code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Any = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Optional[Any] = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : int = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Optional[int] = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Optional[int] = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
335
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets SCREAMING_SNAKE_CASE_ : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' SCREAMING_SNAKE_CASE_ : str = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' SCREAMING_SNAKE_CASE_ : List[str] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self: List[str] ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def UpperCamelCase ( self: List[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: int = CHRF.CHAR_ORDER , UpperCamelCase: int = CHRF.WORD_ORDER , UpperCamelCase: int = CHRF.BETA , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , ): """simple docstring""" A__ = len(references[0] ) if any(len(UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) A__ = [[refs[i] for refs in references] for i in range(UpperCamelCase )] A__ = CHRF(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) A__ = sb_chrf.corpus_score(UpperCamelCase , UpperCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
335
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowerCAmelCase__( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self ) -> int: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Dict = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : str = self._create_example_records() _SCREAMING_SNAKE_CASE : Optional[Any] = Dataset.from_list(_SCREAMING_SNAKE_CASE ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(_SCREAMING_SNAKE_CASE ): self.assertDictEqual(_SCREAMING_SNAKE_CASE , example_records[i] ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Tuple = self._create_example_records() _SCREAMING_SNAKE_CASE : int = Dataset.from_list(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def UpperCamelCase_ ( self ) -> Dict: # checks what happens with missing columns _SCREAMING_SNAKE_CASE : Optional[int] = [{"col_1": 1}, {"col_2": "x"}] _SCREAMING_SNAKE_CASE : List[str] = Dataset.from_list(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def UpperCamelCase_ ( self ) -> Optional[int]: # checks if the type can be inferred from the second record _SCREAMING_SNAKE_CASE : Optional[Any] = [{"col_1": []}, {"col_1": [1, 2]}] _SCREAMING_SNAKE_CASE : Any = Dataset.from_list(_SCREAMING_SNAKE_CASE ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list([] ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 0 ) self.assertListEqual(dset.column_names , [] )
364
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # ===== initialization ===== _SCREAMING_SNAKE_CASE : List[Any] = Mock() _SCREAMING_SNAKE_CASE : Optional[Any] = conn, Mock() _SCREAMING_SNAKE_CASE : Dict = iter([1, None] ) _SCREAMING_SNAKE_CASE : Optional[Any] = lambda __lowerCamelCase : next(__lowerCamelCase ) # ===== invoke ===== send_file(filename="mytext.txt", testing=__lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
325
0
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.0_2 , a__=None , a__=2 , ): _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : int = num_channels _lowerCAmelCase : List[str] = is_training _lowerCAmelCase : Tuple = use_labels _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Any = scope _lowerCAmelCase : Union[str, Any] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : int = (image_size // patch_size) ** 2 _lowerCAmelCase : Optional[Any] = num_patches + 1 def __A ( self ): _lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Dict = self.get_config() return config, pixel_values, labels def __A ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : str = ViTModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Any = ViTForMaskedImageModeling(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[str] = model(a__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : Union[str, Any] = ViTForMaskedImageModeling(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Dict = model(a__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = self.type_sequence_label_size _lowerCAmelCase : Dict = ViTForImageClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : int = 1 _lowerCAmelCase : Dict = ViTForImageClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Tuple = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ): _lowerCAmelCase : Dict = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : List[str] = config_and_inputs _lowerCAmelCase : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : int = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCamelCase : Tuple = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : Dict = True _UpperCamelCase : str = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : List[str] = False def __A ( self ): _lowerCAmelCase : Dict = ViTModelTester(self ) _lowerCAmelCase : Any = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) _lowerCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : List[str] = [*signature.parameters.keys()] _lowerCAmelCase : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__ ) def __A ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def __A ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[str] = ViTModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: _lowerCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A ( unittest.TestCase ): @cached_property def __A ( self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def __A ( self ): _lowerCAmelCase : Dict = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(a__ ) _lowerCAmelCase : str = self.default_image_processor _lowerCAmelCase : str = prepare_img() _lowerCAmelCase : Tuple = image_processor(images=a__ , return_tensors="""pt""" ).to(a__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(**a__ ) # verify the logits _lowerCAmelCase : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) _lowerCAmelCase : List[Any] = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) ) @slow def __A ( self ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _lowerCAmelCase : Optional[Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(a__ ) _lowerCAmelCase : str = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=480 ) _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : Dict = image_processor(images=a__ , return_tensors="""pt""" ) _lowerCAmelCase : Optional[Any] = inputs.pixel_values.to(a__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : str = model(a__ , interpolate_pos_encoding=a__ ) # verify the logits _lowerCAmelCase : str = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , a__ ) _lowerCAmelCase : Union[str, Any] = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __A ( self ): _lowerCAmelCase : Optional[int] = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) _lowerCAmelCase : Union[str, Any] = self.default_image_processor _lowerCAmelCase : Dict = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=a__ , return_tensors="""pt""" ) _lowerCAmelCase : Any = inputs.pixel_values.to(a__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(a__ )
44
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = ["image_processor", "tokenizer"] _UpperCAmelCase : Dict = "BridgeTowerImageProcessor" _UpperCAmelCase : Dict = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : Any , A : List[Any] , A : Tuple ) ->Dict: super().__init__(A , A ) def __call__( self : str , A : int , A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , A : bool = True , A : Union[bool, str, PaddingStrategy] = False , A : Union[bool, str, TruncationStrategy] = None , A : Optional[int] = None , A : int = 0 , A : Optional[int] = None , A : Optional[bool] = None , A : Optional[bool] = None , A : bool = False , A : bool = False , A : bool = False , A : bool = False , A : bool = True , A : Optional[Union[str, TensorType]] = None , **A : Union[str, Any] , ) ->BatchEncoding: lowerCamelCase__ : Optional[int] = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_token_type_ids=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_length=A , verbose=A , return_tensors=A , **A , ) # add pixel_values + pixel_mask lowerCamelCase__ : int = self.image_processor( A , return_tensors=A , do_normalize=A , do_center_crop=A , **A ) encoding.update(A ) return encoding def __lowerCamelCase ( self : str , *A : Dict , **A : List[str] ) ->List[Any]: return self.tokenizer.batch_decode(*A , **A ) def __lowerCamelCase ( self : List[str] , *A : Optional[Any] , **A : Tuple ) ->Dict: return self.tokenizer.decode(*A , **A ) @property def __lowerCamelCase ( self : str ) ->Optional[Any]: lowerCamelCase__ : Optional[int] = self.tokenizer.model_input_names lowerCamelCase__ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
142
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _snake_case = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _A ( snake_case=32 , snake_case=10 , snake_case=1_00 , snake_case=10_26 , snake_case=True , snake_case="data/tokenized_stories_train_wikitext103.jbl" , snake_case="igf_context_pairs.jbl" , ) -> Optional[int]: set_seed(3 ) # generate train_data and objective_set _lowercase , _lowercase : List[str] = generate_datasets( snake_case , snake_case , number=snake_case , min_len=10_26 , trim=snake_case ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? _lowercase : int = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model _lowercase : str = load_gpta("gpt2" ).to(snake_case ) print("computing perplexity on objective set" ) _lowercase : Dict = compute_perplexity(snake_case , snake_case , snake_case ).item() print("perplexity on objective set:" , snake_case ) # collect igf pairs and save to file demo.jbl collect_objective_set(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _A ( snake_case , snake_case=15 , snake_case=1_28 , snake_case=1_00 , snake_case="igf_model.pt" , ) -> Optional[Any]: set_seed(42 ) # Load pre-trained model _lowercase : Tuple = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model _lowercase : Any = SecondaryLearner(snake_case ) # Train secondary learner _lowercase : Any = train_secondary_learner( snake_case , snake_case , max_epochs=snake_case , batch_size=snake_case , eval_freq=1_00 , igf_model_path=snake_case , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _A ( snake_case , snake_case , snake_case , snake_case=32 , snake_case=10_00 , snake_case=16 , snake_case=1.0 , snake_case=recopy_gpta , snake_case=None , snake_case=10 , snake_case="gpt2_finetuned.pt" , ) -> Dict: _lowercase : str = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) _lowercase : int = RandomSampler(snake_case ) _lowercase : int = DataLoader(snake_case , sampler=snake_case ) _lowercase : Tuple = max_steps // (len(snake_case )) + 1 _lowercase : Dict = 0 _lowercase : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=snake_case ) _lowercase , _lowercase , _lowercase : Union[str, Any] = recopy_model(snake_case , snake_case , snake_case ) model.train() if secondary_learner is not None: secondary_learner.to(snake_case ) secondary_learner.eval() _lowercase : Optional[Any] = [] _lowercase : Tuple = 0 _lowercase : int = [] _lowercase : Optional[Any] = [] # Compute the performance of the transformer model at the beginning _lowercase : Dict = compute_perplexity(snake_case , snake_case , snake_case ) test_perps.append(snake_case ) print("Test perplexity, step" , snake_case , ":" , snake_case ) for epoch in range(int(snake_case ) ): for step, example in enumerate(snake_case ): torch.cuda.empty_cache() _lowercase : Optional[Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) _lowercase : Tuple = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() _lowercase : Tuple = model(snake_case , labels=snake_case ) _lowercase : List[Any] = True if secondary_learner is not None: _lowercase : Dict = secondary_learner.forward( torch.tensor(snake_case , dtype=torch.long , device=snake_case ).unsqueeze(0 ) )[0].item() observed_qs.append(float(snake_case ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: _lowercase : Optional[Any] = -1 if predicted_q < threshold: _lowercase : List[str] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) _lowercase : Dict = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() _lowercase : Optional[Any] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: _lowercase : Optional[Any] = compute_perplexity(snake_case , snake_case , snake_case ) test_perps.append(snake_case ) print("Test perplexity, step" , snake_case , ":" , snake_case ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , snake_case ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _A ( ) -> Union[str, Any]: _lowercase : Optional[Any] = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=snake_case , type=snake_case , required=snake_case , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=snake_case , type=snake_case , required=snake_case , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=snake_case , default=snake_case , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=snake_case , default=snake_case , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=snake_case , type=snake_case , required=snake_case , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=snake_case , type=snake_case , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=snake_case , default=snake_case , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=snake_case , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=1_00 , type=snake_case , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=1_00 , type=snake_case , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=10_00 , type=snake_case , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=1_28 , type=snake_case , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=snake_case , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=snake_case , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=1_00 , type=snake_case , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=10_26 , type=snake_case , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=snake_case , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=snake_case , type=snake_case , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=snake_case , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=snake_case , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=snake_case , type=snake_case , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=snake_case , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner _lowercase : Any = joblib.load("data/IGF_values.jbl" ) # Train secondary learner _lowercase : Union[str, Any] = training_secondary_learner( snake_case , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model _lowercase : Optional[Any] = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model _lowercase , _lowercase : Optional[Any] = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=1_00 , min_len=10_26 , trim=snake_case ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( snake_case , snake_case , snake_case , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=snake_case , secondary_learner=snake_case , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
199
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = MvpTokenizer _SCREAMING_SNAKE_CASE = MvpTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = filter_roberta_detectors def _snake_case ( self ) -> int: super().setUp() lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) ) lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase ) ) def _snake_case ( self , **lowercase ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self , **lowercase ) -> Dict: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self , lowercase ) -> Any: return "lower newer", "lower newer" @cached_property def _snake_case ( self ) -> int: return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def _snake_case ( self ) -> int: return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def _snake_case ( self ) -> Tuple: lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowerCAmelCase = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(lowercase , max_length=len(lowercase ) , padding=lowercase , return_tensors="""pt""" ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowercase , lowercase ) # Test that special tokens are reset @require_torch def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , lowercase ) self.assertIn("""attention_mask""" , lowercase ) self.assertNotIn("""labels""" , lowercase ) self.assertNotIn("""decoder_attention_mask""" , lowercase ) @require_torch def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(text_target=lowercase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def _snake_case ( self ) -> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=lowercase , truncation=lowercase , return_tensors="""pt""" ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = ["""A long paragraph for summarization."""] lowerCAmelCase = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(lowercase , text_target=lowercase , return_tensors="""pt""" ) lowerCAmelCase = inputs["""input_ids"""] lowerCAmelCase = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _snake_case ( self ) -> Any: pass def _snake_case ( self ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) lowerCAmelCase = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) lowerCAmelCase = """A, <mask> AllenNLP sentence.""" lowerCAmelCase = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) lowerCAmelCase = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
46
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Any =KandinskyVaaPriorPipeline lowercase_ : str =['''prompt'''] lowercase_ : Union[str, Any] =['''prompt''', '''negative_prompt'''] lowercase_ : Dict =[ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] lowercase_ : List[str] =False @property def A__ ( self): return 3_2 @property def A__ ( self): return 3_2 @property def A__ ( self): return self.time_input_dim @property def A__ ( self): return self.time_input_dim * 4 @property def A__ ( self): return 1_0_0 @property def A__ ( self): lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') return tokenizer @property def A__ ( self): torch.manual_seed(0) lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) return CLIPTextModelWithProjection(A__) @property def A__ ( self): torch.manual_seed(0) lowercase = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_2, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } lowercase = PriorTransformer(**A__) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase = nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def A__ ( self): torch.manual_seed(0) lowercase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=2_2_4 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1_4 ,) lowercase = CLIPVisionModelWithProjection(A__) return model @property def A__ ( self): lowercase = CLIPImageProcessor( crop_size=2_2_4 ,do_center_crop=A__ ,do_normalize=A__ ,do_resize=A__ ,image_mean=[0.48145466, 0.4578275, 0.40821073] ,image_std=[0.26862954, 0.26130258, 0.27577711] ,resample=3 ,size=2_2_4 ,) return image_processor def A__ ( self): lowercase = self.dummy_prior lowercase = self.dummy_image_encoder lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_image_processor lowercase = UnCLIPScheduler( variance_type='''fixed_small_log''' ,prediction_type='''sample''' ,num_train_timesteps=1_0_0_0 ,clip_sample=A__ ,clip_sample_range=10.0 ,) lowercase = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def A__ ( self ,A__ ,A__=0): if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def A__ ( self): lowercase = '''cpu''' lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**A__) lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = pipe(**self.get_dummy_inputs(A__)) lowercase = output.image_embeds lowercase = pipe( **self.get_dummy_inputs(A__) ,return_dict=A__ ,)[0] lowercase = image[0, -1_0:] lowercase = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowercase = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @skip_mps def A__ ( self): lowercase = torch_device == '''cpu''' lowercase = True lowercase = False self._test_inference_batch_single_identical( test_max_difference=A__ ,relax_max_difference=A__ ,test_mean_pixel_difference=A__ ,) @skip_mps def A__ ( self): lowercase = torch_device == '''cpu''' lowercase = False self._test_attention_slicing_forward_pass( test_max_difference=A__ ,test_mean_pixel_difference=A__ ,)
101
0
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class snake_case_ ( unittest.TestCase ): def __init__( self : List[Any] , _snake_case : List[Any] , _snake_case : str=13 , _snake_case : int=30 , _snake_case : str=2 , _snake_case : int=3 , _snake_case : Optional[Any]=True , _snake_case : str=True , _snake_case : Optional[int]=32 , _snake_case : Dict=5 , _snake_case : Optional[int]=4 , _snake_case : List[Any]=37 , _snake_case : Union[str, Any]="gelu" , _snake_case : str=0.1 , _snake_case : str=0.1 , _snake_case : str=10 , _snake_case : Any=0.02 , )->Tuple: '''simple docstring''' __lowerCAmelCase : Optional[int] = parent __lowerCAmelCase : Any = batch_size __lowerCAmelCase : int = image_size __lowerCAmelCase : int = patch_size __lowerCAmelCase : List[Any] = num_channels __lowerCAmelCase : str = is_training __lowerCAmelCase : str = use_labels __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : Dict = num_hidden_layers __lowerCAmelCase : List[str] = num_attention_heads __lowerCAmelCase : Any = intermediate_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : List[str] = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : Tuple = type_sequence_label_size __lowerCAmelCase : Union[str, Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase : Tuple = (image_size // patch_size) ** 2 __lowerCAmelCase : Optional[Any] = num_patches + 1 def UpperCAmelCase__ ( self : Any )->Any: '''simple docstring''' __lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : Tuple = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , ) return config, pixel_values def UpperCAmelCase__ ( self : List[Any] , _snake_case : List[str] , _snake_case : List[Any] )->Any: '''simple docstring''' __lowerCAmelCase : str = FlaxViTModel(config=_snake_case ) __lowerCAmelCase : int = model(_snake_case ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase : Dict = (self.image_size, self.image_size) __lowerCAmelCase : Any = (self.patch_size, self.patch_size) __lowerCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self : Dict , _snake_case : str , _snake_case : List[Any] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Tuple = self.type_sequence_label_size __lowerCAmelCase : Tuple = FlaxViTForImageClassification(config=_snake_case ) __lowerCAmelCase : List[str] = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase : str = 1 __lowerCAmelCase : Any = FlaxViTForImageClassification(_snake_case ) __lowerCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase : Dict = model(_snake_case ) def UpperCAmelCase__ ( self : str )->Any: '''simple docstring''' __lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs __lowerCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self : str )->None: '''simple docstring''' __lowerCAmelCase : List[str] = FlaxViTModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def UpperCAmelCase__ ( self : Any )->Dict: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Any )->Any: '''simple docstring''' __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase__ ( self : Union[str, Any] )->str: '''simple docstring''' __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) def UpperCAmelCase__ ( self : int )->int: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : int = model_class(_snake_case ) __lowerCAmelCase : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Tuple = [*signature.parameters.keys()] __lowerCAmelCase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _snake_case ) def UpperCAmelCase__ ( self : str )->str: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase : Optional[int] = self._prepare_for_class(_snake_case , _snake_case ) __lowerCAmelCase : List[str] = model_class(_snake_case ) @jax.jit def model_jitted(_snake_case : Dict , **_snake_case : Union[str, Any] ): return model(pixel_values=_snake_case , **_snake_case ) with self.subTest("""JIT Enabled""" ): __lowerCAmelCase : List[Any] = model_jitted(**_snake_case ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCAmelCase : str = model_jitted(**_snake_case ).to_tuple() self.assertEqual(len(_snake_case ) , len(_snake_case ) ) for jitted_output, output in zip(_snake_case , _snake_case ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase__ ( self : Dict )->str: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCAmelCase : List[str] = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __lowerCAmelCase : List[str] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_snake_case )
232
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_ ( __lowercase ): def UpperCAmelCase__ ( self : Dict )->List[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , """embed_dim""" ) ) self.parent.assertTrue(hasattr(_snake_case , """num_heads""" ) ) class snake_case_ : def __init__( self : Dict , _snake_case : int , _snake_case : str=13 , _snake_case : Optional[int]=64 , _snake_case : Union[str, Any]=3 , _snake_case : Any=[16, 48, 96] , _snake_case : List[str]=[1, 3, 6] , _snake_case : str=[1, 2, 10] , _snake_case : Tuple=[7, 3, 3] , _snake_case : Tuple=[4, 2, 2] , _snake_case : Tuple=[2, 1, 1] , _snake_case : List[str]=[2, 2, 2] , _snake_case : Tuple=[False, False, True] , _snake_case : int=[0.0, 0.0, 0.0] , _snake_case : Union[str, Any]=0.02 , _snake_case : List[str]=1E-12 , _snake_case : str=True , _snake_case : Any=True , _snake_case : Optional[Any]=2 , )->List[str]: '''simple docstring''' __lowerCAmelCase : List[str] = parent __lowerCAmelCase : int = batch_size __lowerCAmelCase : Optional[int] = image_size __lowerCAmelCase : Optional[Any] = patch_sizes __lowerCAmelCase : Tuple = patch_stride __lowerCAmelCase : List[Any] = patch_padding __lowerCAmelCase : Tuple = is_training __lowerCAmelCase : str = use_labels __lowerCAmelCase : List[Any] = num_labels __lowerCAmelCase : int = num_channels __lowerCAmelCase : Tuple = embed_dim __lowerCAmelCase : Optional[int] = num_heads __lowerCAmelCase : Union[str, Any] = stride_kv __lowerCAmelCase : List[Any] = depth __lowerCAmelCase : int = cls_token __lowerCAmelCase : Optional[Any] = attention_drop_rate __lowerCAmelCase : Union[str, Any] = initializer_range __lowerCAmelCase : Any = layer_norm_eps def UpperCAmelCase__ ( self : List[str] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : Optional[int] = None if self.use_labels: # create a random int32 tensor of given shape __lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : List[str] )->int: '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : List[Any] , _snake_case : int , _snake_case : str , _snake_case : Union[str, Any] )->Tuple: '''simple docstring''' __lowerCAmelCase : str = TFCvtModel(config=_snake_case ) __lowerCAmelCase : Optional[Any] = model(_snake_case , training=_snake_case ) __lowerCAmelCase : str = (self.image_size, self.image_size) __lowerCAmelCase , __lowerCAmelCase : Tuple = image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowerCAmelCase : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowerCAmelCase : Any = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def UpperCAmelCase__ ( self : Tuple , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Optional[Any] )->Dict: '''simple docstring''' __lowerCAmelCase : Optional[int] = self.num_labels __lowerCAmelCase : Optional[int] = TFCvtForImageClassification(_snake_case ) __lowerCAmelCase : str = model(_snake_case , labels=_snake_case , training=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Tuple )->str: '''simple docstring''' __lowerCAmelCase : Tuple = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = config_and_inputs __lowerCAmelCase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class snake_case_ ( __lowercase ,__lowercase ,unittest.TestCase ): A_ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () A_ = ( {'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification} if is_tf_available() else {} ) A_ = False A_ = False A_ = False A_ = False A_ = False def UpperCAmelCase__ ( self : List[str] )->str: '''simple docstring''' __lowerCAmelCase : Tuple = TFCvtModelTester(self ) __lowerCAmelCase : Optional[Any] = TFCvtConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] )->Optional[int]: '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def UpperCAmelCase__ ( self : str )->List[Any]: '''simple docstring''' pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : Union[str, Any] )->List[str]: '''simple docstring''' pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def UpperCAmelCase__ ( self : Tuple )->Optional[int]: '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def UpperCAmelCase__ ( self : Dict )->Any: '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase__ ( self : Dict )->Dict: '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def UpperCAmelCase__ ( self : Union[str, Any] )->str: '''simple docstring''' __lowerCAmelCase : Optional[int] = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(_snake_case ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def UpperCAmelCase__ ( self : Tuple )->Tuple: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(_snake_case ) __lowerCAmelCase : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : int = [*signature.parameters.keys()] __lowerCAmelCase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _snake_case ) def UpperCAmelCase__ ( self : int )->List[str]: '''simple docstring''' def check_hidden_states_output(_snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Optional[Any] ): __lowerCAmelCase : Any = model_class(_snake_case ) __lowerCAmelCase : Any = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __lowerCAmelCase : Optional[Any] = outputs.hidden_states __lowerCAmelCase : Tuple = len(self.model_tester.depth ) self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : str = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : Optional[Any] = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def UpperCAmelCase__ ( self : str )->List[str]: '''simple docstring''' __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase__ ( self : Dict )->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase__ ( self : Dict )->Union[str, Any]: '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : List[Any] = TFCvtModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowerCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class snake_case_ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Dict )->List[Any]: '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCAmelCase__ ( self : List[str] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Any = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowerCAmelCase : List[Any] = self.default_image_processor __lowerCAmelCase : Optional[int] = prepare_img() __lowerCAmelCase : int = image_processor(images=_snake_case , return_tensors="""tf""" ) # forward pass __lowerCAmelCase : Dict = model(**_snake_case ) # verify the logits __lowerCAmelCase : Dict = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) __lowerCAmelCase : Any = tf.constant([0.9_285, 0.9_015, -0.3_150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1E-4 ) )
