuning_task is not None else '' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) __lowerCAmelCase: Dict = finetuning_task __lowerCAmelCase: int = GLUE_TASKS_NUM_LABELS[finetuning_task] __lowerCAmelCase: Optional[int] = XLNetForSequenceClassification(SCREAMING_SNAKE_CASE ) elif "squad" in finetuning_task: __lowerCAmelCase: Optional[Any] = finetuning_task __lowerCAmelCase: Any = XLNetForQuestionAnswering(SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Union[str, Any] = XLNetLMHeadModel(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model __lowerCAmelCase: str = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f'''Save PyTorch model to {os.path.abspath(SCREAMING_SNAKE_CASE )}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) print(f'''Save configuration file to {os.path.abspath(SCREAMING_SNAKE_CASE )}''' ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) _a = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
322
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case__ ): _lowercase : int = ['image_processor', 'tokenizer'] _lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str: __lowerCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) __lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' ) __lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor __lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase: List[str] = features['words'] __lowerCAmelCase: List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __lowerCAmelCase: Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase: str = images return encoded_inputs def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase: str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) return images_with_overflow def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
322
1
import math import unittest def a__ ( A__ ): assert isinstance(lowerCAmelCase__, lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(lowerCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowerCAmelCase__ ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
366
def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Optional[int] = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ : Tuple = len(A__ ) if (len(A__ ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ), 'Stack'.center(A__ ), 'Postfix'.center(A__ ), sep=' | ', ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(A__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(A__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(A__ ) == 0: stack.append(A__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(A__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(A__ ) # push x to stack print( x.center(8 ), (''.join(A__ )).ljust(A__ ), (''.join(A__ )).ljust(A__ ), sep=' | ', ) # Output in tabular format while len(A__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ), (''.join(A__ )).ljust(A__ ), (''.join(A__ )).ljust(A__ ), sep=' | ', ) # Output in tabular format return "".join(A__ ) # return Postfix as str def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Tuple = list(infix[::-1] ) # reverse the infix equation for i in range(len(A__ ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ : Optional[int] = ')' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ : Optional[int] = '(' # change ")" to "(" return (infix_2_postfix(''.join(A__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": lowerCAmelCase__ : str =input('\nEnter an Infix Equation = ') # Input an Infix equation lowerCAmelCase__ : Optional[Any] =''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
162
0
from random import randint, random def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = 5 , ): '''simple docstring''' __UpperCamelCase :Optional[int] = [[-1] * number_of_cells] # Create a highway without any car __UpperCamelCase :Optional[int] = 0 __UpperCamelCase :Any = max(SCREAMING_SNAKE_CASE , 0 ) while i < number_of_cells: __UpperCamelCase :Union[str, Any] = ( randint(0 , SCREAMING_SNAKE_CASE ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Any = 0 __UpperCamelCase :Optional[int] = highway_now[car_index + 1 :] for cell in range(len(SCREAMING_SNAKE_CASE ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(SCREAMING_SNAKE_CASE , -1 ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = len(SCREAMING_SNAKE_CASE ) # Beforce calculations, the highway is empty __UpperCamelCase :List[str] = [-1] * number_of_cells for car_index in range(SCREAMING_SNAKE_CASE ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __UpperCamelCase :Optional[int] = min(highway_now[car_index] + 1 , SCREAMING_SNAKE_CASE ) # Number of empty cell before the next car __UpperCamelCase :Dict = get_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - 1 # We can't have the car causing an accident __UpperCamelCase :Tuple = min(next_highway[car_index] , SCREAMING_SNAKE_CASE ) if random() < probability: # Randomly, a driver will slow down __UpperCamelCase :Optional[Any] = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = len(highway[0] ) for i in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :int = update(highway[i] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = [-1] * number_of_cells for car_index in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Dict = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __UpperCamelCase :Dict = (car_index + speed) % number_of_cells # Commit the change of position __UpperCamelCase :Union[str, Any] = speed highway.append(SCREAMING_SNAKE_CASE ) return highway if __name__ == "__main__": import doctest doctest.testmod()
43
"""simple docstring""" def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = int(__lowerCamelCase ) if n_element < 1: UpperCAmelCase_ : List[Any] = ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ : List[Any] = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = (0, 0, 0) UpperCAmelCase_ : Dict = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2, hamming_list[j] * 3, hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _a = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _a = hamming(int(n)) print('-----------------------------------------------------') print(f"""The list with nth numbers is: {hamming_numbers}""") print('-----------------------------------------------------')
61
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a =logging.get_logger(__name__) a ={"""vocab_file""": """sentencepiece.bpe.model"""} a ={ """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } a ={ """camembert-base""": 512, } a ="""▁""" class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : int = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : List[str]="<s>" ,SCREAMING_SNAKE_CASE__ : List[str]="</s>" ,SCREAMING_SNAKE_CASE__ : List[str]="</s>" ,SCREAMING_SNAKE_CASE__ : int="<s>" ,SCREAMING_SNAKE_CASE__ : List[Any]="<unk>" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="<pad>" ,SCREAMING_SNAKE_CASE__ : Optional[int]="<mask>" ,SCREAMING_SNAKE_CASE__ : Dict=["<s>NOTUSED", "</s>NOTUSED"] ,SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ,): # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : Tuple = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else mask_token __lowerCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE__ ,eos_token=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,sep_token=SCREAMING_SNAKE_CASE__ ,cls_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,mask_token=SCREAMING_SNAKE_CASE__ ,additional_special_tokens=SCREAMING_SNAKE_CASE__ ,sp_model_kwargs=self.sp_model_kwargs ,**SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __lowerCamelCase : Dict = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} __lowerCamelCase : Optional[int] = len(self.fairseq_tokens_to_ids) __lowerCamelCase : List[Any] = len(self.sp_model) + len(self.fairseq_tokens_to_ids) __lowerCamelCase : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase : List[Any] = [self.cls_token_id] __lowerCamelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ,SCREAMING_SNAKE_CASE__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ ,token_ids_a=SCREAMING_SNAKE_CASE__ ,already_has_special_tokens=SCREAMING_SNAKE_CASE__) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None): __lowerCamelCase : Tuple = [self.sep_token_id] __lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def lowerCAmelCase ( self : Tuple): return len(self.fairseq_tokens_to_ids) + len(self.sp_model) def lowerCAmelCase ( self : Any): __lowerCamelCase : Union[str, Any] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str): return self.sp_model.encode(SCREAMING_SNAKE_CASE__ ,out_type=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : str): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any]): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int]): __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Optional[Any] = '' __lowerCamelCase : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__) + token __lowerCamelCase : int = True __lowerCamelCase : Dict = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__) return out_string.strip() def __getstate__( self : int): __lowerCamelCase : Optional[Any] = self.__dict__.copy() __lowerCamelCase : Any = None return state def __setstate__( self : int ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Any = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs'): __lowerCamelCase : int = {} __lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[str] = None): if not os.path.isdir(SCREAMING_SNAKE_CASE__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __lowerCamelCase : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file ,SCREAMING_SNAKE_CASE__) elif not os.path.isfile(self.vocab_file): with open(SCREAMING_SNAKE_CASE__ ,'wb') as fi: __lowerCamelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__) return (out_vocab_file,)
113
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a =["""gpt2"""] a ="""gpt2""" if is_tf_available(): class A_ ( tf.Module ): def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : Tuple): super().__init__() __lowerCamelCase : List[Any] = tokenizer __lowerCamelCase : str = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = TFGPTaLMHeadModel.from_config(SCREAMING_SNAKE_CASE__) @tf.function(input_signature=(tf.TensorSpec((None,) ,tf.string ,name='text'),)) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Optional[int]): __lowerCamelCase : str = self.tokenizer(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = tokenized['input_ids'].to_tensor() __lowerCamelCase : List[Any] = tf.cast(input_ids_dense > 0 ,tf.intaa) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowerCamelCase : Union[str, Any] = self.model(input_ids=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__)['logits'] return outputs @require_tf @require_keras_nlp class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[str]): super().setUp() __lowerCamelCase : str = [GPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowerCamelCase : List[Any] = [TFGPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) __lowerCamelCase : Optional[int] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] __lowerCamelCase : List[str] = list(zip(self.test_sentences ,self.test_sentences[::-1])) def lowerCAmelCase ( self : Optional[int]): for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers): for test_inputs in self.test_sentences: __lowerCamelCase : Union[str, Any] = tokenizer([test_inputs] ,return_tensors='tf') __lowerCamelCase : Dict = tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowerCamelCase : List[str] = python_outputs[key].numpy() __lowerCamelCase : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(SCREAMING_SNAKE_CASE__ ,tf.intaa) == tf_outputs_values)) @slow def lowerCAmelCase ( self : Optional[Any]): for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : Dict = tf.function(SCREAMING_SNAKE_CASE__) for test_inputs in self.test_sentences: __lowerCamelCase : Any = tf.constant(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = compiled_tokenizer(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = tf_tokenizer(SCREAMING_SNAKE_CASE__) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def lowerCAmelCase ( self : str): for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : Any = ModelToSave(tokenizer=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]]) __lowerCamelCase : str = model.serving(SCREAMING_SNAKE_CASE__) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCamelCase : Optional[Any] = Path(SCREAMING_SNAKE_CASE__) / 'saved.model' tf.saved_model.save(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,signatures={'serving_default': model.serving}) __lowerCamelCase : Tuple = tf.saved_model.load(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = loaded_model.signatures['serving_default'](SCREAMING_SNAKE_CASE__)['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def lowerCAmelCase ( self : int): for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]]) __lowerCamelCase : Optional[Any] = tf_tokenizer(SCREAMING_SNAKE_CASE__) # Build model with some sample inputs __lowerCamelCase : str = tf_tokenizer.get_config() __lowerCamelCase : List[str] = TFGPTaTokenizer.from_config(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = model_from_config(SCREAMING_SNAKE_CASE__) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def lowerCAmelCase ( self : Dict): for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowerCamelCase : List[Any] = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: __lowerCamelCase : Dict = tf.convert_to_tensor([self.test_sentences[0]]) __lowerCamelCase : Union[str, Any] = tf_tokenizer(SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = out['input_ids'].numpy().shape[1] assert out_length == max_length
113
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowerCamelCase ( a_ ): @staticmethod @abstractmethod def _lowerCAmelCase ( UpperCamelCase : ArgumentParser ) -> List[str]: """simple docstring""" raise NotImplementedError() @abstractmethod def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" raise NotImplementedError()
242
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : List[str] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowerCAmelCase__ : List[str] = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) lowerCAmelCase__ : Any = in_proj_weight[ : encoder_config.hidden_size, : ] lowerCAmelCase__ : int = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowerCAmelCase__ : int = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Any = dct.pop(__UpperCAmelCase ) lowerCAmelCase__ : Any = val def lowercase_ ( __UpperCAmelCase ) -> int: if "handwritten" in checkpoint_url: lowerCAmelCase__ : Tuple = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCAmelCase__ : Optional[int] = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowerCAmelCase__ : int = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert("""RGB""" ) return im @torch.no_grad() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Any = ViTConfig(image_size=384 , qkv_bias=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowerCAmelCase__ : List[str] = 768 elif "large" in checkpoint_url: # use ViT-large encoder lowerCAmelCase__ : Dict = 1024 lowerCAmelCase__ : Tuple = 4096 lowerCAmelCase__ : Optional[Any] = 24 lowerCAmelCase__ : Tuple = 16 lowerCAmelCase__ : List[str] = 1024 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : List[str] = """relu""" lowerCAmelCase__ : Dict = 1024 lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : int = False lowerCAmelCase__ : List[Any] = False # load HuggingFace model lowerCAmelCase__ : Tuple = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ) lowerCAmelCase__ : int = TrOCRForCausalLM(__UpperCAmelCase ) lowerCAmelCase__ : Any = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() # load state_dict of original model, rename some keys lowerCAmelCase__ : Union[str, Any] = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location="""cpu""" , check_hash=__UpperCAmelCase )["""model"""] lowerCAmelCase__ : List[Any] = create_rename_keys(__UpperCAmelCase , __UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowerCAmelCase__ : int = state_dict.pop(__UpperCAmelCase ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowerCAmelCase__ : Optional[Any] = val else: lowerCAmelCase__ : int = val # load state dict model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image lowerCAmelCase__ : Any = ViTImageProcessor(size=encoder_config.image_size ) lowerCAmelCase__ : Optional[Any] = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowerCAmelCase__ : List[str] = TrOCRProcessor(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Dict = processor(images=prepare_img(__UpperCAmelCase ) , return_tensors="""pt""" ).pixel_values # verify logits lowerCAmelCase__ : str = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowerCAmelCase__ : List[str] = model(pixel_values=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) lowerCAmelCase__ : str = outputs.logits lowerCAmelCase__ : Union[str, Any] = torch.Size([1, 1, 5_0265] ) if "trocr-base-handwritten" in checkpoint_url: lowerCAmelCase__ : Optional[int] = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: lowerCAmelCase__ : int = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: lowerCAmelCase__ : Optional[Any] = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: lowerCAmelCase__ : int = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , __UpperCAmelCase , atol=1E-3 ), "First elements of logits not as expected" Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _A = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
242
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __snake_case ( _lowerCAmelCase : Tuple ) -> Tuple: A_ : Dict = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : str ) -> int: A_ : Optional[Any] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: A_ : Tuple = s_dict.pop(_lowerCAmelCase ) elif "subsample" in key: A_ : Union[str, Any] = s_dict.pop(_lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : List[str] ) -> Optional[int]: A_ : Dict = emb.weight.shape A_ : Tuple = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) A_ : Tuple = emb.weight.data return lin_layer def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any ) -> Tuple: A_ : str = torch.load(_lowerCAmelCase , map_location="cpu" ) A_ : Optional[Any] = mam_aaa["args"] A_ : List[Any] = mam_aaa["model"] A_ : Optional[Any] = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(_lowerCAmelCase ) rename_keys(_lowerCAmelCase ) A_ : Union[str, Any] = state_dict["decoder.embed_tokens.weight"].shape[0] A_ : Optional[int] = args.share_decoder_input_output_embed A_ : List[str] = [int(_lowerCAmelCase ) for i in args.conv_kernel_sizes.split("," )] A_ : int = SpeechaTextConfig( vocab_size=_lowerCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(_lowerCAmelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=_lowerCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=_lowerCAmelCase , num_beams=5 , max_length=200 , use_cache=_lowerCAmelCase , decoder_start_token_id=2 , early_stopping=_lowerCAmelCase , ) A_ : List[str] = SpeechaTextForConditionalGeneration(_lowerCAmelCase ) A_ : Optional[int] = model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0 and not set(_lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," f" but all the following weights are missing {missing}" ) if tie_embeds: A_ : Optional[int] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A_ : List[Any] = lm_head_weights model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--fairseq_path''', type=str, help='''Path to the fairseq model (.pt) file.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _lowerCAmelCase : Dict = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
354
from collections.abc import Sequence def __snake_case ( _lowerCAmelCase : Sequence[int] | None = None ) -> int: if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) A_ : Any = nums[0] for i in range(1 , len(_lowerCAmelCase ) ): A_ : Any = nums[i] A_ : List[str] = max(_lowerCAmelCase , ans + num , _lowerCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _lowerCAmelCase : List[Any] = int(input('''Enter number of elements : ''').strip()) _lowerCAmelCase : Dict = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
70
0
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowerCamelCase ( __lowerCamelCase : Any ) ->int: if not is_accelerate_available(): return method _SCREAMING_SNAKE_CASE = version.parse(accelerate.__version__ ).base_version if version.parse(_A ) < version.parse("""0.17.0""" ): return method def wrapper(self : List[str] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Dict ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *_A , **_A ) return wrapper
58
import re from filelock import FileLock try: import nltk UpperCAmelCase__ : Tuple = True except (ImportError, ModuleNotFoundError): UpperCAmelCase__ : Optional[Any] = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __lowercase ( _A ) -> str: re.sub("""<n>""" , """""" , _A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_A ) )
245
0
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __magic_name__ : def __init__( self : Any ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Optional[int]=2 ,_UpperCAmelCase : Tuple=32 ,_UpperCAmelCase : Dict=16 ,_UpperCAmelCase : Optional[Any]=3 ,_UpperCAmelCase : Tuple=True ,_UpperCAmelCase : Dict=True ,_UpperCAmelCase : str=32 ,_UpperCAmelCase : Tuple=4 ,_UpperCAmelCase : List[Any]=[0, 1, 2, 3] ,_UpperCAmelCase : List[str]=4 ,_UpperCAmelCase : Any=37 ,_UpperCAmelCase : List[Any]="gelu" ,_UpperCAmelCase : Optional[int]=0.1 ,_UpperCAmelCase : Tuple=0.1 ,_UpperCAmelCase : Optional[Any]=0.02 ,_UpperCAmelCase : Optional[Any]=3 ,_UpperCAmelCase : List[str]=[1, 384, 24, 24] ,_UpperCAmelCase : Union[str, Any]=True ,_UpperCAmelCase : List[str]=None ,): _a : int = parent _a : Optional[Any] = batch_size _a : str = image_size _a : str = patch_size _a : Any = num_channels _a : Optional[Any] = is_training _a : str = use_labels _a : Union[str, Any] = hidden_size _a : int = num_hidden_layers _a : str = backbone_out_indices _a : List[Any] = num_attention_heads _a : Any = intermediate_size _a : List[Any] = hidden_act _a : int = hidden_dropout_prob _a : Optional[int] = attention_probs_dropout_prob _a : Optional[int] = initializer_range _a : Tuple = num_labels _a : Tuple = backbone_featmap_shape _a : Optional[int] = scope _a : Dict = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _a : str = (image_size // patch_size) ** 2 _a : Optional[int] = num_patches + 1 def __lowercase ( self : Dict ): _a : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Any = None if self.use_labels: _a : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) _a : int = self.get_config() return config, pixel_values, labels def __lowercase ( self : int ): _a : Dict = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [96, 192, 384, 768], 'num_groups': 2, } return DPTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,backbone_out_indices=self.backbone_out_indices ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_UpperCAmelCase ,initializer_range=self.initializer_range ,is_hybrid=self.is_hybrid ,backbone_config=_UpperCAmelCase ,backbone_featmap_shape=self.backbone_featmap_shape ,) def __lowercase ( self : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : int ,_UpperCAmelCase : Optional[Any] ): _a : Optional[Any] = DPTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ): _a : List[Any] = self.num_labels _a : Dict = DPTForDepthEstimation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : str = model(_UpperCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape ,(self.batch_size, self.image_size, self.image_size) ) def __lowercase ( self : str ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int ,_UpperCAmelCase : List[Any] ): _a : Optional[int] = self.num_labels _a : Optional[int] = DPTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Optional[int] = model(_UpperCAmelCase ,labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowercase ( self : List[Any] ): _a : List[str] = self.prepare_config_and_inputs() _a , _a , _a : List[Any] = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCAmelCase : int = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[str] = False def __lowercase ( self : Union[str, Any] ): _a : Union[str, Any] = DPTModelTester(self ) _a : int = ConfigTester(self ,config_class=_UpperCAmelCase ,has_text_modality=_UpperCAmelCase ,hidden_size=37 ) def __lowercase ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds' ) def __lowercase ( self : Tuple ): pass def __lowercase ( self : List[str] ): _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Union[str, Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase ,nn.Linear ) ) def __lowercase ( self : Any ): _a , _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_UpperCAmelCase ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Union[str, Any] = [*signature.parameters.keys()] _a : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_UpperCAmelCase ) def __lowercase ( self : str ): _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def __lowercase ( self : int ): _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_UpperCAmelCase ) def __lowercase ( self : str ): _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def __lowercase ( self : Union[str, Any] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : Tuple = True if model_class in get_values(_UpperCAmelCase ): continue _a : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() _a : Optional[int] = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase ) _a : Optional[Any] = model(**_UpperCAmelCase ).loss loss.backward() def __lowercase ( self : Union[str, Any] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _a , _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[Any] = False _a : List[Any] = True if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue _a : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() _a : int = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase ) _a : Optional[Any] = model(**_UpperCAmelCase ).loss loss.backward() def __lowercase ( self : str ): _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() _a : List[str] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _a : Tuple = model_class(config=_UpperCAmelCase ) # Skip the check for the backbone _a : Any = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _a : Union[str, Any] = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowercase ( self : Optional[Any] ): pass @slow def __lowercase ( self : Union[str, Any] ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _a : List[Any] = DPTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowercase ( self : Any ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _a , _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[Any] = 'add' with self.assertRaises(_UpperCAmelCase ): _a : List[str] = DPTForDepthEstimation(_UpperCAmelCase ) def __lowerCamelCase ( ) -> Optional[Any]: _a : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class __magic_name__ ( unittest.TestCase ): def __lowercase ( self : Any ): _a : Optional[Any] = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' ) _a : Union[str, Any] = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(_UpperCAmelCase ) _a : Optional[int] = prepare_img() _a : Optional[Any] = image_processor(images=_UpperCAmelCase ,return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _a : Tuple = model(**_UpperCAmelCase ) _a : Union[str, Any] = outputs.predicted_depth # verify the predicted depth _a : str = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape ,_UpperCAmelCase ) _a : int = torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 ,_UpperCAmelCase ,atol=1E-4 ) )
107
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __magic_name__ : lowerCAmelCase : str = field( metadata={'help': 'The output directory where the model will be written.'} , ) lowerCAmelCase : str = field( metadata={ 'help': ( 'The encoder model checkpoint for weights initialization.' 'Don\'t set if you want to train an encoder model from scratch.' ) } , ) lowerCAmelCase : str = field( metadata={ 'help': ( 'The decoder model checkpoint for weights initialization.' 'Don\'t set if you want to train a decoder model from scratch.' ) } , ) lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained encoder config name or path if not the same as encoder_model_name'} ) lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained decoder config name or path if not the same as decoder_model_name'} ) def __lowerCamelCase ( ) -> Union[str, Any]: _a : Any = HfArgumentParser((ModelArguments,) ) ((_a) , ) : Dict = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _a : Optional[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _a : Optional[Any] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _a : List[str] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _a : Optional[int] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _a : List[Any] = True _a : int = True _a : Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowerCAmelCase_ , decoder_config=lowerCAmelCase_ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _a : List[str] = decoder_config.decoder_start_token_id _a : Optional[int] = decoder_config.pad_token_id if decoder_start_token_id is None: _a : Tuple = decoder_config.bos_token_id if pad_token_id is None: _a : List[Any] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work _a : Any = decoder_config.eos_token_id _a : Tuple = decoder_start_token_id _a : Any = pad_token_id _a : Dict = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _a : Dict = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _a : int = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
107
1
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class lowercase : pass
101