232
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowerCAmelCase_ ( ) -> str: '''simple docstring''' __magic_name__ : int = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=_snake_case , default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs" , type=_snake_case , default=5 ) parser.add_argument("--batch_size" , type=_snake_case , default=6 ) parser.add_argument("--gradient_accumulation_steps" , type=_snake_case , default=1 ) parser.add_argument("--freeze" , type=_snake_case , default=_snake_case ) parser.add_argument("--learning_rate" , type=_snake_case , default=5E-4 ) parser.add_argument("--seed" , type=_snake_case , default=0 ) parser.add_argument("--lr_scheduler_type" , type=_snake_case , default="cosine" ) parser.add_argument("--num_warmup_steps" , type=_snake_case , default=10 ) parser.add_argument("--weight_decay" , type=_snake_case , default=0.01 ) parser.add_argument("--output_dir" , type=_snake_case , default="./results" ) return parser.parse_args() snake_case : Optional[int] = load("accuracy") def lowerCAmelCase_ ( _snake_case : Tuple ) -> int: '''simple docstring''' __magic_name__ , __magic_name__ : Any = eval_pred __magic_name__ : List[str] = np.argmax(_snake_case , axis=1 ) return metric.compute(predictions=_snake_case , references=_snake_case ) class _snake_case ( snake_case ): def __init__( self , _a ): super().__init__() __magic_name__ : Tuple = trainer def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): if control.should_evaluate: __magic_name__ : Any = deepcopy(_a ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' __magic_name__ : Optional[Any] = get_args() set_seed(args.seed ) __magic_name__ : Union[str, Any] = load_dataset("codeparrot/codecomplex" , split="train" ) __magic_name__ : Union[str, Any] = dataset.train_test_split(test_size=0.2 ) __magic_name__ : Tuple = train_test["test"].train_test_split(test_size=0.5 ) __magic_name__ : Optional[Any] = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) __magic_name__ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) __magic_name__ : Union[str, Any] = tokenizer.eos_token __magic_name__ : str = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __magic_name__ : Tuple = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __magic_name__ : Dict = False __magic_name__ : str = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(_snake_case : List[Any] ): __magic_name__ : Dict = tokenizer(example["src"] , truncation=_snake_case , max_length=1024 ) __magic_name__ : Union[str, Any] = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __magic_name__ : Optional[int] = train_test_validation.map( _snake_case , batched=_snake_case , remove_columns=train_test_validation["train"].column_names , ) __magic_name__ : str = DataCollatorWithPadding(tokenizer=_snake_case ) __magic_name__ : Any = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) __magic_name__ : Dict = Trainer( model=_snake_case , args=_snake_case , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=_snake_case , data_collator=_snake_case , compute_metrics=_snake_case , ) print("Training..." ) trainer.add_callback(CustomCallback(_snake_case ) ) trainer.train() if __name__ == "__main__": main()
281
import math def lowerCAmelCase_ ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' return math.pow(_snake_case , 2 ) - a def lowerCAmelCase_ ( _snake_case : float ) -> float: '''simple docstring''' return 2 * x def lowerCAmelCase_ ( _snake_case : float ) -> float: '''simple docstring''' __magic_name__ : Optional[int] = 2.0 while start <= a: __magic_name__ : str = math.pow(_snake_case , 2 ) return start def lowerCAmelCase_ ( _snake_case : float , _snake_case : int = 9999 , _snake_case : float = 0.00_000_000_000_001 ) -> float: '''simple docstring''' if a < 0: raise ValueError("math domain error" ) __magic_name__ : Optional[int] = get_initial_point(_snake_case ) for _ in range(_snake_case ): __magic_name__ : int = value __magic_name__ : str = value - fx(_snake_case , _snake_case ) / fx_derivative(_snake_case ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
281
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): lowercase_ :str = 'ZinengTang/tvlt-base' lowercase_ :Tuple = tempfile.mkdtemp() def UpperCamelCase ( self , **UpperCamelCase_ ): return TvltImageProcessor.from_pretrained(self.checkpoint , **UpperCamelCase_ ) def UpperCamelCase ( self , **UpperCamelCase_ ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **UpperCamelCase_ ) def UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self ): lowercase_ :str = self.get_image_processor() lowercase_ :Optional[int] = self.get_feature_extractor() lowercase_ :List[Any] = TvltProcessor(image_processor=UpperCamelCase_ , feature_extractor=UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) lowercase_ :Dict = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , UpperCamelCase_ ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :int = self.get_image_processor() lowercase_ :List[str] = self.get_feature_extractor() lowercase_ :Optional[int] = TvltProcessor(image_processor=UpperCamelCase_ , feature_extractor=UpperCamelCase_ ) lowercase_ :List[str] = np.ones([1_2000] ) lowercase_ :int = feature_extractor(UpperCamelCase_ , return_tensors='''np''' ) lowercase_ :Optional[int] = processor(audio=UpperCamelCase_ , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase ( self ): lowercase_ :List[Any] = self.get_image_processor() lowercase_ :int = self.get_feature_extractor() lowercase_ :Any = TvltProcessor(image_processor=UpperCamelCase_ , feature_extractor=UpperCamelCase_ ) lowercase_ :Tuple = np.ones([3, 224, 224] ) lowercase_ :Union[str, Any] = image_processor(UpperCamelCase_ , return_tensors='''np''' ) lowercase_ :str = processor(images=UpperCamelCase_ , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase ( self ): lowercase_ :str = self.get_image_processor() lowercase_ :Optional[Any] = self.get_feature_extractor() lowercase_ :Any = TvltProcessor(image_processor=UpperCamelCase_ , feature_extractor=UpperCamelCase_ ) lowercase_ :List[Any] = np.ones([1_2000] ) lowercase_ :Any = np.ones([3, 224, 224] ) lowercase_ :Union[str, Any] = processor(audio=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def UpperCamelCase ( self ): lowercase_ :Any = self.get_image_processor() lowercase_ :Union[str, Any] = self.get_feature_extractor() lowercase_ :int = TvltProcessor(image_processor=UpperCamelCase_ , feature_extractor=UpperCamelCase_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
359
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers SCREAMING_SNAKE_CASE : Dict = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def UpperCamelCase ( _a , _a=None ) -> Optional[int]: '''simple docstring''' require_version(deps[pkg] , _a )
252
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: if "cls_token" in name: lowerCamelCase__ : List[str] = name.replace('cls_token' , 'vit.embeddings.cls_token' ) if "mask_token" in name: lowerCamelCase__ : Optional[int] = name.replace('mask_token' , 'decoder.mask_token' ) if "decoder_pos_embed" in name: lowerCamelCase__ : Optional[Any] = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: lowerCamelCase__ : Dict = name.replace('pos_embed' , 'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCamelCase__ : Union[str, Any] = name.replace('patch_embed.proj' , 'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCamelCase__ : int = name.replace('patch_embed.norm' , 'vit.embeddings.norm' ) if "decoder_blocks" in name: lowerCamelCase__ : Optional[int] = name.replace('decoder_blocks' , 'decoder.decoder_layers' ) if "blocks" in name: lowerCamelCase__ : str = name.replace('blocks' , 'vit.encoder.layer' ) if "attn.proj" in name: lowerCamelCase__ : Dict = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCamelCase__ : int = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCamelCase__ : Any = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase__ : int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase__ : str = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase__ : int = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: lowerCamelCase__ : Dict = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: lowerCamelCase__ : Any = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: lowerCamelCase__ : List[Any] = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: lowerCamelCase__ : str = name.replace('norm.weight' , 'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: lowerCamelCase__ : List[Any] = name.replace('norm.bias' , 'vit.layernorm.bias' ) return name def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Tuple = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCamelCase__ : List[str] = key.split('.' ) lowerCamelCase__ : List[str] = int(key_split[1] ) if "decoder_blocks" in key: lowerCamelCase__ : Any = config.decoder_hidden_size lowerCamelCase__ : List[Any] = 'decoder.decoder_layers.' if "weight" in key: lowerCamelCase__ : int = val[:dim, :] lowerCamelCase__ : Union[str, Any] = val[dim : dim * 2, :] lowerCamelCase__ : Union[str, Any] = val[-dim:, :] elif "bias" in key: lowerCamelCase__ : List[str] = val[:dim] lowerCamelCase__ : Optional[int] = val[dim : dim * 2] lowerCamelCase__ : str = val[-dim:] else: lowerCamelCase__ : Any = config.hidden_size lowerCamelCase__ : Dict = 'vit.encoder.layer.' if "weight" in key: lowerCamelCase__ : Optional[Any] = val[:dim, :] lowerCamelCase__ : List[str] = val[dim : dim * 2, :] lowerCamelCase__ : List[str] = val[-dim:, :] elif "bias" in key: lowerCamelCase__ : Dict = val[:dim] lowerCamelCase__ : Union[str, Any] = val[dim : dim * 2] lowerCamelCase__ : Optional[Any] = val[-dim:] else: lowerCamelCase__ : Dict = val return orig_state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int: lowerCamelCase__ : Union[str, Any] = ViTMAEConfig() if "large" in checkpoint_url: lowerCamelCase__ : List[Any] = 1024 lowerCamelCase__ : str = 4096 lowerCamelCase__ : Optional[Any] = 24 lowerCamelCase__ : List[str] = 16 elif "huge" in checkpoint_url: lowerCamelCase__ : Any = 14 lowerCamelCase__ : str = 1280 lowerCamelCase__ : Dict = 5120 lowerCamelCase__ : Tuple = 32 lowerCamelCase__ : List[Any] = 16 lowerCamelCase__ : List[Any] = ViTMAEForPreTraining(_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' )['model'] lowerCamelCase__ : List[str] = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase__ : int = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCamelCase__ : Dict = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' lowerCamelCase__ : Union[str, Any] = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) lowerCamelCase__ : int = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCamelCase__ : str = model(**_UpperCAmelCase ) lowerCamelCase__ : Any = outputs.logits if "large" in checkpoint_url: lowerCamelCase__ : List[str] = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: lowerCamelCase__ : Optional[Any] = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: lowerCamelCase__ : Tuple = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
50
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ ( enum.Enum ): lowerCAmelCase__ : Dict = "all_checks" lowerCAmelCase__ : List[Any] = "basic_checks" lowerCAmelCase__ : Dict = "no_checks" class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]: if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowercase = ' for ' + verification_name if verification_name is not None else '' if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]: if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) ) logger.info('All the splits matched successfully.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict: if record_checksum: __lowercase = shaaaa() with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(SCREAMING_SNAKE_CASE ) __lowercase = m.hexdigest() else: __lowercase = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
325
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def _lowerCAmelCase ( A__: int ): '''simple docstring''' UpperCAmelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F"""{test_file} instead.""" ) UpperCAmelCase = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) UpperCAmelCase = components[:-1] + [test_fn.replace('''.py''' , '''''' )] UpperCAmelCase = '''.'''.join(A__ ) return test_module_path def _lowerCAmelCase ( A__: int ): '''simple docstring''' UpperCAmelCase = get_module_path(A__ ) UpperCAmelCase = importlib.import_module(A__ ) return test_module def _lowerCAmelCase ( A__: Union[str, Any] ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = get_test_module(A__ ) for attr in dir(A__ ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(A__ , A__ ) ) # sort with class names return sorted(A__ , key=lambda A__ : x.__name__ ) def _lowerCAmelCase ( A__: List[Any] ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = get_test_module(A__ ) for attr in dir(A__ ): UpperCAmelCase = getattr(A__ , A__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). UpperCAmelCase = getattr(A__ , '''all_model_classes''' , [] ) if len(A__ ) > 0: test_classes.append(A__ ) # sort with class names return sorted(A__ , key=lambda A__ : x.__name__ ) def _lowerCAmelCase ( A__: List[str] ): '''simple docstring''' UpperCAmelCase = get_test_classes(A__ ) UpperCAmelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(A__ , key=lambda A__ : x.__name__ ) def _lowerCAmelCase ( A__: Optional[Any] ): '''simple docstring''' UpperCAmelCase = test_class() if hasattr(A__ , '''setUp''' ): test.setUp() UpperCAmelCase = None if hasattr(A__ , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: UpperCAmelCase = test.model_tester.__class__ return model_tester def _lowerCAmelCase ( A__: str , A__: Optional[int] ): '''simple docstring''' UpperCAmelCase = get_test_classes(A__ ) UpperCAmelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(A__ ) # sort with class names return sorted(A__ , key=lambda A__ : x.__name__ ) def _lowerCAmelCase ( A__: Union[str, Any] , A__: Dict ): '''simple docstring''' UpperCAmelCase = get_test_classes_for_model(A__ , A__ ) UpperCAmelCase = [] for test_class in test_classes: UpperCAmelCase = get_model_tester_from_test_class(A__ ) if tester_class is not None: tester_classes.append(A__ ) # sort with class names return sorted(A__ , key=lambda A__ : x.__name__ ) def _lowerCAmelCase ( A__: Any ): '''simple docstring''' UpperCAmelCase = get_test_classes(A__ ) UpperCAmelCase = {test_class: get_model_tester_from_test_class(A__ ) for test_class in test_classes} return test_tester_mapping def _lowerCAmelCase ( A__: Optional[int] ): '''simple docstring''' UpperCAmelCase = get_model_classes(A__ ) UpperCAmelCase = { model_class: get_test_classes_for_model(A__ , A__ ) for model_class in model_classes } return model_test_mapping def _lowerCAmelCase ( A__: Dict ): '''simple docstring''' UpperCAmelCase = get_model_classes(A__ ) UpperCAmelCase = { model_class: get_tester_classes_for_model(A__ , A__ ) for model_class in model_classes } return model_to_tester_mapping def _lowerCAmelCase ( A__: List[Any] ): '''simple docstring''' if isinstance(A__ , A__ ): return o elif isinstance(A__ , A__ ): return o.__name__ elif isinstance(A__ , (list, tuple) ): return [to_json(A__ ) for x in o] elif isinstance(A__ , A__ ): return {to_json(A__ ): to_json(A__ ) for k, v in o.items()} else: return o
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
152
0
from datetime import datetime import requests def _lowercase ( UpperCamelCase_ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' SCREAMING_SNAKE_CASE__ = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(SCREAMING_SNAKE_CASE__ ).content if __name__ == "__main__": __snake_case = input("""Enter Video/IGTV url: """).strip() __snake_case = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
176
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A : UpperCamelCase__ : Union[str, Any] =XGLMConfig UpperCamelCase__ : Dict ={} UpperCamelCase__ : Tuple ='gelu' def __init__( self : List[Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any]=14 , lowercase_ : Dict=7 , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : Any=True , lowercase_ : Optional[int]=99 , lowercase_ : List[Any]=32 , lowercase_ : List[Any]=2 , lowercase_ : Dict=4 , lowercase_ : List[str]=37 , lowercase_ : int="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[str]=512 , lowercase_ : Union[str, Any]=0.02 , ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Dict =parent _lowerCamelCase : Optional[Any] =batch_size _lowerCamelCase : Optional[int] =seq_length _lowerCamelCase : Union[str, Any] =is_training _lowerCamelCase : Tuple =use_input_mask _lowerCamelCase : str =use_labels _lowerCamelCase : Any =vocab_size _lowerCamelCase : List[str] =d_model _lowerCamelCase : List[Any] =num_hidden_layers _lowerCamelCase : Union[str, Any] =num_attention_heads _lowerCamelCase : List[Any] =ffn_dim _lowerCamelCase : Optional[Any] =activation_function _lowerCamelCase : Dict =activation_dropout _lowerCamelCase : Tuple =attention_dropout _lowerCamelCase : List[str] =max_position_embeddings _lowerCamelCase : int =initializer_range _lowerCamelCase : Optional[int] =None _lowerCamelCase : Optional[Any] =0 _lowerCamelCase : List[str] =2 _lowerCamelCase : Any =1 def lowerCamelCase ( self : str ) -> int: """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowerCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _lowerCamelCase : Any =None if self.use_input_mask: _lowerCamelCase : str =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] =self.get_config() _lowerCamelCase : Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCamelCase ( self : List[str] ) -> Dict: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowercase_ , ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : str =self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Any =config_and_inputs _lowerCamelCase : Union[str, Any] ={ 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class A ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : Union[str, Any] =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase__ : List[str] =(TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase__ : Any =( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase__ : str =False UpperCamelCase__ : int =False UpperCamelCase__ : int =False def lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _lowerCamelCase : Tuple =TFXGLMModelTester(self ) _lowerCamelCase : str =ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def lowerCamelCase ( self : str ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def lowerCamelCase ( self : Any ) -> int: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int =TFXGLMModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A ( unittest.TestCase ): @slow def lowerCamelCase ( self : str , lowercase_ : str=True ) -> Tuple: """simple docstring""" _lowerCamelCase : Any =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : List[Any] =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowerCamelCase : int =[2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on _lowerCamelCase : Dict =model.generate(lowercase_ , do_sample=lowercase_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ ) @slow def lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : Any =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) _lowerCamelCase : Tuple =tokenizer('Today is a nice day and' , return_tensors='tf' ) _lowerCamelCase : Optional[int] =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): _lowerCamelCase : List[Any] =model.generate(lowercase_ , do_sample=lowercase_ , seed=[7, 0] ) _lowerCamelCase : Union[str, Any] =tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase_ ) _lowerCamelCase : Union[str, Any] =( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowercase_ , lowercase_ ) @slow def lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : int =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : Any =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : Optional[Any] ='left' # use different length sentences to test batching _lowerCamelCase : int =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] _lowerCamelCase : List[Any] =tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) _lowerCamelCase : int =inputs['input_ids'] _lowerCamelCase : str =model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) _lowerCamelCase : Optional[Any] =tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : List[str] =model.generate(input_ids=lowercase_ , max_new_tokens=12 ) _lowerCamelCase : Tuple =tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Dict =model.generate(input_ids=lowercase_ , max_new_tokens=12 ) _lowerCamelCase : str =tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) _lowerCamelCase : str =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) _lowerCamelCase : int =tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) _lowerCamelCase : List[str] =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
199
0
def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = [1] lowerCamelCase__ : List[str] = 0, 0, 0 lowerCamelCase__ : Optional[Any] = ugly_nums[ia] * 2 lowerCamelCase__ : Any = ugly_nums[ia] * 3 lowerCamelCase__ : int = ugly_nums[ia] * 5 for _ in range(1 , _lowerCamelCase ): lowerCamelCase__ : List[str] = min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ugly_nums.append(_lowerCamelCase ) if next_num == next_a: ia += 1 lowerCamelCase__ : Optional[Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCamelCase__ : List[str] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCamelCase__ : Optional[int] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"{ugly_numbers(2_00) = }")
363
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowercase : int = ['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] lowercase : int = {'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('0.9.0'): raise Exception('requires fairseq >= 0.9.0') logging.set_verbosity_info() lowercase : Optional[int] = logging.get_logger(__name__) lowercase : List[Any] = ' Hello world! cécé herlolip' lowercase : Optional[int] = [ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> Any: '''simple docstring''' __UpperCamelCase : Union[str, Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : int) -> Tuple: '''simple docstring''' __UpperCamelCase : str = dct.pop(_lowerCamelCase) __UpperCamelCase : Dict = val def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Tuple = torch.load(_lowerCamelCase , map_location="cpu") __UpperCamelCase : List[Any] = torch.hub.load("pytorch/fairseq" , "bart.large.cnn").eval() hub_interface.model.load_state_dict(sd["model"]) return hub_interface def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple) -> Tuple: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Tuple = emb.weight.shape __UpperCamelCase : str = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) __UpperCamelCase : List[Any] = emb.weight.data return lin_layer @torch.no_grad() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any]=None) -> Union[str, Any]: '''simple docstring''' if not os.path.exists(_lowerCamelCase): __UpperCamelCase : str = torch.hub.load("pytorch/fairseq" , _lowerCamelCase).eval() else: __UpperCamelCase : Dict = load_xsum_checkpoint(_lowerCamelCase) bart.model.upgrade_state_dict(bart.model.state_dict()) if hf_checkpoint_name is None: __UpperCamelCase : Dict = checkpoint_path.replace("." , "-") __UpperCamelCase : Optional[int] = BartConfig.from_pretrained(_lowerCamelCase) __UpperCamelCase : int = bart.encode(_lowerCamelCase).unsqueeze(0) __UpperCamelCase : Union[str, Any] = BartTokenizer.from_pretrained(_lowerCamelCase).encode(_lowerCamelCase , return_tensors="pt").unsqueeze(0) if not torch.eq(_lowerCamelCase , _lowerCamelCase).all(): raise ValueError( F'converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}') if checkpoint_path == "bart.large.mnli": __UpperCamelCase : List[str] = bart.state_dict() remove_ignore_keys_(_lowerCamelCase) __UpperCamelCase : Union[str, Any] = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) __UpperCamelCase : Optional[Any] = BartForSequenceClassification(_lowerCamelCase).eval() model.load_state_dict(_lowerCamelCase) __UpperCamelCase : Any = bart.predict("mnli" , _lowerCamelCase , return_logits=_lowerCamelCase) __UpperCamelCase : Any = model(_lowerCamelCase)[0] # logits else: # no classification heads to worry about __UpperCamelCase : Any = bart.model.state_dict() remove_ignore_keys_(_lowerCamelCase) __UpperCamelCase : Any = state_dict["decoder.embed_tokens.weight"] __UpperCamelCase : List[Any] = bart.extract_features(_lowerCamelCase) if hf_checkpoint_name == "facebook/bart-large": __UpperCamelCase : Optional[Any] = BartModel(_lowerCamelCase).eval() model.load_state_dict(_lowerCamelCase) __UpperCamelCase : Optional[int] = model(_lowerCamelCase).model[0] else: __UpperCamelCase : Dict = BartForConditionalGeneration(_lowerCamelCase).eval() # an existing summarization ckpt model.model.load_state_dict(_lowerCamelCase) if hasattr(_lowerCamelCase , "lm_head"): __UpperCamelCase : Any = make_linear_from_emb(model.model.shared) __UpperCamelCase : Union[str, Any] = model.model(_lowerCamelCase)[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}') if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`") Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) model.save_pretrained(_lowerCamelCase) if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default=None, type=str, help='Which huggingface architecture to use: bart-large-xsum' ) lowercase : Dict = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
232
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase : Dict = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Optional[int]=False) -> Any: '''simple docstring''' __UpperCamelCase : Optional[int] = "backbone." if is_semantic else "" __UpperCamelCase : Optional[Any] = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'{prefix}blocks.{i}.norm1.weight', F'beit.encoder.layer.{i}.layernorm_before.weight')) rename_keys.append((F'{prefix}blocks.{i}.norm1.bias', F'beit.encoder.layer.{i}.layernorm_before.bias')) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.weight', F'beit.encoder.layer.{i}.attention.output.dense.weight')) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.bias', F'beit.encoder.layer.{i}.attention.output.dense.bias')) rename_keys.append((F'{prefix}blocks.{i}.norm2.weight', F'beit.encoder.layer.{i}.layernorm_after.weight')) rename_keys.append((F'{prefix}blocks.{i}.norm2.bias', F'beit.encoder.layer.{i}.layernorm_after.bias')) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.weight', F'beit.encoder.layer.{i}.intermediate.dense.weight')) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.bias', F'beit.encoder.layer.{i}.intermediate.dense.bias')) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.weight', F'beit.encoder.layer.{i}.output.dense.weight')) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.bias', F'beit.encoder.layer.{i}.output.dense.bias')) # projection layer + position embeddings rename_keys.extend( [ (F'{prefix}cls_token', "beit.embeddings.cls_token"), (F'{prefix}patch_embed.proj.weight', "beit.embeddings.patch_embeddings.projection.weight"), (F'{prefix}patch_embed.proj.bias', "beit.embeddings.patch_embeddings.projection.bias"), (F'{prefix}pos_embed', "beit.embeddings.position_embeddings"), ]) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ]) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ]) return rename_keys def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Optional[int]=False) -> List[str]: '''simple docstring''' for i in range(config.num_hidden_layers): __UpperCamelCase : List[Any] = "backbone." if is_semantic else "" # queries, keys and values __UpperCamelCase : Tuple = state_dict.pop(F'{prefix}blocks.{i}.attn.qkv.weight') __UpperCamelCase : Optional[Any] = state_dict.pop(F'{prefix}blocks.{i}.attn.q_bias') __UpperCamelCase : int = state_dict.pop(F'{prefix}blocks.{i}.attn.v_bias') __UpperCamelCase : Optional[int] = in_proj_weight[ : config.hidden_size, : ] __UpperCamelCase : Any = q_bias __UpperCamelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCamelCase : List[Any] = in_proj_weight[ -config.hidden_size :, : ] __UpperCamelCase : Tuple = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __UpperCamelCase : Union[str, Any] = state_dict.pop(F'{prefix}blocks.{i}.gamma_1') __UpperCamelCase : Optional[int] = state_dict.pop(F'{prefix}blocks.{i}.gamma_2') __UpperCamelCase : Any = gamma_a __UpperCamelCase : List[Any] = gamma_a def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any]) -> Any: '''simple docstring''' __UpperCamelCase : str = dct.pop(_lowerCamelCase) __UpperCamelCase : str = val def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCamelCase : Dict = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : Dict=False) -> str: '''simple docstring''' __UpperCamelCase : str = False if "rvlcdip" in checkpoint_url else True __UpperCamelCase : int = BeitConfig(use_absolute_position_embeddings=_lowerCamelCase , use_mask_token=_lowerCamelCase) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __UpperCamelCase : Optional[int] = 1_024 __UpperCamelCase : Union[str, Any] = 4_096 __UpperCamelCase : Tuple = 24 __UpperCamelCase : int = 16 # labels if "rvlcdip" in checkpoint_url: __UpperCamelCase : List[str] = 16 __UpperCamelCase : str = "huggingface/label-files" __UpperCamelCase : str = "rvlcdip-id2label.json" __UpperCamelCase : Tuple = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset") , "r")) __UpperCamelCase : Dict = {int(_lowerCamelCase): v for k, v in idalabel.items()} __UpperCamelCase : Optional[Any] = idalabel __UpperCamelCase : List[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __UpperCamelCase : str = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu")["model"] __UpperCamelCase : Optional[Any] = create_rename_keys(_lowerCamelCase , has_lm_head=_lowerCamelCase) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , has_lm_head=_lowerCamelCase) # load HuggingFace model __UpperCamelCase : List[Any] = BeitForMaskedImageModeling(_lowerCamelCase) if has_lm_head else BeitForImageClassification(_lowerCamelCase) model.eval() model.load_state_dict(_lowerCamelCase) # Check outputs on an image __UpperCamelCase : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_lowerCamelCase) __UpperCamelCase : Union[str, Any] = prepare_img() __UpperCamelCase : Union[str, Any] = image_processor(images=_lowerCamelCase , return_tensors="pt") __UpperCamelCase : str = encoding["pixel_values"] __UpperCamelCase : str = model(_lowerCamelCase) __UpperCamelCase : Union[str, Any] = outputs.logits # verify logits __UpperCamelCase : Tuple = [1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(_lowerCamelCase), "Shape of logits not as expected" Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(F'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(_lowerCamelCase) print(F'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: if has_lm_head: __UpperCamelCase : List[str] = "dit-base" if "base" in checkpoint_url else "dit-large" else: __UpperCamelCase : Optional[Any] = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) lowercase : Tuple = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
232
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Dict ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) @torch.no_grad() def __call__( self : int , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1_00 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : Optional[float] = None , lowerCAmelCase : bool = True , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if audio_length_in_s is None: __lowerCAmelCase : Dict = self.unet.config.sample_size / self.unet.config.sample_rate __lowerCAmelCase : Any = audio_length_in_s * self.unet.config.sample_rate __lowerCAmelCase : Dict = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __lowerCAmelCase : Tuple = int(lowerCAmelCase ) if sample_size % down_scale_factor != 0: __lowerCAmelCase : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) __lowerCAmelCase : List[Any] = int(lowerCAmelCase ) __lowerCAmelCase : Any = next(iter(self.unet.parameters() ) ).dtype __lowerCAmelCase : Optional[Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __lowerCAmelCase : int = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase ) # set step values self.scheduler.set_timesteps(lowerCAmelCase , device=audio.device ) __lowerCAmelCase : int = self.scheduler.timesteps.to(lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowerCAmelCase : str = self.unet(lowerCAmelCase , lowerCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 __lowerCAmelCase : str = self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample __lowerCAmelCase : Tuple = audio.clamp(-1 , 1 ).float().cpu().numpy() __lowerCAmelCase : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCAmelCase )
139
__UpperCAmelCase = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ __UpperCAmelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] __UpperCAmelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
139
1
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Tuple = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class A__ : def __init__( self : int , _a : int , _a : int=16 , _a : Dict=13 , _a : Optional[Any]=7 , _a : List[str]=14 , _a : int=10 , _a : List[Any]=19 , _a : int=5 , _a : Dict=4 , _a : Optional[Any]=True , _a : Tuple=16 , _a : Optional[int]=2 , _a : Any=4 , _a : Optional[int]=4 , _a : str="gelu" , _a : Union[str, Any]=0.1 , _a : Optional[int]=0.1 , _a : str=[1, 2, 3, 4, 5] , _a : Tuple=25 , _a : Union[str, Any]=5 , ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =d_model _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =prediction_length _SCREAMING_SNAKE_CASE =context_length _SCREAMING_SNAKE_CASE =cardinality _SCREAMING_SNAKE_CASE =num_time_features _SCREAMING_SNAKE_CASE =lags_sequence _SCREAMING_SNAKE_CASE =embedding_dimension _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =context_length _SCREAMING_SNAKE_CASE =prediction_length + label_length _SCREAMING_SNAKE_CASE =label_length _SCREAMING_SNAKE_CASE =moving_average _SCREAMING_SNAKE_CASE =autocorrelation_factor def A ( self : Tuple ) -> Tuple: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A ( self : Dict , _a : Tuple ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =config.context_length + max(config.lags_sequence ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, _past_length] ) _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, config.prediction_length] ) _SCREAMING_SNAKE_CASE ={ 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def A ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_config() _SCREAMING_SNAKE_CASE =self.prepare_autoformer_inputs_dict(_a ) return config, inputs_dict def A ( self : List[Any] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() return config, inputs_dict def A ( self : int , _a : List[Any] , _a : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoformerModel(config=_a ).to(_a ).eval() _SCREAMING_SNAKE_CASE =model(**_a ) _SCREAMING_SNAKE_CASE =outputs.encoder_last_hidden_state _SCREAMING_SNAKE_CASE =outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE =model.get_encoder() encoder.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =AutoformerEncoder.from_pretrained(_a ).to(_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =model.create_network_inputs(**_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _SCREAMING_SNAKE_CASE =torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _SCREAMING_SNAKE_CASE =encoder(inputs_embeds=_a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _SCREAMING_SNAKE_CASE =( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _SCREAMING_SNAKE_CASE =torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _SCREAMING_SNAKE_CASE =torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _SCREAMING_SNAKE_CASE =torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE =model.get_decoder() decoder.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =AutoformerDecoder.from_pretrained(_a ).to(_a ) _SCREAMING_SNAKE_CASE =decoder( trend=_a , inputs_embeds=_a , encoder_hidden_states=_a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class A__ ( A__ , A__ , unittest.TestCase ): A__ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () A__ = (AutoformerForPrediction,) if is_torch_available() else () A__ = {'feature-extraction': AutoformerModel} if is_torch_available() else {} A__ = False A__ = False A__ = False A__ = False A__ = False A__ = False def A ( self : str ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoformerModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , has_text_modality=_a ) def A ( self : Union[str, Any] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =model_class.from_pretrained(_a , output_loading_info=_a ) self.assertEqual(info['missing_keys'] , [] ) def A ( self : List[Any] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_a ) @unittest.skip(reason='Model has no tokens embeddings' ) def A ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass def A ( self : List[Any] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =inspect.signature(getattr(_a , 'forward' ) ) # The main input is the name of the argument after `self` _SCREAMING_SNAKE_CASE =list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , _a ) def A ( self : Dict ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_a ) _SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] _SCREAMING_SNAKE_CASE =[ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(_a )] , _a ) def A ( self : Dict ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =getattr(self.model_tester , 'seq_length' , _a ) _SCREAMING_SNAKE_CASE =getattr(self.model_tester , 'decoder_seq_length' , _a ) _SCREAMING_SNAKE_CASE =getattr(self.model_tester , 'encoder_seq_length' , _a ) _SCREAMING_SNAKE_CASE =getattr(self.model_tester , 'd_model' , _a ) _SCREAMING_SNAKE_CASE =getattr(self.model_tester , 'num_attention_heads' , _a ) _SCREAMING_SNAKE_CASE =d_model // num_attention_heads for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(_a , _a ) ) _SCREAMING_SNAKE_CASE =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(_a , _a ) ) _SCREAMING_SNAKE_CASE =outputs.encoder_attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _SCREAMING_SNAKE_CASE =len(_a ) _SCREAMING_SNAKE_CASE =7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(_a , _a ) # decoder attentions _SCREAMING_SNAKE_CASE =outputs.decoder_attentions self.assertIsInstance(_a , (list, tuple) ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _SCREAMING_SNAKE_CASE =outputs.cross_attentions self.assertIsInstance(_a , (list, tuple) ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(_a , _a ) ) self.assertEqual(out_len + 2 , len(_a ) ) _SCREAMING_SNAKE_CASE =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A ( self : str ) -> Any: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any]="train-batch.pt" ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=_UpperCamelCase , repo_type='dataset' ) _SCREAMING_SNAKE_CASE =torch.load(_UpperCamelCase , map_location=_UpperCamelCase ) return batch @require_torch @slow class A__ ( unittest.TestCase ): def A ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_a ) _SCREAMING_SNAKE_CASE =prepare_batch() with torch.no_grad(): _SCREAMING_SNAKE_CASE =model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0] _SCREAMING_SNAKE_CASE =torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , _a ) _SCREAMING_SNAKE_CASE =torch.tensor( [[0.35_93, -1.33_98, 0.63_30], [0.22_79, 1.53_96, -0.17_92], [0.04_50, 1.32_25, -0.23_35]] , device=_a ) self.assertTrue(torch.allclose(output[0, :3, :3] , _a , atol=_a ) ) def A ( self : int ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_a ) _SCREAMING_SNAKE_CASE =prepare_batch('val-batch.pt' ) with torch.no_grad(): _SCREAMING_SNAKE_CASE =model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state _SCREAMING_SNAKE_CASE =torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , _a ) _SCREAMING_SNAKE_CASE =torch.tensor( [[-0.07_34, -0.90_36, 0.83_58], [4.71_86, 2.41_13, 1.95_81], [1.79_53, 2.35_58, 1.29_70]] , device=_a ) self.assertTrue(torch.allclose(output[0, :3, :3] , _a , atol=_a ) ) def A ( self : Any ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_a ) _SCREAMING_SNAKE_CASE =prepare_batch('val-batch.pt' ) with torch.no_grad(): _SCREAMING_SNAKE_CASE =model.generate( static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , ) _SCREAMING_SNAKE_CASE =torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , _a ) _SCREAMING_SNAKE_CASE =torch.tensor([31_30.67_63, 40_56.52_93, 70_53.07_86] , device=_a ) _SCREAMING_SNAKE_CASE =outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _a , rtol=1e-1 ) )
47
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = 1 lowerCamelCase = 3 lowerCamelCase = (32, 32) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def __A ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def __A ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __A ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(A ) @property def __A ( self ) -> List[Any]: '''simple docstring''' def extract(*A , **A ): class __lowercase : """simple docstring""" def __init__( self ) -> List[str]: '''simple docstring''' lowerCamelCase = torch.ones([0] ) def __A ( self , A ) -> Tuple: '''simple docstring''' self.pixel_values.to(A ) return self return Out() return extract def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.dummy_cond_unet lowerCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowerCamelCase = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """A painting of a squirrel eating a burger""" lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = sd_pipe([prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowerCamelCase = output.images lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=A , )[0] lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.dummy_cond_unet lowerCamelCase = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowerCamelCase = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """A painting of a squirrel eating a burger""" lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = sd_pipe([prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowerCamelCase = output.images lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=A , )[0] lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=A ) assert isinstance(A , A ) assert isinstance(pipe.scheduler , A ) assert pipe.safety_checker is None lowerCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A ) lowerCamelCase = StableDiffusionPipeline.from_pretrained(A ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.dummy_cond_unet lowerCamelCase = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowerCamelCase = unet.half() lowerCamelCase = vae.half() lowerCamelCase = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """A painting of a squirrel eating a burger""" lowerCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=A ) lowerCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowerCamelCase = 40_03_66_03_46 lowerCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=A ) lowerCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowerCamelCase = 27_34_97_17_55 lowerCamelCase = 7 lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowerCamelCase = 10_44_35_52_34 lowerCamelCase = 12 lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
252
0
import heapq def lowercase__ ( __snake_case : dict ): '''simple docstring''' UpperCAmelCase_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case , [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase_ : Optional[int] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase_ : Optional[int] = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase_ : Dict = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
145
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '▁' __UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __UpperCAmelCase = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } __UpperCAmelCase = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off __UpperCAmelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : List[Any] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = ['''input_ids''', '''attention_mask'''] _snake_case : List[int] = [] _snake_case : List[int] = [] def __init__( self , _UpperCamelCase , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=None , **_UpperCamelCase , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : List[Any] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token UpperCAmelCase_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenizer_file=_UpperCamelCase , src_lang=_UpperCamelCase , tgt_lang=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) UpperCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) UpperCAmelCase_ : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ : List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Optional[int] = len(self.sp_model ) UpperCAmelCase_ : str = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCamelCase ) } UpperCAmelCase_ : int = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase_ : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase_ : int = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase_ : Any = src_lang if src_lang is not None else 'en_XX' UpperCAmelCase_ : Any = self.lang_code_to_id[self._src_lang] UpperCAmelCase_ : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Dict: UpperCAmelCase_ : Optional[int] = self.__dict__.copy() UpperCAmelCase_ : str = None UpperCAmelCase_ : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase_ : Any = {} UpperCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __UpperCAmelCase ( self ) -> Tuple: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __UpperCAmelCase ( self ) -> str: return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) UpperCAmelCase_ : Tuple = [1] * len(self.prefix_tokens ) UpperCAmelCase_ : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCamelCase )) + ([0] * len(_UpperCamelCase )) + suffix_ones def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : int = [self.sep_token_id] UpperCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> int: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCAmelCase_ : Optional[int] = src_lang UpperCAmelCase_ : Dict = self(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : int = self.convert_tokens_to_ids(_UpperCamelCase ) UpperCAmelCase_ : Any = tgt_lang_id return inputs def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : str = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : Dict = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCAmelCase ( self , _UpperCamelCase ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = ''.join(_UpperCamelCase ).replace(_UpperCamelCase , ' ' ).strip() return out_string def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase_ : List[Any] = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , 'wb' ) as fi: UpperCAmelCase_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = "en_XX" , _UpperCamelCase = None , _UpperCamelCase = "ro_RO" , **_UpperCamelCase , ) -> BatchEncoding: UpperCAmelCase_ : Union[str, Any] = src_lang UpperCAmelCase_ : Dict = tgt_lang return super().prepare_seqaseq_batch(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Any = self.lang_code_to_id[src_lang] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [self.eos_token_id, self.cur_lang_code] def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Any = self.lang_code_to_id[lang] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : int = [self.eos_token_id, self.cur_lang_code]
145
1
"""simple docstring""" import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _a = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' _a = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' _a = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return float((preds == labels).mean() ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = simple_accuracy(UpperCamelCase__, UpperCamelCase__ ) UpperCAmelCase_ : List[Any] = float(fa_score(y_true=UpperCamelCase__, y_pred=UpperCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = np.array(UpperCamelCase__ ) UpperCAmelCase_ : int = np.array(UpperCamelCase__ ) UpperCAmelCase_ : Optional[Any] = en_sentvecs.shape[0] # mean centering UpperCAmelCase_ : Optional[int] = en_sentvecs - np.mean(UpperCamelCase__, axis=0 ) UpperCAmelCase_ : List[str] = in_sentvecs - np.mean(UpperCamelCase__, axis=0 ) UpperCAmelCase_ : Any = cdist(UpperCamelCase__, UpperCamelCase__, "cosine" ) UpperCAmelCase_ : Optional[Any] = np.array(range(UpperCamelCase__ ) ) UpperCAmelCase_ : List[Any] = sim.argsort(axis=1 )[:, :10] UpperCAmelCase_ : Optional[int] = np.any(preds == actual[:, None], axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__lowercase , __lowercase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__lowercase , __lowercase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__lowercase , __lowercase )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
61
'''simple docstring''' from __future__ import annotations def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' if not nums: return 0 SCREAMING_SNAKE_CASE__ : Dict =nums[0] SCREAMING_SNAKE_CASE__ : Optional[int] =0 for num in nums[1:]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =( max_excluding + num, max(UpperCamelCase__, UpperCamelCase__ ), ) return max(UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
152
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
1
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata UpperCAmelCase : Optional[Any] = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class SCREAMING_SNAKE_CASE__ ( tr.AbstractTransform ): def __init__( self : List[Any] , lowerCAmelCase_ : Tuple = " "): """simple docstring""" lowercase_ = sentence_delimiter def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Any): """simple docstring""" return list(__UpperCAmelCase) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = [] for sent_idx, sentence in enumerate(__UpperCAmelCase): chars.extend(self.process_string(__UpperCAmelCase)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__UpperCAmelCase) - 1: chars.append(self.sentence_delimiter) return chars UpperCAmelCase : Any = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: UpperCAmelCase : List[Any] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) UpperCAmelCase : Any = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" UpperCAmelCase : Optional[Any] = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" UpperCAmelCase : Dict = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _UpperCAmelCase ( self : str): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Value("""string""" , id="""sequence"""), }) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int]=False): """simple docstring""" if concatenate_texts: return jiwer.compute_measures( __UpperCAmelCase , __UpperCAmelCase , truth_transform=__UpperCAmelCase , hypothesis_transform=__UpperCAmelCase , )["wer"] lowercase_ = 0 lowercase_ = 0 for prediction, reference in zip(__UpperCAmelCase , __UpperCAmelCase): lowercase_ = jiwer.compute_measures( __UpperCAmelCase , __UpperCAmelCase , truth_transform=__UpperCAmelCase , hypothesis_transform=__UpperCAmelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
136
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
0
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch A : Any = logging.get_logger(__name__) class __lowerCamelCase : """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE : str = None , SCREAMING_SNAKE_CASE : uuid.UUID = None , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None): if not conversation_id: _A : str = uuid.uuida() if past_user_inputs is None: _A : List[Any] = [] if generated_responses is None: _A : Union[str, Any] = [] _A : uuid.UUID = conversation_id _A : List[str] = past_user_inputs _A : List[str] = generated_responses _A : Optional[str] = text def __eq__( self : List[str] , SCREAMING_SNAKE_CASE : Optional[int]): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def A ( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = False): if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".') _A : Optional[Any] = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input') else: _A : Optional[Any] = text def A ( self : Optional[int]): if self.new_user_input: self.past_user_inputs.append(self.new_user_input) _A : Optional[Any] = None def A ( self : List[Any] , SCREAMING_SNAKE_CASE : str): self.generated_responses.append(SCREAMING_SNAKE_CASE) def A ( self : str): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Dict): _A : Any = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): _A : Optional[int] = 'user' if is_user else 'bot' output += F'{name} >> {text} \n' return output @add_end_docstrings( a_ , R"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class __lowerCamelCase ( a_ ): """simple docstring""" def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : str): super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) if self.tokenizer.pad_token_id is None: _A : Any = self.tokenizer.eos_token def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , **SCREAMING_SNAKE_CASE : str): _A : str = {} _A : Union[str, Any] = {} _A : List[str] = {} if min_length_for_response is not None: _A : Optional[Any] = min_length_for_response if minimum_tokens is not None: _A : Tuple = minimum_tokens if "max_length" in generate_kwargs: _A : List[Any] = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _A : List[str] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(SCREAMING_SNAKE_CASE) return preprocess_params, forward_params, postprocess_params def __call__( self : Any , SCREAMING_SNAKE_CASE : Union[Conversation, List[Conversation]] , SCREAMING_SNAKE_CASE : Any=0 , **SCREAMING_SNAKE_CASE : Tuple): _A : Any = super().__call__(SCREAMING_SNAKE_CASE , num_workers=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) and len(SCREAMING_SNAKE_CASE) == 1: return outputs[0] return outputs def A ( self : Any , SCREAMING_SNAKE_CASE : Conversation , SCREAMING_SNAKE_CASE : Union[str, Any]=32): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): raise ValueError('ConversationalPipeline, expects Conversation as inputs') if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid)} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method') if hasattr(self.tokenizer , '_build_conversation_input_ids'): _A : Optional[Any] = self.tokenizer._build_conversation_input_ids(SCREAMING_SNAKE_CASE) else: # If the tokenizer cannot handle conversations, we default to only the old version _A : Dict = self._legacy_parse_and_tokenize(SCREAMING_SNAKE_CASE) if self.framework == "pt": _A : Union[str, Any] = torch.LongTensor([input_ids]) elif self.framework == "tf": _A : Optional[Any] = tf.constant([input_ids]) return {"input_ids": input_ids, "conversation": conversation} def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str]=10 , **SCREAMING_SNAKE_CASE : Tuple): _A : str = generate_kwargs.get('max_length' , self.model.config.max_length) _A : Any = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})') _A : Dict = max_length - minimum_tokens _A : int = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _A : str = model_inputs['attention_mask'][:, -trim:] _A : Any = model_inputs.pop('conversation') _A : Optional[Any] = max_length _A : int = self.model.generate(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) if self.model.config.is_encoder_decoder: _A : int = 1 else: _A : List[Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def A ( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any]=True): _A : Optional[Any] = model_outputs['output_ids'] _A : Optional[int] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE , ) _A : Any = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(SCREAMING_SNAKE_CASE) return conversation def A ( self : str , SCREAMING_SNAKE_CASE : Conversation): _A : Optional[Any] = self.tokenizer.eos_token_id _A : List[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE) + [eos_token_id]) else: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE)) if len(SCREAMING_SNAKE_CASE) > self.tokenizer.model_max_length: _A : Dict = input_ids[-self.tokenizer.model_max_length :] return input_ids
227
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : str = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
227