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> Union[str, Any]: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope A_ = self.vocab_size - 1 def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) A_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = OpenAIGPTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , head_mask=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = OpenAIGPTLMHeadModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) -> int: '''simple docstring''' A_ = OpenAIGPTDoubleHeadsModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = self.num_labels A_ = OpenAIGPTForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): lowercase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowercase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowercase = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Union[str, Any]: '''simple docstring''' A_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) A_ = inputs_dict["""labels"""] A_ = inputs_dict["""labels"""] A_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=UpperCamelCase__ , ) A_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = OpenAIGPTModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=37 ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> List[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = OpenAIGPTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(UpperCamelCase__ ) A_ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=UpperCamelCase__ ) # the president is A_ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ ) self.assertListEqual(output_ids[0].tolist() , UpperCamelCase__ )
162
0
"""simple docstring""" __A = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) __A = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: _lowerCAmelCase =from_type.lower().strip("""s""" ) _lowerCAmelCase =to_type.lower().strip("""s""" ) _lowerCAmelCase =UNIT_SYMBOL.get(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =UNIT_SYMBOL.get(__UpperCamelCase , __UpperCamelCase ) if from_sanitized not in METRIC_CONVERSION: _lowerCAmelCase =( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(__UpperCamelCase )}''' ) raise ValueError(__UpperCamelCase ) if to_sanitized not in METRIC_CONVERSION: _lowerCAmelCase =( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(__UpperCamelCase )}''' ) raise ValueError(__UpperCamelCase ) _lowerCAmelCase =METRIC_CONVERSION[from_sanitized] _lowerCAmelCase =METRIC_CONVERSION[to_sanitized] _lowerCAmelCase =1 if from_exponent > to_exponent: _lowerCAmelCase =from_exponent - to_exponent else: _lowerCAmelCase =-(to_exponent - from_exponent) return value * pow(10 , __UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
341
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A = logging.get_logger(__name__) __A = {'vocab_file': 'spiece.model'} __A = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } __A = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) __A = 0 __A = 1 __A = 2 __A = 3 __A = 4 class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = '''left''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =3 _lowerCAmelCase =do_lower_case _lowerCAmelCase =remove_space _lowerCAmelCase =keep_accents _lowerCAmelCase =vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def _lowerCAmelCase ( self ) -> str: return len(self.sp_model ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None return state def __setstate__( self , __UpperCAmelCase ) -> Tuple: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: if self.remove_space: _lowerCAmelCase =""" """.join(inputs.strip().split() ) else: _lowerCAmelCase =inputs _lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase ) _lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase =outputs.lower() return outputs def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: _lowerCAmelCase =self.preprocess_text(__UpperCAmelCase ) _lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) _lowerCAmelCase =[] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase =cur_pieces[1:] else: _lowerCAmelCase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: return self.sp_model.PieceToId(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.IdToPiece(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str: _lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase ) _lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase =[] _lowerCAmelCase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) _lowerCAmelCase =[] sub_texts.append(__UpperCAmelCase ) else: current_sub_text.append(__UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase ="""""".join(__UpperCAmelCase ) _lowerCAmelCase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase ) return clean_text else: return text def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
341
1
"""simple docstring""" from __future__ import annotations def lowercase (SCREAMING_SNAKE_CASE_ : int | str ) -> bool: SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) return n == n[::-1] def lowercase (SCREAMING_SNAKE_CASE_ : int = 1_00_00_00 ) -> str: SCREAMING_SNAKE_CASE = 0 for i in range(1 , SCREAMING_SNAKE_CASE_ ): if is_palindrome(SCREAMING_SNAKE_CASE_ ) and is_palindrome(bin(SCREAMING_SNAKE_CASE_ ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
113
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> List[str]: SCREAMING_SNAKE_CASE = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: SCREAMING_SNAKE_CASE = 1_28 elif "12-12" in model_name: SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = 12 elif "14-14" in model_name: SCREAMING_SNAKE_CASE = 14 SCREAMING_SNAKE_CASE = 14 elif "16-16" in model_name: SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = 16 else: raise ValueError('Model not supported' ) SCREAMING_SNAKE_CASE = 'huggingface/label-files' if "speech-commands" in model_name: SCREAMING_SNAKE_CASE = 35 SCREAMING_SNAKE_CASE = 'speech-commands-v2-id2label.json' else: SCREAMING_SNAKE_CASE = 5_27 SCREAMING_SNAKE_CASE = 'audioset-id2label.json' SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: if "module.v" in name: SCREAMING_SNAKE_CASE = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: SCREAMING_SNAKE_CASE = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: SCREAMING_SNAKE_CASE = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: SCREAMING_SNAKE_CASE = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace('attn' , 'attention.self' ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: SCREAMING_SNAKE_CASE = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: SCREAMING_SNAKE_CASE = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: SCREAMING_SNAKE_CASE = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def lowercase (SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: SCREAMING_SNAKE_CASE = key.split('.' ) SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[:dim] SCREAMING_SNAKE_CASE = val[dim : dim * 2] SCREAMING_SNAKE_CASE = val[-dim:] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: SCREAMING_SNAKE_CASE = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> Optional[int]: SCREAMING_SNAKE_CASE = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict SCREAMING_SNAKE_CASE = model_name_to_url[model_name] SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE_ ) # rename some keys SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load 🤗 model SCREAMING_SNAKE_CASE = ASTForAudioClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 SCREAMING_SNAKE_CASE = -4.2_67_73_93 if 'speech-commands' not in model_name else -6.84_59_78 SCREAMING_SNAKE_CASE = 4.5_68_99_74 if 'speech-commands' not in model_name else 5.5_65_45_26 SCREAMING_SNAKE_CASE = 10_24 if 'speech-commands' not in model_name else 1_28 SCREAMING_SNAKE_CASE = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) if "speech-commands" in model_name: SCREAMING_SNAKE_CASE = load_dataset('speech_commands' , 'v0.02' , split='validation' ) SCREAMING_SNAKE_CASE = dataset[0]['audio']['array'] else: SCREAMING_SNAKE_CASE = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torchaudio.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = waveform.squeeze().numpy() SCREAMING_SNAKE_CASE = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=1_60_00 , return_tensors='pt' ) # forward pass SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": SCREAMING_SNAKE_CASE = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": SCREAMING_SNAKE_CASE = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": SCREAMING_SNAKE_CASE = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": SCREAMING_SNAKE_CASE = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": SCREAMING_SNAKE_CASE = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": SCREAMING_SNAKE_CASE = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": SCREAMING_SNAKE_CASE = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": SCREAMING_SNAKE_CASE = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __UpperCamelCase = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
113
1
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
309
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ): """simple docstring""" lowerCAmelCase = size if size is not None else {'shortest_edge': 20} lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_flip_channel_order def UpperCamelCase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class a ( a__ , unittest.TestCase ): snake_case__ = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MobileViTImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , 'do_resize' ) ) self.assertTrue(hasattr(_snake_case , 'size' ) ) self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
309
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _A = logging.get_logger(__name__) class lowerCamelCase ( snake_case_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['''pixel_values'''] def __init__(self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ): """simple docstring""" super().__init__(**__snake_case ) UpperCAmelCase__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224} UpperCAmelCase__ : List[str] = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase__ : List[Any] = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} UpperCAmelCase__ : Any = get_size_dict(__snake_case , param_name="""crop_size""" ) UpperCAmelCase__ : List[Any] = do_resize UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : List[str] = resample UpperCAmelCase__ : str = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : Optional[int] = do_center_crop UpperCAmelCase__ : Optional[Any] = crop_size UpperCAmelCase__ : Union[str, Any] = do_flip_channel_order def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PIL.Image.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : List[str] = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase__ : Tuple = get_resize_output_image_size(__snake_case , size=size["""shortest_edge"""] , default_to_square=__snake_case ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Optional[int] = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__snake_case , size=(size["""height"""], size["""width"""]) , data_format=__snake_case , **__snake_case ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" return flip_channel_order(__snake_case , data_format=__snake_case ) def _a (self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : str = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : List[str] = resample if resample is not None else self.resample UpperCAmelCase__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : Union[str, Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCAmelCase__ : Optional[int] = size if size is not None else self.size UpperCAmelCase__ : Optional[int] = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase__ : Optional[int] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : Union[str, Any] = get_size_dict(__snake_case , param_name="""crop_size""" ) UpperCAmelCase__ : Optional[Any] = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase__ : str = [to_numpy_array(__snake_case ) for image in images] if do_resize: UpperCAmelCase__ : List[Any] = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: UpperCAmelCase__ : Optional[int] = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: UpperCAmelCase__ : Any = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCAmelCase__ : str = [self.flip_channel_order(image=__snake_case ) for image in images] UpperCAmelCase__ : Union[str, Any] = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] UpperCAmelCase__ : int = {"""pixel_values""": images} return BatchFeature(data=__snake_case , tensor_type=__snake_case ) def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" UpperCAmelCase__ : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__snake_case ) != len(__snake_case ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__snake_case ): UpperCAmelCase__ : int = target_sizes.numpy() UpperCAmelCase__ : Union[str, Any] = [] for idx in range(len(__snake_case ) ): UpperCAmelCase__ : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__snake_case ) UpperCAmelCase__ : Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__snake_case ) else: UpperCAmelCase__ : str = logits.argmax(dim=1 ) UpperCAmelCase__ : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
171
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): _lowercase: Optional[datasets.Features] = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): _lowercase: Tuple = PandasConfig def lowercase__ ( self : Optional[Any] ) -> str: return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : List[str] , __snake_case : Dict ) -> int: if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) _lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__snake_case , (str, list, tuple) ): _lowerCAmelCase = data_files if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase = [dl_manager.iter_files(__snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase = [dl_manager.iter_files(__snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=__snake_case , gen_kwargs={"""files""": files} ) ) return splits def lowercase__ ( self : List[Any] , __snake_case : pa.Table ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase = table_cast(__snake_case , self.config.features.arrow_schema ) return pa_table def lowercase__ ( self : Dict , __snake_case : Optional[Any] ) -> Any: for i, file in enumerate(itertools.chain.from_iterable(__snake_case ) ): with open(__snake_case , """rb""" ) as f: _lowerCAmelCase = pa.Table.from_pandas(pd.read_pickle(__snake_case ) ) yield i, self._cast_table(__snake_case )
70
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = k_size // 2 __UpperCAmelCase : int = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __UpperCAmelCase : List[Any] = 1 / (2 * pi * sigma) * exp(-(square(__lowerCAmelCase ) + square(__lowerCAmelCase )) / (2 * square(__lowerCAmelCase )) ) return g def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase : Any = image.shape[0], image.shape[1] # dst image height and width __UpperCAmelCase : str = height - k_size + 1 __UpperCAmelCase : int = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __UpperCAmelCase : str = zeros((dst_height * dst_width, k_size * k_size) ) __UpperCAmelCase : str = 0 for i, j in product(range(__lowerCAmelCase ) , range(__lowerCAmelCase ) ): __UpperCAmelCase : Tuple = ravel(image[i : i + k_size, j : j + k_size] ) __UpperCAmelCase : Optional[Any] = window row += 1 # turn the kernel into shape(k*k, 1) __UpperCAmelCase : Tuple = gen_gaussian_kernel(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase : Tuple = ravel(__lowerCAmelCase ) # reshape and get the dst image __UpperCAmelCase : Tuple = dot(__lowerCAmelCase , __lowerCAmelCase ).reshape(__lowerCAmelCase , __lowerCAmelCase ).astype(__lowerCAmelCase ) return dst if __name__ == "__main__": # read original image _UpperCamelCase = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value _UpperCamelCase = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _UpperCamelCase = gaussian_filter(gray, 3, sigma=1) _UpperCamelCase = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
371
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
16
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowerCAmelCase : Optional[Any] = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
107
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( metadata={"""help""": """The output directory where the model will be written."""} , ) SCREAMING_SNAKE_CASE_ : str = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) SCREAMING_SNAKE_CASE_ : str = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def __magic_name__ ( ): '''simple docstring''' a = HfArgumentParser((ModelArguments,) ) ((a) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: a = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: a = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: a = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: a = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed a = True a = True a = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path, decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path, encoder_config=A, decoder_config=A, ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens a = decoder_config.decoder_start_token_id a = decoder_config.pad_token_id if decoder_start_token_id is None: a = decoder_config.bos_token_id if pad_token_id is None: a = decoder_config.eos_token_id # This is necessary to make Flax's generate() work a = decoder_config.eos_token_id a = decoder_start_token_id a = pad_token_id a = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) a = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) a = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
107
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """levit""" def __init__( self : Dict , lowerCamelCase_ : str=224 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Any=2 , lowerCamelCase_ : str=1 , lowerCamelCase_ : Tuple=16 , lowerCamelCase_ : int=[128, 256, 384] , lowerCamelCase_ : Optional[int]=[4, 8, 12] , lowerCamelCase_ : List[Any]=[4, 4, 4] , lowerCamelCase_ : List[str]=[16, 16, 16] , lowerCamelCase_ : List[str]=0 , lowerCamelCase_ : str=[2, 2, 2] , lowerCamelCase_ : Union[str, Any]=[2, 2, 2] , lowerCamelCase_ : Tuple=0.0_2 , **lowerCamelCase_ : int , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = kernel_size UpperCamelCase = stride UpperCamelCase = padding UpperCamelCase = hidden_sizes UpperCamelCase = num_attention_heads UpperCamelCase = depths UpperCamelCase = key_dim UpperCamelCase = drop_path_rate UpperCamelCase = patch_size UpperCamelCase = attention_ratio UpperCamelCase = mlp_ratio UpperCamelCase = initializer_range UpperCamelCase = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return 1E-4
165
from math import pi def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
165
1
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = tmp_path / """cache""" _snake_case = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case = TextDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read() _check_text_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = tmp_path / """cache""" _snake_case = {"""text""": """string"""} _snake_case = features.copy() if features else default_expected_features _snake_case = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case = TextDatasetReader(_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_text_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = tmp_path / """cache""" _snake_case = {"""text""": """string"""} _snake_case = TextDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE ).read() _check_text_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = text_path elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = [text_path] _snake_case = tmp_path / """cache""" _snake_case = {"""text""": """string"""} _snake_case = TextDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_text_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=("train",) ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for split in splits: _snake_case = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = tmp_path / """cache""" _snake_case = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case = TextDatasetReader({"""train""": text_path} , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _snake_case = {"""text""": """string"""} _snake_case = features.copy() if features else default_expected_features _snake_case = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case = TextDatasetReader({"""train""": text_path} , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if split: _snake_case = {split: text_path} else: _snake_case = """train""" _snake_case = {"""train""": text_path, """test""": text_path} _snake_case = tmp_path / """cache""" _snake_case = {"""text""": """string"""} _snake_case = TextDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
341
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ): _snake_case = 1 _snake_case = 2 _snake_case = 0 _snake_case = 0 _snake_case = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
341
1
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) def lowercase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> Tuple: def constraint_to_multiple_of(lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=0 , lowerCAmelCase__ : Optional[Any]=None ): __a = round(val / multiple ) * multiple if max_val is not None and x > max_val: __a = math.floor(val / multiple ) * multiple if x < min_val: __a = math.ceil(val / multiple ) * multiple return x __a = (output_size, output_size) if isinstance(_A , _A ) else output_size __a = get_image_size(_A ) __a = output_size # determine new height and width __a = output_height / input_height __a = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __a = scale_width else: # fit height __a = scale_height __a = constraint_to_multiple_of(scale_height * input_height , multiple=_A ) __a = constraint_to_multiple_of(scale_width * input_width , multiple=_A ) return (new_height, new_width) class __lowerCAmelCase ( lowerCamelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ['pixel_values'] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = False , _a = 1 , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , **_a , ): super().__init__(**__snake_case ) __a = size if size is not None else {'height': 384, 'width': 384} __a = get_size_dict(__snake_case ) __a = do_resize __a = size __a = keep_aspect_ratio __a = ensure_multiple_of __a = resample __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCAmelCase ( self , _a , _a , _a = False , _a = 1 , _a = PILImageResampling.BICUBIC , _a = None , **_a , ): __a = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) __a = get_resize_output_image_size( __snake_case , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=__snake_case , multiple=__snake_case , ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def __UpperCAmelCase ( self , _a , _a , _a = None , **_a , ): return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def __UpperCAmelCase ( self , _a , _a , _a , _a = None , **_a , ): return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def __UpperCAmelCase ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ): __a = do_resize if do_resize is not None else self.do_resize __a = size if size is not None else self.size __a = get_size_dict(__snake_case ) __a = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __a = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __a = resample if resample is not None else self.resample __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __a = [to_numpy_array(__snake_case ) for image in images] if do_resize: __a = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_rescale: __a = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: __a = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] __a = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] __a = {'pixel_values': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case ) def __UpperCAmelCase ( self , _a , _a = None ): __a = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__snake_case ): __a = target_sizes.numpy() __a = [] for idx in range(len(__snake_case ) ): __a = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__snake_case ) __a = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__snake_case ) else: __a = logits.argmax(dim=1 ) __a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
357
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a , _a ): self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def __UpperCAmelCase ( self ): __a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_a ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def __UpperCAmelCase ( self ): __a = None ops.enable_eager_execution_internal() __a = tf.config.list_physical_devices('''CPU''' ) if len(_a ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a = tf.config.list_logical_devices(device_type='''CPU''' ) __a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a = GradientAccumulator() __a = tf.Variable([4.0, 3.0] ) __a , __a = create_optimizer(5E-5 , 10 , 5 ) __a = tf.Variable([0.0, 0.0] , trainable=_a ) def accumulate_on_replica(_a ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_a , _a ): with strategy.scope(): __a = strategy.experimental_local_results(_a ) local_variables[0].assign(_a ) local_variables[1].assign(_a ) strategy.run(_a , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_a ) def _check_local_values(_a , _a ): __a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _a , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _a , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
11
0
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata UpperCamelCase_ = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class a_ (tr.AbstractTransform ): def __init__( self , snake_case_ = " " ): _lowerCAmelCase : List[Any] = sentence_delimiter def __UpperCamelCase ( self , snake_case_ ): return list(snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = [] for sent_idx, sentence in enumerate(snake_case_ ): chars.extend(self.process_string(snake_case_ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(snake_case_ ) - 1: chars.append(self.sentence_delimiter ) return chars UpperCamelCase_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: UpperCamelCase_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) UpperCamelCase_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ UpperCamelCase_ = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ UpperCamelCase_ = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ (datasets.Metric ): def __UpperCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_=False ): if concatenate_texts: return jiwer.compute_measures( snake_case_ , snake_case_ , truth_transform=snake_case_ , hypothesis_transform=snake_case_ , )["wer"] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = 0 for prediction, reference in zip(snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[int] = jiwer.compute_measures( snake_case_ , snake_case_ , truth_transform=snake_case_ , hypothesis_transform=snake_case_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
309
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Dict: _lowerCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ) -> Tuple: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _lowerCAmelCase : int = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : str = qkv_bias def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : str = 3_64 if """coco""" in model_name else 2_24 _lowerCAmelCase : str = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCAmelCase : int = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCAmelCase : Union[str, Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCAmelCase : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _lowerCAmelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None , _lowerCamelCase : int=False ) -> List[str]: _lowerCAmelCase : int = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _lowerCAmelCase : List[Any] = tokenizer("""\n""" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _lowerCAmelCase , _lowerCAmelCase : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : List[Any] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _lowerCAmelCase : Optional[int] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _lowerCAmelCase : Dict = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _lowerCAmelCase : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _lowerCAmelCase : int = key.replace("""t5""" , """language""" ) _lowerCAmelCase : Tuple = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCAmelCase : Union[str, Any] = load_demo_image() _lowerCAmelCase : Optional[int] = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCAmelCase : Optional[int] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCAmelCase : Tuple = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCAmelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _lowerCAmelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCAmelCase : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _lowerCAmelCase : Dict = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCAmelCase : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCAmelCase : List[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _lowerCAmelCase : Optional[int] = """""" _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values} ) _lowerCAmelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _lowerCamelCase ) _lowerCAmelCase : int = input_ids.shape[1] _lowerCAmelCase : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : List[str] = [text.strip() for text in output_text] print("""HF generation:""" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
1
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Tuple =ComputeEnvironment.AMAZON_SAGEMAKER lowerCamelCase : Optional[Any] =True lowerCamelCase : List[str] ="ml.p3.2xlarge" lowerCamelCase : Union[str, Any] ="accelerate_sagemaker_execution_role" lowerCamelCase : Tuple ="hf-sm" lowerCamelCase : List[Any] ="us-east-1" lowerCamelCase : List[str] =1 lowerCamelCase : List[str] ="accelerate-sagemaker-1" lowerCamelCase : List[str] ="1.6" lowerCamelCase : str ="4.4" lowerCamelCase : List[Any] ="train.py" lowerCamelCase : List[Any] =[ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] lowerCamelCase : Tuple =[ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : int = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , lowerCAmelCase ) assert isinstance(converted_args["""do_train"""] , lowerCAmelCase ) assert isinstance(converted_args["""epochs"""] , lowerCAmelCase ) assert isinstance(converted_args["""learning_rate"""] , lowerCAmelCase ) assert isinstance(converted_args["""max_steps"""] , lowerCAmelCase ) with pytest.raises(lowerCAmelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
139
from __future__ import annotations def snake_case_ (__A : list[float] , __A : list[float] ) -> float: __lowerCAmelCase : Union[str, Any] = sorted(numsa + numsa ) __lowerCAmelCase ,__lowerCAmelCase : Optional[int] = divmod(len(__A ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = [float(x) for x in input("""Enter the elements of first array: """).split()] __UpperCAmelCase = [float(x) for x in input("""Enter the elements of second array: """).split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
139
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ReformerTokenizer _UpperCamelCase : Tuple = ReformerTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = True def __A ( self ): super().setUp() _lowerCAmelCase : Any = ReformerTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ): _lowerCAmelCase : Optional[int] = """<s>""" _lowerCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __A ( self ): _lowerCAmelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(a__ ) , 1000 ) def __A ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = self.get_rust_tokenizer() _lowerCAmelCase : Any = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : Any = tokenizer.tokenize(a__ ) _lowerCAmelCase : Dict = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : int = tokenizer.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase : List[Any] = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : str = tokenizer.encode(a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : List[str] = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[Any] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase : Optional[Any] = ReformerTokenizer(a__ , keep_accents=a__ ) _lowerCAmelCase : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [285, 46, 10, 170, 382] , ) _lowerCAmelCase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __A ( self ): return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def __A ( self ): _lowerCAmelCase : Union[str, Any] = """Hello World!""" _lowerCAmelCase : Tuple = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __A ( self ): _lowerCAmelCase : Dict = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _lowerCAmelCase : Union[str, Any] = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @require_torch @slow def __A ( self ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence _lowerCAmelCase : Union[str, Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowerCAmelCase : Dict = """ """.join(a__ ) _lowerCAmelCase : List[str] = self.big_tokenizer.encode_plus(a__ , return_tensors="""pt""" ) _lowerCAmelCase : Optional[int] = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) _lowerCAmelCase : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _lowerCAmelCase : Optional[int] = encoded_sequence["""input_ids"""].shape _lowerCAmelCase : Any = ReformerModel(a__ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**a__ ) model(**a__ ) @slow def __A ( self ): # fmt: off _lowerCAmelCase : Dict = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _lowerCAmelCase : str = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=a__ , sequences=a__ , )
44
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowercase (UpperCamelCase_ , unittest.TestCase ): """simple docstring""" _snake_case = KandinskyVaaControlnetPipeline _snake_case = ["""image_embeds""", """negative_image_embeds""", """hint"""] _snake_case = ["""image_embeds""", """negative_image_embeds""", """hint"""] _snake_case = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _snake_case = False @property def UpperCAmelCase ( self ) -> Any: return 3_2 @property def UpperCAmelCase ( self ) -> Union[str, Any]: return 3_2 @property def UpperCAmelCase ( self ) -> List[str]: return self.time_input_dim @property def UpperCAmelCase ( self ) -> str: return self.time_input_dim * 4 @property def UpperCAmelCase ( self ) -> Optional[Any]: return 1_0_0 @property def UpperCAmelCase ( self ) -> Any: torch.manual_seed(0 ) snake_case : Any = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case : Optional[int] = UNetaDConditionModel(**_a ) return model @property def UpperCAmelCase ( self ) -> Optional[Any]: return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Union[str, Any] = self.dummy_unet snake_case : Optional[Any] = self.dummy_movq snake_case : Any = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_a , ) snake_case : str = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCAmelCase ( self , A , A=0 ) -> Optional[Any]: snake_case : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) snake_case : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create hint snake_case : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): snake_case : Optional[Any] = torch.manual_seed(_a ) else: snake_case : Tuple = torch.Generator(device=_a ).manual_seed(_a ) snake_case : Tuple = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 6_4, """width""": 6_4, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCAmelCase ( self ) -> str: snake_case : str = """cpu""" snake_case : Any = self.get_dummy_components() snake_case : str = self.pipeline_class(**_a ) snake_case : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case : Dict = pipe(**self.get_dummy_inputs(_a ) ) snake_case : Optional[int] = output.images snake_case : Any = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] snake_case : int = image[0, -3:, -3:, -1] snake_case : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case : Tuple = np.array( [0.6_95_98_26, 0.86_82_79, 0.7_55_80_92, 0.68_76_94_67, 0.85_80_58_04, 0.65_97_74_96, 0.44_88_53_02, 0.5_95_91_11, 0.4_25_15_95] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> str: snake_case : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case : int = torch.from_numpy(np.array(_a ) ).float() / 2_55.0 snake_case : List[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case : Optional[Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) snake_case : Optional[Any] = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) snake_case : Tuple = """A robot, 4k photo""" snake_case : Dict = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case : List[Any] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case : int = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case : Union[str, Any] = pipeline( image_embeds=_a , negative_image_embeds=_a , hint=_a , generator=_a , num_inference_steps=1_0_0 , output_type="""np""" , ) snake_case : List[Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(_a , _a )
362
import warnings from functools import wraps from typing import Callable def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Callable: @wraps(lowercase ) def _inner_fn(*lowercase ,**lowercase ): warnings.warn( (f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") ,lowercase ,) return fn(*lowercase ,**lowercase ) return _inner_fn
176
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Optional[Any] = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
165
"""simple docstring""" def A ( snake_case__ = 10_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1, 1 SCREAMING_SNAKE_CASE__ = 2 while True: SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = fa + fa SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fa, f index += 1 for _ in str(snake_case__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
165
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor SCREAMING_SNAKE_CASE :Optional[int] = logging.getLogger(__name__) SCREAMING_SNAKE_CASE :Union[str, Any] = 50 # max width of layer names SCREAMING_SNAKE_CASE :Optional[Any] = 70 # max width of quantizer names def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=a_ , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=a_ , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=a_ , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=a_ , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=a_ , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=a_ , type=a_ , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=a_ , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" if args.calibrator == "max": __A = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) __A = "histogram" elif args.calibrator == "mse": __A = "histogram" else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) __A = QuantDescriptor(num_bits=args.aprec , calib_method=a_ ) __A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(a_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(a_ ) def UpperCAmelCase ( a_ , a_ , a_=False , a_=False ) -> Optional[Any]: """simple docstring""" logger.info("Configuring Model for Quantization" ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(a_ , ["embeddings"] , which="weight" , _disabled=a_ ) if args.quant_disable: set_quantizer_by_name(a_ , [""] , _disabled=a_ ) if args.quant_disable_keyword: set_quantizer_by_name(a_ , args.quant_disable_keyword , _disabled=a_ ) if args.quant_disable_layer_module: set_quantizer_by_name(a_ , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=a_ ) if args.quant_enable_layer_module: set_quantizer_by_name(a_ , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=a_ ) if args.recalibrate_weights: recalibrate_weights(a_ ) if args.fuse_qkv: fuse_qkv(a_ , a_ ) if args.clip_gelu: clip_gelu(a_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(a_ ) def UpperCAmelCase ( a_ , a_ ) -> List[Any]: """simple docstring""" def fusea(a_ , a_ , a_ ): for mod in [qq, qk, qv]: if not hasattr(a_ , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return __A = qq._amax.detach().item() __A = qk._amax.detach().item() __A = qv._amax.detach().item() __A = max(a_ , a_ , a_ ) qq._amax.fill_(a_ ) qk._amax.fill_(a_ ) qv._amax.fill_(a_ ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): __A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=a_ ) __A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" for name, mod in model.named_modules(): if hasattr(a_ , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: __A = mod.weight.shape[0] __A = mod._weight_quantizer._amax.detach() __A = torch.ones(a_ , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" for name, mod in model.named_modules(): if hasattr(a_ , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) __A = set(range(len(mod.weight.size() ) ) ) - axis_set __A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=a_ , keepdims=a_ ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) __A = amax def UpperCAmelCase ( a_ , a_=2_5 , a_=1_8_0 , a_=None ) -> List[Any]: """simple docstring""" if ignore is None: __A = [] elif not isinstance(a_ , a_ ): __A = [ignore] __A = 0 for name, mod in model.named_modules(): if not hasattr(a_ , "weight" ): continue __A = max(a_ , len(a_ ) ) for name, mod in model.named_modules(): __A = getattr(a_ , "_input_quantizer" , a_ ) __A = getattr(a_ , "_weight_quantizer" , a_ ) if not hasattr(a_ , "weight" ): continue if type(a_ ) in ignore: continue if [True for s in ignore if type(a_ ) is str and s in name]: continue __A = F'''Act:{input_q.extra_repr()}''' __A = F'''Wgt:{weight_q.extra_repr()}''' __A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(a_ ) <= line_width: logger.info(a_ ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{' ':{name_width}} {wgt_str}''' ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = 0 for name, mod in model.named_modules(): if isinstance(a_ , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" __A = getattr(a_ , a_ , a_ ) if quantizer_mod is not None: assert hasattr(a_ , a_ ) setattr(a_ , a_ , a_ ) else: logger.warning(F'''{name} has no {quantizer}''' ) def UpperCAmelCase ( a_ , a_ , a_="both" , **a_ ) -> Dict: """simple docstring""" __A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(a_ , a_ , "_input_quantizer" , a_ , a_ ) if which in ["weight", "both"]: set_quantizer(a_ , a_ , "_weight_quantizer" , a_ , a_ ) logger.info(a_ ) def UpperCAmelCase ( a_ , a_ , **a_ ) -> Optional[Any]: """simple docstring""" for name, mod in model.named_modules(): if hasattr(a_ , "_input_quantizer" ) or hasattr(a_ , "_weight_quantizer" ): for n in names: if re.search(a_ , a_ ): set_quantizers(a_ , a_ , **a_ ) elif name.endswith("_quantizer" ): for n in names: if re.search(a_ , a_ ): __A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(a_ , a_ , a_ ) logger.info(a_ )
352
def UpperCAmelCase ( ) -> list[list[int]]: """simple docstring""" return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] SCREAMING_SNAKE_CASE :List[str] = generate_large_matrix() SCREAMING_SNAKE_CASE :str = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase ( a_ ) -> None: """simple docstring""" assert all(row == sorted(a_ , reverse=a_ ) for row in grid ) assert all(list(a_ ) == sorted(a_ , reverse=a_ ) for col in zip(*a_ ) ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = len(a_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __A = (left + right) // 2 __A = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __A = mid + 1 else: __A = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = len(grid[0] ) for i in range(len(a_ ) ): __A = find_negative_index(grid[i][:bound] ) total += bound return (len(a_ ) * len(grid[0] )) - total def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 for row in grid: for i, number in enumerate(a_ ): if number < 0: total += len(a_ ) - i break return total def UpperCAmelCase ( ) -> None: """simple docstring""" from timeit import timeit print("Running benchmarks" ) __A = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __A = timeit(F'''{func}(grid=grid)''' , setup=a_ , number=5_0_0 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
124
0
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowercase__ = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = True , ): _lowerCamelCase : Union[str, Any] = [file for file in os.listdir(lowercase ) if os.path.isfile(os.path.join(lowercase , lowercase ) )] if identifier is not None: _lowerCamelCase : str = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase , lowercase ): for n_ in n_identifier: _lowerCamelCase : str = [file for file in files if n_ not in file] else: _lowerCamelCase : Dict = [file for file in files if n_identifier not in file] _lowerCamelCase : str = ignore_files or [] ignore_files.append('__init__.py' ) _lowerCamelCase : Union[str, Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase ) if only_modules: _lowerCamelCase : List[str] = file.split('.' )[0] try: _lowerCamelCase : Tuple = getattr(lowercase , lowercase ) _lowerCamelCase : List[Any] = doctest.DocTestSuite(lowercase ) _lowerCamelCase : Optional[int] = unittest.TextTestRunner().run(lowercase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: _lowerCamelCase : Any = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def A_ ( self ): _lowerCamelCase : int = Path('src/transformers' ) _lowerCamelCase : List[Any] = 'modeling' _lowerCamelCase : Dict = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase , identifier=lowercase , ignore_files=lowercase ) def A_ ( self ): _lowerCamelCase : int = Path('src/transformers' ) _lowerCamelCase : Tuple = 'tokenization' self.analyze_directory(lowercase , identifier=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = Path('src/transformers' ) _lowerCamelCase : int = 'configuration' self.analyze_directory(lowercase , identifier=lowercase ) def A_ ( self ): _lowerCamelCase : int = Path('src/transformers' ) _lowerCamelCase : Any = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase , n_identifier=lowercase ) def A_ ( self ): _lowerCamelCase : int = Path('docs/source' ) _lowerCamelCase : List[str] = ['favicon.ico'] self.analyze_directory(lowercase , ignore_files=lowercase , only_modules=lowercase )
96
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) _A : int = (boundary[1] - boundary[0]) / steps _A : Any = boundary[0] _A : List[Any] = boundary[1] _A : str = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : str = 0.0 y += (h / 2.0) * f(UpperCamelCase__ ) for i in x_i: # print(i) y += h * f(UpperCamelCase__ ) y += (h / 2.0) * f(UpperCamelCase__ ) return y def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ): _A : Optional[int] = a + h while x < (b - h): yield x _A : Dict = x + h def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # enter your function here _A : Any = (x - 0) * (x - 0) return y def _UpperCAmelCase (): _A : Optional[Any] = 0.0 # Lower bound of integration _A : Optional[int] = 1.0 # Upper bound of integration _A : List[Any] = 10.0 # define number of steps or resolution _A : Any = [a, b] # define boundary of integration _A : Tuple = method_a(UpperCamelCase__ , UpperCamelCase__ ) print(f"y = {y}" ) if __name__ == "__main__": main()
11
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = CTRLTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] lowercase_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase_ = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] lowercase_ = {"unk_token": "<unk>"} lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase ) ) def A__ ( self , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = "adapt react readapt apt" lowercase_ = "adapt react readapt apt" return input_text, output_text def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ = "adapt react readapt apt" lowercase_ = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() lowercase_ = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowercase_ = tokens + [tokenizer.unk_token] lowercase_ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
297
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 1 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def A__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def A__ ( self ) -> Dict: '''simple docstring''' def extract(*UpperCAmelCase , **UpperCAmelCase ): class __lowerCamelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.ones([0] ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def A__ ( self ) -> str: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) lowercase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ) lowercase_ = output.images lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ = init_image.resize((760, 504) ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] lowercase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase_ = init_image.resize((768, 512) ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
297
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ = logging.get_logger(__name__) A_ = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _snake_case ( _a ): _A : Any = '''deformable_detr''' _A : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : List[str]=True ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,SCREAMING_SNAKE_CASE__ : str=3 ,SCREAMING_SNAKE_CASE__ : Dict=300 ,SCREAMING_SNAKE_CASE__ : Any=1_024 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=6 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_024 ,SCREAMING_SNAKE_CASE__ : List[str]=8 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=6 ,SCREAMING_SNAKE_CASE__ : List[str]=1_024 ,SCREAMING_SNAKE_CASE__ : Any=8 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Dict="relu" ,SCREAMING_SNAKE_CASE__ : Any=256 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : str=0.0 ,SCREAMING_SNAKE_CASE__ : str=0.0 ,SCREAMING_SNAKE_CASE__ : str=0.02 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1.0 ,SCREAMING_SNAKE_CASE__ : Optional[int]=True ,SCREAMING_SNAKE_CASE__ : int=False ,SCREAMING_SNAKE_CASE__ : Tuple="sine" ,SCREAMING_SNAKE_CASE__ : Optional[Any]="resnet50" ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Optional[int]=False ,SCREAMING_SNAKE_CASE__ : List[str]=4 ,SCREAMING_SNAKE_CASE__ : str=4 ,SCREAMING_SNAKE_CASE__ : Any=4 ,SCREAMING_SNAKE_CASE__ : Dict=False ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=300 ,SCREAMING_SNAKE_CASE__ : Dict=False ,SCREAMING_SNAKE_CASE__ : Tuple=1 ,SCREAMING_SNAKE_CASE__ : List[str]=5 ,SCREAMING_SNAKE_CASE__ : Any=2 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1 ,SCREAMING_SNAKE_CASE__ : List[str]=1 ,SCREAMING_SNAKE_CASE__ : Any=5 ,SCREAMING_SNAKE_CASE__ : Tuple=2 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.25 ,SCREAMING_SNAKE_CASE__ : List[Any]=False ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ,): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) SCREAMING_SNAKE_CASE:List[str] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:Union[str, Any] = backbone_config.get("model_type" ) SCREAMING_SNAKE_CASE:str = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE:Optional[Any] = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = use_timm_backbone SCREAMING_SNAKE_CASE:Union[str, Any] = backbone_config SCREAMING_SNAKE_CASE:int = num_channels SCREAMING_SNAKE_CASE:Optional[int] = num_queries SCREAMING_SNAKE_CASE:Tuple = max_position_embeddings SCREAMING_SNAKE_CASE:Optional[Any] = d_model SCREAMING_SNAKE_CASE:str = encoder_ffn_dim SCREAMING_SNAKE_CASE:Optional[Any] = encoder_layers SCREAMING_SNAKE_CASE:int = encoder_attention_heads SCREAMING_SNAKE_CASE:Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE:Optional[int] = decoder_layers SCREAMING_SNAKE_CASE:List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE:List[Any] = dropout SCREAMING_SNAKE_CASE:Union[str, Any] = attention_dropout SCREAMING_SNAKE_CASE:int = activation_dropout SCREAMING_SNAKE_CASE:Optional[int] = activation_function SCREAMING_SNAKE_CASE:Union[str, Any] = init_std SCREAMING_SNAKE_CASE:Tuple = init_xavier_std SCREAMING_SNAKE_CASE:List[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE:Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE:str = position_embedding_type SCREAMING_SNAKE_CASE:Optional[int] = backbone SCREAMING_SNAKE_CASE:List[str] = use_pretrained_backbone SCREAMING_SNAKE_CASE:Optional[Any] = dilation # deformable attributes SCREAMING_SNAKE_CASE:Union[str, Any] = num_feature_levels SCREAMING_SNAKE_CASE:Any = encoder_n_points SCREAMING_SNAKE_CASE:Any = decoder_n_points SCREAMING_SNAKE_CASE:Optional[Any] = two_stage SCREAMING_SNAKE_CASE:int = two_stage_num_proposals SCREAMING_SNAKE_CASE:Tuple = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher SCREAMING_SNAKE_CASE:int = class_cost SCREAMING_SNAKE_CASE:Optional[int] = bbox_cost SCREAMING_SNAKE_CASE:str = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE:str = mask_loss_coefficient SCREAMING_SNAKE_CASE:Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE:List[Any] = bbox_loss_coefficient SCREAMING_SNAKE_CASE:Optional[Any] = giou_loss_coefficient SCREAMING_SNAKE_CASE:Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE:Dict = focal_alpha SCREAMING_SNAKE_CASE:Tuple = disable_custom_kernels super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) @property def __UpperCamelCase ( self : Any ): return self.encoder_attention_heads @property def __UpperCamelCase ( self : List[str] ): return self.d_model def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE:List[Any] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE:Any = self.__class__.model_type return output
139
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def A_ ( snake_case , snake_case , snake_case , snake_case = 100 , ): SCREAMING_SNAKE_CASE:Any = x_start SCREAMING_SNAKE_CASE:int = fnc(snake_case ) SCREAMING_SNAKE_CASE:int = 0.0 for _ in range(snake_case ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE:Optional[int] = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE:int = fnc(snake_case ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE:Tuple = xa SCREAMING_SNAKE_CASE:List[Any] = fxa return length if __name__ == "__main__": def A_ ( snake_case ): return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") A_ = 10 while i <= 10_00_00: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
139
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A_ ( _lowerCAmelCase = 3 ) -> qiskit.result.counts.Counts: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(_lowerCAmelCase ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) UpperCamelCase : Optional[int] = QuantumRegister(_lowerCAmelCase , "qr" ) UpperCamelCase : Optional[Any] = ClassicalRegister(_lowerCAmelCase , "cr" ) UpperCamelCase : List[Any] = QuantumCircuit(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : int = number_of_qubits for i in range(_lowerCAmelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_lowerCAmelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _lowerCAmelCase , _lowerCAmelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_lowerCAmelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_lowerCAmelCase , _lowerCAmelCase ) # simulate with 10000 shots UpperCamelCase : List[Any] = Aer.get_backend("qasm_simulator" ) UpperCamelCase : str = execute(_lowerCAmelCase , _lowerCAmelCase , shots=1_0000 ) return job.result().get_counts(_lowerCAmelCase ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
140
import os def A_ ( ) -> int: UpperCamelCase : List[str] = os.path.dirname(os.path.realpath(_lowerCAmelCase ) ) UpperCamelCase : Any = os.path.join(_lowerCAmelCase , "triangle.txt" ) with open(_lowerCAmelCase ) as f: UpperCamelCase : Optional[Any] = f.readlines() UpperCamelCase : Tuple = [] for line in triangle: UpperCamelCase : List[str] = [] for number in line.strip().split(" " ): numbers_from_line.append(int(_lowerCAmelCase ) ) a.append(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): for j in range(len(a[i] ) ): UpperCamelCase : List[Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 UpperCamelCase : Dict = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_lowerCAmelCase , _lowerCAmelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
140
1
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Optional[int] ="BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Optional[int] ="AutoTokenizer" def __init__( self : Dict , __A : Optional[int] , __A : Union[str, Any] , __A : Any ): super().__init__(__A , __A ) # add QFormer tokenizer __UpperCamelCase = qformer_tokenizer def __call__( self : str , __A : ImageInput = None , __A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __A : bool = True , __A : Union[bool, str, PaddingStrategy] = False , __A : Union[bool, str, TruncationStrategy] = None , __A : Optional[int] = None , __A : int = 0 , __A : Optional[int] = None , __A : Optional[bool] = None , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = True , __A : Optional[Union[str, TensorType]] = None , **__A : List[Any] , ): if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) __UpperCamelCase = BatchFeature() if text is not None: __UpperCamelCase = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) encoding.update(__A ) __UpperCamelCase = self.qformer_tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) __UpperCamelCase = qformer_text_encoding.pop('input_ids' ) __UpperCamelCase = qformer_text_encoding.pop('attention_mask' ) if images is not None: __UpperCamelCase = self.image_processor(__A , return_tensors=__A ) encoding.update(__A ) return encoding def _lowerCamelCase ( self : List[str] , *__A : Dict , **__A : Dict ): return self.tokenizer.batch_decode(*__A , **__A ) def _lowerCamelCase ( self : Optional[Any] , *__A : Union[str, Any] , **__A : Optional[int] ): return self.tokenizer.decode(*__A , **__A ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = self.tokenizer.model_input_names __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self : Union[str, Any] , __A : Union[str, Any] , **__A : Dict ): if os.path.isfile(__A ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__A , exist_ok=__A ) __UpperCamelCase = os.path.join(__A , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(__A ) return super().save_pretrained(__A , **__A ) @classmethod def _lowerCamelCase ( cls : List[Any] , __A : int , **__A : Dict ): __UpperCamelCase = AutoTokenizer.from_pretrained(__A , subfolder='qformer_tokenizer' ) __UpperCamelCase = cls._get_arguments_from_pretrained(__A , **__A ) args.append(__A ) return cls(*__A )
53
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart __snake_case = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } __snake_case = { """facebook/bart-base""": 10_24, """facebook/bart-large""": 10_24, """facebook/bart-large-mnli""": 10_24, """facebook/bart-large-cnn""": 10_24, """facebook/bart-large-xsum""": 10_24, """yjernite/bart_eli5""": 10_24, } class lowercase__ ( _UpperCAmelCase ): A__ : Tuple =VOCAB_FILES_NAMES A__ : Any =PRETRAINED_VOCAB_FILES_MAP A__ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Tuple =["""input_ids""", """attention_mask"""] A__ : Optional[int] =BartTokenizer def __init__( self : str , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : List[Any]="</s>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : Tuple="<s>" , UpperCAmelCase_ : Any="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[str]=True , **UpperCAmelCase_ : List[Any] , ): super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase_ ) != add_prefix_space: SCREAMING_SNAKE_CASE__ = getattr(UpperCAmelCase_ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE__ = add_prefix_space SCREAMING_SNAKE_CASE__ = pre_tok_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE__ = 'post_processor' SCREAMING_SNAKE_CASE__ = getattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE__ = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE__ = tuple(state['cls'] ) SCREAMING_SNAKE_CASE__ = False if state.get('add_prefix_space' , UpperCAmelCase_ ) != add_prefix_space: SCREAMING_SNAKE_CASE__ = add_prefix_space SCREAMING_SNAKE_CASE__ = True if state.get('trim_offsets' , UpperCAmelCase_ ) != trim_offsets: SCREAMING_SNAKE_CASE__ = trim_offsets SCREAMING_SNAKE_CASE__ = True if changes_to_apply: SCREAMING_SNAKE_CASE__ = getattr(UpperCAmelCase_ , state.pop('type' ) ) SCREAMING_SNAKE_CASE__ = component_class(**UpperCAmelCase_ ) setattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_ ) @property def A_ ( self : Tuple ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def A_ ( self : Any , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else value SCREAMING_SNAKE_CASE__ = value def A_ ( self : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ = kwargs.get('is_split_into_words' , UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = kwargs.get('is_split_into_words' , UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def A_ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A_ ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