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _snake_case : _A : int = MBartConfig _A : Any = {} _A : Any = '''gelu''' def __init__( self : Dict ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : List[str]=13 ,SCREAMING_SNAKE_CASE__ : str=7 ,SCREAMING_SNAKE_CASE__ : Optional[int]=True ,SCREAMING_SNAKE_CASE__ : Dict=False ,SCREAMING_SNAKE_CASE__ : Dict=99 ,SCREAMING_SNAKE_CASE__ : str=32 ,SCREAMING_SNAKE_CASE__ : Any=2 ,SCREAMING_SNAKE_CASE__ : Dict=4 ,SCREAMING_SNAKE_CASE__ : List[Any]=37 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Tuple=20 ,SCREAMING_SNAKE_CASE__ : Any=2 ,SCREAMING_SNAKE_CASE__ : List[Any]=1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0 ,): SCREAMING_SNAKE_CASE:List[Any] = parent SCREAMING_SNAKE_CASE:List[str] = batch_size SCREAMING_SNAKE_CASE:Optional[int] = seq_length SCREAMING_SNAKE_CASE:Optional[Any] = is_training SCREAMING_SNAKE_CASE:Tuple = use_labels SCREAMING_SNAKE_CASE:List[str] = vocab_size SCREAMING_SNAKE_CASE:Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE:List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE:Dict = num_attention_heads SCREAMING_SNAKE_CASE:Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE:List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE:Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE:Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE:Dict = eos_token_id SCREAMING_SNAKE_CASE:Any = pad_token_id SCREAMING_SNAKE_CASE:str = bos_token_id def __UpperCamelCase ( self : Dict ): SCREAMING_SNAKE_CASE:Any = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) SCREAMING_SNAKE_CASE:Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) SCREAMING_SNAKE_CASE:Optional[Any] = tf.concat([input_ids, eos_tensor] ,axis=1 ) SCREAMING_SNAKE_CASE:Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE:Union[str, Any] = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) SCREAMING_SNAKE_CASE:str = prepare_mbart_inputs_dict(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Dict ): SCREAMING_SNAKE_CASE:List[Any] = TFMBartModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder() SCREAMING_SNAKE_CASE:Dict = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE:List[str] = input_ids[:1, :] SCREAMING_SNAKE_CASE:Dict = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE:int = inputs_dict["head_mask"] SCREAMING_SNAKE_CASE:Dict = 1 # first forward pass SCREAMING_SNAKE_CASE:Optional[Any] = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,head_mask=SCREAMING_SNAKE_CASE__ ,use_cache=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Dict = outputs.to_tuple() SCREAMING_SNAKE_CASE:str = past_key_values[1] def A_ ( snake_case , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , ): if attention_mask is None: SCREAMING_SNAKE_CASE:List[Any] = tf.cast(tf.math.not_equal(snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE:Union[str, Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE:List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE:int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE:Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _snake_case ( _a , _a , unittest.TestCase ): _A : Optional[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () _A : Any = (TFMBartForConditionalGeneration,) if is_tf_available() else () _A : List[str] = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) _A : Any = True _A : Tuple = False _A : int = False def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Dict ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __UpperCamelCase ( self : List[str] ): SCREAMING_SNAKE_CASE:str = TFMBartModelTester(self ) SCREAMING_SNAKE_CASE:int = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Optional[int] ): self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE__ ) @require_sentencepiece @require_tokenizers @require_tf class _snake_case ( unittest.TestCase ): _A : Dict = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] _A : int = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] _A : Optional[Any] = '''facebook/mbart-large-en-ro''' @cached_property def __UpperCamelCase ( self : Tuple ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __UpperCamelCase ( self : Tuple ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ): SCREAMING_SNAKE_CASE:Union[str, Any] = self.translate_src_text(**SCREAMING_SNAKE_CASE__ ) self.assertListEqual(self.expected_text ,SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : str ,**SCREAMING_SNAKE_CASE__ : Optional[int] ): SCREAMING_SNAKE_CASE:str = self.tokenizer(self.src_text ,**SCREAMING_SNAKE_CASE__ ,return_tensors="tf" ) SCREAMING_SNAKE_CASE:Any = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ) SCREAMING_SNAKE_CASE:Optional[Any] = self.tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ,skip_special_tokens=SCREAMING_SNAKE_CASE__ ) return generated_words @slow def __UpperCamelCase ( self : str ): self._assert_generated_batch_equal_expected()
139
'''simple docstring''' def A_ ( snake_case = 100 ): SCREAMING_SNAKE_CASE:Optional[Any] = set() SCREAMING_SNAKE_CASE:int = 0 SCREAMING_SNAKE_CASE:Optional[Any] = n + 1 # maximum limit for a in range(2 , snake_case ): for b in range(2 , snake_case ): SCREAMING_SNAKE_CASE:Tuple = a**b # calculates the current power collect_powers.add(snake_case ) # adds the result to the set return len(snake_case ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
139
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Any=13 , lowercase_ : Optional[int]=7 , lowercase_ : Optional[Any]=True , lowercase_ : str=True , lowercase_ : Tuple=True , lowercase_ : List[Any]=True , lowercase_ : str=99 , lowercase_ : Any=32 , lowercase_ : Union[str, Any]=5 , lowercase_ : List[Any]=4 , lowercase_ : List[str]=37 , lowercase_ : List[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Union[str, Any]=512 , lowercase_ : int=16 , lowercase_ : str=2 , lowercase_ : Tuple=0.02 , lowercase_ : Dict=4 , ) -> List[str]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_choices def __UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_attention_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _UpperCAmelCase ( lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = True __A = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" _UpperCamelCase = FlaxRoFormerModelTester(self) @slow def __UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=lowercase_) _UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowercase_) @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCamelCase = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") _UpperCamelCase = jnp.array([[0, 1, 2, 3, 4, 5]]) _UpperCamelCase = model(lowercase_)[0] _UpperCamelCase = 50000 _UpperCamelCase = (1, 6, vocab_size) self.assertEqual(output.shape , lowercase_) _UpperCamelCase = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]]) self.assertTrue(jnp.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4))
63
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase__ ( a__ , a__ , a__ , a__ ) ->Optional[int]: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def lowerCAmelCase__ ( a__ , a__ , a__ , a__ , a__=True ) ->List[str]: '''simple docstring''' model.train() _UpperCamelCase = model(a__ ) _UpperCamelCase = F.mse_loss(a__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(a__ ) def lowerCAmelCase__ ( a__ , a__=False ) ->Union[str, Any]: '''simple docstring''' set_seed(42 ) _UpperCamelCase = RegressionModel() _UpperCamelCase = deepcopy(a__ ) _UpperCamelCase = RegressionDataset(length=80 ) _UpperCamelCase = DataLoader(a__ , batch_size=16 ) model.to(accelerator.device ) if sched: _UpperCamelCase = AdamW(params=model.parameters() , lr=1e-3 ) _UpperCamelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) _UpperCamelCase = LambdaLR(a__ , lr_lambda=lambda a__ : epoch**0.65 ) _UpperCamelCase = LambdaLR(a__ , lr_lambda=lambda a__ : epoch**0.65 ) # Make a copy of `model` if sched: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = accelerator.prepare(a__ , a__ , a__ , a__ ) else: _UpperCamelCase , _UpperCamelCase = accelerator.prepare(a__ , a__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase__ ( a__ ) ->List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = get_training_setup(a__ ) # Use a single batch _UpperCamelCase , _UpperCamelCase = next(iter(a__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _UpperCamelCase , _UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) _UpperCamelCase , _UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a__ , a__ , a__ , a__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(a__ ): step_model(a__ , a__ , a__ , a__ ) else: # Sync grads step_model(a__ , a__ , a__ , a__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(a__ , a__ , a__ , a__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) _UpperCamelCase = ddp_input[torch.randperm(len(a__ ) )] def lowerCAmelCase__ ( a__ ) ->str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = get_training_setup(a__ ) # Use a single batch _UpperCamelCase , _UpperCamelCase = next(iter(a__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _UpperCamelCase , _UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) _UpperCamelCase , _UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a__ , a__ , a__ , a__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(a__ ): step_model(a__ , a__ , a__ , a__ ) else: # Sync grads step_model(a__ , a__ , a__ , a__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) _UpperCamelCase = ddp_input[torch.randperm(len(a__ ) )] def lowerCAmelCase__ ( a__=False , a__=False ) ->List[Any]: '''simple docstring''' _UpperCamelCase = Accelerator( split_batches=a__ , dispatch_batches=a__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = get_training_setup(a__ ) for iteration, batch in enumerate(a__ ): _UpperCamelCase , _UpperCamelCase = batch.values() # Gather the distributed inputs and targs for the base model _UpperCamelCase , _UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) _UpperCamelCase , _UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a__ , a__ , a__ , a__ , a__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(a__ ): step_model(a__ , a__ , a__ , a__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(a__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) _UpperCamelCase = ddp_input[torch.randperm(len(a__ ) )] GradientState._reset_state() def lowerCAmelCase__ ( a__=False , a__=False ) ->Dict: '''simple docstring''' _UpperCamelCase = Accelerator( split_batches=a__ , dispatch_batches=a__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = get_training_setup(a__ , a__ ) for iteration, batch in enumerate(a__ ): _UpperCamelCase , _UpperCamelCase = batch.values() # Gather the distributed inputs and targs for the base model _UpperCamelCase , _UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) _UpperCamelCase , _UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(a__ , a__ , a__ , a__ , a__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(a__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(a__ ): step_model(a__ , a__ , a__ , a__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' _UpperCamelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(a__ )) if accelerator.num_processes > 1: check_model_parameters(a__ , a__ , a__ , a__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def lowerCAmelCase__ ( ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase = Accelerator() _UpperCamelCase = RegressionDataset(length=80 ) _UpperCamelCase = DataLoader(a__ , batch_size=16 ) _UpperCamelCase = RegressionDataset(length=96 ) _UpperCamelCase = DataLoader(a__ , batch_size=16 ) _UpperCamelCase , _UpperCamelCase = accelerator.prepare(a__ , a__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(a__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(a__ ) if iteration < len(a__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(a__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(a__ ) if batch_num < len(a__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase__ ( ) ->int: '''simple docstring''' _UpperCamelCase = Accelerator() _UpperCamelCase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(a__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(a__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation(a__ , a__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation_with_opt_and_scheduler(a__ , a__ ) def lowerCAmelCase__ ( a__ ) ->Tuple: '''simple docstring''' main() if __name__ == "__main__": main()
63
1
'''simple docstring''' # flake8: noqa # Lint as: python3 __a = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
145
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Tuple = 3 _UpperCAmelCase : Any = (3_2, 3_2) _UpperCAmelCase : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=lowerCAmelCase__ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : int = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) return CLIPTextModel(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Any = self.dummy_cond_unet_upscale _UpperCAmelCase : Union[str, Any] = DDPMScheduler() _UpperCAmelCase : str = DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : List[Any] = self.dummy_text_encoder _UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : Optional[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : int = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=3_5_0 , ) _UpperCAmelCase : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : str = "A painting of a squirrel eating a burger" _UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Optional[int] = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Dict = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , return_dict=lowerCAmelCase__ , )[0] _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _UpperCAmelCase : Optional[Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" _UpperCAmelCase : Any = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Optional[Any] = self.dummy_cond_unet_upscale _UpperCAmelCase : Tuple = DDPMScheduler() _UpperCAmelCase : Dict = DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase : str = self.dummy_vae _UpperCAmelCase : Optional[Any] = self.dummy_text_encoder _UpperCAmelCase : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : Dict = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : List[str] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : List[Any] = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=3_5_0 , ) _UpperCAmelCase : Any = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : int = output.images assert image.shape[0] == 2 _UpperCAmelCase : Tuple = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : Any = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" _UpperCAmelCase : Any = self.dummy_cond_unet_upscale _UpperCAmelCase : Any = DDPMScheduler() _UpperCAmelCase : Optional[int] = DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : List[Any] = self.dummy_text_encoder _UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : Dict = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : Optional[int] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 _UpperCAmelCase : Tuple = unet.half() _UpperCAmelCase : Dict = text_encoder.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : List[Any] = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=3_5_0 , ) _UpperCAmelCase : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Dict = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , ).images _UpperCAmelCase : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _UpperCAmelCase : Tuple = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : str = StableDiffusionUpscalePipeline.from_pretrained(lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() _UpperCAmelCase : Union[str, Any] = "a cat sitting on a park bench" _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="np" , ) _UpperCAmelCase : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _UpperCAmelCase : Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained( lowerCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() _UpperCAmelCase : Dict = "a cat sitting on a park bench" _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="np" , ) _UpperCAmelCase : str = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase : int = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : Any = StableDiffusionUpscalePipeline.from_pretrained( lowerCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase : Tuple = "a cat sitting on a park bench" _UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , output_type="np" , ) _UpperCAmelCase : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
145
1
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "new-model" if is_tf_available(): class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = NewModelConfig @require_tf class _A ( unittest.TestCase ): @slow def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = """bert-base-cased""" __UpperCAmelCase : Any = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = """bert-base-cased""" __UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = TFAutoModelForPreTraining.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Tuple: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[int] = TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : Tuple = TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : str = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Dict = TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : Any = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Dict: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCAmelCase : Any = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Tuple = TFAutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Any = TFAutoModelForQuestionAnswering.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_tensorflow_probability def __A ( self ) -> int: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 14_410 ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 14_410 ) def __A ( self ) -> Optional[Any]: '''simple docstring''' # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = copy.deepcopy(model.config ) __UpperCAmelCase : Dict = ["""FunnelBaseModel"""] __UpperCAmelCase : Tuple = TFAutoModel.from_config(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = TFAutoModel.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' try: AutoConfig.register("""new-model""" , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__UpperCAmelCase ): auto_class.register(__UpperCAmelCase , __UpperCAmelCase ) auto_class.register(__UpperCAmelCase , __UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): auto_class.register(__UpperCAmelCase , __UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase : Tuple = BertModelTester(self ).get_config() __UpperCAmelCase : Optional[Any] = NewModelConfig(**tiny_config.to_dict() ) __UpperCAmelCase : str = auto_class.from_config(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Dict = auto_class.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __A ( self ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): __UpperCAmelCase : Union[str, Any] = TFAutoModel.from_pretrained("""bert-base""" ) def __A ( self ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __UpperCAmelCase : List[str] = TFAutoModel.from_pretrained(__UpperCAmelCase , revision="""aaaaaa""" ) def __A ( self ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): __UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def __A ( self ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex(__UpperCAmelCase , """Use `from_pt=True` to load this model""" ): __UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' # Make sure we have cached the model. __UpperCAmelCase : Tuple = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: __UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __UpperCAmelCase : List[str] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: __UpperCAmelCase : List[str] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
16
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column __UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCAmelCase : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) __UpperCAmelCase : Optional[int] = f'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier __UpperCAmelCase : Any = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ) -> str: '''simple docstring''' return str(self ) def __A ( self , __UpperCAmelCase ) -> bool: '''simple docstring''' if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = value def __add__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add __UpperCAmelCase : Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : Dict = -self[r, c] return result def __sub__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication __UpperCAmelCase : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row __UpperCAmelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def __A ( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[str] = self[r, c] return result def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCAmelCase : Optional[Any] = v.transpose() __UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCAmelCase : Tuple = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCAmelCase : Dict = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3 __UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() testa()
16
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = """marian""" _SCREAMING_SNAKE_CASE = ["""past_key_values"""] _SCREAMING_SNAKE_CASE = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , UpperCamelCase__ : Optional[Any]=5_8_1_0_1 , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Any=1_0_2_4 , UpperCamelCase__ : List[str]=1_2 , UpperCamelCase__ : Dict=4_0_9_6 , UpperCamelCase__ : Tuple=1_6 , UpperCamelCase__ : Any=1_2 , UpperCamelCase__ : List[str]=4_0_9_6 , UpperCamelCase__ : int=1_6 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : List[Any]=1_0_2_4 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : List[str]=0.0_2 , UpperCamelCase__ : List[str]=5_8_1_0_0 , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Optional[int]=5_8_1_0_0 , UpperCamelCase__ : Union[str, Any]=0 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : int=True , **UpperCamelCase__ : Optional[Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = decoder_vocab_size or vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = encoder_layers UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A ( self : List[str] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: UpperCamelCase = {0: 'batch'} UpperCamelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'} UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: UpperCamelCase , UpperCamelCase = self.num_layers for i in range(UpperCamelCase__ ): UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} else: UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A ( self : Dict ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = super().outputs else: UpperCamelCase = super(UpperCamelCase__ , self ).outputs if self.use_past: UpperCamelCase , UpperCamelCase = self.num_layers for i in range(UpperCamelCase__ ): UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def A ( self : List[str] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): """simple docstring""" UpperCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs UpperCamelCase = seq_length if not self.use_past else 1 UpperCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCamelCase = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs['input_ids'].shape UpperCamelCase = common_inputs['decoder_input_ids'].shape[1] UpperCamelCase , UpperCamelCase = self.num_attention_heads UpperCamelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase = decoder_seq_length + 3 UpperCamelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) UpperCamelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase , UpperCamelCase = self.num_layers UpperCamelCase = min(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers UpperCamelCase = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. UpperCamelCase = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def A ( self : Tuple , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): """simple docstring""" UpperCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase = seqlen + 2 UpperCamelCase , UpperCamelCase = self.num_layers UpperCamelCase , UpperCamelCase = self.num_attention_heads UpperCamelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase = common_inputs['attention_mask'].dtype UpperCamelCase = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) UpperCamelCase = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def A ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): """simple docstring""" UpperCamelCase = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) UpperCamelCase = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def A ( self : Dict , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: UpperCamelCase = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def A ( self : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: UpperCamelCase = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @property def A ( self : Dict ): """simple docstring""" return 1E-4
28
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCamelCase : Optional[int] = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _lowerCamelCase : Union[str, Any] = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _lowerCamelCase : Dict = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _lowerCamelCase : Dict = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _lowerCamelCase : Optional[Any] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _lowerCamelCase : List[Any] = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _lowerCamelCase : List[str] = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = randrange(len(A__ ) ), randrange(len(A__ ) ) UpperCamelCase = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowerCamelCase ( A__ = 100 ) -> Optional[Any]: """simple docstring""" return (generate_random_hand() for _ in range(A__ )) @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" assert PokerHand(A__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" assert PokerHand(A__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , A__ ) def __lowerCamelCase ( A__ , A__ , A__ ) -> str: """simple docstring""" UpperCamelCase = PokerHand(A__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Dict: """simple docstring""" assert PokerHand(A__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> str: """simple docstring""" assert PokerHand(A__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , A__ ) def __lowerCamelCase ( A__ , A__ , A__ ) -> Tuple: """simple docstring""" assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowerCamelCase ( A__ , A__ , A__ ) -> List[str]: """simple docstring""" assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected def __lowerCamelCase ( ) -> str: """simple docstring""" UpperCamelCase = [PokerHand(A__ ) for hand in SORTED_HANDS] UpperCamelCase = poker_hands.copy() shuffle(A__ ) UpperCamelCase = chain(sorted(A__ ) ) for index, hand in enumerate(A__ ): assert hand == poker_hands[index] def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" # Test that five high straights are compared correctly. UpperCamelCase = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=A__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowerCamelCase ( ) -> str: """simple docstring""" # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCamelCase = PokerHand('2C 4S AS 3D 5C' ) UpperCamelCase = True UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowerCamelCase ( ) -> List[str]: """simple docstring""" # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCamelCase = 0 UpperCamelCase = os.path.abspath(os.path.dirname(A__ ) ) UpperCamelCase = os.path.join(A__ , 'poker_hands.txt' ) with open(A__ ) as file_hand: for line in file_hand: UpperCamelCase = line[:14].strip() UpperCamelCase = line[15:].strip() UpperCamelCase , UpperCamelCase = PokerHand(A__ ), PokerHand(A__ ) UpperCamelCase = player.compare_with(A__ ) if output == "Win": answer += 1 assert answer == 376
28
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __SCREAMING_SNAKE_CASE ( _a ): snake_case_ = 'vivit' def __init__( self : Any , snake_case : List[Any]=224 , snake_case : int=32 , snake_case : str=[2, 16, 16] , snake_case : List[Any]=3 , snake_case : List[str]=768 , snake_case : List[str]=12 , snake_case : str=12 , snake_case : Optional[int]=3072 , snake_case : int="gelu_fast" , snake_case : Optional[Any]=0.0 , snake_case : Any=0.0 , snake_case : List[Any]=0.02 , snake_case : Tuple=1e-06 , snake_case : Tuple=True , **snake_case : List[str] , ): '''simple docstring''' A__ : Tuple = hidden_size A__ : List[str] = num_hidden_layers A__ : List[str] = num_attention_heads A__ : Union[str, Any] = intermediate_size A__ : Optional[Any] = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[Any] = initializer_range A__ : Dict = layer_norm_eps A__ : Union[str, Any] = image_size A__ : Optional[int] = num_frames A__ : str = tubelet_size A__ : int = num_channels A__ : Dict = qkv_bias super().__init__(**_a )
370
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple=False ) ->str: A__ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=False ) ->str: for i in range(config.num_hidden_layers ): if base_model: A__ : Any = """""" else: A__ : Tuple = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[Any] = in_proj_weight[ : config.hidden_size, : ] A__ : str = in_proj_bias[: config.hidden_size] A__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] A__ : Any = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any] ) ->Any: A__ : int = dct.pop(UpperCAmelCase__ ) A__ : Tuple = val def _lowerCAmelCase ( ) ->List[Any]: A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any ) ->Tuple: A__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads A__ : Tuple = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A__ : str = 1_0_0_0 A__ : List[str] = """huggingface/label-files""" A__ : Dict = """imagenet-1k-id2label.json""" A__ : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A__ : Dict = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Optional[int] = idalabel A__ : Dict = {v: k for k, v in idalabel.items()} A__ : List[str] = int(deit_name[-6:-4] ) A__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): A__ : List[str] = 1_9_2 A__ : int = 7_6_8 A__ : List[Any] = 1_2 A__ : Dict = 3 elif deit_name[9:].startswith("""small""" ): A__ : List[Any] = 3_8_4 A__ : List[str] = 1_5_3_6 A__ : Any = 1_2 A__ : Union[str, Any] = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): A__ : int = 1_0_2_4 A__ : str = 4_0_9_6 A__ : Any = 2_4 A__ : int = 1_6 # load original model from timm A__ : Dict = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ : Tuple = timm_model.state_dict() A__ : str = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : str = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval() model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor A__ : int = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A__ : Any = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size ) A__ : Union[str, Any] = image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Optional[Any] = encoding["""pixel_values"""] A__ : Union[str, Any] = model(UpperCAmelCase__ ) A__ : Union[str, Any] = timm_model(UpperCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