176
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class A_ ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' __snake_case = 'resnet' __snake_case = ['basic', 'bottleneck'] def __init__( self: List[Any] , a: Optional[Any]=3 , a: Dict=64 , a: Tuple=[256, 512, 1024, 2048] , a: str=[3, 4, 6, 3] , a: Dict="bottleneck" , a: str="relu" , a: str=False , a: Optional[Any]=None , a: Dict=None , **a: Tuple , ): super().__init__(**a ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) __lowerCamelCase : Dict = num_channels __lowerCamelCase : List[Any] = embedding_size __lowerCamelCase : List[Any] = hidden_sizes __lowerCamelCase : str = depths __lowerCamelCase : Union[str, Any] = layer_type __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : Tuple = downsample_in_first_stage __lowerCamelCase : Optional[Any] = ['stem'] + [F'stage{idx}' for idx in range(1 , len(a ) + 1 )] __lowerCamelCase , __lowerCamelCase : int = get_aligned_output_features_output_indices( out_features=a , out_indices=a , stage_names=self.stage_names ) class A_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = version.parse("""1.11""" ) @property def _snake_case ( self: Tuple ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _snake_case ( self: Optional[int] ): return 1e-3
356
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Any = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __lowerCamelCase : Dict = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __lowerCamelCase : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __lowerCamelCase : Tuple = subset[i - 1][j] if arr[i - 1] <= j: __lowerCamelCase : List[Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
194
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> float: A_ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCAmelCase__ ( ) -> List[str]: print(sum_of_series(1, 1, 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
162
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case : Optional[int] = str(bin(lowercase ) ) binary_number += "0" * shift_amount return binary_number def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case : Dict = str(bin(lowercase ) )[2:] if shift_amount >= len(lowercase ): return "0b0" snake_case : str = binary_number[: len(lowercase ) - shift_amount] return "0b" + shifted_binary_number def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: if number >= 0: # Get binary representation of positive number snake_case : Optional[Any] = """0""" + str(bin(lowercase ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number snake_case : Dict = len(bin(lowercase )[3:] ) # Find 2's complement of number snake_case : Optional[Any] = bin(abs(lowercase ) - (1 << binary_number_length) )[3:] snake_case : Tuple = ( """1""" + """0""" * (binary_number_length - len(lowercase )) + binary_number ) if shift_amount >= len(lowercase ): return "0b" + binary_number[0] * len(lowercase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(lowercase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
124
0
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =AutoencoderKL snake_case_ ="""sample""" snake_case_ =1e-2 @property def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Dict = 4 lowerCAmelCase__ : List[str] = 3 lowerCAmelCase__ : Any = (32, 32) lowerCAmelCase__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) return {"sample": image} @property def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } lowerCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" pass def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" pass @unittest.skipIf(torch_device == '''mps''' ,'''Gradient checkpointing skipped on MPS''' ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase__ : List[Any] = self.model_class(**__lowerCamelCase ) model.to(__lowerCamelCase ) assert not model.is_gradient_checkpointing and model.training lowerCAmelCase__ : List[Any] = model(**__lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() lowerCAmelCase__ : Dict = torch.randn_like(__lowerCamelCase ) lowerCAmelCase__ : Dict = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing lowerCAmelCase__ : str = self.model_class(**__lowerCamelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(__lowerCamelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training lowerCAmelCase__ : Any = model_a(**__lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() lowerCAmelCase__ : Optional[int] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) lowerCAmelCase__ : Any = dict(model.named_parameters() ) lowerCAmelCase__ : List[Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : int = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Tuple = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) lowerCAmelCase__ : Optional[int] = model.to(__lowerCamelCase ) model.eval() if torch_device == "mps": lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(0 ) else: lowerCAmelCase__ : Dict = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) lowerCAmelCase__ : Dict = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : Optional[int] = image.to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ,sample_posterior=__lowerCamelCase ,generator=__lowerCamelCase ).sample lowerCAmelCase__ : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": lowerCAmelCase__ : Tuple = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": lowerCAmelCase__ : str = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: lowerCAmelCase__ : Tuple = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) @slow class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> int: """simple docstring""" return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__lowerCamelCase ) for s in shape] )}.npy""" def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ (self ,__lowerCamelCase=0 ,__lowerCamelCase=(4, 3, 5_12, 5_12) ,__lowerCamelCase=False ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = torch.floataa if fpaa else torch.floataa lowerCAmelCase__ : Optional[Any] = torch.from_numpy(load_hf_numpy(self.get_file_format(__lowerCamelCase ,__lowerCamelCase ) ) ).to(__lowerCamelCase ).to(__lowerCamelCase ) return image def lowerCAmelCase__ (self ,__lowerCamelCase="CompVis/stable-diffusion-v1-4" ,__lowerCamelCase=False ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = '''fp16''' if fpaa else None lowerCAmelCase__ : Union[str, Any] = torch.floataa if fpaa else torch.floataa lowerCAmelCase__ : Dict = AutoencoderKL.from_pretrained( __lowerCamelCase ,subfolder='''vae''' ,torch_dtype=__lowerCamelCase ,revision=__lowerCamelCase ,) model.to(__lowerCamelCase ).eval() return model def lowerCAmelCase__ (self ,__lowerCamelCase=0 ) -> Dict: """simple docstring""" if torch_device == "mps": return torch.manual_seed(__lowerCamelCase ) return torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : str = self.get_sd_vae_model() lowerCAmelCase__ : Union[str, Any] = self.get_sd_image(__lowerCamelCase ) lowerCAmelCase__ : Tuple = self.get_generator(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : str = model(__lowerCamelCase ,generator=__lowerCamelCase ,sample_posterior=__lowerCamelCase ).sample assert sample.shape == image.shape lowerCAmelCase__ : Any = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowerCAmelCase__ : Optional[Any] = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> str: """simple docstring""" lowerCAmelCase__ : List[str] = self.get_sd_vae_model(fpaa=__lowerCamelCase ) lowerCAmelCase__ : int = self.get_sd_image(__lowerCamelCase ,fpaa=__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.get_generator(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ,generator=__lowerCamelCase ,sample_posterior=__lowerCamelCase ).sample assert sample.shape == image.shape lowerCAmelCase__ : Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowerCAmelCase__ : Union[str, Any] = torch.tensor(__lowerCamelCase ) assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Any: """simple docstring""" lowerCAmelCase__ : int = self.get_sd_vae_model() lowerCAmelCase__ : Union[str, Any] = self.get_sd_image(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ).sample assert sample.shape == image.shape lowerCAmelCase__ : int = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowerCAmelCase__ : Any = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[str] = self.get_sd_vae_model() lowerCAmelCase__ : Optional[int] = self.get_sd_image(__lowerCamelCase ,shape=(3, 4, 64, 64) ) with torch.no_grad(): lowerCAmelCase__ : Tuple = model.decode(__lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] lowerCAmelCase__ : Dict = sample[-1, -2:, :2, -2:].flatten().cpu() lowerCAmelCase__ : int = torch.tensor(__lowerCamelCase ) assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = self.get_sd_vae_model(fpaa=__lowerCamelCase ) lowerCAmelCase__ : Dict = self.get_sd_image(__lowerCamelCase ,shape=(3, 4, 64, 64) ,fpaa=__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Dict = model.decode(__lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] lowerCAmelCase__ : Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowerCAmelCase__ : Union[str, Any] = torch.tensor(__lowerCamelCase ) assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason='''xformers is not required when using PyTorch 2.0.''' ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : str = self.get_sd_vae_model(fpaa=__lowerCamelCase ) lowerCAmelCase__ : Any = self.get_sd_image(__lowerCamelCase ,shape=(3, 4, 64, 64) ,fpaa=__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : List[str] = model.decode(__lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowerCAmelCase__ : List[Any] = model.decode(__lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason='''xformers is not required when using PyTorch 2.0.''' ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = self.get_sd_vae_model() lowerCAmelCase__ : int = self.get_sd_image(__lowerCamelCase ,shape=(3, 4, 64, 64) ) with torch.no_grad(): lowerCAmelCase__ : Any = model.decode(__lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowerCAmelCase__ : Dict = model.decode(__lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.get_sd_vae_model() lowerCAmelCase__ : Tuple = self.get_sd_image(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = self.get_generator(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Tuple = model.encode(__lowerCamelCase ).latent_dist lowerCAmelCase__ : int = dist.sample(generator=__lowerCamelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] lowerCAmelCase__ : List[Any] = sample[0, -1, -3:, -3:].flatten().cpu() lowerCAmelCase__ : List[str] = torch.tensor(__lowerCamelCase ) lowerCAmelCase__ : int = 3e-3 if torch_device != '''mps''' else 1e-2 assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=__lowerCamelCase )
94
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =XLMProphetNetTokenizer snake_case_ =False snake_case_ =True def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : int = XLMProphetNetTokenizer(__lowerCamelCase ,keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = '''[PAD]''' lowerCAmelCase__ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) ,__lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) ,__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''[PAD]''' ) self.assertEqual(vocab_keys[1] ,'''[CLS]''' ) self.assertEqual(vocab_keys[-1] ,'''j''' ) self.assertEqual(len(__lowerCamelCase ) ,10_12 ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,10_12 ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = XLMProphetNetTokenizer(__lowerCamelCase ,keep_accents=__lowerCamelCase ) lowerCAmelCase__ : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCamelCase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) lowerCAmelCase__ : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) lowerCAmelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] ,) lowerCAmelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] ,) @cached_property def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = '''Hello World!''' lowerCAmelCase__ : str = [3_53_89, 66_72, 49, 2] self.assertListEqual(__lowerCamelCase ,self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Any = {'''input_ids''': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase ,model_name='''microsoft/xprophetnet-large-wiki100-cased''' ,revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' ,)
94
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__: def __init__( self : Any , __snake_case : Union[str, Any] , __snake_case : Union[str, Any]=13 , __snake_case : List[Any]=7 , __snake_case : Tuple=True , __snake_case : Tuple=True , __snake_case : List[Any]=True , __snake_case : Optional[int]=True , __snake_case : Tuple=99 , __snake_case : Dict=32 , __snake_case : str=2 , __snake_case : List[Any]=4 , __snake_case : int=37 , __snake_case : Union[str, Any]="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Dict=5_12 , __snake_case : Dict=16 , __snake_case : List[str]=2 , __snake_case : List[str]=0.02 , __snake_case : Optional[Any]=3 , __snake_case : Optional[Any]=4 , __snake_case : Dict=None , ): a : List[str] = parent a : Optional[int] = 13 a : List[str] = 7 a : int = True a : List[str] = True a : List[str] = True a : List[Any] = True a : int = 99 a : List[str] = 3_84 a : Optional[Any] = 2 a : Optional[Any] = 4 a : str = 37 a : List[Any] = 'gelu' a : Optional[int] = 0.1 a : Tuple = 0.1 a : Dict = 5_12 a : Tuple = 16 a : Optional[int] = 2 a : str = 0.02 a : Any = 3 a : Tuple = 4 a : Optional[int] = 1_28 a : int = 2 a : Optional[Any] = 9 a : Optional[int] = 1 a : Tuple = None def lowercase_ ( self : List[Any] ): a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : int = None if self.use_input_mask: a : Dict = random_attention_mask([self.batch_size, self.seq_length] ) a : Tuple = None if self.use_token_type_ids: a : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a : str = None a : str = None a : Tuple = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : str = ids_tensor([self.batch_size] , self.num_choices ) a : str = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__snake_case , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : List[Any] , __snake_case : int , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Tuple , __snake_case : str ): a : int = TFConvBertModel(config=__snake_case ) a : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a : Dict = [input_ids, input_mask] a : Union[str, Any] = model(__snake_case ) a : str = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Dict , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : int ): a : Tuple = TFConvBertForMaskedLM(config=__snake_case ) a : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } a : List[Any] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Optional[int] , __snake_case : List[Any] , __snake_case : str , __snake_case : List[Any] , __snake_case : str , __snake_case : str , __snake_case : List[Any] , __snake_case : List[Any] ): a : Optional[int] = self.num_labels a : int = TFConvBertForSequenceClassification(config=__snake_case ) a : List[str] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } a : List[Any] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Optional[int] , __snake_case : Optional[int] , __snake_case : Any , __snake_case : List[str] , __snake_case : str , __snake_case : str , __snake_case : Tuple , __snake_case : Dict ): a : Any = self.num_choices a : str = TFConvBertForMultipleChoice(config=__snake_case ) a : int = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) a : List[Any] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) a : str = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) a : Any = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } a : Union[str, Any] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self : str , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : str ): a : Any = self.num_labels a : List[Any] = TFConvBertForTokenClassification(config=__snake_case ) a : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } a : List[str] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : int , __snake_case : str , __snake_case : int , __snake_case : int , __snake_case : Optional[int] , __snake_case : str , __snake_case : Any , __snake_case : List[Any] ): a : List[Any] = TFConvBertForQuestionAnswering(config=__snake_case ) a : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } a : Any = model(__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Optional[Any] ): a : Union[str, Any] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : List[str] = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowercase__ = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def lowercase_ ( self : Dict ): a : Tuple = TFConvBertModelTester(self ) a : Tuple = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowercase_ ( self : int ): self.config_tester.run_common_tests() def lowercase_ ( self : List[Any] ): a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase_ ( self : Tuple ): a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def lowercase_ ( self : Dict ): a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def lowercase_ ( self : Dict ): a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def lowercase_ ( self : Optional[Any] ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def lowercase_ ( self : Optional[Any] ): a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def lowercase_ ( self : Any ): a , a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() a : List[str] = True a : Optional[Any] = True if hasattr(__snake_case , 'use_cache' ): a : List[str] = True a : Tuple = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) a : List[Any] = getattr(self.model_tester , 'key_length' , __snake_case ) for model_class in self.all_model_classes: a : str = self._prepare_for_class(__snake_case , __snake_case ) a : List[Any] = model_class(__snake_case ) a : Optional[Any] = len(model(__snake_case ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__snake_case , saved_model=__snake_case ) a : Optional[int] = os.path.join(__snake_case , 'saved_model' , '1' ) a : str = tf.keras.models.load_model(__snake_case ) a : Any = model(__snake_case ) if self.is_encoder_decoder: a : Union[str, Any] = outputs['encoder_hidden_states'] a : str = outputs['encoder_attentions'] else: a : str = outputs['hidden_states'] a : Optional[Any] = outputs['attentions'] self.assertEqual(len(__snake_case ) , __snake_case ) a : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowercase_ ( self : List[Any] ): a : Optional[int] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__snake_case ) def lowercase_ ( self : Optional[Any] ): a , a : Dict = self.model_tester.prepare_config_and_inputs_for_common() a : Any = True a : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) a : Optional[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) a : Any = getattr(self.model_tester , 'key_length' , __snake_case ) a : Tuple = getattr(self.model_tester , 'key_length' , __snake_case ) def check_decoder_attentions_output(__snake_case : Dict ): a : Optional[int] = len(__snake_case ) self.assertEqual(out_len % 2 , 0 ) a : List[Any] = outputs.decoder_attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__snake_case : Tuple ): a : Union[str, Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: a : Union[str, Any] = True a : List[str] = False a : Any = model_class(__snake_case ) a : Optional[int] = model(self._prepare_for_class(__snake_case , __snake_case ) ) a : List[Any] = len(__snake_case ) self.assertEqual(config.output_hidden_states , __snake_case ) check_encoder_attentions_output(__snake_case ) if self.is_encoder_decoder: a : int = model_class(__snake_case ) a : Optional[Any] = model(self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(config.output_hidden_states , __snake_case ) check_decoder_attentions_output(__snake_case ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] a : List[Any] = True a : Optional[int] = model_class(__snake_case ) a : Any = model(self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(config.output_hidden_states , __snake_case ) check_encoder_attentions_output(__snake_case ) # Check attention is always last and order is fine a : List[str] = True a : List[str] = True a : Tuple = model_class(__snake_case ) a : Tuple = model(self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__snake_case ) ) self.assertEqual(model.config.output_hidden_states , __snake_case ) check_encoder_attentions_output(__snake_case ) @require_tf class a__( unittest.TestCase ): @slow def lowercase_ ( self : Tuple ): a : Union[str, Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) a : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) a : str = model(__snake_case )[0] a : Tuple = [1, 6, 7_68] self.assertEqual(output.shape , __snake_case ) a : Any = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __snake_case , atol=1e-4 )
297
'''simple docstring''' def lowerCamelCase__ ( _A , _A , _A , _A , _A , ): a : Dict = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: a : Union[str, Any] = 1 - (matter_density + radiation_density + dark_energy) a : Union[str, Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) a : int = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase: Optional[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __snake_case ( unittest.TestCase ): a__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__: Optional[int] = TextaTextGenerationPipeline(model=lowercase , tokenizer=lowercase) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , lowercase , lowercase) -> int: '''simple docstring''' a__: Union[str, Any] = generator('Something there') self.assertEqual(lowercase , [{'generated_text': ANY(lowercase)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there')) a__: Optional[Any] = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=lowercase) self.assertEqual( lowercase , [ [{'generated_text': ANY(lowercase)}, {'generated_text': ANY(lowercase)}], [{'generated_text': ANY(lowercase)}, {'generated_text': ANY(lowercase)}], ] , ) a__: List[Any] = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=lowercase) self.assertEqual( lowercase , [ [{'generated_text': ANY(lowercase)}, {'generated_text': ANY(lowercase)}], [{'generated_text': ANY(lowercase)}, {'generated_text': ANY(lowercase)}], ] , ) with self.assertRaises(lowercase): generator(4) @require_torch def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Any = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt') # do_sample=False necessary for reproducibility a__: int = generator('Something there' , do_sample=lowercase) self.assertEqual(lowercase , [{'generated_text': ''}]) a__: int = 3 a__: str = generator( 'Something there' , num_return_sequences=lowercase , num_beams=lowercase , ) a__: int = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(lowercase , lowercase) a__: Optional[int] = generator('This is a test' , do_sample=lowercase , num_return_sequences=2 , return_tensors=lowercase) self.assertEqual( lowercase , [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ] , ) a__: int = generator.model.config.eos_token_id a__: Optional[Any] = '<pad>' a__: Optional[int] = generator( ['This is a test', 'This is a second test'] , do_sample=lowercase , num_return_sequences=2 , batch_size=2 , return_tensors=lowercase , ) self.assertEqual( lowercase , [ [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ], [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ], ] , ) @require_tf def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: Union[str, Any] = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf') # do_sample=False necessary for reproducibility a__: str = generator('Something there' , do_sample=lowercase) self.assertEqual(lowercase , [{'generated_text': ''}])
203
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase__ = None lowercase__ = logging.get_logger(__name__) lowercase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowercase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowercase__ = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off lowercase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class __snake_case ( __lowerCAmelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["""input_ids""", """attention_mask"""] a__ = MBartTokenizer a__ = [] a__ = [] def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , **lowercase , ) -> Tuple: '''simple docstring''' a__: List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else mask_token super().__init__( vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , **lowercase , ) a__: Tuple = vocab_file a__: Union[str, Any] = False if not self.vocab_file else True a__: Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens}) a__: int = { lang_code: self.convert_tokens_to_ids(lowercase) for lang_code in FAIRSEQ_LANGUAGE_CODES } a__: List[Any] = src_lang if src_lang is not None else 'en_XX' a__: Tuple = self.convert_tokens_to_ids(self._src_lang) a__: str = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def lowerCamelCase_ ( self) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def lowerCamelCase_ ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__: Any = [self.sep_token_id] a__: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , **lowercase) -> Union[str, Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') a__: Union[str, Any] = src_lang a__: Any = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase) a__: str = self.convert_tokens_to_ids(lowercase) a__: Any = tgt_lang_id return inputs def lowerCamelCase_ ( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ) -> BatchEncoding: '''simple docstring''' a__: Any = src_lang a__: List[Any] = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang) def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: int = self.convert_tokens_to_ids(lowercase) a__: List[Any] = [] a__: List[str] = [self.eos_token_id, self.cur_lang_code] a__: Dict = self.convert_ids_to_tokens(self.prefix_tokens) a__: Any = self.convert_ids_to_tokens(self.suffix_tokens) a__: int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: str = self.convert_tokens_to_ids(lowercase) a__: List[Any] = [] a__: Dict = [self.eos_token_id, self.cur_lang_code] a__: Any = self.convert_ids_to_tokens(self.prefix_tokens) a__: Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens) a__: str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def lowerCamelCase_ ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowercase): logger.error(f'Vocabulary path ({save_directory}) should be a directory.') return a__: Any = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase): copyfile(self.vocab_file , lowercase) return (out_vocab_file,)
203
1
from __future__ import annotations def UpperCamelCase ( __lowercase : str ): '''simple docstring''' return [ord(__lowercase ) - 96 for elem in plain] def UpperCamelCase ( __lowercase : list[int] ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def UpperCamelCase ( ): '''simple docstring''' A_ : int = encode(input('-> ' ).strip().lower() ) print('Encoded: ' ,__lowercase ) print('Decoded:' ,decode(__lowercase ) ) if __name__ == "__main__": main()
140
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp _UpperCAmelCase = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } _UpperCAmelCase = { """RUCAIBox/mvp""": 1024, } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] lowerCamelCase_ = MvpTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ): """simple docstring""" super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) A_ : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase ) != add_prefix_space: A_ : int = getattr(lowercase , pre_tok_state.pop('type' ) ) A_ : Union[str, Any] = add_prefix_space A_ : Dict = pre_tok_class(**lowercase ) A_ : Union[str, Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A_ : Any = 'post_processor' A_ : List[str] = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: A_ : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : int = tuple(state['sep'] ) if "cls" in state: A_ : Optional[int] = tuple(state['cls'] ) A_ : Tuple = False if state.get('add_prefix_space' , lowercase ) != add_prefix_space: A_ : Union[str, Any] = add_prefix_space A_ : Tuple = True if state.get('trim_offsets' , lowercase ) != trim_offsets: A_ : str = trim_offsets A_ : str = True if changes_to_apply: A_ : List[str] = getattr(lowercase , state.pop('type' ) ) A_ : List[str] = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value A_ : Dict = value def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" A_ : Any = kwargs.get('is_split_into_words' , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase , **lowercase ) def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" A_ : Dict = kwargs.get('is_split_into_words' , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Any = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase=None ): """simple docstring""" A_ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Union[str, Any] = [self.sep_token_id] A_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
140
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A_ = 25_60_47 A_ = 25_61_45 @require_sentencepiece @require_tokenizers class lowercase( _a , unittest.TestCase ): '''simple docstring''' lowercase__ = NllbTokenizer lowercase__ = NllbTokenizerFast lowercase__ = True lowercase__ = True lowercase__ = {} def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case : Union[str, Any] = NllbTokenizer(__lowerCamelCase, keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : str = NllbTokenizer(__lowerCamelCase, keep_accents=__lowerCamelCase ) _snake_case : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__lowerCamelCase, ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) _snake_case : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __lowerCamelCase, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ], ) _snake_case : str = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) _snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ], ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase, **__lowerCamelCase ) _snake_case : Optional[int] = self.tokenizer_class.from_pretrained(__lowerCamelCase, **__lowerCamelCase ) _snake_case : Any = tempfile.mkdtemp() _snake_case : Union[str, Any] = tokenizer_r.save_pretrained(__lowerCamelCase ) _snake_case : Any = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) _snake_case : List[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__lowerCamelCase, __lowerCamelCase ) # Checks everything loads correctly in the same way _snake_case : Dict = tokenizer_r.from_pretrained(__lowerCamelCase ) _snake_case : List[Any] = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase, __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=True _snake_case : Union[str, Any] = tempfile.mkdtemp() _snake_case : Optional[int] = tokenizer_r.save_pretrained(__lowerCamelCase, legacy_format=__lowerCamelCase ) _snake_case : Dict = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCamelCase, __lowerCamelCase ) # Checks everything loads correctly in the same way _snake_case : List[str] = tokenizer_r.from_pretrained(__lowerCamelCase ) _snake_case : Dict = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase, __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=False _snake_case : Tuple = tempfile.mkdtemp() _snake_case : Union[str, Any] = tokenizer_r.save_pretrained(__lowerCamelCase, legacy_format=__lowerCamelCase ) _snake_case : List[str] = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _snake_case : Optional[int] = tokenizer_r.from_pretrained(__lowerCamelCase ) _snake_case : int = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase, __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) @require_torch def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' if not self.test_seqaseq: return _snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Longer text that will definitely require truncation. _snake_case : Optional[Any] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] _snake_case : Union[str, Any] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: _snake_case : Any = tokenizer.prepare_seqaseq_batch( src_texts=__lowerCamelCase, tgt_texts=__lowerCamelCase, max_length=3, max_target_length=10, return_tensors="""pt""", src_lang="""eng_Latn""", tgt_lang="""ron_Latn""", ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.labels.shape[1], 10 ) # max_target_length will default to max_length if not specified _snake_case : List[str] = tokenizer.prepare_seqaseq_batch( __lowerCamelCase, tgt_texts=__lowerCamelCase, max_length=3, return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.labels.shape[1], 3 ) _snake_case : Tuple = tokenizer.prepare_seqaseq_batch( src_texts=__lowerCamelCase, max_length=3, max_target_length=10, return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1], 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3 ) self.assertNotIn("""decoder_input_ids""", __lowerCamelCase ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: str ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : List[str] = [AddedToken("""<special>""", lstrip=__lowerCamelCase )] _snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase, additional_special_tokens=__lowerCamelCase, **__lowerCamelCase ) _snake_case : Optional[int] = tokenizer_r.encode("""Hey this is a <special> token""" ) _snake_case : List[Any] = tokenizer_r.encode("""<special>""", add_special_tokens=__lowerCamelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: _snake_case : str = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase, additional_special_tokens=__lowerCamelCase, **__lowerCamelCase, ) _snake_case : Dict = self.tokenizer_class.from_pretrained( __lowerCamelCase, additional_special_tokens=__lowerCamelCase, **__lowerCamelCase ) _snake_case : Union[str, Any] = tokenizer_p.encode("""Hey this is a <special> token""" ) _snake_case : List[str] = tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(__lowerCamelCase, __lowerCamelCase ) self.assertEqual(__lowerCamelCase, __lowerCamelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowercase( unittest.TestCase ): '''simple docstring''' lowercase__ = """facebook/nllb-200-distilled-600M""" lowercase__ = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] lowercase__ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] lowercase__ = [ 25_60_47, 1_62_97, 13_44_08, 81_65, 24_80_66, 1_47_34, 9_50, 11_35, 10_57_21, 35_73, 83, 2_73_52, 1_08, 4_94_86, 2, ] @classmethod def UpperCamelCase_ ( cls: Any ): '''simple docstring''' _snake_case : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name, src_lang="""eng_Latn""", tgt_lang="""ron_Latn""" ) _snake_case : List[Any] = 1 return cls def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""], 256_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""], 256_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""], 256_057 ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, __lowerCamelCase ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' self.assertIn(__lowerCamelCase, self.tokenizer.all_special_ids ) # fmt: off _snake_case : Optional[int] = [RO_CODE, 4_254, 98_068, 112_923, 39_072, 3_909, 713, 102_767, 26, 17_314, 35_642, 14_683, 33_118, 2_022, 66_987, 2, 256_047] # fmt: on _snake_case : List[Any] = self.tokenizer.decode(__lowerCamelCase, skip_special_tokens=__lowerCamelCase ) _snake_case : int = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase, __lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token, __lowerCamelCase ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Union[str, Any] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0], __lowerCamelCase ) _snake_case : int = 10 _snake_case : List[Any] = self.tokenizer(__lowerCamelCase, max_length=__lowerCamelCase, truncation=__lowerCamelCase ).input_ids[0] self.assertEqual(ids[-1], 2 ) self.assertEqual(ids[0], __lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ), __lowerCamelCase ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ), [256_203, 3] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : List[str] = tempfile.mkdtemp() _snake_case : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCamelCase ) _snake_case : Dict = NllbTokenizer.from_pretrained(__lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, __lowerCamelCase ) @require_torch def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=__lowerCamelCase, truncation=__lowerCamelCase, max_length=len(self.expected_src_tokens ), return_tensors="""pt""", ) _snake_case : Tuple = shift_tokens_right( batch["""labels"""], self.tokenizer.pad_token_id, self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(__lowerCamelCase, __lowerCamelCase ) self.assertEqual((2, 15), batch.input_ids.shape ) self.assertEqual((2, 15), batch.attention_mask.shape ) _snake_case : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, __lowerCamelCase ) self.assertEqual(__lowerCamelCase, batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Dict = self.tokenizer(self.src_text, padding=__lowerCamelCase, truncation=__lowerCamelCase, max_length=3, return_tensors="""pt""" ) _snake_case : int = self.tokenizer( text_target=self.tgt_text, padding=__lowerCamelCase, truncation=__lowerCamelCase, max_length=10, return_tensors="""pt""" ) _snake_case : str = targets["""input_ids"""] _snake_case : Dict = shift_tokens_right( __lowerCamelCase, self.tokenizer.pad_token_id, decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang], ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.decoder_input_ids.shape[1], 10 ) @require_torch def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer._build_translation_inputs( """A test""", return_tensors="""pt""", src_lang="""eng_Latn""", tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(__lowerCamelCase ), { # A, test, EOS, en_XX """input_ids""": [[256_047, 70, 7_356, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 256_057, }, ) @require_torch def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = True _snake_case : Tuple = self.tokenizer( """UN Chief says there is no military solution in Syria""", src_lang="""eng_Latn""", tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids, [16_297, 134_408, 25_653, 6_370, 248, 254, 103_929, 94_995, 108, 49_486, 2, 256_047] ) _snake_case : Optional[int] = False _snake_case : Dict = self.tokenizer( """UN Chief says there is no military solution in Syria""", src_lang="""eng_Latn""", tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids, [256_047, 16_297, 134_408, 25_653, 6_370, 248, 254, 103_929, 94_995, 108, 49_486, 2] )
368
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : int=False ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: _snake_case : Dict = os.path.abspath(snake_case__ ) logger.info(F"Loading PyTorch weights from {pt_path}" ) _snake_case : Tuple = torch.load(snake_case__ , map_location="""cpu""" ) logger.info(F"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters." ) _snake_case : int = convert_pytorch_state_dict_to_flax(snake_case__ , snake_case__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files _snake_case : Dict = convert_pytorch_sharded_state_dict_to_flax(snake_case__ , snake_case__ ) return flax_state_dict def UpperCAmelCase__ (snake_case__ : Tuple[str] , snake_case__ : np.ndarray , snake_case__ : Dict[str, jnp.ndarray] , snake_case__ : str , ): """simple docstring""" def is_key_or_prefix_key_in_dict(snake_case__ : Tuple[str] ) -> bool: return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm _snake_case : Any = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean _snake_case : Optional[Any] = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var _snake_case : Any = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # embedding _snake_case : Any = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # conv layer _snake_case : Optional[int] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ): _snake_case : Dict = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _snake_case : List[str] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ): _snake_case : List[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _snake_case : List[Any] = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _snake_case : Tuple = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 _snake_case : Optional[Any] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): _snake_case : Union[str, Any] = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): _snake_case : Dict = pt_tuple_key[-2] + """_v""" if name is not None: _snake_case : Union[str, Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): """simple docstring""" _snake_case : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} _snake_case : int = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: _snake_case : Dict = flax_model.params["""params"""] else: _snake_case : List[Any] = flax_model.params _snake_case : Tuple = flatten_dict(snake_case__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _snake_case : Union[str, Any] = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(snake_case__ ) _snake_case : Tuple = {} _snake_case : Dict = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _snake_case : Optional[int] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _snake_case : int = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _snake_case : Optional[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _snake_case : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters _snake_case , _snake_case : int = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary _snake_case : Dict = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _snake_case : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: _snake_case : Union[str, Any] = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown _snake_case : List[Any] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown _snake_case : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Dict ): """simple docstring""" import torch # Load the index _snake_case : str = {} for shard_file in shard_filenames: # load using msgpack utils _snake_case : Union[str, Any] = torch.load(snake_case__ ) _snake_case : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} _snake_case : List[str] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _snake_case : str = flax_model.params["""params"""] _snake_case : List[Any] = flatten_dict(snake_case__ ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: _snake_case : List[Any] = flax_model.params _snake_case : Tuple = flatten_dict(snake_case__ ) _snake_case : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _snake_case : Optional[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _snake_case : List[str] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _snake_case : str = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _snake_case : Optional[Any] = pt_tuple_key[1:] # Correctly rename weight parameters _snake_case , _snake_case : Optional[Any] = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary _snake_case : List[str] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _snake_case : Any = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: _snake_case : Optional[int] = jnp.asarray(snake_case__ ) continue if "var" in flax_key[-1]: _snake_case : Any = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown _snake_case : List[str] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown _snake_case : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : Optional[Any] = os.path.abspath(snake_case__ ) logger.info(F"Loading Flax weights from {flax_checkpoint_path}" ) # import correct flax class _snake_case : Union[str, Any] = getattr(snake_case__ , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(snake_case__ , """rb""" ) as state_f: try: _snake_case : Dict = from_bytes(snake_case__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F"Unable to convert {flax_checkpoint_path} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Optional[int] ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _snake_case : Optional[int] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values() if any(snake_case__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _snake_case : Optional[int] = jax.tree_util.tree_map( lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ ) _snake_case : Dict = flatten_dict(snake_case__ ) _snake_case : Optional[Any] = pt_model.state_dict() _snake_case : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) _snake_case : Optional[int] = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys _snake_case : str = [] _snake_case : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _snake_case : Tuple = flax_key_tuple[0] == pt_model.base_model_prefix _snake_case : Optional[Any] = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: _snake_case : List[str] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: _snake_case : Union[str, Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict: # conv layer _snake_case : Union[str, Any] = flax_key_tuple[:-1] + ("""weight""",) _snake_case : Optional[int] = jnp.transpose(snake_case__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict: # linear layer _snake_case : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) _snake_case : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _snake_case : int = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: _snake_case : Tuple = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: _snake_case : Optional[int] = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: _snake_case : int = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: _snake_case : int = """.""".join(snake_case__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. _snake_case : Optional[Any] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: _snake_case : List[str] = key.split(""".""" ) _snake_case : Optional[int] = None if key_components[-3::2] == ["parametrizations", "original0"]: _snake_case : int = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: _snake_case : Union[str, Any] = key_components[-2] + """_v""" if name is not None: _snake_case : Dict = key_components[:-3] + [name] _snake_case : Dict = """.""".join(snake_case__ ) _snake_case : str = key if flax_key in special_pt_names: _snake_case : Union[str, Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict _snake_case : List[str] = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor _snake_case : List[Any] = torch.from_numpy(snake_case__ ) # remove from missing keys missing_keys.remove(snake_case__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(snake_case__ ) pt_model.load_state_dict(snake_case__ ) # re-transform missing_keys to list _snake_case : List[str] = list(snake_case__ ) if len(snake_case__ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(F"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n" ) if len(snake_case__ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) else: logger.warning( F"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" """If your task is similar to the task the model of the checkpoint was trained on, """ F"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
132
0
'''simple docstring''' lowerCamelCase : List[Any] = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
2
"""simple docstring""" from collections import defaultdict class _UpperCAmelCase: def __init__( self , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 _UpperCamelCase = [ [-1 for i in range(total + 1)] for j in range(2 ** len(__a)) ] _UpperCamelCase = defaultdict(__a) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 _UpperCamelCase = (1 << len(__a)) - 1 def UpperCAmelCase ( self , __a , __a) -> Dict: '''simple docstring''' # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement _UpperCamelCase = self.count_ways_until(__a , task_no + 1) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1) # save the value. _UpperCamelCase = total_ways_util return self.dp[mask][task_no] def UpperCAmelCase ( self , __a) -> int: '''simple docstring''' # Store the list of persons for each task for i in range(len(__a)): for j in task_performed[i]: self.task[j].append(__a) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1) if __name__ == "__main__": _a = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _a = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
194
0
def __lowercase ( __lowerCAmelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowercase ( __lowerCAmelCase : dict[int, list[int]] ): a__ = 0 a__ = len(__lowerCAmelCase ) # No of vertices in graph a__ = [0] * n a__ = [False] * n def dfs(__lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): a__ = True a__ = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) a__ = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge a__ = min(low[at] , low[to] ) a__ = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
109
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Union[str, Any] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = '''visual_bert''' def __init__( self :Optional[int] ,__snake_case :Any=3_05_22 ,__snake_case :str=7_68 ,__snake_case :Any=5_12 ,__snake_case :Any=12 ,__snake_case :int=12 ,__snake_case :str=30_72 ,__snake_case :int="gelu" ,__snake_case :Optional[int]=0.1 ,__snake_case :str=0.1 ,__snake_case :Union[str, Any]=5_12 ,__snake_case :Tuple=2 ,__snake_case :Union[str, Any]=0.02 ,__snake_case :Optional[Any]=1E-12 ,__snake_case :Optional[Any]=False ,__snake_case :int=True ,__snake_case :Any=1 ,__snake_case :Optional[int]=0 ,__snake_case :Tuple=2 ,**__snake_case :Any ,) -> Union[str, Any]: super().__init__(pad_token_id=__snake_case ,bos_token_id=__snake_case ,eos_token_id=__snake_case ,**__snake_case ) a__ = vocab_size a__ = max_position_embeddings a__ = hidden_size a__ = visual_embedding_dim a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = initializer_range a__ = type_vocab_size a__ = layer_norm_eps a__ = bypass_transformer a__ = special_visual_initialize
109
1
def __lowerCamelCase ( UpperCAmelCase_ : list ): """simple docstring""" if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] a :Tuple = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): a :str = [0] * n res.append(tuple(UpperCAmelCase_ ) ) a :Optional[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: a , a :str = arr[i], arr[0] else: a , a :List[str] = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase_ ) ) c[i] += 1 a :int = 0 else: a :List[str] = 0 i += 1 generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": snake_case : Any = input('''Enter numbers separated by a comma:\n''').strip() snake_case : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
94
def __lowerCamelCase ( UpperCAmelCase_ : int = 1000 ): """simple docstring""" a , a :int = 1, 1 a :Any = 2 while True: a :Optional[int] = 0 a :str = fa + fa a , a :List[Any] = fa, f index += 1 for _ in str(UpperCAmelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
94
1
'''simple docstring''' from math import ceil def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[str] = list(range(0 , _lowerCamelCase ) ) __snake_case : Dict = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __snake_case : Dict = [] for i in device_map_blocks: if device_map_blocks.count(_lowerCamelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_lowerCamelCase ) # Missing blocks __snake_case : Union[str, Any] = [i for i in blocks if i not in device_map_blocks] __snake_case : Tuple = [i for i in device_map_blocks if i not in blocks] if len(_lowerCamelCase ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(_lowerCamelCase ) ) if len(_lowerCamelCase ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(_lowerCamelCase ) ) if len(_lowerCamelCase ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(_lowerCamelCase ) ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = list(range(_lowerCamelCase ) ) __snake_case : int = int(ceil(n_layers / len(_lowerCamelCase ) ) ) __snake_case : Union[str, Any] = [layers[i : i + n_blocks] for i in range(0 , _lowerCamelCase , _lowerCamelCase )] return dict(zip(_lowerCamelCase , _lowerCamelCase ) )
361
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : List[str] = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase : Any = '''LayoutLMv3ImageProcessor''' __UpperCAmelCase : List[str] = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCamelCase__ , ) snake_case : Optional[int] = kwargs.pop("feature_extractor" ) snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = 0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = True , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor snake_case : Optional[int] = self.image_processor(images=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : str = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case : Optional[Any] = features["words"] snake_case : Dict = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel values snake_case : Dict = features.pop("pixel_values" ) if return_overflowing_tokens is True: snake_case : Optional[Any] = self.get_overflowing_images(UpperCamelCase__ , encoded_inputs["overflow_to_sample_mapping"] ) snake_case : Any = images return encoded_inputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F' {len(UpperCamelCase__ )} and {len(UpperCamelCase__ )}' ) return images_with_overflow def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCamelCase__ , ) return self.image_processor_class @property def lowerCamelCase ( self ) -> Any: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCamelCase__ , ) return self.image_processor
203
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Optional[Any] = '''xmod''' def __init__( self , UpperCamelCase__=3_0522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=2 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=("en_XX",) , UpperCamelCase__=None , **UpperCamelCase__ , ) -> int: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) snake_case : List[Any] = vocab_size snake_case : List[Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Any = num_attention_heads snake_case : List[str] = hidden_act snake_case : Union[str, Any] = intermediate_size snake_case : int = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : Optional[int] = max_position_embeddings snake_case : Tuple = type_vocab_size snake_case : List[str] = initializer_range snake_case : int = layer_norm_eps snake_case : Optional[Any] = position_embedding_type snake_case : int = use_cache snake_case : Dict = classifier_dropout snake_case : Dict = pre_norm snake_case : Union[str, Any] = adapter_reduction_factor snake_case : Any = adapter_layer_norm snake_case : Optional[int] = adapter_reuse_layer_norm snake_case : List[Any] = ln_before_adapter snake_case : str = list(UpperCamelCase__ ) snake_case : int = default_language class _lowerCAmelCase ( snake_case_ ): @property def lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
203
1
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class a ( a__ , unittest.TestCase ): snake_case__ = CpmAntTokenizer snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) lowerCAmelCase = '今天天气真好!' lowerCAmelCase = ['今天', '天气', '真', '好', '!'] lowerCAmelCase = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) lowerCAmelCase = '今天天气真好!' lowerCAmelCase = [tokenizer.bos_token] + tokens lowerCAmelCase = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) lowerCAmelCase = tokenizer.decode(_snake_case ) self.assertEqual(_snake_case , _snake_case )
363
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCamelCase : str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCamelCase : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCamelCase : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 ) lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ): lowerCAmelCase = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ): lowerCAmelCase = [] # Generate more children proportionally to the fitness score. lowerCAmelCase = int(parent_a[1] * 100 ) + 1 lowerCAmelCase = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0] lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase ,lowerCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __UpperCamelCase : Tuple = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCamelCase : str = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
309
0
import argparse from collections import defaultdict import yaml __lowerCamelCase = """docs/source/en/_toctree.yml""" def UpperCamelCase ( __lowerCamelCase : List[Any] ): snake_case : Any = defaultdict(__lowerCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 snake_case : Optional[Any] = [key for key, value in counts.items() if value > 1] snake_case : int = [] for duplicate_key in duplicates: snake_case : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(__lowerCamelCase ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : s["title"].lower() ) def UpperCamelCase ( __lowerCamelCase : List[Any]=False ): with open(__lowerCamelCase , encoding="utf-8" ) as f: snake_case : Any = yaml.safe_load(f.read() ) # Get to the API doc snake_case : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case : str = content[api_idx]["sections"] # Then to the model doc snake_case : Dict = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 snake_case : Dict = api_doc[model_idx]["sections"] snake_case : Tuple = [(idx, section) for idx, section in enumerate(__lowerCamelCase ) if "sections" in section] snake_case : Tuple = False for idx, modality_doc in modalities_docs: snake_case : Dict = modality_doc["sections"] snake_case : int = clean_model_doc_toc(__lowerCamelCase ) if old_modality_doc != new_modality_doc: snake_case : int = True if overwrite: snake_case : Tuple = new_modality_doc if diff: if overwrite: snake_case : int = model_doc snake_case : Union[str, Any] = api_doc with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__lowerCamelCase , allow_unicode=__lowerCamelCase ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCamelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
59
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image a :Optional[int] = ["text", "image", "audio"] def _lowercase ( __lowerCAmelCase ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): inputs.append(create_inputs(__lowerCAmelCase ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def _lowercase ( __lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ : Tuple = [] for output in outputs: if isinstance(__lowerCAmelCase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(__lowerCAmelCase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(__lowerCAmelCase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class __a : '''simple docstring''' def _a ( self ) -> str: """simple docstring""" self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) SCREAMING_SNAKE_CASE__ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , _a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE__ : Dict = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tool(*_a ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE__ : List[Any] = [outputs] self.assertListEqual(output_types(_a ) , self.tool.outputs ) def _a ( self ) -> List[Any]: """simple docstring""" self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : Dict = self.tool(*_a ) if not isinstance(_a , _a ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [outputs] self.assertEqual(len(_a ) , len(self.tool.outputs ) ) for output, output_type in zip(_a , self.tool.outputs ): SCREAMING_SNAKE_CASE__ : Optional[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_a , _a ) ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : List[Any] = [] for _input, input_type in zip(_a , self.tool.inputs ): if isinstance(_a , _a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tool(*_a ) if not isinstance(_a , _a ): SCREAMING_SNAKE_CASE__ : Optional[Any] = [outputs] self.assertEqual(len(_a ) , len(self.tool.outputs ) )
132
0