296
0
from __future__ import annotations _lowercase: Tuple = list[list[int]] # assigning initial values to the grid _lowercase: Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution _lowercase: Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a( A : Matrix , A : int , A : int , A : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a( A : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a( A : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(A ): a , a = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(A , A , A , A ): a = digit if sudoku(A ) is not None: return grid a = 0 return None def a( A : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(A , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") _lowercase: List[str] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
227
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase: Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class _lowercase ( lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = XLMProphetNetTokenizer __A = False __A = True def UpperCamelCase_ (self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a = XLMProphetNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ (self ): """simple docstring""" a = "[PAD]" a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCamelCase_ ) , 1012 ) def UpperCamelCase_ (self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def UpperCamelCase_ (self ): """simple docstring""" a = XLMProphetNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) a = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def UpperCamelCase_ (self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = "Hello World!" a = [35389, 6672, 49, 2] self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
227
1
'''simple docstring''' from collections.abc import Callable def lowerCamelCase (_SCREAMING_SNAKE_CASE : Callable[[float], float] , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ): __a : float = a __a : float = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: __a : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: __a : Any = mid else: __a : Dict = mid __a : Optional[Any] = start + (end - start) / 2.0 return mid def lowerCamelCase (_SCREAMING_SNAKE_CASE : float ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Tuple = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __lowercase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
294
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase_ : List[Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } lowerCAmelCase_ : str = {'facebook/blenderbot_small-90M': 5_12} def _lowerCamelCase ( lowercase : List[Any] ) -> List[str]: _a = set() _a = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _a = char _a = set(lowercase ) return pairs class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a =['input_ids', 'attention_mask'] def __init__( self : List[Any] , __a : List[Any] , __a : List[Any] , __a : Optional[int]="__start__" , __a : Union[str, Any]="__end__" , __a : Any="__unk__" , __a : Union[str, Any]="__null__" , **__a : Tuple , ): super().__init__(unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , **__a ) with open(__a , encoding="utf-8" ) as vocab_handle: _a = json.load(__a ) _a = {v: k for k, v in self.encoder.items()} with open(__a , encoding="utf-8" ) as merges_handle: _a = merges_handle.read().split("\n" )[1:-1] _a = [tuple(merge.split() ) for merge in merges] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = {} @property def UpperCamelCase__ ( self : Any ): return len(self.encoder ) def UpperCamelCase__ ( self : Dict ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self : Tuple , __a : str ): if token in self.cache: return self.cache[token] _a = re.sub("([.,!?()])" , r" \1" , __a ) _a = re.sub("(')" , r" \1 " , __a ) _a = re.sub(r"\s{2,}" , " " , __a ) if "\n" in token: _a = token.replace("\n" , " __newln__" ) _a = token.split(" " ) _a = [] for token in tokens: if not len(__a ): continue _a = token.lower() _a = tuple(__a ) _a = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) _a = get_pairs(__a ) if not pairs: words.append(__a ) continue while True: _a = min(__a , key=lambda __a : self.bpe_ranks.get(__a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _a , _a = bigram _a = [] _a = 0 while i < len(__a ): try: _a = word.index(__a , __a ) new_word.extend(word[i:j] ) _a = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _a = tuple(__a ) _a = new_word if len(__a ) == 1: break else: _a = get_pairs(__a ) _a = "@@ ".join(__a ) _a = word[:-4] _a = word words.append(__a ) return " ".join(__a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : str ): _a = [] _a = re.findall(r"\S+\n?" , __a ) for token in words: split_tokens.extend(list(self.bpe(__a ).split(" " ) ) ) return split_tokens def UpperCamelCase__ ( self : Optional[int] , __a : str ): _a = token.lower() return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self : Optional[int] , __a : int ): return self.decoder.get(__a , self.unk_token ) def UpperCamelCase__ ( self : Tuple , __a : List[str] ): _a = " ".join(__a ).replace("@@ " , "" ).strip() return out_string def UpperCamelCase__ ( self : Optional[int] , __a : str , __a : Optional[str] = None ): if not os.path.isdir(__a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + "\n" ) _a = 0 with open(__a , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) _a = token_index writer.write(" ".join(__a ) + "\n" ) index += 1 return vocab_file, merge_file
63
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Dict ) -> Any: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : int = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any ) -> Any: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Optional[int] ) -> Union[str, Any]: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] , __a : str , __a : List[Any] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Optional[int] , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Tuple=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : int , __a : List[Any] , __a : Union[str, Any] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Union[str, Any] , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : int ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
63
1
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) def snake_case ( A__ ,A__ ,A__ ,A__ ): def constraint_to_multiple_of(A__ ,A__ ,A__=0 ,A__=None ): UpperCAmelCase_ : Tuple = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCAmelCase_ : Optional[Any] = math.floor(val / multiple ) * multiple if x < min_val: UpperCAmelCase_ : List[Any] = math.ceil(val / multiple ) * multiple return x UpperCAmelCase_ : int = (output_size, output_size) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else output_size UpperCAmelCase_ : Dict = get_image_size(lowerCAmelCase__ ) UpperCAmelCase_ : Any = output_size # determine new height and width UpperCAmelCase_ : Tuple = output_height / input_height UpperCAmelCase_ : Optional[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCAmelCase_ : Optional[Any] = scale_width else: # fit height UpperCAmelCase_ : str = scale_height UpperCAmelCase_ : Optional[Any] = constraint_to_multiple_of(scale_height * input_height ,multiple=lowerCAmelCase__ ) UpperCAmelCase_ : List[str] = constraint_to_multiple_of(scale_width * input_width ,multiple=lowerCAmelCase__ ) return (new_height, new_width) class UpperCamelCase_ (__SCREAMING_SNAKE_CASE ): __magic_name__ = ["pixel_values"] def __init__( self : int , lowerCAmelCase_ : str = True , lowerCAmelCase_ : Union[str, Any] = None , lowerCAmelCase_ : Dict = PILImageResampling.BILINEAR , lowerCAmelCase_ : List[Any] = False , lowerCAmelCase_ : str = 1 , lowerCAmelCase_ : Union[str, Any] = True , lowerCAmelCase_ : Optional[int] = 1 / 255 , lowerCAmelCase_ : Union[str, Any] = True , lowerCAmelCase_ : Union[str, Any] = None , lowerCAmelCase_ : Tuple = None , **lowerCAmelCase_ : str , ) -> None: super().__init__(**__UpperCAmelCase ) UpperCAmelCase_ : List[str] = size if size is not None else {"""height""": 384, """width""": 384} UpperCAmelCase_ : Tuple = get_size_dict(__UpperCAmelCase ) UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : List[str] = size UpperCAmelCase_ : List[str] = keep_aspect_ratio UpperCAmelCase_ : Dict = ensure_multiple_of UpperCAmelCase_ : Any = resample UpperCAmelCase_ : Any = do_rescale UpperCAmelCase_ : str = rescale_factor UpperCAmelCase_ : Any = do_normalize UpperCAmelCase_ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any = False , lowerCAmelCase_ : Optional[Any] = 1 , lowerCAmelCase_ : List[Any] = PILImageResampling.BICUBIC , lowerCAmelCase_ : Dict = None , **lowerCAmelCase_ : str , ) -> np.ndarray: UpperCAmelCase_ : Optional[int] = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}""" ) UpperCAmelCase_ : List[Any] = get_resize_output_image_size( __UpperCAmelCase , output_size=(size["height"], size["width"]) , keep_aspect_ratio=__UpperCAmelCase , multiple=__UpperCAmelCase , ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] = None , **lowerCAmelCase_ : Tuple , ) -> List[str]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Dict = None , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : List[str] = None , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : List[str] = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : Optional[Any] = ChannelDimension.FIRST , **lowerCAmelCase_ : Tuple , ) -> PIL.Image.Image: UpperCAmelCase_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : str = size if size is not None else self.size UpperCAmelCase_ : Any = get_size_dict(__UpperCAmelCase ) UpperCAmelCase_ : str = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCAmelCase_ : List[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCAmelCase_ : int = resample if resample is not None else self.resample UpperCAmelCase_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Dict = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Dict = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ : Optional[Any] = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ : Optional[int] = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ : Any = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ : Tuple = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] UpperCAmelCase_ : List[str] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] UpperCAmelCase_ : List[str] = {"""pixel_values""": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] = None ) -> List[str]: UpperCAmelCase_ : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(__UpperCAmelCase ): UpperCAmelCase_ : Any = target_sizes.numpy() UpperCAmelCase_ : Optional[Any] = [] for idx in range(len(__UpperCAmelCase ) ): UpperCAmelCase_ : str = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__UpperCAmelCase ) UpperCAmelCase_ : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__UpperCAmelCase ) else: UpperCAmelCase_ : Dict = logits.argmax(dim=1 ) UpperCAmelCase_ : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
366
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class UpperCamelCase_ : def __init__( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : MutableSequence[float] ) -> None: if len(lowerCAmelCase_ ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) UpperCAmelCase_ : list[float] = list(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = degree def __add__( self : int , lowerCAmelCase_ : Polynomial ) -> Polynomial: if self.degree > polynomial_a.degree: UpperCAmelCase_ : List[str] = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCAmelCase_ ) else: UpperCAmelCase_ : Optional[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCAmelCase_ ) def __sub__( self : Union[str, Any] , lowerCAmelCase_ : Polynomial ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : List[str] ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Optional[Any] , lowerCAmelCase_ : Polynomial ) -> Polynomial: UpperCAmelCase_ : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int | float ) -> int | float: UpperCAmelCase_ : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Tuple ) -> str: UpperCAmelCase_ : str = "" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase_ ) return polynomial def __repr__( self : Union[str, Any] ) -> str: return self.__str__() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Polynomial: UpperCAmelCase_ : list[float] = [0] * self.degree for i in range(self.degree ): UpperCAmelCase_ : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int | float = 0 ) -> Polynomial: UpperCAmelCase_ : list[float] = [0] * (self.degree + 2) UpperCAmelCase_ : List[Any] = constant for i in range(self.degree + 1 ): UpperCAmelCase_ : Union[str, Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCAmelCase_ ) def __eq__( self : Union[str, Any] , lowerCAmelCase_ : object ) -> bool: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple , lowerCAmelCase_ : object ) -> bool: return not self.__eq__(lowerCAmelCase_ )
253
0
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "new-model" if is_tf_available(): class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = NewModelConfig @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Optional[Any] = '''bert-base-cased''' lowercase__ : Optional[int] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" lowercase__ : str = '''bert-base-cased''' lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForPreTraining.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : int = TFAutoModelWithLMHead.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : int = TFAutoModelForMaskedLM.from_pretrained(_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[str] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow @require_tensorflow_probability def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(_snake_case ) lowercase__ , lowercase__ : Union[str, Any] = TFAutoModelForTableQuestionAnswering.from_pretrained( _snake_case ,output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Dict = TFAutoModelWithLMHead.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ : Dict = TFAutoModelWithLMHead.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" lowercase__ : str = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Tuple = copy.deepcopy(model.config ) lowercase__ : Dict = ['''FunnelBaseModel'''] lowercase__ : List[Any] = TFAutoModel.from_config(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case ) lowercase__ : Optional[Any] = TFAutoModel.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" try: AutoConfig.register('''new-model''' ,_snake_case ) lowercase__ : int = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_snake_case ): auto_class.register(_snake_case ,_snake_case ) auto_class.register(_snake_case ,_snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_snake_case ): auto_class.register(_snake_case ,_snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase__ : List[Any] = BertModelTester(self ).get_config() lowercase__ : Optional[Any] = NewModelConfig(**tiny_config.to_dict() ) lowercase__ : Union[str, Any] = auto_class.from_config(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case ) lowercase__ : Dict = auto_class.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def UpperCAmelCase ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( _snake_case ,'''bert-base is not a local folder and is not a valid model identifier''' ): lowercase__ : Any = TFAutoModel.from_pretrained('''bert-base''' ) def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" with self.assertRaisesRegex( _snake_case ,r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase__ : int = TFAutoModel.from_pretrained(_snake_case ,revision='''aaaaaa''' ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( _snake_case ,'''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' ,): lowercase__ : Tuple = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex(_snake_case ,'''Use `from_pt=True` to load this model''' ): lowercase__ : str = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" lowercase__ : str = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowercase__ : Any = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 ) # With a sharded checkpoint lowercase__ : Dict = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: lowercase__ : Dict = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
16
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : str = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[str] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = 10_00 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : Dict = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Any = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": lowercase__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": lowercase__ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : List[Any] = [2, 2, 20] lowercase__ : Any = [3, 12, 16] lowercase__ : Tuple = [1_92, 7_68, 10_24] lowercase__ : List[Any] = CvtForImageClassification(__lowerCamelCase ) lowercase__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) lowercase__ : List[str] = image_size lowercase__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device('''cpu''' ) ) lowercase__ : int = OrderedDict() lowercase__ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Any = list_of_state_dict + cls_token(__lowerCamelCase ) lowercase__ : Any = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): lowercase__ : Tuple = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): lowercase__ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
1
from __future__ import annotations import math from collections.abc import Callable def _UpperCAmelCase (UpperCamelCase_ : Callable[[int | float], int | float] , UpperCamelCase_ : int | float , UpperCamelCase_ : int | float , UpperCamelCase_ : int = 100 , ): '''simple docstring''' _lowerCAmelCase : Dict = x_start _lowerCAmelCase : Any = fnc(__lowerCAmelCase ) _lowerCAmelCase : Tuple = 0.0 for _ in range(__lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length _lowerCAmelCase : Any = (x_end - x_start) / steps + xa _lowerCAmelCase : int = fnc(__lowerCAmelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step _lowerCAmelCase : Optional[int] = xa _lowerCAmelCase : str = fxa return length if __name__ == "__main__": def _UpperCAmelCase (UpperCamelCase_ : Optional[Any] ): '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") _lowerCamelCase : Any = 1_0 while i <= 1_0_0_0_0_0: print(F'''With {i} steps: {line_length(f, -1_0, 1_0, i)}''') i *= 1_0
353
def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : str ): '''simple docstring''' _lowerCAmelCase : str = len(UpperCamelCase_ ) + 1 _lowerCAmelCase : List[Any] = len(UpperCamelCase_ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _lowerCAmelCase : List[Any] = [[0 for i in range(UpperCamelCase_ )] for j in range(UpperCamelCase_ )] # since string of zero length match pattern of zero length _lowerCAmelCase : Optional[int] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , UpperCamelCase_ ): _lowerCAmelCase : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , UpperCamelCase_ ): _lowerCAmelCase : Tuple = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , UpperCamelCase_ ): for j in range(1 , UpperCamelCase_ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _lowerCAmelCase : Dict = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _lowerCAmelCase : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _lowerCAmelCase : int = dp[i - 1][j] else: _lowerCAmelCase : List[str] = 0 else: _lowerCAmelCase : List[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _lowerCamelCase : Any = "aab" _lowerCamelCase : List[str] = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
159
0
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __a = get_logger(__name__) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Any , snake_case_ : Optional[str] = None ): snake_case__ : List[Any] = ( os.path.join(snake_case_ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case__ : Any = Extractor def lowerCamelCase ( self : Optional[Any] , snake_case_ : str ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case__ : str = os.path.abspath(snake_case_ ) return os.path.join(self.extract_dir , hash_url_to_filename(snake_case_ ) ) def lowerCamelCase ( self : Optional[Any] , snake_case_ : str , snake_case_ : bool ): return force_extract or ( not os.path.isfile(snake_case_ ) and not (os.path.isdir(snake_case_ ) and os.listdir(snake_case_ )) ) def lowerCamelCase ( self : str , snake_case_ : str , snake_case_ : bool = False ): snake_case__ : Dict = self.extractor.infer_extractor_format(snake_case_ ) if not extractor_format: return input_path snake_case__ : List[Any] = self._get_output_path(snake_case_ ) if self._do_extract(snake_case_ , snake_case_ ): self.extractor.extract(snake_case_ , snake_case_ , snake_case_ ) return output_path class UpperCAmelCase_ ( _a ): """simple docstring""" @classmethod @abstractmethod def lowerCamelCase ( cls : Optional[int] , snake_case_ : Union[Path, str] , **snake_case_ : Tuple ): ... @staticmethod @abstractmethod def lowerCamelCase ( snake_case_ : Union[Path, str] , snake_case_ : Union[Path, str] ): ... class UpperCAmelCase_ ( _a , _a ): """simple docstring""" lowercase = [] @staticmethod def lowerCamelCase ( snake_case_ : Union[Path, str] , snake_case_ : int ): with open(snake_case_ , """rb""" ) as f: return f.read(snake_case_ ) @classmethod def lowerCamelCase ( cls : Any , snake_case_ : Union[Path, str] , snake_case_ : bytes = b"" ): if not magic_number: snake_case__ : Optional[Any] = max(len(snake_case_ ) for cls_magic_number in cls.magic_numbers ) try: snake_case__ : List[str] = cls.read_magic_number(snake_case_ , snake_case_ ) except OSError: return False return any(magic_number.startswith(snake_case_ ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase_ ( _a ): """simple docstring""" @classmethod def lowerCamelCase ( cls : Union[str, Any] , snake_case_ : Union[Path, str] , **snake_case_ : Union[str, Any] ): return tarfile.is_tarfile(snake_case_ ) @staticmethod def lowerCamelCase ( snake_case_ : List[str] , snake_case_ : Optional[Any] ): def resolved(snake_case_ : str ) -> str: return os.path.realpath(os.path.abspath(snake_case_ ) ) def badpath(snake_case_ : str , snake_case_ : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(snake_case_ , snake_case_ ) ).startswith(snake_case_ ) def badlink(snake_case_ : str , snake_case_ : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case__ : List[Any] = resolved(os.path.join(snake_case_ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=snake_case_ ) snake_case__ : Optional[int] = resolved(snake_case_ ) for finfo in members: if badpath(finfo.name , snake_case_ ): logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" ) elif finfo.issym() and badlink(snake_case_ , snake_case_ ): logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" ) elif finfo.islnk() and badlink(snake_case_ , snake_case_ ): logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" ) else: yield finfo @staticmethod def lowerCamelCase ( snake_case_ : Union[Path, str] , snake_case_ : Union[Path, str] ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) snake_case__ : List[Any] = tarfile.open(snake_case_ ) tar_file.extractall(snake_case_ , members=TarExtractor.safemembers(snake_case_ , snake_case_ ) ) tar_file.close() class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = [b"\x1F\x8B"] @staticmethod def lowerCamelCase ( snake_case_ : Union[Path, str] , snake_case_ : Union[Path, str] ): with gzip.open(snake_case_ , """rb""" ) as gzip_file: with open(snake_case_ , """wb""" ) as extracted_file: shutil.copyfileobj(snake_case_ , snake_case_ ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def lowerCamelCase ( cls : int , snake_case_ : Union[Path, str] , snake_case_ : bytes = b"" ): if super().is_extractable(snake_case_ , magic_number=snake_case_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(snake_case_ , """rb""" ) as fp: snake_case__ : Any = _EndRecData(snake_case_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case__ : List[str] = fp.read(snake_case_ ) # CD is where we expect it to be if len(snake_case_ ) == sizeCentralDir: snake_case__ : Dict = struct.unpack(snake_case_ , snake_case_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCamelCase ( snake_case_ : Union[Path, str] , snake_case_ : Union[Path, str] ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) with zipfile.ZipFile(snake_case_ , """r""" ) as zip_file: zip_file.extractall(snake_case_ ) zip_file.close() class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def lowerCamelCase ( snake_case_ : Union[Path, str] , snake_case_ : Union[Path, str] ): with lzma.open(snake_case_ ) as compressed_file: with open(snake_case_ , """wb""" ) as extracted_file: shutil.copyfileobj(snake_case_ , snake_case_ ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def lowerCamelCase ( snake_case_ : Union[Path, str] , snake_case_ : Union[Path, str] ): if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(snake_case_ , exist_ok=snake_case_ ) snake_case__ : Tuple = rarfile.RarFile(snake_case_ ) rf.extractall(snake_case_ ) rf.close() class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = [b"\x28\xb5\x2F\xFD"] @staticmethod def lowerCamelCase ( snake_case_ : Union[Path, str] , snake_case_ : Union[Path, str] ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd snake_case__ : Dict = zstd.ZstdDecompressor() with open(snake_case_ , """rb""" ) as ifh, open(snake_case_ , """wb""" ) as ofh: dctx.copy_stream(snake_case_ , snake_case_ ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = [b"\x42\x5A\x68"] @staticmethod def lowerCamelCase ( snake_case_ : Union[Path, str] , snake_case_ : Union[Path, str] ): with bza.open(snake_case_ , """rb""" ) as compressed_file: with open(snake_case_ , """wb""" ) as extracted_file: shutil.copyfileobj(snake_case_ , snake_case_ ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def lowerCamelCase ( snake_case_ : Union[Path, str] , snake_case_ : Union[Path, str] ): if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(snake_case_ , exist_ok=snake_case_ ) with pyazr.SevenZipFile(snake_case_ , """r""" ) as archive: archive.extractall(snake_case_ ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = [b"\x04\x22\x4D\x18"] @staticmethod def lowerCamelCase ( snake_case_ : Union[Path, str] , snake_case_ : Union[Path, str] ): if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(snake_case_ , """rb""" ) as compressed_file: with open(snake_case_ , """wb""" ) as extracted_file: shutil.copyfileobj(snake_case_ , snake_case_ ) class UpperCAmelCase_ : """simple docstring""" lowercase = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCamelCase ( cls : List[str] ): return max( len(snake_case_ ) for extractor in cls.extractors.values() if issubclass(snake_case_ , snake_case_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCamelCase ( snake_case_ : Union[Path, str] , snake_case_ : int ): try: return MagicNumberBaseExtractor.read_magic_number(snake_case_ , magic_number_length=snake_case_ ) except OSError: return b"" @classmethod def lowerCamelCase ( cls : int , snake_case_ : Union[Path, str] , snake_case_ : bool = False ): warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=snake_case_ , ) snake_case__ : str = cls.infer_extractor_format(snake_case_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCamelCase ( cls : Optional[int] , snake_case_ : Union[Path, str] ): # <Added version="2.4.0"/> snake_case__ : str = cls._get_magic_number_max_length() snake_case__ : Dict = cls._read_magic_number(snake_case_ , snake_case_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(snake_case_ , magic_number=snake_case_ ): return extractor_format @classmethod def lowerCamelCase ( cls : Any , snake_case_ : Union[Path, str] , snake_case_ : Union[Path, str] , snake_case_ : Optional[str] = None , snake_case_ : Optional[BaseExtractor] = "deprecated" , ): os.makedirs(os.path.dirname(snake_case_ ) , exist_ok=snake_case_ ) # Prevent parallel extractions snake_case__ : str = str(Path(snake_case_ ).with_suffix(""".lock""" ) ) with FileLock(snake_case_ ): shutil.rmtree(snake_case_ , ignore_errors=snake_case_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(snake_case_ , snake_case_ ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=snake_case_ , ) snake_case__ : int = extractor if extractor != """deprecated""" else extractor_format else: snake_case__ : str = cls.extractors[extractor_format] return extractor.extract(snake_case_ , snake_case_ ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=snake_case_ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(snake_case_ ): return extractor.extract(snake_case_ , snake_case_ )
35