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCAmelCase_ : Dict = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def __A ( lowerCAmelCase_=None ): if subparsers is not None: _UpperCAmelCase : Union[str, Any] = subparsers.add_parser("""tpu-config""" , description=_description ) else: _UpperCAmelCase : Tuple = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments _UpperCAmelCase : Dict = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=lowerCAmelCase_ , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=lowerCAmelCase_ , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) _UpperCAmelCase : Tuple = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=lowerCAmelCase_ , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def __A ( lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): _UpperCAmelCase : str = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _UpperCAmelCase : int = defaults.command_file if not args.command and defaults.commands is not None: _UpperCAmelCase : Dict = defaults.commands if not args.tpu_name: _UpperCAmelCase : Any = defaults.tpu_name if not args.tpu_zone: _UpperCAmelCase : Optional[int] = defaults.tpu_zone if args.accelerate_version == "dev": _UpperCAmelCase : Optional[int] = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": _UpperCAmelCase : Tuple = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = f"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: _UpperCAmelCase : Union[str, Any] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _UpperCAmelCase : Tuple = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f"pip install {args.accelerate_version}"] new_cmd += args.command _UpperCAmelCase : str = """; """.join(lowerCAmelCase_ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _UpperCAmelCase : List[str] = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"Running {' '.join(lowerCAmelCase_ )}" ) return subprocess.run(lowerCAmelCase_ ) print("""Successfully setup pod.""" ) def __A ( ): _UpperCAmelCase : Tuple = tpu_command_parser() _UpperCAmelCase : Dict = parser.parse_args() tpu_command_launcher(lowerCAmelCase_ )
170
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowerCAmelCase_ : str = logging.get_logger(__name__) lowerCAmelCase_ : Union[str, Any] = TypeVar('''DatasetType''', Dataset, IterableDataset) def __A ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(lowerCAmelCase_ ): if not isinstance(lowerCAmelCase_ , (Dataset, IterableDataset) ): if isinstance(lowerCAmelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " """is an empty dataset dictionary.""" ) raise ValueError( f"Dataset at position {i} has at least one split: {list(lowerCAmelCase_ )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCAmelCase_ ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCAmelCase_ ).__name__}." ) if i == 0: _UpperCAmelCase , _UpperCAmelCase : Dict = ( (Dataset, IterableDataset) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , info=lowerCAmelCase_ , split=lowerCAmelCase_ , stopping_strategy=lowerCAmelCase_ ) else: return _interleave_iterable_datasets( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , info=lowerCAmelCase_ , split=lowerCAmelCase_ , stopping_strategy=lowerCAmelCase_ ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 0 , ): if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(lowerCAmelCase_ ): if not isinstance(lowerCAmelCase_ , (Dataset, IterableDataset) ): if isinstance(lowerCAmelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " """is an empty dataset dictionary.""" ) raise ValueError( f"Dataset at position {i} has at least one split: {list(lowerCAmelCase_ )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCAmelCase_ ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCAmelCase_ ).__name__}." ) if i == 0: _UpperCAmelCase , _UpperCAmelCase : Dict = ( (Dataset, IterableDataset) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowerCAmelCase_ , info=lowerCAmelCase_ , split=lowerCAmelCase_ , axis=lowerCAmelCase_ ) else: return _concatenate_iterable_datasets(lowerCAmelCase_ , info=lowerCAmelCase_ , split=lowerCAmelCase_ , axis=lowerCAmelCase_ )
170
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: Any = logging.get_logger(__name__) # pylint: disable=invalid-name A: Dict = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def _snake_case ( UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : Any=8 ): UpperCAmelCase : Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[Any]: '''simple docstring''' super().__init__() self.register_modules( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , movq=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if latents is None: UpperCAmelCase : Optional[Any] = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase : Optional[int] = latents.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ) -> Optional[int]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) UpperCAmelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ) -> str: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCAmelCase : int = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=_SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase : Optional[Any] = cpu_offload_with_hook(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. UpperCAmelCase : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int = self._execution_device UpperCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) UpperCAmelCase : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[int] = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase : Union[str, Any] = image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) UpperCAmelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = self.scheduler.timesteps UpperCAmelCase : Optional[int] = self.unet.config.in_channels UpperCAmelCase , UpperCAmelCase : Optional[int] = downscale_height_and_width(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.movq_scale_factor ) # create initial latent UpperCAmelCase : List[str] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.scheduler , ) for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : Any = {"""image_embeds""": image_embeds} UpperCAmelCase : Dict = self.unet( sample=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , added_cond_kwargs=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase : List[str] = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase : Dict = variance_pred.chunk(2 ) UpperCAmelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Optional[int] = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , )[0] # post-processing UpperCAmelCase : str = self.movq.decode(_SCREAMING_SNAKE_CASE , force_not_quantize=_SCREAMING_SNAKE_CASE )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase : int = image * 0.5 + 0.5 UpperCAmelCase : Optional[int] = image.clamp(0 , 1 ) UpperCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase : Union[str, Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
109
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: Optional[int] = logging.get_logger(__name__) A: Optional[int] = torch.device("cpu") def _snake_case ( ): UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im def _snake_case ( UpperCamelCase : int ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : str ): UpperCAmelCase : int = dct.pop(UpperCamelCase ) UpperCAmelCase : Any = val def _snake_case ( UpperCamelCase : Union[str, Any] ): UpperCAmelCase : Optional[int] = [] for k in state_dict.keys(): UpperCAmelCase : Optional[Any] = k if ".pwconv" in k: UpperCAmelCase : int = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: UpperCAmelCase : Tuple = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: UpperCAmelCase : List[Any] = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: UpperCAmelCase : Any = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: UpperCAmelCase : int = k_new.split(""".""" ) if ls[2].isdigit(): UpperCAmelCase : List[Any] = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: UpperCAmelCase : Any = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _snake_case ( UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Optional[int] ): UpperCAmelCase : List[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase : Optional[Any] = 1000 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[str] = """imagenet-1k-id2label.json""" UpperCAmelCase : Dict = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(UpperCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase : Any = [3, 3, 6, 4] UpperCAmelCase : List[str] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCAmelCase : Dict = [3, 3, 9, 6] UpperCAmelCase : Union[str, Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase : int = [4, 3, 10, 5] UpperCAmelCase : Optional[int] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase : Union[str, Any] = [4, 4, 12, 6] UpperCAmelCase : List[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" , check_hash=UpperCamelCase ) else: UpperCAmelCase : Any = torch.load(UpperCamelCase , map_location="""cpu""" ) UpperCAmelCase : Optional[Any] = checkpoint UpperCAmelCase : Dict = create_rename_keys(UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # load HuggingFace model UpperCAmelCase : List[Any] = SwiftFormerForImageClassification(UpperCamelCase ).eval() hf_model.load_state_dict(UpperCamelCase ) # prepare test inputs UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) UpperCAmelCase : Optional[int] = processor(images=UpperCamelCase , return_tensors="""pt""" ) # compare outputs from both models UpperCAmelCase : Optional[int] = get_expected_output(UpperCamelCase ) UpperCAmelCase : List[str] = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , UpperCamelCase , atol=1e-3 ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(F"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") A: str = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
109
1
import random from typing import Any def UpperCAmelCase_ ( __UpperCAmelCase : list ) -> list[Any]: for _ in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = random.randint(0 , len(__UpperCAmelCase ) - 1 ) SCREAMING_SNAKE_CASE_ = random.randint(0 , len(__UpperCAmelCase ) - 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = data[b], data[a] return data if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = [0, 1, 2, 3, 4, 5, 6, 7] lowerCamelCase__ : Optional[int] = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
210
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Dict = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
210
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class A ( unittest.TestCase ): __UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowercase_ (self : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) return generator, ["Something to write", "Something else"] def lowercase_ (self : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Any ) -> str: """simple docstring""" UpperCAmelCase__ = generator("Something there" ) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) UpperCAmelCase__ = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__ )}, {"generated_text": ANY(lowerCAmelCase__ )}], [{"generated_text": ANY(lowerCAmelCase__ )}, {"generated_text": ANY(lowerCAmelCase__ )}], ] , ) UpperCAmelCase__ = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__ )}, {"generated_text": ANY(lowerCAmelCase__ )}], [{"generated_text": ANY(lowerCAmelCase__ )}, {"generated_text": ANY(lowerCAmelCase__ )}], ] , ) with self.assertRaises(lowerCAmelCase__ ): generator(4 ) @require_torch def lowercase_ (self : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility UpperCAmelCase__ = generator("Something there" , do_sample=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}] ) UpperCAmelCase__ = 3 UpperCAmelCase__ = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) UpperCAmelCase__ = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) UpperCAmelCase__ = generator.model.config.eos_token_id UpperCAmelCase__ = "<pad>" UpperCAmelCase__ = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def lowercase_ (self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase__ = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility UpperCAmelCase__ = generator("Something there" , do_sample=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}] )
65
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { """Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""", """Salesforce/blip-vqa-capfit-large""": ( """https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-base""": ( """https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-large""": ( """https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json""" ), """Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""", """Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""", """Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""", """Salesforce/blip-itm-large-flikr""": ( """https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json""" ), } class A__ ( lowerCamelCase__ ): A__ = 'blip_text_model' def __init__( self : int , _a : Union[str, Any]=3_0524 , _a : Any=768 , _a : Dict=768 , _a : List[str]=3072 , _a : Union[str, Any]=768 , _a : Dict=12 , _a : Any=8 , _a : Union[str, Any]=512 , _a : Optional[Any]="gelu" , _a : Tuple=1e-12 , _a : str=0.0 , _a : Any=0.0 , _a : Tuple=0.02 , _a : int=3_0522 , _a : int=2 , _a : List[str]=0 , _a : int=102 , _a : str=True , _a : Any=True , **_a : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , sep_token_id=_a , **_a , ) _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =encoder_hidden_size _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =projection_dim _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =is_decoder _SCREAMING_SNAKE_CASE =use_cache @classmethod def A ( cls : Union[str, Any] , _a : List[str] , **_a : Optional[int] ) -> List[str]: '''simple docstring''' cls._set_token_in_kwargs(_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": _SCREAMING_SNAKE_CASE =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_a , **_a ) class A__ ( lowerCamelCase__ ): A__ = 'blip_vision_model' def __init__( self : Any , _a : int=768 , _a : List[Any]=3072 , _a : int=512 , _a : Optional[Any]=12 , _a : Optional[int]=12 , _a : Optional[int]=384 , _a : List[str]=16 , _a : Dict="gelu" , _a : Tuple=1e-5 , _a : Optional[int]=0.0 , _a : str=1e-10 , **_a : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_a ) _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =projection_dim _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =hidden_act @classmethod def A ( cls : Union[str, Any] , _a : str , **_a : Optional[int] ) -> Optional[Any]: '''simple docstring''' cls._set_token_in_kwargs(_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": _SCREAMING_SNAKE_CASE =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_a , **_a ) class A__ ( lowerCamelCase__ ): A__ = 'blip' A__ = True def __init__( self : Union[str, Any] , _a : List[str]=None , _a : str=None , _a : int=512 , _a : Dict=2.65_92 , _a : List[str]=256 , **_a : Optional[int] , ) -> Dict: '''simple docstring''' super().__init__(**_a ) if text_config is None: _SCREAMING_SNAKE_CASE ={} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: _SCREAMING_SNAKE_CASE ={} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) _SCREAMING_SNAKE_CASE =BlipTextConfig(**_a ) _SCREAMING_SNAKE_CASE =BlipVisionConfig(**_a ) _SCREAMING_SNAKE_CASE =self.vision_config.hidden_size _SCREAMING_SNAKE_CASE =projection_dim _SCREAMING_SNAKE_CASE =logit_scale_init_value _SCREAMING_SNAKE_CASE =1.0 _SCREAMING_SNAKE_CASE =0.02 _SCREAMING_SNAKE_CASE =image_text_hidden_size @classmethod def A ( cls : List[str] , _a : List[str] , _a : int , **_a : Dict ) -> Dict: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def A ( self : Dict ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE =self.text_config.to_dict() _SCREAMING_SNAKE_CASE =self.vision_config.to_dict() _SCREAMING_SNAKE_CASE =self.__class__.model_type return output
356
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _lowerCAmelCase ( ) -> int: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _SCREAMING_SNAKE_CASE ='__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , _UpperCamelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" assert _test_patching.open is open _SCREAMING_SNAKE_CASE ='__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , _UpperCamelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _lowerCAmelCase ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE ='__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , _UpperCamelCase ): pass def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , _UpperCamelCase ) is None with patch_submodule(_test_patching , 'len' , _UpperCamelCase ): assert _test_patching.len is mock assert _test_patching.len is len def _lowerCAmelCase ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE ='__test_patch_submodule_start_and_stop_mock__' _SCREAMING_SNAKE_CASE =patch_submodule(_test_patching , 'open' , _UpperCamelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _SCREAMING_SNAKE_CASE ='__test_patch_submodule_successive_join__' _SCREAMING_SNAKE_CASE ='__test_patch_submodule_successive_dirname__' _SCREAMING_SNAKE_CASE ='__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.rename' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.path.join' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , _UpperCamelCase ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , _UpperCamelCase ): pass
114
0
from __future__ import annotations import math def lowercase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int ) -> float: _snake_case : Optional[Any] = u for i in range(1 , _lowerCamelCase ): _snake_case : Tuple = temp * (u - i) return temp def lowercase ( ) -> None: _snake_case : Tuple = int(input("""enter the numbers of values: """ ) ) _snake_case : list[list[float]] = [] for _ in range(_lowerCamelCase ): y.append([] ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): y[i].append(_lowerCamelCase ) _snake_case : Any = 0 print("""enter the values of parameters in a list: """ ) _snake_case : List[str] = list(map(_lowerCamelCase , input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(_lowerCamelCase ): _snake_case : int = float(input() ) _snake_case : Optional[Any] = int(input("""enter the value to interpolate: """ ) ) _snake_case : Optional[int] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _lowerCamelCase ): for j in range(n - i ): _snake_case : Tuple = y[j + 1][i - 1] - y[j][i - 1] _snake_case : Tuple = y[0][0] for i in range(1 , _lowerCamelCase ): summ += (ucal(_lowerCamelCase , _lowerCamelCase ) * y[0][i]) / math.factorial(_lowerCamelCase ) print(F'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
317
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCAmelCase ( _lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> np.ndarray: _lowerCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Tuple = np.zeros((n + 1,) ) _lowerCAmelCase : List[Any] = ya _lowerCAmelCase : int = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
309
0
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _A ( lowercase ): """simple docstring""" a =[ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def _A ( lowercase ): """simple docstring""" a , a =emb.weight.shape a =nn.Linear(lowercase , lowercase , bias=lowercase ) a =emb.weight.data return lin_layer def _A ( lowercase ): """simple docstring""" a =torch.load(lowercase , map_location='''cpu''' ) a =Namespace(**checkpoint['''cfg''']['''model'''] ) a =checkpoint['''model'''] remove_ignore_keys_(lowercase ) a =state_dict['''decoder.embed_tokens.weight'''].shape[0] a ={key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} a =XGLMConfig( vocab_size=lowercase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) a =XGLMForCausalLM(lowercase ) a =model.load_state_dict(lowercase , strict=lowercase ) print(lowercase ) a =make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCamelCase_ : int = parser.parse_args() lowerCamelCase_ : Optional[Any] = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
215
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowerCamelCase_ : Optional[int] = None lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : str = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase_ : int = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } lowerCamelCase_ : Optional[Any] = { """google/rembert""": 2_5_6, } lowerCamelCase_ : Optional[Any] = """▁""" class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = RemBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A=True , __A=False , __A="[CLS]" , __A="[SEP]" , __A="<unk>" , __A="[SEP]" , __A="<pad>" , __A="[CLS]" , __A="[MASK]" , **__A , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , remove_space=__A , keep_accents=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , **__A , ) a =do_lower_case a =remove_space a =keep_accents a =vocab_file a =False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: a =[self.sep_token_id] a =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1] def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: a =[self.sep_token_id] a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__A ) ) return a =os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
215
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _lowercase : Dict ={ "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _lowercase : List[Any] ={ "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _lowercase : List[str] ={ "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } _lowercase : Optional[int] ={ "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } _lowercase : Dict ={ "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } _lowercase : Dict ={ "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def lowerCAmelCase_ ( _lowercase : List[str]) -> Dict: """simple docstring""" if isinstance(_lowercase , _lowercase): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""") def lowerCAmelCase_ ( _lowercase : int , _lowercase : int , _lowercase : Dict , _lowercase : Dict , _lowercase : int=False) -> List[Any]: """simple docstring""" a__ : List[str] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] a__ : Any = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] a__ : Any = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] a__ : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] a__ : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] a__ : List[Any] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] a__ : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] a__ : Optional[int] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] a__ : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] a__ : Optional[int] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: a__ : Union[str, Any] = checkpoint[F'''{old_prefix}.skip_connection.weight'''] a__ : List[str] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCAmelCase_ ( _lowercase : List[Any] , _lowercase : Tuple , _lowercase : int , _lowercase : Dict , _lowercase : List[Any]=None) -> Any: """simple docstring""" a__ , a__ , a__ : Tuple = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0) a__ , a__ , a__ : Tuple = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0) a__ : Optional[Any] = checkpoint[F'''{old_prefix}.norm.weight'''] a__ : Tuple = checkpoint[F'''{old_prefix}.norm.bias'''] a__ : str = weight_q.squeeze(-1).squeeze(-1) a__ : Union[str, Any] = bias_q.squeeze(-1).squeeze(-1) a__ : Any = weight_k.squeeze(-1).squeeze(-1) a__ : List[str] = bias_k.squeeze(-1).squeeze(-1) a__ : Tuple = weight_v.squeeze(-1).squeeze(-1) a__ : List[Any] = bias_v.squeeze(-1).squeeze(-1) a__ : List[str] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1).squeeze(-1) ) a__ : Optional[Any] = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1).squeeze(-1) return new_checkpoint def lowerCAmelCase_ ( _lowercase : str , _lowercase : Tuple) -> Union[str, Any]: """simple docstring""" a__ : Union[str, Any] = torch.load(_lowercase , map_location="""cpu""") a__ : List[str] = {} a__ : List[Any] = checkpoint["""time_embed.0.weight"""] a__ : List[Any] = checkpoint["""time_embed.0.bias"""] a__ : int = checkpoint["""time_embed.2.weight"""] a__ : int = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: a__ : Optional[int] = checkpoint["""label_emb.weight"""] a__ : Dict = checkpoint["""input_blocks.0.0.weight"""] a__ : Optional[int] = checkpoint["""input_blocks.0.0.bias"""] a__ : str = unet_config["""down_block_types"""] a__ : Optional[Any] = unet_config["""layers_per_block"""] a__ : Tuple = unet_config["""attention_head_dim"""] a__ : Union[str, Any] = unet_config["""block_out_channels"""] a__ : Dict = 1 a__ : Optional[int] = channels_list[0] for i, layer_type in enumerate(_lowercase): a__ : int = channels_list[i] a__ : Dict = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_lowercase): a__ : List[str] = F'''down_blocks.{i}.resnets.{j}''' a__ : List[str] = F'''input_blocks.{current_layer}.0''' a__ : Any = True if j == 0 and downsample_block_has_skip else False a__ : Optional[Any] = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase , has_skip=_lowercase) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_lowercase): a__ : Optional[int] = F'''down_blocks.{i}.resnets.{j}''' a__ : int = F'''input_blocks.{current_layer}.0''' a__ : Union[str, Any] = True if j == 0 and downsample_block_has_skip else False a__ : Optional[Any] = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase , has_skip=_lowercase) a__ : Dict = F'''down_blocks.{i}.attentions.{j}''' a__ : List[Any] = F'''input_blocks.{current_layer}.1''' a__ : List[str] = convert_attention( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase) current_layer += 1 if i != len(_lowercase) - 1: a__ : Tuple = F'''down_blocks.{i}.downsamplers.0''' a__ : Any = F'''input_blocks.{current_layer}.0''' a__ : List[str] = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase) current_layer += 1 a__ : Any = current_channels # hardcoded the mid-block for now a__ : Optional[Any] = """mid_block.resnets.0""" a__ : Dict = """middle_block.0""" a__ : int = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase) a__ : List[str] = """mid_block.attentions.0""" a__ : str = """middle_block.1""" a__ : Any = convert_attention(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase) a__ : str = """mid_block.resnets.1""" a__ : Tuple = """middle_block.2""" a__ : str = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase) a__ : Tuple = 0 a__ : int = unet_config["""up_block_types"""] for i, layer_type in enumerate(_lowercase): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1): a__ : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' a__ : Dict = F'''output_blocks.{current_layer}.0''' a__ : Optional[int] = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase , has_skip=_lowercase) current_layer += 1 if i != len(_lowercase) - 1: a__ : Optional[int] = F'''up_blocks.{i}.upsamplers.0''' a__ : Optional[Any] = F'''output_blocks.{current_layer-1}.1''' a__ : Union[str, Any] = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1): a__ : Union[str, Any] = F'''up_blocks.{i}.resnets.{j}''' a__ : List[str] = F'''output_blocks.{current_layer}.0''' a__ : Tuple = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase , has_skip=_lowercase) a__ : Dict = F'''up_blocks.{i}.attentions.{j}''' a__ : List[str] = F'''output_blocks.{current_layer}.1''' a__ : str = convert_attention( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase) current_layer += 1 if i != len(_lowercase) - 1: a__ : Optional[int] = F'''up_blocks.{i}.upsamplers.0''' a__ : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' a__ : str = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase) a__ : Optional[int] = checkpoint["""out.0.weight"""] a__ : List[Any] = checkpoint["""out.0.bias"""] a__ : Any = checkpoint["""out.2.weight"""] a__ : Optional[Any] = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") _lowercase : List[str] =parser.parse_args() _lowercase : Any =strabool(args.class_cond) _lowercase : List[str] =os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: _lowercase : Any =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _lowercase : Union[str, Any] =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _lowercase : Optional[int] =TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: _lowercase : List[Any] =None _lowercase : List[str] =con_pt_to_diffuser(args.unet_path, unet_config) _lowercase : Optional[Any] =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _lowercase : List[str] =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _lowercase : List[str] =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _lowercase : Optional[int] =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') _lowercase : List[Any] =CMStochasticIterativeScheduler(**scheduler_config) _lowercase : Tuple =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
170
_lowercase : Optional[Any] =[sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def lowerCAmelCase_ ( _lowercase : int) -> int: """simple docstring""" a__ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _lowercase : list[bool | None] =[None] * 1000_0000 _lowercase : Tuple =True _lowercase : int =False def lowerCAmelCase_ ( _lowercase : int) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore a__ : Optional[Any] = chain(next_number(_lowercase)) a__ : Dict = number_chain while number < 1000_0000: a__ : Any = number_chain number *= 10 return number_chain def lowerCAmelCase_ ( _lowercase : int = 1000_0000) -> int: """simple docstring""" for i in range(1 , _lowercase): if CHAINS[i] is None: chain(i + 1) return CHAINS[:number].count(_lowercase) if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution() = }')
170
1
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) __a = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
131
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : str): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self : Any): '''simple docstring''' __a = 1 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(__SCREAMING_SNAKE_CASE) return image @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' torch.manual_seed(0) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' torch.manual_seed(0) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _lowerCamelCase ( self : Any): '''simple docstring''' torch.manual_seed(0) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(__SCREAMING_SNAKE_CASE) @property def _lowerCamelCase ( self : List[str]): '''simple docstring''' def extract(*__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Dict): class _A : def __init__( self : int): '''simple docstring''' __a = torch.ones([0]) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' self.pixel_values.to(__SCREAMING_SNAKE_CASE) return self return Out() return extract def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''') __a = output.images __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''') __a = output.images __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__SCREAMING_SNAKE_CASE) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) assert isinstance(pipe.scheduler , __SCREAMING_SNAKE_CASE) assert pipe.safety_checker is None __a = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__SCREAMING_SNAKE_CASE) __a = StableDiffusionPipeline.from_pretrained(__SCREAMING_SNAKE_CASE) # sanity check that the pipeline still works assert pipe.safety_checker is None __a = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # put models in fp16 __a = unet.half() __a = vae.half() __a = bert.half() # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__SCREAMING_SNAKE_CASE) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) __a = 4_003_660_346 __a = 7 # without safety guidance (sld_guidance_scale = 0) __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 # without safety guidance (strong configuration) __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__SCREAMING_SNAKE_CASE) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''padme amidala taking a bath artwork, safe for work, no nudity''' __a = 2_734_971_755 __a = 7 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : str): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''') __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) __a = 1_044_355_234 __a = 12 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-7 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