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __lowercase ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> List[str]: '''simple docstring''' return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class UpperCamelCase__ : '''simple docstring''' __snake_case : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) __snake_case : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) __snake_case : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Use FP16 to accelerate inference."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Benchmark training of model"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Verbose memory tracing"} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Trace memory line by line"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Save result to a CSV file"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Save all print statements in a log file"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to print environment information"} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) __snake_case : str = field( default=F"inference_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv."} , ) __snake_case : str = field( default=F"inference_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv."} , ) __snake_case : str = field( default=F"train_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) __snake_case : str = field( default=F"train_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) __snake_case : str = field( default=F"env_info_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving environment information."} , ) __snake_case : str = field( default=F"log_{round(time() )}.csv" , metadata={"help": "Log filename used if print statements are saved in log."} , ) __snake_case : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" ,lowerCamelCase__ ,) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
296
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
1
from typing import Any def A__ ( SCREAMING_SNAKE_CASE__) -> Dict: if not input_list: return [] __snake_case: Optional[Any] = [input_list.count(UpperCamelCase__) for value in input_list] __snake_case: Dict = max(UpperCamelCase__) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(UpperCamelCase__) if value == y}) if __name__ == "__main__": import doctest doctest.testmod()
111
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : int ) -> List[str]: _a : Any = """laion/clap-htsat-unfused""" _a : Union[str, Any] = tempfile.mkdtemp() def _lowercase ( self : List[Any] , **UpperCAmelCase__ : Any ) -> Dict: return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase__ ) def _lowercase ( self : List[Any] , **UpperCAmelCase__ : List[str] ) -> int: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Tuple: shutil.rmtree(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Optional[int]: _a : List[str] = self.get_tokenizer() _a : Any = self.get_feature_extractor() _a : Optional[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) _a : List[str] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> Optional[int]: _a : Tuple = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _a : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _a : Union[str, Any] = self.get_feature_extractor(do_normalize=UpperCAmelCase__ , padding_value=1.0 ) _a : Union[str, Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase__ ) def _lowercase ( self : List[str] ) -> Optional[Any]: _a : Optional[int] = self.get_feature_extractor() _a : Tuple = self.get_tokenizer() _a : List[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Any = floats_list((3, 1000) ) _a : List[Any] = feature_extractor(UpperCAmelCase__ , return_tensors="""np""" ) _a : List[str] = processor(audios=UpperCAmelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase ( self : Tuple ) -> Optional[int]: _a : List[str] = self.get_feature_extractor() _a : Any = self.get_tokenizer() _a : Any = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Optional[int] = """This is a test string""" _a : Tuple = processor(text=UpperCAmelCase__ ) _a : int = tokenizer(UpperCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self : List[Any] ) -> Any: _a : str = self.get_feature_extractor() _a : List[str] = self.get_tokenizer() _a : List[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : Dict = processor.batch_decode(UpperCAmelCase__ ) _a : Any = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: _a : str = self.get_feature_extractor() _a : Optional[Any] = self.get_tokenizer() _a : Union[str, Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
294
0
import os import numpy import onnx def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = a.name SCREAMING_SNAKE_CASE = b.name SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = a == b SCREAMING_SNAKE_CASE = name_a SCREAMING_SNAKE_CASE = name_b return res def __lowerCamelCase (UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any ): for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any ): SCREAMING_SNAKE_CASE = list(model.graph.initializer ) SCREAMING_SNAKE_CASE = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i SCREAMING_SNAKE_CASE = inits[i].name SCREAMING_SNAKE_CASE = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = os.path.dirname(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = os.path.basename(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE = list(model.graph.initializer ) SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 for i in range(len(UpperCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase__ ) dup_set.add(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = inits[j].data_type SCREAMING_SNAKE_CASE = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print("unexpected data type: " , UpperCAmelCase__ ) total_reduced_size += mem_size SCREAMING_SNAKE_CASE = inits[i].name SCREAMING_SNAKE_CASE = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , "GB" ) SCREAMING_SNAKE_CASE = sorted(UpperCAmelCase__ ) _remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = "optimized_" + model_file_name SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) onnx.save(UpperCAmelCase__ , UpperCAmelCase__ ) return new_model
357
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def __lowerCamelCase (UpperCAmelCase__ : Dict ): SCREAMING_SNAKE_CASE = SwinConfig( embed_dim=1_9_2 , depths=(2, 2, 1_8, 2) , num_heads=(6, 1_2, 2_4, 4_8) , window_size=1_2 , out_features=["stage2", "stage3", "stage4"] , ) SCREAMING_SNAKE_CASE = DetaConfig( backbone_config=UpperCAmelCase__ , num_queries=9_0_0 , encoder_ffn_dim=2_0_4_8 , decoder_ffn_dim=2_0_4_8 , num_feature_levels=5 , assign_first_stage=UpperCAmelCase__ , with_box_refine=UpperCAmelCase__ , two_stage=UpperCAmelCase__ , ) # set labels SCREAMING_SNAKE_CASE = "huggingface/label-files" if "o365" in model_name: SCREAMING_SNAKE_CASE = 3_6_6 SCREAMING_SNAKE_CASE = "object365-id2label.json" else: SCREAMING_SNAKE_CASE = 9_1 SCREAMING_SNAKE_CASE = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__ , UpperCAmelCase__ , repo_type="dataset" ) ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def __lowerCamelCase (UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] ): SCREAMING_SNAKE_CASE = dct.pop(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = val def __lowerCamelCase (UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE = in_proj_bias[: dim] SCREAMING_SNAKE_CASE = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-dim :] # fmt: on def __lowerCamelCase (UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] ): # transformer decoder self-attention layers SCREAMING_SNAKE_CASE = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:hidden_size, :] SCREAMING_SNAKE_CASE = in_proj_bias[:hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ hidden_size : hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE = in_proj_weight[-hidden_size:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-hidden_size:] def __lowerCamelCase (): SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] ): SCREAMING_SNAKE_CASE = get_deta_config(UpperCAmelCase__ ) # load original state dict if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F"Model name {model_name} not supported" ) SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(UpperCAmelCase__ , param.shape ) # rename keys SCREAMING_SNAKE_CASE = create_rename_keys(UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) read_in_swin_q_k_v(UpperCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCAmelCase__ , UpperCAmelCase__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: SCREAMING_SNAKE_CASE = state_dict.pop(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = val if "input_proj" in key: SCREAMING_SNAKE_CASE = state_dict.pop(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: SCREAMING_SNAKE_CASE = state_dict.pop(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE = DetaForObjectDetection(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE = "cuda" if torch.cuda.is_available() else "cpu" model.to(UpperCAmelCase__ ) # load image processor SCREAMING_SNAKE_CASE = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = processor(images=UpperCAmelCase__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE = encoding["pixel_values"] SCREAMING_SNAKE_CASE = model(pixel_values.to(UpperCAmelCase__ ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(UpperCAmelCase__ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(UpperCAmelCase__ ) , atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F"jozhang97/{model_name}" ) processor.push_to_hub(F"jozhang97/{model_name}" ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : Any = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
206
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : List[str] = logging.get_logger(__name__) class _A ( __magic_name__ , __magic_name__): SCREAMING_SNAKE_CASE : Dict = '''maskformer-swin''' SCREAMING_SNAKE_CASE : Dict = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=96 , _SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE=[3, 6, 12, 24] , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = image_size SCREAMING_SNAKE_CASE_ : List[str] = patch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : List[Any] = embed_dim SCREAMING_SNAKE_CASE_ : Dict = depths SCREAMING_SNAKE_CASE_ : Dict = len(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = num_heads SCREAMING_SNAKE_CASE_ : List[Any] = window_size SCREAMING_SNAKE_CASE_ : List[Any] = mlp_ratio SCREAMING_SNAKE_CASE_ : Tuple = qkv_bias SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = drop_path_rate SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Dict = use_absolute_embeddings SCREAMING_SNAKE_CASE_ : int = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ : str = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE ) - 1) ) SCREAMING_SNAKE_CASE_ : List[str] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(_SCREAMING_SNAKE_CASE ) + 1 )] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
253
0
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[int] , _A : int , _A : Optional[Any]=None , _A : Union[str, Any]=None , _A : List[str]=None , _A : Optional[Any]="resnet50" , _A : Optional[int]=3 , _A : List[str]=32 , _A : Tuple=3 , _A : int=True , _A : Optional[Any]=True , ) -> Tuple: __magic_name__ : Dict = parent __magic_name__ : Dict = out_indices if out_indices is not None else [4] __magic_name__ : Any = stage_names __magic_name__ : Optional[int] = out_features __magic_name__ : int = backbone __magic_name__ : Union[str, Any] = batch_size __magic_name__ : Any = image_size __magic_name__ : List[str] = num_channels __magic_name__ : Optional[Any] = use_pretrained_backbone __magic_name__ : List[Any] = is_training def __lowerCAmelCase ( self : Tuple ) -> List[str]: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Dict = self.get_config() return config, pixel_values def __lowerCAmelCase ( self : int ) -> Optional[int]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[Any] , _A : List[str] ) -> Any: __magic_name__ : List[Any] = TimmBackbone(config=_A ) model.to(_A ) model.eval() with torch.no_grad(): __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ : Dict = self.prepare_config_and_inputs() __magic_name__ : Optional[int] = config_and_inputs __magic_name__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _lowerCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = (TimmBackbone,) if is_torch_available() else () A_ : Optional[Any] = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} A_ : Dict = False A_ : Union[str, Any] = False A_ : List[Any] = False A_ : Tuple = False def __lowerCAmelCase ( self : Optional[int] ) -> Dict: __magic_name__ : Optional[Any] = TimmBackboneModelTester(self ) __magic_name__ : str = ConfigTester(self , config_class=_A , has_text_modality=_A ) def __lowerCAmelCase ( self : str ) -> Tuple: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self : int ) -> List[Any]: __magic_name__ : Optional[Any] = 'resnet18' __magic_name__ : Optional[Any] = 'microsoft/resnet-18' __magic_name__ : Optional[int] = AutoBackbone.from_pretrained(_A , use_timm_backbone=_A ) __magic_name__ : Optional[Any] = AutoBackbone.from_pretrained(_A ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __magic_name__ : Optional[Any] = AutoBackbone.from_pretrained(_A , use_timm_backbone=_A , out_indices=[1, 2, 3] ) __magic_name__ : List[str] = AutoBackbone.from_pretrained(_A , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __lowerCAmelCase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __lowerCAmelCase ( self : int ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __lowerCAmelCase ( self : int ) -> Dict: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __lowerCAmelCase ( self : Dict ) -> Any: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __lowerCAmelCase ( self : int ) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __lowerCAmelCase ( self : Dict ) -> str: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: pass @unittest.skip('Safetensors is not supported by timm.' ) def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: pass def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple = model_class(_A ) __magic_name__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : int = [*signature.parameters.keys()] __magic_name__ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : List[str] = True __magic_name__ : List[str] = self.has_attentions # no need to test all models as different heads yield the same functionality __magic_name__ : Optional[Any] = self.all_model_classes[0] __magic_name__ : str = model_class(_A ) model.to(_A ) __magic_name__ : Dict = self._prepare_for_class(_A , _A ) __magic_name__ : List[Any] = model(**_A ) __magic_name__ : str = outputs[0][-1] # Encoder-/Decoder-only models __magic_name__ : Union[str, Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __magic_name__ : int = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_A ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : str = model_class(_A ) model.to(_A ) model.eval() __magic_name__ : str = model(**_A ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __magic_name__ : Optional[Any] = copy.deepcopy(_A ) __magic_name__ : Any = None __magic_name__ : Union[str, Any] = model_class(_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model(**_A ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __magic_name__ : Union[str, Any] = copy.deepcopy(_A ) __magic_name__ : Optional[Any] = False __magic_name__ : List[str] = model_class(_A ) model.to(_A ) model.eval() __magic_name__ : int = model(**_A )
352
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCAmelCase :str = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase :int = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any]=8 ): """simple docstring""" __magic_name__ : List[str] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __magic_name__ : str = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : MultilingualCLIP , _A : XLMRobertaTokenizer , _A : UNetaDConditionModel , _A : Union[DDIMScheduler, DDPMScheduler] , _A : VQModel , ) -> int: super().__init__() self.register_modules( text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , movq=_A , ) __magic_name__ : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : Optional[Any] , _A : Optional[int] , _A : Dict , _A : str , _A : List[str] ) -> str: if latents is None: __magic_name__ : Any = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __magic_name__ : int = latents.to(_A ) __magic_name__ : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : List[Any] , _A : List[str] , _A : List[str] , _A : List[str] , _A : List[Any] , _A : str=None , ) -> Dict: __magic_name__ : Optional[Any] = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings __magic_name__ : str = self.tokenizer( _A , padding='max_length' , truncation=_A , max_length=77 , return_attention_mask=_A , add_special_tokens=_A , return_tensors='pt' , ) __magic_name__ : Optional[Any] = text_inputs.input_ids __magic_name__ : Optional[Any] = self.tokenizer(_A , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_A , _A ): __magic_name__ : str = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __magic_name__ : Union[str, Any] = text_input_ids.to(_A ) __magic_name__ : Dict = text_inputs.attention_mask.to(_A ) __magic_name__ , __magic_name__ : str = self.text_encoder( input_ids=_A , attention_mask=_A ) __magic_name__ : Tuple = prompt_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : int = text_encoder_hidden_states.repeat_interleave(_A , dim=0 ) __magic_name__ : Union[str, Any] = text_mask.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: __magic_name__ : List[str] if negative_prompt is None: __magic_name__ : Optional[Any] = [''] * batch_size elif type(_A ) is not type(_A ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(_A )} !=' F' {type(_A )}.' ) elif isinstance(_A , _A ): __magic_name__ : int = [negative_prompt] elif batch_size != len(_A ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(_A )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: __magic_name__ : Dict = negative_prompt __magic_name__ : List[str] = self.tokenizer( _A , padding='max_length' , max_length=77 , truncation=_A , return_attention_mask=_A , add_special_tokens=_A , return_tensors='pt' , ) __magic_name__ : Optional[int] = uncond_input.input_ids.to(_A ) __magic_name__ : Optional[Any] = uncond_input.attention_mask.to(_A ) __magic_name__ , __magic_name__ : int = self.text_encoder( input_ids=_A , attention_mask=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __magic_name__ : List[str] = negative_prompt_embeds.shape[1] __magic_name__ : str = negative_prompt_embeds.repeat(1 , _A ) __magic_name__ : Dict = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A ) __magic_name__ : Any = uncond_text_encoder_hidden_states.shape[1] __magic_name__ : Optional[int] = uncond_text_encoder_hidden_states.repeat(1 , _A , 1 ) __magic_name__ : Tuple = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _A , -1 ) __magic_name__ : List[Any] = uncond_text_mask.repeat_interleave(_A , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] ) __magic_name__ : str = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __magic_name__ : str = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowerCAmelCase ( self : Dict , _A : List[Any]=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __magic_name__ : List[Any] = torch.device(F'cuda:{gpu_id}' ) __magic_name__ : Dict = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def __lowerCAmelCase ( self : List[Any] , _A : List[str]=0 ) -> str: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) __magic_name__ : int = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __magic_name__ : Optional[int] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __magic_name__ , __magic_name__ : Union[str, Any] = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) if self.safety_checker is not None: __magic_name__ , __magic_name__ : List[str] = cpu_offload_with_hook(self.safety_checker , _A , prev_module_hook=_A ) # We'll offload the last model manually. __magic_name__ : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : int ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : int , _A : Union[str, List[str]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Optional[Union[str, List[str]]] = None , _A : int = 512 , _A : int = 512 , _A : int = 100 , _A : float = 4.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , ) -> Optional[int]: if isinstance(_A , _A ): __magic_name__ : Optional[int] = 1 elif isinstance(_A , _A ): __magic_name__ : Union[str, Any] = len(_A ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(_A )}' ) __magic_name__ : Tuple = self._execution_device __magic_name__ : Any = batch_size * num_images_per_prompt __magic_name__ : int = guidance_scale > 1.0 __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = self._encode_prompt( _A , _A , _A , _A , _A ) if isinstance(_A , _A ): __magic_name__ : Union[str, Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __magic_name__ : Dict = torch.cat(_A , dim=0 ) if do_classifier_free_guidance: __magic_name__ : Dict = image_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : Optional[int] = negative_image_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_A ) self.scheduler.set_timesteps(_A , device=_A ) __magic_name__ : Tuple = self.scheduler.timesteps __magic_name__ : Optional[int] = self.unet.config.in_channels __magic_name__ , __magic_name__ : Dict = get_new_h_w(_A , _A , self.movq_scale_factor ) # create initial latent __magic_name__ : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _A , _A , _A , self.scheduler , ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __magic_name__ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __magic_name__ : Tuple = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} __magic_name__ : Union[str, Any] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: __magic_name__ , __magic_name__ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) __magic_name__ , __magic_name__ : Dict = noise_pred.chunk(2 ) __magic_name__ , __magic_name__ : List[str] = variance_pred.chunk(2 ) __magic_name__ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __magic_name__ : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __magic_name__ , __magic_name__ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : List[Any] = self.scheduler.step( _A , _A , _A , generator=_A , ).prev_sample # post-processing __magic_name__ : int = self.movq.decode(_A , force_not_quantize=_A )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __magic_name__ : Dict = image * 0.5 + 0.5 __magic_name__ : str = image.clamp(0 , 1 ) __magic_name__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __magic_name__ : str = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
275
0
def _a ( a :int , a :int ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def _a ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
0
import os def _lowerCAmelCase ( )->Union[str, Any]: '''simple docstring''' snake_case_ = os.path.dirname(os.path.realpath(lowerCAmelCase_ ) ) snake_case_ = os.path.join(lowerCAmelCase_ , "triangle.txt" ) with open(lowerCAmelCase_ ) as f: snake_case_ = f.readlines() snake_case_ = [] for line in triangle: snake_case_ = [] for number in line.strip().split(" " ): numbers_from_line.append(int(lowerCAmelCase_ ) ) a.append(lowerCAmelCase_ ) for i in range(1 , len(lowerCAmelCase_ ) ): for j in range(len(a[i] ) ): snake_case_ = a[i - 1][j] if j != len(a[i - 1] ) else 0 snake_case_ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCAmelCase_ , lowerCAmelCase_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
159
0
from __future__ import annotations class lowerCamelCase_ : """simple docstring""" def __init__( self : List[str] ,__lowerCamelCase : int ): '''simple docstring''' a = data a = None a = None def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[Any]: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" return 1 + max(depth_of_tree(tree.left ), depth_of_tree(tree.right ) ) if tree else 0 def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def SCREAMING_SNAKE_CASE__ ( ) -> Dict: # Main function for testing. """simple docstring""" a = Node(1 ) a = Node(2 ) a = Node(3 ) a = Node(4 ) a = Node(5 ) a = Node(6 ) a = Node(7 ) a = Node(8 ) a = Node(9 ) print(is_full_binary_tree(snake_case_ ) ) print(depth_of_tree(snake_case_ ) ) print('''Tree is: ''' ) display(snake_case_ ) if __name__ == "__main__": main()
358
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Dict = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'vit_mae' def __init__( self : Dict ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[str]=12 ,__lowerCamelCase : Optional[int]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : Optional[int]=0.0 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=2_24 ,__lowerCamelCase : str=16 ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Dict=16 ,__lowerCamelCase : List[str]=5_12 ,__lowerCamelCase : int=8 ,__lowerCamelCase : int=20_48 ,__lowerCamelCase : Optional[Any]=0.75 ,__lowerCamelCase : int=False ,**__lowerCamelCase : Any ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = decoder_num_attention_heads a = decoder_hidden_size a = decoder_num_hidden_layers a = decoder_intermediate_size a = mask_ratio a = norm_pix_loss
330
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {} class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] ='llama' __lowerCamelCase : int =['past_key_values'] def __init__( self : Dict , __lowercase : Tuple=32000 , __lowercase : int=4096 , __lowercase : Optional[int]=11008 , __lowercase : Tuple=32 , __lowercase : Tuple=32 , __lowercase : Tuple=None , __lowercase : int="silu" , __lowercase : Union[str, Any]=2048 , __lowercase : int=0.02 , __lowercase : int=1E-6 , __lowercase : List[str]=True , __lowercase : Optional[int]=0 , __lowercase : str=1 , __lowercase : int=2 , __lowercase : Union[str, Any]=1 , __lowercase : Union[str, Any]=False , __lowercase : Dict=None , **__lowercase : Any , ): '''simple docstring''' __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a = num_attention_heads __a = num_key_value_heads __a = hidden_act __a = initializer_range __a = rms_norm_eps __a = pretraining_tp __a = use_cache __a = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , tie_word_embeddings=__lowercase , **__lowercase , ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowercase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F"got {self.rope_scaling}" ) __a = self.rope_scaling.get("""type""" , __lowercase ) __a = self.rope_scaling.get("""factor""" , __lowercase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowercase , __lowercase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
302
import string import numpy def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE : __lowerCamelCase : List[str] =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __lowerCamelCase : List[Any] =numpy.vectorize(lambda lowerCamelCase__ : x % 36 ) __lowerCamelCase : Optional[Any] =numpy.vectorize(lowerCamelCase__ ) def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray ): '''simple docstring''' __a = self.modulus(__lowercase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __a = encrypt_key.shape[0] def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' return self.key_string.index(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : int ): '''simple docstring''' return self.key_string[round(__lowercase )] def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = len(self.key_string ) if greatest_common_divisor(__lowercase , len(self.key_string ) ) != 1: __a = ( F"determinant modular {req_l} of encryption key({det}) " F"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' __a = [char for char in text.upper() if char in self.key_string] __a = chars[-1] while len(__lowercase ) % self.break_key != 0: chars.append(__lowercase ) return "".join(__lowercase ) def UpperCamelCase_ ( self : List[str] , __lowercase : str ): '''simple docstring''' __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(self.encrypt_key.dot(__lowercase ) ).T.tolist()[ 0 ] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __a = i break __a = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowercase ) ) def UpperCamelCase_ ( self : Any , __lowercase : str ): '''simple docstring''' __a = self.make_decrypt_key() __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(decrypt_key.dot(__lowercase ) ).T.tolist()[0] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ): """simple docstring""" __a = int(input("""Enter the order of the encryption key: """ ) ) __a = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(_SCREAMING_SNAKE_CASE ): __a = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()] hill_matrix.append(_SCREAMING_SNAKE_CASE ) __a = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __a = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __a = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(_SCREAMING_SNAKE_CASE ) ) elif option == "2": __a = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowercase__ : int = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') lowercase__ : Optional[int] = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowercase__ : int = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowercase__ : Optional[Any] = sorted(arg_to_scheduler.keys()) lowercase__ : List[str] = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class __lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Union[str, Any]="base" , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : Union[str, Any] , ) -> Dict: '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowerCAmelCase__ ) _UpperCamelCase = 0 _UpperCamelCase = Path(self.hparams.output_dir ) _UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowerCAmelCase__ , **lowerCAmelCase__ , ) else: _UpperCamelCase = config _UpperCamelCase = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , lowerCAmelCase__ , lowerCAmelCase__ ): assert hasattr(self.config , lowerCAmelCase__ ), f"""model config doesn't have a `{p}` attribute""" setattr(self.config , lowerCAmelCase__ , getattr(self.hparams , lowerCAmelCase__ ) ) if tokenizer is None: _UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowerCAmelCase__ , ) else: _UpperCamelCase = tokenizer _UpperCamelCase = MODEL_MODES[mode] if model is None: _UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowerCAmelCase__ , ) else: _UpperCamelCase = model def snake_case__ ( self : Optional[Any] , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_type.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] _UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _UpperCamelCase = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model _UpperCamelCase = ["bias", "LayerNorm.weight"] _UpperCamelCase = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: _UpperCamelCase = Adafactor( lowerCAmelCase__ , lr=self.hparams.learning_rate , scale_parameter=lowerCAmelCase__ , relative_step=lowerCAmelCase__ ) else: _UpperCamelCase = AdamW( lowerCAmelCase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _UpperCamelCase = optimizer _UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' return self.validation_step(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Dict , lowerCAmelCase__ : Union[str, Any] ) -> str: '''simple docstring''' return self.validation_end(lowerCAmelCase__ ) def snake_case__ ( self : List[str] ) -> int: '''simple docstring''' _UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : int ) -> Union[str, Any]: '''simple docstring''' if stage == "test": _UpperCamelCase = len(self.test_dataloader().dataset ) else: _UpperCamelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowerCAmelCase__ ) _UpperCamelCase = len(self.train_dataloader().dataset ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict = False ) -> List[str]: '''simple docstring''' raise NotImplementedError('''You must implement this for your task''' ) def snake_case__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' return self.train_loader def snake_case__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowerCAmelCase__ , list(filter(lowerCAmelCase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[Any] ) -> None: '''simple docstring''' _UpperCamelCase = self.output_dir.joinpath('''best_tfmr''' ) _UpperCamelCase = self.step_count self.model.save_pretrained(lowerCAmelCase__ ) self.tokenizer.save_pretrained(lowerCAmelCase__ ) @staticmethod def snake_case__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> Union[str, Any]: '''simple docstring''' parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowerCAmelCase__ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowerCAmelCase__ ).parent / '''test_run''' / '''cache''' ) , type=lowerCAmelCase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowerCAmelCase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowerCAmelCase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowerCAmelCase__ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowerCAmelCase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5e-5 , type=lowerCAmelCase__ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowerCAmelCase__ , metavar=lowerCAmelCase__ , type=lowerCAmelCase__ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowerCAmelCase__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=lowerCAmelCase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowerCAmelCase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowerCAmelCase__ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowerCAmelCase__ ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowerCAmelCase__ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowerCAmelCase__ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class __lowerCAmelCase ( pl.Callback ): """simple docstring""" def snake_case__ ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): """simple docstring""" def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ) -> List[Any]: '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowerCAmelCase__ ) class __lowerCAmelCase ( pl.Callback ): """simple docstring""" def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] ) -> str: '''simple docstring''' _UpperCamelCase = trainer.lr_schedulers[0]["scheduler"] _UpperCamelCase = {f"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' rank_zero_info('''***** Validation results *****''' ) _UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(lowerCAmelCase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowerCAmelCase__ , str(metrics[key] ) ) ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ) -> List[str]: '''simple docstring''' rank_zero_info('''***** Test results *****''' ) _UpperCamelCase = trainer.callback_metrics # Log and save results to file _UpperCamelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowerCAmelCase__ , '''w''' ) as writer: for key in sorted(lowerCAmelCase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowerCAmelCase__ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowerCAmelCase__ , str(metrics[key] ) ) ) def a__ ( lowercase : Tuple, lowercase : Tuple ) -> None: """simple docstring""" parser.add_argument( '''--output_dir''', default=str(Path(_lowercase ).parent / '''test_run''' / '''model_checkpoints''' ), type=_lowercase, help='''The output directory where the model predictions and checkpoints will be written.''', ) parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''', ) parser.add_argument( '''--fp16_opt_level''', type=_lowercase, default='''O2''', help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ), ) parser.add_argument('''--n_tpu_cores''', dest='''tpu_cores''', type=_lowercase ) parser.add_argument('''--max_grad_norm''', dest='''gradient_clip_val''', default=1.0, type=_lowercase, help='''Max gradient norm''' ) parser.add_argument('''--do_train''', action='''store_true''', help='''Whether to run training.''' ) parser.add_argument('''--do_predict''', action='''store_true''', help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''', dest='''accumulate_grad_batches''', type=_lowercase, default=1, help='''Number of updates steps to accumulate before performing a backward/update pass.''', ) parser.add_argument('''--seed''', type=_lowercase, default=42, help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''', default=str(Path(_lowercase ).parent / '''test_run''' / '''dummy-train-data''' ), type=_lowercase, help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''', ) def a__ ( lowercase : BaseTransformer, lowercase : argparse.Namespace, lowercase : Tuple=None, lowercase : int=True, lowercase : List[str]=[], lowercase : Union[str, Any]=None, lowercase : Any=None, **lowercase : Any, ) -> Tuple: """simple docstring""" pl.seed_everything(args.seed ) # init model _UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_lowercase ) # add custom checkpoints if checkpoint_callback is None: _UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir, prefix='''checkpoint''', monitor='''val_loss''', mode='''min''', save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_lowercase ) if logging_callback is None: _UpperCamelCase = LoggingCallback() _UpperCamelCase = {} if args.fpaa: _UpperCamelCase = 16 if args.gpus > 1: _UpperCamelCase = "auto" _UpperCamelCase = "ddp" _UpperCamelCase = args.accumulate_grad_batches _UpperCamelCase = None _UpperCamelCase = "auto" _UpperCamelCase = pl.Trainer.from_argparse_args( _lowercase, weights_summary=_lowercase, callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback], logger=_lowercase, val_check_interval=1, num_sanity_val_steps=2, **_lowercase, ) if args.do_train: trainer.fit(_lowercase ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
363
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') lowercase__ : Any = get_tests_dir('fixtures/test_sentencepiece_bpe.model') lowercase__ : Tuple = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = CamembertTokenizer _snake_case : str = CamembertTokenizerFast _snake_case : int = True _snake_case : List[str] = True def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = CamembertTokenizer(lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = '''<pad>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCAmelCase__ ) , 1004 ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def snake_case__ ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase = CamembertTokenizer(lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _UpperCamelCase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = {'''input_ids''': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _UpperCamelCase = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=lowerCAmelCase__ , )
287
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Any = logging.get_logger(__name__) _snake_case : int = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class a (__UpperCAmelCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = 'transfo-xl' __UpperCAmelCase : Union[str, Any] = ['mems'] __UpperCAmelCase : Union[str, Any] = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : List[str] , lowerCamelCase : Union[str, Any]=267735 , lowerCamelCase : Any=[20000, 40000, 200000] , lowerCamelCase : Optional[Any]=1024 , lowerCamelCase : int=1024 , lowerCamelCase : List[Any]=16 , lowerCamelCase : List[str]=64 , lowerCamelCase : Optional[int]=4096 , lowerCamelCase : int=4 , lowerCamelCase : int=False , lowerCamelCase : Optional[Any]=18 , lowerCamelCase : Tuple=1600 , lowerCamelCase : Optional[int]=1000 , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[int]=True , lowerCamelCase : Tuple=0 , lowerCamelCase : int=-1 , lowerCamelCase : Optional[int]=True , lowerCamelCase : Any=0.1 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Union[str, Any]="normal" , lowerCamelCase : List[Any]=0.01 , lowerCamelCase : Any=0.01 , lowerCamelCase : Dict=0.02 , lowerCamelCase : Optional[Any]=1E-5 , lowerCamelCase : Tuple=0 , **lowerCamelCase : Union[str, Any] , ) -> Any: __snake_case : int = vocab_size __snake_case : int = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: __snake_case : Optional[Any] = [False] + [True] * len(self.cutoffs ) else: __snake_case : List[Any] = [False] + [False] * len(self.cutoffs ) __snake_case : str = d_model __snake_case : Optional[Any] = d_embed __snake_case : List[str] = d_head __snake_case : Any = d_inner __snake_case : List[Any] = div_val __snake_case : Tuple = pre_lnorm __snake_case : List[Any] = n_layer __snake_case : List[str] = n_head __snake_case : List[str] = mem_len __snake_case : Dict = same_length __snake_case : List[Any] = attn_type __snake_case : Optional[int] = clamp_len __snake_case : int = sample_softmax __snake_case : List[str] = adaptive __snake_case : Dict = dropout __snake_case : int = dropatt __snake_case : Optional[int] = untie_r __snake_case : List[Any] = init __snake_case : int = init_range __snake_case : Dict = proj_init_std __snake_case : Optional[int] = init_std __snake_case : List[str] = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Tuple ) -> Tuple: # Message copied from Transformer-XL documentation logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def __snake_case ( self : str , lowerCamelCase : List[Any] ) -> int: # Message copied from Transformer-XL documentation raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
123
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , **lowercase ): super().__init__(**lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__(self , lowercase , **lowercase ): return super().__call__(lowercase , **lowercase ) def _a (self , **lowercase ): A_ : Tuple = {} if "candidate_labels" in kwargs: A_ : Dict = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: A_ : Optional[Any] = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _a (self , lowercase , lowercase=None , lowercase="This is a sound of {}." ): if isinstance(lowercase , lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png A_ : Dict = requests.get(lowercase ).content else: with open(lowercase , """rb""" ) as f: A_ : List[str] = f.read() if isinstance(lowercase , lowercase ): A_ : List[Any] = ffmpeg_read(lowercase , self.feature_extractor.sampling_rate ) if not isinstance(lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) A_ : int = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) A_ : List[Any] = candidate_labels A_ : str = [hypothesis_template.format(lowercase ) for x in candidate_labels] A_ : Optional[Any] = self.tokenizer(lowercase , return_tensors=self.framework , padding=lowercase ) A_ : Optional[Any] = [text_inputs] return inputs def _a (self , lowercase ): A_ : Union[str, Any] = model_inputs.pop("""candidate_labels""" ) A_ : List[Any] = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , lowercase ): A_ : Union[str, Any] = text_inputs[0] else: # Batching case. A_ : Optional[int] = text_inputs[0][0] A_ : str = self.model(**lowercase , **lowercase ) A_ : Union[str, Any] = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _a (self , lowercase ): A_ : Union[str, Any] = model_outputs.pop("""candidate_labels""" ) A_ : List[Any] = model_outputs["""logits"""][0] if self.framework == "pt": A_ : Optional[Any] = logits.softmax(dim=0 ) A_ : str = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) A_ : Optional[int] = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowercase , lowercase ) , key=lambda lowercase : -x[0] ) ] return result
206
0
import random from typing import Any def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ): '''simple docstring''' for _ in range(len(__SCREAMING_SNAKE_CASE ) ): __snake_case : List[Any] = random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ) __snake_case : str = random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ) __snake_case : str = data[b], data[a] return data if __name__ == "__main__": lowercase_ = [0, 1, 2, 3, 4, 5, 6, 7] lowercase_ = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
355
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["YolosFeatureExtractor"] lowercase_ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
0
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """spiece.model"""} UpperCAmelCase = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } UpperCAmelCase = { """google/bigbird-roberta-base""": 4_096, """google/bigbird-roberta-large""": 4_096, """google/bigbird-base-trivia-itc""": 4_096, } class UpperCAmelCase_ ( _UpperCAmelCase): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = [] def __init__( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : str="<unk>" , __UpperCamelCase : Tuple="<s>" , __UpperCamelCase : int="</s>" , __UpperCamelCase : List[str]="<pad>" , __UpperCamelCase : Tuple="[SEP]" , __UpperCamelCase : List[str]="[MASK]" , __UpperCamelCase : Any="[CLS]" , __UpperCamelCase : Union[str, Any] = None , **__UpperCamelCase : Optional[int] , ) -> None: _UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token _UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token _UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token _UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token _UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token _UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , pad_token=A_ , sep_token=A_ , mask_token=A_ , cls_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) _UpperCamelCase = vocab_file _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _UpperCamelCase ( self : Dict ) -> str: return self.sp_model.get_piece_size() def _UpperCamelCase ( self : List[Any] ) -> List[str]: _UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> str: _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None return state def __setstate__( self : int , __UpperCamelCase : str ) -> Optional[Any]: _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self : str , __UpperCamelCase : int ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : List[Any] ) -> str: return self.sp_model.piece_to_id(A_ ) def _UpperCamelCase ( self : Any , __UpperCamelCase : Optional[int] ) -> str: _UpperCamelCase = self.sp_model.IdToPiece(A_ ) return token def _UpperCamelCase ( self : str , __UpperCamelCase : Any ) -> Tuple: _UpperCamelCase = [] _UpperCamelCase = '''''' _UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token _UpperCamelCase = True _UpperCamelCase = [] else: current_sub_tokens.append(A_ ) _UpperCamelCase = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any = False , __UpperCamelCase : int = None , __UpperCamelCase : List[Any] = True , **__UpperCamelCase : Union[str, Any] , ) -> str: _UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , A_ ) _UpperCamelCase = self.convert_ids_to_tokens(A_ , skip_special_tokens=A_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _UpperCamelCase = [] _UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A_ ) ) _UpperCamelCase = [] sub_texts.append(A_ ) else: current_sub_text.append(A_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _UpperCamelCase = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(A_ ) ) else: _UpperCamelCase = ''''''.join(A_ ) _UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _UpperCamelCase = self.clean_up_tokenization(A_ ) return clean_text else: return text def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : int = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def _UpperCamelCase ( self : str , __UpperCamelCase : int , __UpperCamelCase : Optional[int] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] _UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any = None , __UpperCamelCase : Any = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] = None ) -> List[int]: _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
256
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def _lowercase ( lowercase__ ): __lowerCAmelCase : str = [] __lowerCAmelCase : List[Any] = [] __lowerCAmelCase : str = [] for rt in rc.restypes: __lowerCAmelCase : List[Any] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) __lowerCAmelCase : List[str] = {name: i for i, name in enumerate(lowercase__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) __lowerCAmelCase : List[Any] = torch.tensor( lowercase__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) __lowerCAmelCase : Optional[Any] = torch.tensor( lowercase__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) __lowerCAmelCase : Tuple = torch.tensor( lowercase__ , dtype=torch.floataa , device=protein['''aatype'''].device , ) __lowerCAmelCase : List[Any] = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein __lowerCAmelCase : Any = restype_atomaa_to_atomaa[protein_aatype] __lowerCAmelCase : Union[str, Any] = restype_atomaa_mask[protein_aatype] __lowerCAmelCase : int = residx_atomaa_mask __lowerCAmelCase : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back __lowerCAmelCase : int = restype_atomaa_to_atomaa[protein_aatype] __lowerCAmelCase : Union[str, Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask __lowerCAmelCase : str = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): __lowerCAmelCase : Optional[int] = rc.restype_atoa[restype_letter] __lowerCAmelCase : Optional[Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: __lowerCAmelCase : str = rc.atom_order[atom_name] __lowerCAmelCase : List[Any] = 1 __lowerCAmelCase : Union[str, Any] = restype_atomaa_mask[protein_aatype] __lowerCAmelCase : Any = residx_atomaa_mask return protein def _lowercase ( lowercase__ ): __lowerCAmelCase : Dict = tree_map(lambda lowercase__ : torch.tensor(lowercase__ , device=batch['''aatype'''].device ) , lowercase__ , np.ndarray ) __lowerCAmelCase : Tuple = tensor_tree_map(lambda lowercase__ : np.array(lowercase__ ) , make_atomaa_masks(lowercase__ ) ) return out
275
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = "dpt" def __init__( self : int , lowerCamelCase__ : int=7_68 , lowerCamelCase__ : Any=12 , lowerCamelCase__ : str=12 , lowerCamelCase__ : Dict=30_72 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : int=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : str=0.0_2 , lowerCamelCase__ : int=1E-12 , lowerCamelCase__ : Optional[Any]=3_84 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : str=[2, 5, 8, 11] , lowerCamelCase__ : Tuple="project" , lowerCamelCase__ : List[str]=[4, 2, 1, 0.5] , lowerCamelCase__ : Optional[Any]=[96, 1_92, 3_84, 7_68] , lowerCamelCase__ : int=2_56 , lowerCamelCase__ : Optional[int]=-1 , lowerCamelCase__ : Any=False , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=0.4 , lowerCamelCase__ : str=2_55 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : str=[1, 10_24, 24, 24] , lowerCamelCase__ : List[str]=[0, 1] , lowerCamelCase__ : Optional[int]=None , **lowerCamelCase__ : List[Any] , ) ->str: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Tuple = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) _UpperCAmelCase : List[Any] = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } _UpperCAmelCase : str = BitConfig(**lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): logger.info("Initializing the config with a `BiT` backbone." ) _UpperCAmelCase : int = BitConfig(**lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Any = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) _UpperCAmelCase : str = backbone_featmap_shape _UpperCAmelCase : int = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : int = None _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : str = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : int = qkv_bias _UpperCAmelCase : Union[str, Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) _UpperCAmelCase : Optional[Any] = readout_type _UpperCAmelCase : str = reassemble_factors _UpperCAmelCase : List[str] = neck_hidden_sizes _UpperCAmelCase : List[str] = fusion_hidden_size _UpperCAmelCase : List[Any] = head_in_index _UpperCAmelCase : Optional[int] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase : List[Any] = use_auxiliary_head _UpperCAmelCase : List[str] = auxiliary_loss_weight _UpperCAmelCase : Dict = semantic_loss_ignore_index _UpperCAmelCase : Optional[int] = semantic_classifier_dropout def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase : int = self.backbone_config.to_dict() _UpperCAmelCase : Optional[int] = self.__class__.model_type return output
322
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE :str = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :Optional[Any] = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :int = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :List[Any] = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :int = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
0
"""simple docstring""" def _a ( _snake_case = 50 ): """simple docstring""" UpperCAmelCase = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
234
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCamelCase = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""GLPNFeatureExtractor"""] _UpperCamelCase = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
234
1
"""simple docstring""" import numpy as np from transformers import Pipeline def snake_case_ ( A_ : List[str] ): '''simple docstring''' _lowerCamelCase : Any = np.max(A_, axis=-1, keepdims=A_ ) _lowerCamelCase : List[str] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=A_ ) class __snake_case ( _lowercase): def SCREAMING_SNAKE_CASE ( self : Any , **__lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Tuple = {} if "second_text" in kwargs: _lowerCamelCase : Dict = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Any=None ): """simple docstring""" return self.tokenizer(__lowerCAmelCase , text_pair=__lowerCAmelCase , return_tensors=self.framework ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Tuple ): """simple docstring""" return self.model(**__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Any = model_outputs.logits[0].numpy() _lowerCamelCase : List[Any] = softmax(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = np.argmax(__lowerCAmelCase ) _lowerCamelCase : Any = self.model.config.idalabel[best_class] _lowerCamelCase : Dict = probabilities[best_class].item() _lowerCamelCase : List[str] = logits.tolist() return {"label": label, "score": score, "logits": logits}
72
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCamelCase =logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Union[str, Any] = ["""pixel_values"""] def __init__( self , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , __magic_name__ = PILImageResampling.BILINEAR , __magic_name__ = True , __magic_name__ = 1 / 2_5_5 , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , **__magic_name__ , ): super().__init__(**__magic_name__ ) lowerCamelCase : Dict = size if size is not None else {"""shortest_edge""": 3_8_4} lowerCamelCase : Tuple = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase : Dict = do_resize lowerCamelCase : List[Any] = size # Default value set here for backwards compatibility where the value in config is None lowerCamelCase : Any = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 lowerCamelCase : Union[str, Any] = resample lowerCamelCase : str = do_rescale lowerCamelCase : Union[str, Any] = rescale_factor lowerCamelCase : Tuple = do_normalize lowerCamelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = PILImageResampling.BICUBIC , __magic_name__ = None , **__magic_name__ , ): lowerCamelCase : Union[str, Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(F'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) lowerCamelCase : str = size["""shortest_edge"""] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowerCamelCase : List[str] = int(shortest_edge / crop_pct ) lowerCamelCase : Optional[Any] = get_resize_output_image_size(__magic_name__ , size=__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase : Optional[int] = resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__magic_name__ , size=(shortest_edge, shortest_edge) , data_format=__magic_name__ , **__magic_name__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __magic_name__ , size=(shortest_edge, shortest_edge) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ): return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ): return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = ChannelDimension.FIRST , **__magic_name__ , ): lowerCamelCase : str = do_resize if do_resize is not None else self.do_resize lowerCamelCase : Optional[Any] = crop_pct if crop_pct is not None else self.crop_pct lowerCamelCase : Optional[int] = resample if resample is not None else self.resample lowerCamelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean lowerCamelCase : Tuple = image_std if image_std is not None else self.image_std lowerCamelCase : Dict = size if size is not None else self.size lowerCamelCase : str = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase : List[str] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCamelCase : Optional[Any] = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: lowerCamelCase : List[Any] = [self.resize(image=__magic_name__ , size=__magic_name__ , crop_pct=__magic_name__ , resample=__magic_name__ ) for image in images] if do_rescale: lowerCamelCase : Union[str, Any] = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: lowerCamelCase : List[Any] = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] lowerCamelCase : Optional[int] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] lowerCamelCase : List[str] = {"""pixel_values""": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
287
0