131
1
import os def UpperCAmelCase ( ): """simple docstring""" with open(os.path.dirname(lowercase ) + '''/grid.txt''' ) as f: __lowercase = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) __lowercase = 0 # right for i in range(20 ): for j in range(17 ): __lowercase = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __lowercase = temp # down for i in range(17 ): for j in range(20 ): __lowercase = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __lowercase = temp # diagonal 1 for i in range(17 ): for j in range(17 ): __lowercase = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __lowercase = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): __lowercase = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __lowercase = temp return maximum if __name__ == "__main__": print(solution())
210
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a : Any = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[int] = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : str = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
210
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A__ = XLMTokenizer A__ = False def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowercase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowercase__ = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__UpperCAmelCase ) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = """lower newer""" lowercase__ = """lower newer""" return input_text, output_text def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = XLMTokenizer(self.vocab_file , self.merges_file ) lowercase__ = """lower""" lowercase__ = ["""low""", """er</w>"""] lowercase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = tokens + ["""<unk>"""] lowercase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) @slow def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) lowercase__ = tokenizer.encode("""sequence builders""" , add_special_tokens=__UpperCAmelCase ) lowercase__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__UpperCAmelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
366
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : List[Any] = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''segformer''' def __init__(self : Dict , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Union[str, Any]=[2, 2, 2, 2] , _UpperCAmelCase : List[str]=[8, 4, 2, 1] , _UpperCAmelCase : str=[32, 64, 160, 256] , _UpperCAmelCase : Optional[int]=[7, 3, 3, 3] , _UpperCAmelCase : int=[4, 2, 2, 2] , _UpperCAmelCase : str=[1, 2, 5, 8] , _UpperCAmelCase : Optional[int]=[4, 4, 4, 4] , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=1E-6 , _UpperCAmelCase : Optional[Any]=256 , _UpperCAmelCase : Any=255 , **_UpperCAmelCase : str , ) -> Tuple: """simple docstring""" super().__init__(**_UpperCAmelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , _UpperCAmelCase , ) lowercase__ = num_channels lowercase__ = num_encoder_blocks lowercase__ = depths lowercase__ = sr_ratios lowercase__ = hidden_sizes lowercase__ = patch_sizes lowercase__ = strides lowercase__ = mlp_ratios lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = classifier_dropout_prob lowercase__ = initializer_range lowercase__ = drop_path_rate lowercase__ = layer_norm_eps lowercase__ = decoder_hidden_size lowercase__ = kwargs.get("""reshape_last_stage""" , _UpperCAmelCase ) lowercase__ = semantic_loss_ignore_index class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : Optional[int] ) -> float: """simple docstring""" return 1E-4 @property def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" return 12
146
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase : str = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=8 ): '''simple docstring''' A : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCAmelCase_ ( snake_case__ , snake_case__=512 , snake_case__=512 ): '''simple docstring''' A : Optional[Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) A : str = np.array(pil_image.convert('''RGB''' ) ) A : Union[str, Any] = arr.astype(np.floataa ) / 1_27.5 - 1 A : Tuple = np.transpose(snake_case__ , [2, 0, 1] ) A : List[str] = torch.from_numpy(snake_case__ ).unsqueeze(0 ) return image class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__() self.register_modules( unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , movq=SCREAMING_SNAKE_CASE , ) A : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" A : Any = min(int(num_inference_steps * strength ) , SCREAMING_SNAKE_CASE ) A : int = max(num_inference_steps - init_timestep , 0 ) A : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> List[Any]: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(SCREAMING_SNAKE_CASE )}' ) A : str = image.to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) A : Union[str, Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: A : Optional[int] = image else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Union[str, Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(SCREAMING_SNAKE_CASE ) ] A : Optional[int] = torch.cat(SCREAMING_SNAKE_CASE , dim=0 ) else: A : Optional[Any] = self.movq.encode(SCREAMING_SNAKE_CASE ).latent_dist.sample(SCREAMING_SNAKE_CASE ) A : str = self.movq.config.scaling_factor * init_latents A : Any = torch.cat([init_latents] , dim=0 ) A : Tuple = init_latents.shape A : str = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) # get latents A : str = self.scheduler.add_noise(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Dict = init_latents return latents def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 ) -> List[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) A : List[Any] = torch.device(F'cuda:{gpu_id}' ) A : Optional[int] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 ) -> Tuple: """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) A : Dict = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: A, A : str = cpu_offload_with_hook(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prev_module_hook=SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. A : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 100 , SCREAMING_SNAKE_CASE = 4.0 , SCREAMING_SNAKE_CASE = 0.3 , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , ) -> List[str]: """simple docstring""" A : Tuple = self._execution_device A : Any = guidance_scale > 1.0 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : str = torch.cat(SCREAMING_SNAKE_CASE , dim=0 ) A : str = image_embeds.shape[0] if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Dict = torch.cat(SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: A : Union[str, Any] = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE , dim=0 ) A : List[str] = negative_image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE , dim=0 ) A : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Dict = [image] if not all(isinstance(SCREAMING_SNAKE_CASE , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F'Input is in incorrect format: {[type(SCREAMING_SNAKE_CASE ) for i in image]}. Currently, we only support PIL image and pytorch tensor' ) A : Tuple = torch.cat([prepare_image(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in image] , dim=0 ) A : Tuple = image.to(dtype=image_embeds.dtype , device=SCREAMING_SNAKE_CASE ) A : Tuple = self.movq.encode(SCREAMING_SNAKE_CASE )['''latents'''] A : int = latents.repeat_interleave(SCREAMING_SNAKE_CASE , dim=0 ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE ) A, A : Optional[int] = self.get_timesteps(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) A, A : Optional[Any] = downscale_height_and_width(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.movq_scale_factor ) A : Optional[int] = self.prepare_latents( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , image_embeds.dtype , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance A : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A : Dict = {'''image_embeds''': image_embeds} A : Tuple = self.unet( sample=SCREAMING_SNAKE_CASE , timestep=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , added_cond_kwargs=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: A, A : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) A, A : List[str] = noise_pred.chunk(2 ) A, A : Tuple = variance_pred.chunk(2 ) A : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A, A : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A : List[Any] = self.scheduler.step( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , )[0] # post-processing A : Tuple = self.movq.decode(SCREAMING_SNAKE_CASE , force_not_quantize=SCREAMING_SNAKE_CASE )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: A : Union[str, Any] = image * 0.5 + 0.5 A : Dict = image.clamp(0 , 1 ) A : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A : int = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
3
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig a : Optional[Any] = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } a : Optional[Any] = logging.get_logger(__name__) class a ( lowercase__ ): """simple docstring""" a : str = 'maskformer' a : Dict = {'hidden_size': 'mask_feature_size'} a : Optional[Any] = ['resnet', 'swin'] a : List[Any] = ['detr'] def __init__( self : Optional[int] , __lowercase : int = 256 , __lowercase : int = 256 , __lowercase : float = 0.1 , __lowercase : bool = False , __lowercase : Optional[Dict] = None , __lowercase : Optional[Dict] = None , __lowercase : float = 0.02 , __lowercase : float = 1.0 , __lowercase : float = 1.0 , __lowercase : float = 1.0 , __lowercase : float = 20.0 , __lowercase : Optional[bool] = None , **__lowercase : Tuple , ) -> str: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __UpperCAmelCase : List[str] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowercase , __lowercase ): __UpperCAmelCase : Dict = backbone_config.pop("""model_type""" ) __UpperCAmelCase : Tuple = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowercase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __UpperCAmelCase : List[Any] = DetrConfig() else: # verify that the decoder is supported __UpperCAmelCase : List[Any] = ( decoder_config.pop("""model_type""" ) if isinstance(__lowercase , __lowercase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(__lowercase , __lowercase ): __UpperCAmelCase : Dict = CONFIG_MAPPING[decoder_type] __UpperCAmelCase : Union[str, Any] = config_class.from_dict(__lowercase ) __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : List[str] = decoder_config # main feature dimension for the model __UpperCAmelCase : Union[str, Any] = fpn_feature_size __UpperCAmelCase : Optional[Any] = mask_feature_size # initializer __UpperCAmelCase : int = init_std __UpperCAmelCase : Any = init_xavier_std # Hungarian matcher && loss __UpperCAmelCase : Any = cross_entropy_weight __UpperCAmelCase : Optional[Any] = dice_weight __UpperCAmelCase : List[str] = mask_weight __UpperCAmelCase : Union[str, Any] = use_auxiliary_loss __UpperCAmelCase : int = no_object_weight __UpperCAmelCase : int = output_auxiliary_logits __UpperCAmelCase : Optional[Any] = self.decoder_config.encoder_attention_heads __UpperCAmelCase : Dict = self.decoder_config.num_hidden_layers super().__init__(**__lowercase ) @classmethod def UpperCAmelCase ( cls : int , __lowercase : PretrainedConfig , __lowercase : PretrainedConfig , **__lowercase : str ) -> Tuple: return cls( backbone_config=__lowercase , decoder_config=__lowercase , **__lowercase , ) def UpperCAmelCase ( self : List[Any] ) -> Dict[str, any]: __UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Optional[int] = self.backbone_config.to_dict() __UpperCAmelCase : Any = self.decoder_config.to_dict() __UpperCAmelCase : Tuple = self.__class__.model_type return output
114
0
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def __magic_name__ ( A , A , A , A ) -> Tuple[int, int]: def constraint_to_multiple_of(A , A , A=0 , A=None ): snake_case = round(val / multiple ) * multiple if max_val is not None and x > max_val: snake_case = math.floor(val / multiple ) * multiple if x < min_val: snake_case = math.ceil(val / multiple ) * multiple return x snake_case = (output_size, output_size) if isinstance(A , A ) else output_size snake_case , snake_case = get_image_size(A ) snake_case , snake_case = output_size # determine new height and width snake_case = output_height / input_height snake_case = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width snake_case = scale_width else: # fit height snake_case = scale_height snake_case = constraint_to_multiple_of(scale_height * input_height , multiple=A ) snake_case = constraint_to_multiple_of(scale_width * input_width , multiple=A ) return (new_height, new_width) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = ['''pixel_values'''] def __init__( self, lowercase_ = True, lowercase_ = None, lowercase_ = PILImageResampling.BILINEAR, lowercase_ = False, lowercase_ = 1, lowercase_ = True, lowercase_ = 1 / 255, lowercase_ = True, lowercase_ = None, lowercase_ = None, **lowercase_, ) -> None: super().__init__(**lowercase_ ) snake_case = size if size is not None else {'height': 384, 'width': 384} snake_case = get_size_dict(lowercase_ ) snake_case = do_resize snake_case = size snake_case = keep_aspect_ratio snake_case = ensure_multiple_of snake_case = resample snake_case = do_rescale snake_case = rescale_factor snake_case = do_normalize snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = False, lowercase_ = 1, lowercase_ = PILImageResampling.BICUBIC, lowercase_ = None, **lowercase_, ) -> np.ndarray: snake_case = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) snake_case = get_resize_output_image_size( lowercase_, output_size=(size['height'], size['width']), keep_aspect_ratio=lowercase_, multiple=lowercase_, ) return resize(lowercase_, size=lowercase_, resample=lowercase_, data_format=lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> List[str]: return rescale(lowercase_, scale=lowercase_, data_format=lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> np.ndarray: return normalize(lowercase_, mean=lowercase_, std=lowercase_, data_format=lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = ChannelDimension.FIRST, **lowercase_, ) -> PIL.Image.Image: snake_case = do_resize if do_resize is not None else self.do_resize snake_case = size if size is not None else self.size snake_case = get_size_dict(lowercase_ ) snake_case = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio snake_case = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of snake_case = resample if resample is not None else self.resample snake_case = do_rescale if do_rescale is not None else self.do_rescale snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case = do_normalize if do_normalize is not None else self.do_normalize snake_case = image_mean if image_mean is not None else self.image_mean snake_case = image_std if image_std is not None else self.image_std snake_case = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case = [to_numpy_array(lowercase_ ) for image in images] if do_resize: snake_case = [self.resize(image=lowercase_, size=lowercase_, resample=lowercase_ ) for image in images] if do_rescale: snake_case = [self.rescale(image=lowercase_, scale=lowercase_ ) for image in images] if do_normalize: snake_case = [self.normalize(image=lowercase_, mean=lowercase_, std=lowercase_ ) for image in images] snake_case = [to_channel_dimension_format(lowercase_, lowercase_ ) for image in images] snake_case = {'pixel_values': images} return BatchFeature(data=lowercase_, tensor_type=lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple: snake_case = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase_ ): snake_case = target_sizes.numpy() snake_case = [] for idx in range(len(lowercase_ ) ): snake_case = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ), size=target_sizes[idx], mode='bilinear', align_corners=lowercase_ ) snake_case = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: snake_case = logits.argmax(dim=1 ) snake_case = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
365
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
0
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : List[Any] = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : List[Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Tuple = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
215
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = RemBertConfig.from_json_file(lowerCAmelCase_ ) print("""Building PyTorch model from configuration: {}""".format(str(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Any = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowerCAmelCase_ ) ) torch.save(model.state_dict() , lowerCAmelCase_ ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A_ : Any = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
215
1
import argparse from collections import defaultdict import yaml A : Any = 'docs/source/en/_toctree.yml' def UpperCamelCase ( __magic_name__ : Any ) -> Any: """simple docstring""" lowercase__ = defaultdict(__magic_name__ ) lowercase__ = [] lowercase__ = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(__magic_name__ ) lowercase__ = new_doc_list lowercase__ = [key for key, value in counts.items() if value > 1] lowercase__ = [] for duplicate_key in duplicates: lowercase__ = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(__magic_name__ ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) lowercase__ = sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__magic_name__ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(__magic_name__ ) # Sort return overview_doc def UpperCamelCase ( __magic_name__ : Dict=False ) -> Any: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = yaml.safe_load(f.read() ) # Get to the API doc lowercase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__ = content[api_idx]["""sections"""] # Then to the model doc lowercase__ = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowercase__ = api_doc[scheduler_idx]["""sections"""] lowercase__ = clean_doc_toc(__magic_name__ ) lowercase__ = False if new_scheduler_doc != scheduler_doc: lowercase__ = True if overwrite: lowercase__ = new_scheduler_doc if diff: if overwrite: lowercase__ = api_doc with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def UpperCamelCase ( __magic_name__ : Union[str, Any]=False ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = yaml.safe_load(f.read() ) # Get to the API doc lowercase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__ = content[api_idx]["""sections"""] # Then to the model doc lowercase__ = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowercase__ = False lowercase__ = api_doc[pipeline_idx]["""sections"""] lowercase__ = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowercase__ = pipeline_doc["""section"""] lowercase__ = clean_doc_toc(__magic_name__ ) if overwrite: lowercase__ = new_sub_pipeline_doc new_pipeline_docs.append(__magic_name__ ) # sort overall pipeline doc lowercase__ = clean_doc_toc(__magic_name__ ) if new_pipeline_docs != pipeline_docs: lowercase__ = True if overwrite: lowercase__ = new_pipeline_docs if diff: if overwrite: lowercase__ = api_doc with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A : Optional[int] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
146
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) lowercase__ = { """input_ids""": tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowercase__ = model(_UpperCAmelCase )["""last_hidden_state"""] lowercase__ = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) # compare the actual values for a slice. lowercase__ = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
146
1
import baseaa def lowerCamelCase_ ( _a ): """simple docstring""" return baseaa.aaaencode(string.encode('''utf-8''' ) ) def lowerCamelCase_ ( _a ): """simple docstring""" return baseaa.aaadecode(_a ).decode('''utf-8''' ) if __name__ == "__main__": import doctest doctest.testmod()
131
import unittest from transformers import DonutProcessor lowerCamelCase = '''naver-clova-ix/donut-base''' class _a ( unittest.TestCase): def UpperCAmelCase__( self : str )-> int: lowerCAmelCase__ : Any = DonutProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[int] )-> List[Any]: lowerCAmelCase__ : Dict = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowerCAmelCase__ : Any = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowerCAmelCase__ : str = self.processor.tokenajson(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
131
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : List[str] = 1 lowercase__ : Union[str, Any] = 2 while i * i <= n: lowercase__ : int = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __UpperCAmelCase ( ) -> Tuple: lowercase__ : Dict = 1 lowercase__ : Optional[Any] = 1 while True: i += 1 t_num += i if count_divisors(__lowerCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
1
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = 0 SCREAMING_SNAKE_CASE_: Any = len(_UpperCAmelCase ) for i in range(n - 1 ): for j in range(i + 1 , _UpperCAmelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def A_ ( _UpperCAmelCase ): if len(_UpperCAmelCase ) <= 1: return arr, 0 SCREAMING_SNAKE_CASE_: str = len(_UpperCAmelCase ) // 2 SCREAMING_SNAKE_CASE_: List[str] = arr[0:mid] SCREAMING_SNAKE_CASE_: Dict = arr[mid:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = count_inversions_recursive(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = count_inversions_recursive(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = _count_cross_inversions(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = inversion_p + inversions_q + cross_inversions return c, num_inversions def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(_UpperCAmelCase ) and j < len(_UpperCAmelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_UpperCAmelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_UpperCAmelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def A_ ( ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) SCREAMING_SNAKE_CASE_: Optional[int] = count_inversions_bf(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = count_inversions_recursive(_UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , _UpperCAmelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() SCREAMING_SNAKE_CASE_: str = count_inversions_bf(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = count_inversions_recursive(_UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , _UpperCAmelCase ) # an empty list should also have zero inversions SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: Union[str, Any] = count_inversions_bf(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = count_inversions_recursive(_UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , _UpperCAmelCase ) if __name__ == "__main__": main()
13
from collections.abc import Callable def _a ( SCREAMING_SNAKE_CASE : Callable[[float], float] , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" UpperCamelCase__ : float = a UpperCamelCase__ : float = b if function(SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(SCREAMING_SNAKE_CASE ) * function(SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: UpperCamelCase__ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(SCREAMING_SNAKE_CASE ) == 0: return mid elif function(SCREAMING_SNAKE_CASE ) * function(SCREAMING_SNAKE_CASE ) < 0: UpperCamelCase__ : Tuple = mid else: UpperCamelCase__ : Dict = mid UpperCamelCase__ : List[str] = start + (end - start) / 2.0 return mid def _a ( SCREAMING_SNAKE_CASE : float ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
146
0
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __lowerCAmelCase ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case : Optional[int] = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , __SCREAMING_SNAKE_CASE ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __lowerCAmelCase ( ): '''simple docstring''' assert _test_patching.open is open __snake_case : Optional[int] = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , __SCREAMING_SNAKE_CASE ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __lowerCAmelCase ( ): '''simple docstring''' # pandas.read_csv is not present in _test_patching __snake_case : Dict = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , __SCREAMING_SNAKE_CASE ): pass def __lowerCAmelCase ( ): '''simple docstring''' # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case : Optional[Any] = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , __SCREAMING_SNAKE_CASE ) is None with patch_submodule(_test_patching , """len""" , __SCREAMING_SNAKE_CASE ): assert _test_patching.len is mock assert _test_patching.len is len def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Dict = """__test_patch_submodule_start_and_stop_mock__""" __snake_case : Dict = patch_submodule(_test_patching , """open""" , __SCREAMING_SNAKE_CASE ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __lowerCAmelCase ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case : int = """__test_patch_submodule_successive_join__""" __snake_case : Tuple = """__test_patch_submodule_successive_dirname__""" __snake_case : Dict = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , __SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , """os.rename""" , __SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , """os.path.dirname""" , __SCREAMING_SNAKE_CASE ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , __SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , """os.path.join""" , __SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , """os.path.dirname""" , __SCREAMING_SNAKE_CASE ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Optional[int] = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , __SCREAMING_SNAKE_CASE ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , __SCREAMING_SNAKE_CASE ): pass
20
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } lowercase_ = { "junnyu/roformer_chinese_small": 15_36, "junnyu/roformer_chinese_base": 15_36, "junnyu/roformer_chinese_char_small": 5_12, "junnyu/roformer_chinese_char_base": 5_12, "junnyu/roformer_small_discriminator": 1_28, "junnyu/roformer_small_generator": 1_28, } lowercase_ = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = VOCAB_FILES_NAMES A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = PRETRAINED_INIT_CONFIGURATION A : List[str] = RoFormerTokenizer def __init__( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[int]="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Dict , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or pre_tok_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents ): __snake_case : Tuple = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) __snake_case : List[Any] = do_lower_case __snake_case : Optional[Any] = strip_accents __snake_case : List[str] = pre_tok_class(**_lowerCAmelCase ) __snake_case : Optional[Any] = do_lower_case def __getstate__( self : Optional[Any] ): __snake_case : Optional[int] = self.__dict__.copy() __snake_case : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : str , _lowerCAmelCase : Dict ): __snake_case : str = d __snake_case : int = self.__dict__["""_tokenizer"""].get_vocab() __snake_case : List[str] = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None ): __snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def snake_case__ ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ): __snake_case : Tuple = BertPreTokenizer() return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
20
1
from __future__ import annotations def snake_case_ ( snake_case ) -> Dict: return len(set(snake_case_ ) ) == len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
196
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : Union[str, Any] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
332
0
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( __UpperCamelCase ) -> int: """simple docstring""" return (data["data"], data["target"]) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase_ : Optional[Any] = XGBClassifier() classifier.fit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return classifier def __lowerCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase_ : Any = load_iris() lowerCAmelCase_ : Union[str, Any] = data_handling(__SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : int = train_test_split( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , test_size=0.25 ) lowerCAmelCase_ : Optional[Any] = iris["""target_names"""] # Create an XGBoost Classifier from the training data lowerCAmelCase_ : List[Any] = xgboost(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , display_labels=__SCREAMING_SNAKE_CASE , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
370
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def __lowerCamelCase ( __UpperCamelCase ) -> Any: """simple docstring""" if not is_accelerate_available(): return method lowerCAmelCase_ : Union[str, Any] = version.parse(accelerate.__version__ ).base_version if version.parse(__UpperCamelCase ) < version.parse("0.17.0" ): return method def wrapper(self , *__UpperCamelCase , **__UpperCamelCase ): if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ): self._hf_hook.pre_forward(self ) return method(self , *__UpperCamelCase , **__UpperCamelCase ) return wrapper
161
0
from typing import Any def _a ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : dict , ): """simple docstring""" _validation( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) # Creates data structures and fill initial step UpperCamelCase__ : dict = {} UpperCamelCase__ : dict = {} for state in states_space: UpperCamelCase__ : Any = observations_space[0] UpperCamelCase__ : List[str] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCamelCase__ : int = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ : Dict = observations_space[o] UpperCamelCase__ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCamelCase__ : str = '''''' UpperCamelCase__ : List[Any] = -1 for k_state in states_space: UpperCamelCase__ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCamelCase__ : str = probability UpperCamelCase__ : Dict = k_state # Update probabilities and pointers dicts UpperCamelCase__ : Dict = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCamelCase__ : Union[str, Any] = arg_max # The final observation UpperCamelCase__ : Dict = observations_space[len(SCREAMING_SNAKE_CASE ) - 1] # argmax for given final observation UpperCamelCase__ : str = '''''' UpperCamelCase__ : str = -1 for k_state in states_space: UpperCamelCase__ : Optional[int] = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCamelCase__ : List[Any] = probability UpperCamelCase__ : int = k_state UpperCamelCase__ : Dict = arg_max # Process pointers backwards UpperCamelCase__ : Tuple = last_state UpperCamelCase__ : str = [] for o in range(len(SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ): result.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = pointers[previous, observations_space[o]] result.reverse() return result def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , ): """simple docstring""" _validate_not_empty( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) _validate_lists(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _validate_dicts( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , ): """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" _validate_list(SCREAMING_SNAKE_CASE , '''observations_space''' ) _validate_list(SCREAMING_SNAKE_CASE , '''states_space''' ) def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str ): """simple docstring""" if not isinstance(_object , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Union[str, Any] = F"{var_name} must be a list" raise ValueError(SCREAMING_SNAKE_CASE ) else: for x in _object: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Dict = F"{var_name} must be a list of strings" raise ValueError(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , ): """simple docstring""" _validate_dict(SCREAMING_SNAKE_CASE , '''initial_probabilities''' , SCREAMING_SNAKE_CASE ) _validate_nested_dict(SCREAMING_SNAKE_CASE , '''transition_probabilities''' ) _validate_nested_dict(SCREAMING_SNAKE_CASE , '''emission_probabilities''' ) def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str ): """simple docstring""" _validate_dict(_object , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for x in _object.values(): _validate_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : type , SCREAMING_SNAKE_CASE : bool = False ): """simple docstring""" if not isinstance(_object , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Any = F"{var_name} must be a dict" raise ValueError(SCREAMING_SNAKE_CASE ) if not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for x in _object ): UpperCamelCase__ : Optional[Any] = F"{var_name} all keys must be strings" raise ValueError(SCREAMING_SNAKE_CASE ) if not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for x in _object.values() ): UpperCamelCase__ : Tuple = '''nested dictionary ''' if nested else '''''' UpperCamelCase__ : Tuple = F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
146
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: str = XLMTokenizer A: Optional[Any] = False def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCamelCase__ : Optional[int] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) UpperCamelCase__ : Optional[Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Dict ) -> Tuple: '''simple docstring''' UpperCamelCase__ : int = '''lower newer''' UpperCamelCase__ : List[str] = '''lower newer''' return input_text, output_text def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase__ : Tuple = '''lower''' UpperCamelCase__ : Dict = ['''low''', '''er</w>'''] UpperCamelCase__ : Optional[int] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Dict = tokens + ['''<unk>'''] UpperCamelCase__ : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Any = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) UpperCamelCase__ : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) UpperCamelCase__ : Any = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
146
1
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int ) -> bool: lowercase_ : str = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCamelCase ( UpperCAmelCase__ : int = 5000 ) -> int: lowercase_ : Optional[Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , UpperCAmelCase__ )] for i, pentagonal_i in enumerate(UpperCAmelCase__ ): for j in range(UpperCAmelCase__ , len(UpperCAmelCase__ ) ): lowercase_ : List[str] = pentagonal_nums[j] lowercase_ : Union[str, Any] = pentagonal_i + pentagonal_j lowercase_ : Any = pentagonal_j - pentagonal_i if is_pentagonal(UpperCAmelCase__ ) and is_pentagonal(UpperCAmelCase__ ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
21
'''simple docstring''' def lowerCamelCase ( ) -> Dict: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = 1 while len(UpperCAmelCase__ ) < 1e6: constant.append(str(UpperCAmelCase__ ) ) i += 1 lowercase_ : int = """""".join(UpperCAmelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
21
1
from __future__ import annotations lowerCamelCase__ = """#""" class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ): '''simple docstring''' __a = {} def UpperCamelCase_ ( self : Optional[Any] , __lowercase : str ): '''simple docstring''' __a = self._trie for char in text: if char not in trie: __a = {} __a = trie[char] __a = True def UpperCamelCase_ ( self : Tuple , __lowercase : str ): '''simple docstring''' __a = self._trie for char in prefix: if char in trie: __a = trie[char] else: return [] return self._elements(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : dict ): '''simple docstring''' __a = [] for c, v in d.items(): __a = [""" """] if c == END else [(c + s) for s in self._elements(__lowercase )] result.extend(__lowercase ) return tuple(__lowercase ) lowerCamelCase__ = Trie() lowerCamelCase__ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = trie.find_word(_SCREAMING_SNAKE_CASE ) return tuple(string + word for word in suffixes ) def lowerCAmelCase__ ( ): """simple docstring""" print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase__ = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] ='albert' def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ): '''simple docstring''' super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __a = vocab_size __a = embedding_size __a = hidden_size __a = num_hidden_layers __a = num_hidden_groups __a = num_attention_heads __a = inner_group_num __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = classifier_dropout_prob __a = position_embedding_type class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
302
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCamelCase = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
335
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : Optional[int]= BioGptTokenizer _a : Optional[Any]= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowercase : int = dict(zip(snake_case ,range(len(snake_case ) ) ) ) lowercase : Union[str, Any] = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ) as fp: fp.write(json.dumps(snake_case ) ) with open(self.merges_file ,"""w""" ) as fp: fp.write("""\n""".join(snake_case ) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = """lower newer""" lowercase : int = """lower newer""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = BioGptTokenizer(self.vocab_file ,self.merges_file ) lowercase : Any = """lower""" lowercase : Optional[int] = ["""low""", """er</w>"""] lowercase : Optional[int] = tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case ,snake_case ) lowercase : Optional[int] = tokens + ["""<unk>"""] lowercase : Optional[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) ,snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) lowercase : Dict = tokenizer.encode("""sequence builders""" ,add_special_tokens=snake_case ) lowercase : Any = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=snake_case ) lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(snake_case ) lowercase : int = tokenizer.build_inputs_with_special_tokens(snake_case ,snake_case ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
20
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __snake_case ( unittest.TestCase ): _a : Optional[int]= MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = hf_hub_download( repo_id="""nateraw/video-demo""" ,filename="""archery.mp4""" ,repo_type="""dataset""" ) lowercase : List[str] = VideoClassificationPipeline(model=snake_case ,image_processor=snake_case ,top_k=2 ) lowercase : Dict = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' for example in examples: lowercase : int = video_classifier(snake_case ) self.assertEqual( snake_case ,[ {"""score""": ANY(snake_case ), """label""": ANY(snake_case )}, {"""score""": ANY(snake_case ), """label""": ANY(snake_case )}, ] ,) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase : str = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} ,crop_size={"""height""": 10, """width""": 10} ) lowercase : List[Any] = pipeline( """video-classification""" ,model=snake_case ,feature_extractor=snake_case ,frame_sampling_rate=4 ) lowercase : Dict = hf_hub_download(repo_id="""nateraw/video-demo""" ,filename="""archery.mp4""" ,repo_type="""dataset""" ) lowercase : Any = video_classifier(snake_case ,top_k=2 ) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] ,) lowercase : str = video_classifier( [ video_file_path, video_file_path, ] ,top_k=2 ,) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] ,) @require_tf def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass
20
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ : Optional[int] = logging.get_logger(__name__) UpperCamelCase_ : Tuple = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCamelCase_ : Any = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } UpperCamelCase_ : Union[str, Any] = { '''camembert-base''': 512, } UpperCamelCase_ : Union[str, Any] = '''▁''' class _a ( snake_case_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE="<s>" ,_SCREAMING_SNAKE_CASE="</s>" ,_SCREAMING_SNAKE_CASE="</s>" ,_SCREAMING_SNAKE_CASE="<s>" ,_SCREAMING_SNAKE_CASE="<unk>" ,_SCREAMING_SNAKE_CASE="<pad>" ,_SCREAMING_SNAKE_CASE="<mask>" ,_SCREAMING_SNAKE_CASE=["<s>NOTUSED", "</s>NOTUSED"] ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> None: # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(_SCREAMING_SNAKE_CASE ,lstrip=_SCREAMING_SNAKE_CASE ,rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else mask_token _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_SCREAMING_SNAKE_CASE ,eos_token=_SCREAMING_SNAKE_CASE ,unk_token=_SCREAMING_SNAKE_CASE ,sep_token=_SCREAMING_SNAKE_CASE ,cls_token=_SCREAMING_SNAKE_CASE ,pad_token=_SCREAMING_SNAKE_CASE ,mask_token=_SCREAMING_SNAKE_CASE ,additional_special_tokens=_SCREAMING_SNAKE_CASE ,sp_model_kwargs=self.sp_model_kwargs ,**_SCREAMING_SNAKE_CASE ,) _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_SCREAMING_SNAKE_CASE ) ) _snake_case = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> _snake_case = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} _snake_case = len(self.fairseq_tokens_to_ids ) _snake_case = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) _snake_case = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE ,token_ids_a=_SCREAMING_SNAKE_CASE ,already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowercase ( self ) -> str: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def _lowercase ( self ) -> Optional[Any]: _snake_case = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> List[str]: return self.sp_model.encode(_SCREAMING_SNAKE_CASE ,out_type=_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> str: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _snake_case = [] _snake_case = "" _snake_case = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token _snake_case = True _snake_case = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) _snake_case = False out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self ) -> str: _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self ,_SCREAMING_SNAKE_CASE ) -> Dict: _snake_case = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): _snake_case = {} _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( _SCREAMING_SNAKE_CASE ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE ,"wb" ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
353
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __a ( _UpperCamelCase: Dict , _UpperCamelCase: Optional[int] , _UpperCamelCase: List[str] ) -> Optional[Any]: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __a ( _UpperCamelCase: List[Any] , _UpperCamelCase: Optional[Any] , _UpperCamelCase: Dict , _UpperCamelCase: Optional[Any]="attention" ) -> Any: """simple docstring""" _snake_case = _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _snake_case = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _snake_case = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _snake_case = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _snake_case = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __a ( _UpperCamelCase: Tuple , _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[int]=False ) -> List[Any]: """simple docstring""" if split_mlp_wi: _snake_case = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _snake_case = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _snake_case = (wi_a, wi_a) else: _snake_case = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _snake_case = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __a ( _UpperCamelCase: Optional[int] , _UpperCamelCase: Dict , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Union[str, Any] ) -> List[Any]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __a ( _UpperCamelCase: dict , *, _UpperCamelCase: int , _UpperCamelCase: bool , _UpperCamelCase: bool = False ) -> str: """simple docstring""" _snake_case = traverse_util.flatten_dict(variables["target"] ) _snake_case = {"/".join(_UpperCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _snake_case = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , _UpperCamelCase ) _snake_case = collections.OrderedDict() # Shared embeddings. _snake_case = old["token_embedder/embedding"] # Encoder. for i in range(_UpperCamelCase ): # Block i, layer 0 (Self Attention). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "pre_attention_layer_norm" ) _snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "attention" ) _snake_case = layer_norm _snake_case = k.T _snake_case = o.T _snake_case = q.T _snake_case = v.T # Block i, layer 1 (MLP). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "pre_mlp_layer_norm" ) _snake_case , _snake_case = tax_mlp_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , _UpperCamelCase ) _snake_case = layer_norm if split_mlp_wi: _snake_case = wi[0].T _snake_case = wi[1].T else: _snake_case = wi.T _snake_case = wo.T if scalable_attention: # convert the rel_embedding of each layer _snake_case = tax_relpos_bias_lookup( _UpperCamelCase , _UpperCamelCase , "encoder" ).T _snake_case = old["encoder/encoder_norm/scale"] if not scalable_attention: _snake_case = tax_relpos_bias_lookup( _UpperCamelCase , 0 , "encoder" ).T _snake_case = tax_relpos_bias_lookup( _UpperCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(_UpperCamelCase ): # Block i, layer 0 (Self Attention). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_self_attention_layer_norm" ) _snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "self_attention" ) _snake_case = layer_norm _snake_case = k.T _snake_case = o.T _snake_case = q.T _snake_case = v.T # Block i, layer 1 (Cross Attention). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) _snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "encoder_decoder_attention" ) _snake_case = layer_norm _snake_case = k.T _snake_case = o.T _snake_case = q.T _snake_case = v.T # Block i, layer 2 (MLP). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_mlp_layer_norm" ) _snake_case , _snake_case = tax_mlp_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , _UpperCamelCase ) _snake_case = layer_norm if split_mlp_wi: _snake_case = wi[0].T _snake_case = wi[1].T else: _snake_case = wi.T _snake_case = wo.T if scalable_attention: # convert the rel_embedding of each layer _snake_case = tax_relpos_bias_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" ).T _snake_case = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _snake_case = old["decoder/logits_dense/kernel"].T return new def __a ( _UpperCamelCase: Any , _UpperCamelCase: bool ) -> Dict: """simple docstring""" _snake_case = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _snake_case = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _snake_case = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) _snake_case = state_dict["shared.weight"] return state_dict def __a ( _UpperCamelCase: str , _UpperCamelCase: List[str] , _UpperCamelCase: Any , _UpperCamelCase: str , _UpperCamelCase: List[Any] ) -> Dict: """simple docstring""" _snake_case = checkpoints.load_tax_checkpoint(_UpperCamelCase ) _snake_case = convert_tax_to_pytorch( _UpperCamelCase , num_layers=config.num_layers , is_encoder_only=_UpperCamelCase , scalable_attention=_UpperCamelCase ) _snake_case = make_state_dict(_UpperCamelCase , _UpperCamelCase ) model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) def __a ( _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Optional[Any] , _UpperCamelCase: bool = False , _UpperCamelCase: bool = False , ) -> Dict: """simple docstring""" _snake_case = MTaConfig.from_json_file(_UpperCamelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _snake_case = UMTaEncoderModel(_UpperCamelCase ) else: _snake_case = UMTaForConditionalGeneration(_UpperCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_UpperCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_UpperCamelCase ) print("Done" ) if __name__ == "__main__": UpperCamelCase_ : Any = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) UpperCamelCase_ : Union[str, Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
142
0
"""simple docstring""" def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> str: '''simple docstring''' if not isinstance(UpperCamelCase_, UpperCamelCase_): raise ValueError("iterations must be defined as integers") if not isinstance(UpperCamelCase_, UpperCamelCase_) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0") if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz") __lowercase = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCamelCase_) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Optional[int] , _A :str , _A :Dict ) -> Any: '''simple docstring''' super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self :List[str] , _A :int = 1 , _A :Optional[torch.Generator] = None , _A :int = 50 , _A :Optional[str] = "pil" , _A :bool = True , **_A :Tuple , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' __A = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_A , ) __A = image.to(self.device ) # set step values self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __A = self.unet(_A , _A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __A = self.scheduler.step(_A , _A , _A ).prev_sample __A = (image / 2 + 0.5).clamp(0 , 1 ) __A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(_A ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_A ), "This is a local test"
161
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
354
'''simple docstring''' from functools import lru_cache @lru_cache def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
101
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: _lowercase : int = split_dict._to_yaml_list() assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) _lowercase : str = SplitDict._from_yaml_list(lowerCamelCase_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _lowercase : int = None # the split name of split_dict takes over the name of the split info object _lowercase : Optional[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=lowerCamelCase_ ), SplitInfo(dataset_name='my_dataset' )] ) def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files _lowercase : List[str] = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
21
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ConsistencyModelPipeline lowercase_ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase_ : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase_ : List[str] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet', ) return unet @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet_class_cond', ) return unet def UpperCamelCase ( self, lowerCamelCase=False) -> Dict: """simple docstring""" if class_cond: _lowercase : Union[str, Any] = self.dummy_cond_unet else: _lowercase : Union[str, Any] = self.dummy_uncond_unet # Default to CM multistep sampler _lowercase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Tuple: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : str = torch.manual_seed(lowerCamelCase) else: _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Optional[int] = self.get_dummy_components() _lowercase : str = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : Dict = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_inputs(lowerCamelCase) _lowercase : Optional[int] = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : int = image[0, -3:, -3:, -1] _lowercase : Dict = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components(class_cond=lowerCamelCase) _lowercase : Any = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_dummy_inputs(lowerCamelCase) _lowercase : Any = 0 _lowercase : List[str] = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Any = self.get_dummy_components() _lowercase : Optional[Any] = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : List[str] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = self.get_dummy_inputs(lowerCamelCase) _lowercase : Union[str, Any] = 1 _lowercase : Tuple = None _lowercase : Tuple = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components(class_cond=lowerCamelCase) _lowercase : Dict = ConsistencyModelPipeline(**lowerCamelCase) _lowercase : Optional[Any] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = 1 _lowercase : int = None _lowercase : Tuple = 0 _lowercase : Dict = pipe(**lowerCamelCase).images assert image.shape == (1, 32, 32, 3) _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : Any = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self, lowerCamelCase=0, lowerCamelCase=False, lowerCamelCase="cpu", lowerCamelCase=torch.floataa, lowerCamelCase=(1, 3, 64, 64)) -> Optional[Any]: """simple docstring""" _lowercase : List[Any] = torch.manual_seed(lowerCamelCase) _lowercase : str = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: _lowercase : Optional[Any] = self.get_fixed_latents(seed=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase, shape=lowerCamelCase) _lowercase : Tuple = latents return inputs def UpperCamelCase ( self, lowerCamelCase=0, lowerCamelCase="cpu", lowerCamelCase=torch.floataa, lowerCamelCase=(1, 3, 64, 64)) -> Any: """simple docstring""" if type(lowerCamelCase) == str: _lowercase : Union[str, Any] = torch.device(lowerCamelCase) _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : List[str] = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) return latents def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Tuple = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Any = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = self.get_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : Optional[Any] = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Union[str, Any] = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_inputs() _lowercase : int = 1 _lowercase : Optional[Any] = None _lowercase : str = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : List[Any] = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 @require_torch_a def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : str = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : Optional[int] = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase, torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_inputs(get_fixed_latents=lowerCamelCase, device=lowerCamelCase) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase, enable_math=lowerCamelCase, enable_mem_efficient=lowerCamelCase): _lowercase : Dict = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @require_torch_a def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2') _lowercase : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40, sigma_min=0.0_0_2, sigma_max=8_0.0, ) _lowercase : int = ConsistencyModelPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) pipe.to(torch_device=lowerCamelCase, torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_inputs(get_fixed_latents=lowerCamelCase, device=lowerCamelCase) _lowercase : int = 1 _lowercase : str = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase, enable_math=lowerCamelCase, enable_mem_efficient=lowerCamelCase): _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : int = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
21
1
from __future__ import annotations from dataclasses import dataclass @dataclass class _snake_case : SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None def __lowerCamelCase ( UpperCAmelCase_ : TreeNode | None ): """simple docstring""" def is_valid_tree(UpperCAmelCase_ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(UpperCAmelCase_ ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( UpperCAmelCase_ : TreeNode | None , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , UpperCAmelCase_ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , UpperCAmelCase_ ) ) return is_binary_search_tree_recursive_check(UpperCAmelCase_ , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
281
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case : List[str] = logging.get_logger(__name__) snake_case : Optional[Any] = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } snake_case : str = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } snake_case : List[Any] = { '''vinai/phobert-base''': 2_56, '''vinai/phobert-large''': 2_56, } def __lowerCamelCase ( UpperCAmelCase_ : List[str] ): """simple docstring""" a :Union[str, Any] = set() a :str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a :Optional[int] = char a :Optional[int] = set(UpperCAmelCase_ ) return pairs class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , **_lowerCamelCase , ): super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) a :Optional[Any] = vocab_file a :Optional[Any] = merges_file a :Any = {} a :Any = 0 a :int = 1 a :Union[str, Any] = 2 a :List[Any] = 3 self.add_from_file(_lowerCamelCase ) a :List[str] = {v: k for k, v in self.encoder.items()} with open(_lowerCamelCase , encoding='''utf-8''' ) as merges_handle: a :List[str] = merges_handle.read().split('''\n''' )[:-1] a :Any = [tuple(merge.split()[:-1] ) for merge in merges] a :str = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) a :str = {} def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a :Union[str, Any] = [self.cls_token_id] a :Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): a :Optional[int] = [self.sep_token_id] a :Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if token in self.cache: return self.cache[token] a :Optional[int] = tuple(_lowerCamelCase ) a :List[str] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) a :Union[str, Any] = get_pairs(_lowerCamelCase ) if not pairs: return token while True: a :Optional[Any] = min(_lowerCamelCase , key=lambda _lowerCamelCase : self.bpe_ranks.get(_lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break a , a :Dict = bigram a :Union[str, Any] = [] a :int = 0 while i < len(_lowerCamelCase ): try: a :Optional[Any] = word.index(_lowerCamelCase , _lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a :Union[str, Any] = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a :Union[str, Any] = tuple(_lowerCamelCase ) a :int = new_word if len(_lowerCamelCase ) == 1: break else: a :List[str] = get_pairs(_lowerCamelCase ) a :Union[str, Any] = '''@@ '''.join(_lowerCamelCase ) a :Dict = word[:-4] a :Any = word return word def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Union[str, Any] = [] a :str = re.findall(R'''\S+\n?''' , _lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.encoder.get(_lowerCamelCase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.decoder.get(_lowerCamelCase , self.unk_token ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Optional[int] = ''' '''.join(_lowerCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a :Tuple = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) a :Optional[int] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.merges_file , _lowerCamelCase ) return out_vocab_file, out_merge_file def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if isinstance(_lowerCamelCase , _lowerCamelCase ): try: with open(_lowerCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(_lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return a :str = f.readlines() for lineTmp in lines: a :Tuple = lineTmp.strip() a :int = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) a :Tuple = line[:idx] a :Tuple = len(self.encoder )
281
1