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} _lowercase : Union[str, Any] = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } _lowercase : Any = { "abeja/gpt-neox-japanese-2.7b": 2_0_4_8, } def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: lowercase_ : List[str] = json.loads(f.read() ) lowercase_ : Tuple = collections.OrderedDict() lowercase_ : str = collections.OrderedDict() lowercase_ : int = collections.OrderedDict() with open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: lowercase_ : Optional[int] = f.readlines() lowercase_ : List[Any] = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ : str = b lowercase_ : Any = idx for wd in b: lowercase_ : List[Any] = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|startoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , do_clean_text=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) if not os.path.isfile(__SCREAMING_SNAKE_CASE ): raise ValueError( F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(__SCREAMING_SNAKE_CASE ): raise ValueError( F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) lowercase_ : Union[str, Any] = do_clean_text lowercase_ : Any = load_vocab_and_emoji(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _snake_case ( self ): """simple docstring""" return len(self.raw_vocab ) def _snake_case ( self ): """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.subword_tokenizer.tokenize(__SCREAMING_SNAKE_CASE , clean=self.do_clean_text ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.subword_tokenizer.convert_id_to_token(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = ''''''.join(__SCREAMING_SNAKE_CASE ).strip() return out_string def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(__SCREAMING_SNAKE_CASE ) > self.model_max_length: lowercase_ : Dict = input_ids[-self.model_max_length :] return input_ids def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : Dict = 0 if os.path.isdir(__SCREAMING_SNAKE_CASE ): lowercase_ : int = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: lowercase_ : List[str] = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ : List[str] = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) lowercase_ : Union[str, Any] = token_index writer.write(''','''.join(__SCREAMING_SNAKE_CASE ) + '''\n''' ) index += 1 with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , __SCREAMING_SNAKE_CASE ) return vocab_file, emoji_file class lowerCAmelCase__ ( lowerCamelCase_ ): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = vocab # same as swe lowercase_ : List[str] = ids_to_tokens # same as bpe lowercase_ : List[str] = emoji lowercase_ : Tuple = np.max([len(__SCREAMING_SNAKE_CASE ) for w in self.vocab.keys()] ) lowercase_ : int = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) lowercase_ : Optional[Any] = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) lowercase_ : Optional[Any] = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) lowercase_ : Any = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) lowercase_ : Optional[int] = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) lowercase_ : Dict = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) lowercase_ : Any = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' lowercase_ : str = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' lowercase_ : Any = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self ): """simple docstring""" return len(self.ids_to_tokens ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Tuple = self.content_repattera.sub('''<URL>''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Any = self.content_repattera.sub('''<EMAIL>''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = self.content_repattera.sub('''<TEL>''' , __SCREAMING_SNAKE_CASE ) lowercase_ : str = self.content_repattera.sub('''<DATE>''' , __SCREAMING_SNAKE_CASE ) lowercase_ : str = self.content_repattera.sub('''<DATE>''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = self.content_repattera.sub('''<PRICE>''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowercase_ : str = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase_ : Optional[int] = text.replace(''' ''' , '''<SP>''' ) lowercase_ : Union[str, Any] = text.replace(''' ''' , '''<SP>''' ) lowercase_ : List[str] = text.replace('''\r\n''' , '''<BR>''' ) lowercase_ : str = text.replace('''\n''' , '''<BR>''' ) lowercase_ : List[str] = text.replace('''\r''' , '''<BR>''' ) lowercase_ : List[str] = text.replace('''\t''' , '''<TAB>''' ) lowercase_ : Any = text.replace('''—''' , '''ー''' ) lowercase_ : Optional[int] = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: lowercase_ : str = text.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if clean: lowercase_ : List[str] = self.clean_text(__SCREAMING_SNAKE_CASE ) def check_simbol(__SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = x.encode() if len(__SCREAMING_SNAKE_CASE ) == 1 and len(__SCREAMING_SNAKE_CASE ) == 2: lowercase_ : int = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = x.encode() if len(__SCREAMING_SNAKE_CASE ) == 1 and len(__SCREAMING_SNAKE_CASE ) == 3: lowercase_ : Optional[int] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28080 and c <= 0xe2b07f: return True return False lowercase_ : List[str] = 0 lowercase_ : Optional[int] = [] while pos < len(__SCREAMING_SNAKE_CASE ): lowercase_ : List[str] = min(len(__SCREAMING_SNAKE_CASE ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 lowercase_ : Tuple = [] # (token_id, token, pos) for e in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , -1 ): lowercase_ : List[str] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__SCREAMING_SNAKE_CASE ) > 2: lowercase_ : int = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__SCREAMING_SNAKE_CASE ) > 0: # the smallest token_id is adopted lowercase_ : str = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : x[0] )[0] result.append(__SCREAMING_SNAKE_CASE ) lowercase_ : str = e else: lowercase_ : Optional[Any] = pos + 1 lowercase_ : Union[str, Any] = text[pos:end] if check_simbol(__SCREAMING_SNAKE_CASE ): result.append('''<KIGOU>''' ) elif checkuae(__SCREAMING_SNAKE_CASE ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) lowercase_ : int = end return result def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="\n" ): """simple docstring""" lowercase_ : str = [] lowercase_ : Any = [] lowercase_ : str = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__SCREAMING_SNAKE_CASE ) > 0: words.append(bytearray(__SCREAMING_SNAKE_CASE ).decode('''utf-8''' , errors='''replace''' ) ) lowercase_ : Optional[int] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(__SCREAMING_SNAKE_CASE ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: words.append(bytearray(__SCREAMING_SNAKE_CASE ).decode('''utf-8''' , errors='''replace''' ) ) lowercase_ : List[Any] = ''''''.join(__SCREAMING_SNAKE_CASE ) return text
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Tuple = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowercase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
264
0
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowercase__ ( *__lowercase : List[str] , __lowercase : Union[str, Any] = None , __lowercase : Any=True , __lowercase : str=2 ) -> Optional[Any]: """simple docstring""" from .. import __version__ __UpperCamelCase = take_from __UpperCamelCase = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __UpperCamelCase = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) __UpperCamelCase = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) __UpperCamelCase = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __UpperCamelCase = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __UpperCamelCase = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: __UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] __UpperCamelCase = call_frame.filename __UpperCamelCase = call_frame.lineno __UpperCamelCase = call_frame.function __UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
53
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: if index == r: for j in range(SCREAMING_SNAKE_CASE__ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowercase : Tuple = arr[i] combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , SCREAMING_SNAKE_CASE__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: # A temporary array to store all combination one by one lowercase : Optional[int] = [0] * r # Print all combination using temporary array 'data[]' combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , 0 ) if __name__ == "__main__": # Driver code to check the function above lowercase : int = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
20
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : str = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''owlvit_text_model''' def __init__( self : Tuple , __magic_name__ : List[Any]=49_408 , __magic_name__ : str=512 , __magic_name__ : Dict=2_048 , __magic_name__ : Dict=12 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[Any]=16 , __magic_name__ : Optional[Any]="quick_gelu" , __magic_name__ : Optional[Any]=1e-5 , __magic_name__ : Union[str, Any]=0.0 , __magic_name__ : str=0.02 , __magic_name__ : List[str]=1.0 , __magic_name__ : Optional[int]=0 , __magic_name__ : Tuple=49_406 , __magic_name__ : Optional[Any]=49_407 , **__magic_name__ : List[str] , ) -> Tuple: super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_factor @classmethod def __A ( cls : List[str] , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : str ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": SCREAMING_SNAKE_CASE_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''owlvit_vision_model''' def __init__( self : List[Any] , __magic_name__ : int=768 , __magic_name__ : Dict=3_072 , __magic_name__ : Any=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : List[Any]=3 , __magic_name__ : List[Any]=768 , __magic_name__ : Any=32 , __magic_name__ : Tuple="quick_gelu" , __magic_name__ : List[Any]=1e-5 , __magic_name__ : Tuple=0.0 , __magic_name__ : Any=0.02 , __magic_name__ : Union[str, Any]=1.0 , **__magic_name__ : Optional[int] , ) -> Tuple: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_factor @classmethod def __A ( cls : Union[str, Any] , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Tuple ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": SCREAMING_SNAKE_CASE_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''owlvit''' lowerCamelCase__ = True def __init__( self : List[Any] , __magic_name__ : Any=None , __magic_name__ : str=None , __magic_name__ : Optional[int]=512 , __magic_name__ : Any=2.6592 , __magic_name__ : Optional[int]=True , **__magic_name__ : Union[str, Any] , ) -> Any: super().__init__(**__magic_name__ ) if text_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) SCREAMING_SNAKE_CASE_ = OwlViTTextConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = OwlViTVisionConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = projection_dim SCREAMING_SNAKE_CASE_ = logit_scale_init_value SCREAMING_SNAKE_CASE_ = return_dict SCREAMING_SNAKE_CASE_ = 1.0 @classmethod def __A ( cls : Optional[int] , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Union[str, Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) @classmethod def __A ( cls : str , __magic_name__ : Dict , __magic_name__ : Dict , **__magic_name__ : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = text_config SCREAMING_SNAKE_CASE_ = vision_config return cls.from_dict(__magic_name__ , **__magic_name__ ) def __A ( self : str ) -> Any: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def __A ( self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def __A ( self : Dict ) -> float: return 1e-4 def __A ( self : Any , __magic_name__ : "ProcessorMixin" , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=__magic_name__ , seq_length=__magic_name__ , framework=__magic_name__ ) SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( processor.image_processor , batch_size=__magic_name__ , framework=__magic_name__ ) return {**text_input_dict, **image_input_dict} @property def __A ( self : Union[str, Any] ) -> int: return 14
305
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A : Union[str, Any] = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def a__ ( ): SCREAMING_SNAKE_CASE_ = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE_ = get_sagemaker_input() else: SCREAMING_SNAKE_CASE_ = get_cluster_input() return config def a__ ( __UpperCamelCase=None ): if subparsers is not None: SCREAMING_SNAKE_CASE_ = subparsers.add_parser("config" , description=__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser("Accelerate config command" , description=__UpperCamelCase ) parser.add_argument( "--config_file" , default=__UpperCamelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE_ = args.config_file else: if not os.path.isdir(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(__UpperCamelCase ) else: config.to_yaml_file(__UpperCamelCase ) print(F'''accelerate configuration saved at {config_file}''' ) def a__ ( ): SCREAMING_SNAKE_CASE_ = config_command_parser() SCREAMING_SNAKE_CASE_ = parser.parse_args() config_command(__UpperCamelCase ) if __name__ == "__main__": main()
305
1
import cva import numpy as np class A_ : def __init__( self : List[str] , UpperCAmelCase : float , UpperCAmelCase : int ) -> Optional[Any]: if k in (0.04, 0.06): __lowerCAmelCase: Optional[Any] = k __lowerCAmelCase: List[str] = window_size else: raise ValueError('invalid k value' ) def __str__( self : Union[str, Any] ) -> str: return str(self.k ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : str ) -> tuple[cva.Mat, list[list[int]]]: __lowerCAmelCase: Optional[int] = cva.imread(UpperCAmelCase , 0 ) __lowerCAmelCase , __lowerCAmelCase: Tuple = img.shape __lowerCAmelCase: list[list[int]] = [] __lowerCAmelCase: Optional[Any] = img.copy() __lowerCAmelCase: Tuple = cva.cvtColor(UpperCAmelCase , cva.COLOR_GRAY2RGB ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = np.gradient(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = dx**2 __lowerCAmelCase: Union[str, Any] = dy**2 __lowerCAmelCase: Dict = dx * dy __lowerCAmelCase: Dict = 0.04 __lowerCAmelCase: Optional[int] = self.window_size // 2 for y in range(UpperCAmelCase , h - offset ): for x in range(UpperCAmelCase , w - offset ): __lowerCAmelCase: str = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowerCAmelCase: List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowerCAmelCase: str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowerCAmelCase: Optional[int] = (wxx * wyy) - (wxy**2) __lowerCAmelCase: Any = wxx + wyy __lowerCAmelCase: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_5_5 ) return color_img, corner_list if __name__ == "__main__": _a = HarrisCorner(0.04, 3) _a , _a = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
322
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( snake_case__ ): _lowercase : int = (DPMSolverSinglestepScheduler,) _lowercase : Optional[Any] = (('num_inference_steps', 2_5),) def UpperCAmelCase ( self : Dict , **UpperCAmelCase : List[Any] ) -> Optional[Any]: __lowerCAmelCase: Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ) -> Any: __lowerCAmelCase: Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase: int = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: int = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Union[str, Any] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: Dict = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase: Optional[int] = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase: str = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: str = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> str: pass def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Any=0 , **UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: Tuple = dict(self.forward_default_kwargs ) __lowerCAmelCase: Tuple = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: Tuple = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Dict = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: List[str] = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: Dict = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: if scheduler is None: __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.scheduler_classes[0] __lowerCAmelCase: List[str] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = 1_0 __lowerCAmelCase: Dict = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Dict = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Any = 5_0 __lowerCAmelCase: int = self.dummy_model() __lowerCAmelCase: List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase: List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCAmelCase: Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Dict = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __lowerCAmelCase: Tuple = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Union[str, Any] = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) __lowerCAmelCase: Dict = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Optional[Any] ) -> str: self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self : List[Any] ) -> str: self.check_over_configs(variance_type=UpperCAmelCase ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self : Any ) -> int: __lowerCAmelCase: Any = self.full_loop() __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.full_loop(use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: str = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCAmelCase: List[str] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: int = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase: Any = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase: List[str] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Union[str, Any] = self.dummy_model() __lowerCAmelCase: int = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Any = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
322
1
def snake_case_ ( snake_case ) -> Dict: lowercase__: str = [] lowercase__: str = [] lowercase__: List[str] = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowercase__: Optional[int] = len(snake_case ) if (len(snake_case ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(snake_case ) , 'Postfix'.center(snake_case ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(snake_case ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(snake_case ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(snake_case ) == 0: stack.append(snake_case ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(snake_case ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(snake_case ) # push x to stack print( x.center(8 ) , (''.join(snake_case )).ljust(snake_case ) , (''.join(snake_case )).ljust(snake_case ) , sep=' | ' , ) # Output in tabular format while len(snake_case ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(snake_case )).ljust(snake_case ) , (''.join(snake_case )).ljust(snake_case ) , sep=' | ' , ) # Output in tabular format return "".join(snake_case ) # return Postfix as str def snake_case_ ( snake_case ) -> int: lowercase__: Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(snake_case ) ): if infix[i] == "(": lowercase__: str = ')' # change "(" to ")" elif infix[i] == ")": lowercase__: Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(snake_case ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __lowerCAmelCase = input('''\nEnter an Infix Equation = ''') # Input an Infix equation __lowerCAmelCase = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
358
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=30 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , lowerCAmelCase__=2 , ) -> List[str]: '''simple docstring''' lowercase__: List[str] = parent lowercase__: Tuple = batch_size lowercase__: Optional[Any] = image_size lowercase__: int = patch_size lowercase__: Union[str, Any] = num_channels lowercase__: Dict = is_training lowercase__: Any = use_labels lowercase__: Optional[int] = hidden_size lowercase__: Tuple = num_hidden_layers lowercase__: List[str] = num_attention_heads lowercase__: Any = intermediate_size lowercase__: Union[str, Any] = hidden_act lowercase__: Union[str, Any] = hidden_dropout_prob lowercase__: Optional[Any] = attention_probs_dropout_prob lowercase__: str = type_sequence_label_size lowercase__: List[str] = initializer_range lowercase__: Optional[Any] = scope lowercase__: Dict = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase__: List[str] = (image_size // patch_size) ** 2 lowercase__: Tuple = num_patches + 2 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__: int = None if self.use_labels: lowercase__: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: List[str] = TFDeiTModel(config=lowerCAmelCase__ ) lowercase__: Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = TFDeiTForMaskedImageModeling(config=lowerCAmelCase__ ) lowercase__: int = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__: Tuple = 1 lowercase__: Optional[int] = TFDeiTForMaskedImageModeling(lowerCAmelCase__ ) lowercase__: int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__: str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' lowercase__: Any = self.type_sequence_label_size lowercase__: Optional[Any] = TFDeiTForImageClassification(lowerCAmelCase__ ) lowercase__: List[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__: Optional[Any] = 1 lowercase__: Union[str, Any] = TFDeiTForImageClassification(lowerCAmelCase__ ) lowercase__: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__: str = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__: Dict = config_and_inputs lowercase__: Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __a ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): __lowercase : Union[str, Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __lowercase : Union[str, Any] = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __lowercase : Union[str, Any] = False __lowercase : Tuple = False __lowercase : int = False __lowercase : Optional[int] = False def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: List[Any] = TFDeiTModelTester(self ) lowercase__: int = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__ , lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Tuple = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__: Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , tf.keras.layers.Dense ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__ , lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Any = model_class(lowerCAmelCase__ ) lowercase__: Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__: Dict = [*signature.parameters.keys()] lowercase__: Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[Any]: '''simple docstring''' lowercase__: Union[str, Any] = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Union[str, Any] = TFDeiTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def snake_case_ ( ) -> Tuple: lowercase__: Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __a ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowercase__: str = self.default_image_processor lowercase__: Dict = prepare_img() lowercase__: Optional[int] = image_processor(images=lowerCAmelCase__ , return_tensors='tf' ) # forward pass lowercase__: int = model(**lowerCAmelCase__ ) # verify the logits lowercase__: Tuple = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) lowercase__: List[Any] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
288
0
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = [True] * limit _UpperCAmelCase : List[str] = False _UpperCAmelCase : Dict = False _UpperCAmelCase : int = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): _UpperCAmelCase : Any = i * 2 while index < limit: _UpperCAmelCase : str = False _UpperCAmelCase : Any = index + i _UpperCAmelCase : str = [2] for i in range(3 , __lowerCAmelCase , 2 ): if is_prime[i]: primes.append(__lowerCAmelCase ) return primes def __lowerCAmelCase (__lowerCAmelCase = 1_000_000 ): _UpperCAmelCase : Tuple = prime_sieve(__lowerCAmelCase ) _UpperCAmelCase : Any = 0 _UpperCAmelCase : List[str] = 0 for i in range(len(__lowerCAmelCase ) ): for j in range(i + length , len(__lowerCAmelCase ) ): _UpperCAmelCase : Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: _UpperCAmelCase : Optional[Any] = j - i _UpperCAmelCase : Optional[int] = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
234
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase__ = logging.getLogger() lowerCamelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[int] ) ->Tuple: '''simple docstring''' os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = {"source": "What is love ?", "target": "life"} _UpperCAmelCase : Any = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _UpperCAmelCase : Dict = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCamelCase__ , F"""{split}.{field}""" ) , "w" ) as f: f.write(lowerCamelCase__ ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : int , lowerCamelCase__ : str = "pytorch" ) ->Any: '''simple docstring''' _UpperCAmelCase : Any = self.get_auto_remove_tmp_dir() _UpperCAmelCase : int = os.path.join(lowerCamelCase__ , "output" ) _UpperCAmelCase : Tuple = os.path.join(lowerCamelCase__ , "data" ) self._create_dummy_data(data_dir=lowerCamelCase__ ) _UpperCAmelCase : str = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) _UpperCAmelCase : str = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCamelCase__ , env=self.get_env() ) _UpperCAmelCase : Optional[int] = os.path.join(lowerCamelCase__ , "metrics.json" ) with open(lowerCamelCase__ ) as f: _UpperCAmelCase : Dict = json.load(lowerCamelCase__ ) return result @require_torch_gpu def lowerCAmelCase__ ( self : Dict ) ->Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' _UpperCAmelCase : Any = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : str = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
234
1
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} UpperCAmelCase = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } UpperCAmelCase = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def lowercase ( a__ : List[str] , a__ : Tuple ) -> List[str]: with open(_UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = collections.OrderedDict() _UpperCamelCase = collections.OrderedDict() _UpperCamelCase = collections.OrderedDict() with open(_UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [[t.rstrip('''\n''' )] if (t == ',' or ',' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(_UpperCAmelCase ): _UpperCamelCase = b _UpperCamelCase = idx for wd in b: _UpperCamelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : int="<|endoftext|>" , __UpperCamelCase : List[str]="<|endoftext|>" , __UpperCamelCase : Tuple="<|startoftext|>" , __UpperCamelCase : int="<|endoftext|>" , __UpperCamelCase : Dict=False , **__UpperCamelCase : Any , ) -> Any: super().__init__( unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , do_clean_text=__UpperCamelCase , **__UpperCamelCase , ) if not os.path.isfile(__UpperCamelCase ): raise ValueError( F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(__UpperCamelCase ): raise ValueError( F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) _UpperCamelCase = do_clean_text _UpperCamelCase = load_vocab_and_emoji(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _UpperCamelCase ( self : str ) -> str: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def _UpperCamelCase ( self : Any ) -> Optional[Any]: return dict(self.raw_vocab , **self.added_tokens_encoder ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : int ) -> Optional[Any]: return self.subword_tokenizer.tokenize(__UpperCamelCase , clean=self.do_clean_text ) def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Any ) -> Optional[Any]: return self.vocab.get(__UpperCamelCase , self.vocab.get(self.unk_token ) ) def _UpperCamelCase ( self : Any , __UpperCamelCase : Any ) -> Union[str, Any]: return self.subword_tokenizer.convert_id_to_token(__UpperCamelCase ) def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase = ''.join(__UpperCamelCase ).strip() return out_string def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : "Conversation" ) -> List[int]: _UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) + [self.eos_token_id] ) if len(__UpperCamelCase ) > self.model_max_length: _UpperCamelCase = input_ids[-self.model_max_length :] return input_ids def _UpperCamelCase ( self : int , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: _UpperCamelCase = 0 if os.path.isdir(__UpperCamelCase ): _UpperCamelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: _UpperCamelCase = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) _UpperCamelCase = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) _UpperCamelCase = token_index writer.write(''','''.join(__UpperCamelCase ) + '''\n''' ) index += 1 with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , __UpperCamelCase ) return vocab_file, emoji_file class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__): def __init__( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Tuple ) -> int: _UpperCamelCase = vocab # same as swe _UpperCamelCase = ids_to_tokens # same as bpe _UpperCamelCase = emoji _UpperCamelCase = np.max([len(__UpperCamelCase ) for w in self.vocab.keys()] ) _UpperCamelCase = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) _UpperCamelCase = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) _UpperCamelCase = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) _UpperCamelCase = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) _UpperCamelCase = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) _UpperCamelCase = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) _UpperCamelCase = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' _UpperCamelCase = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' _UpperCamelCase = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self : List[Any] ) -> Optional[int]: return len(self.ids_to_tokens ) def _UpperCamelCase ( self : int , __UpperCamelCase : Optional[int] ) -> Any: _UpperCamelCase = self.content_repattera.sub('''<URL>''' , __UpperCamelCase ) _UpperCamelCase = self.content_repattera.sub('''<EMAIL>''' , __UpperCamelCase ) _UpperCamelCase = self.content_repattera.sub('''<TEL>''' , __UpperCamelCase ) _UpperCamelCase = self.content_repattera.sub('''<DATE>''' , __UpperCamelCase ) _UpperCamelCase = self.content_repattera.sub('''<DATE>''' , __UpperCamelCase ) _UpperCamelCase = self.content_repattera.sub('''<PRICE>''' , __UpperCamelCase ) _UpperCamelCase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: _UpperCamelCase = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def _UpperCamelCase ( self : str , __UpperCamelCase : Any , __UpperCamelCase : Any=False ) -> str: _UpperCamelCase = text.replace(''' ''' , '''<SP>''' ) _UpperCamelCase = text.replace(''' ''' , '''<SP>''' ) _UpperCamelCase = text.replace('''\r\n''' , '''<BR>''' ) _UpperCamelCase = text.replace('''\n''' , '''<BR>''' ) _UpperCamelCase = text.replace('''\r''' , '''<BR>''' ) _UpperCamelCase = text.replace('''\t''' , '''<TAB>''' ) _UpperCamelCase = text.replace('''—''' , '''ー''' ) _UpperCamelCase = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: _UpperCamelCase = text.replace(__UpperCamelCase , __UpperCamelCase ) if clean: _UpperCamelCase = self.clean_text(__UpperCamelCase ) def check_simbol(__UpperCamelCase : Optional[Any] ): _UpperCamelCase = x.encode() if len(__UpperCamelCase ) == 1 and len(__UpperCamelCase ) == 2: _UpperCamelCase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(__UpperCamelCase : Union[str, Any] ): _UpperCamelCase = x.encode() if len(__UpperCamelCase ) == 1 and len(__UpperCamelCase ) == 3: _UpperCamelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe2_8080 and c <= 0xe2_b07f: return True return False _UpperCamelCase = 0 _UpperCamelCase = [] while pos < len(__UpperCamelCase ): _UpperCamelCase = min(len(__UpperCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 _UpperCamelCase = [] # (token_id, token, pos) for e in range(__UpperCamelCase , __UpperCamelCase , -1 ): _UpperCamelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__UpperCamelCase ) > 2: _UpperCamelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__UpperCamelCase ) > 0: # the smallest token_id is adopted _UpperCamelCase = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[0] )[0] result.append(__UpperCamelCase ) _UpperCamelCase = e else: _UpperCamelCase = pos + 1 _UpperCamelCase = text[pos:end] if check_simbol(__UpperCamelCase ): result.append('''<KIGOU>''' ) elif checkuae(__UpperCamelCase ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) _UpperCamelCase = end return result def _UpperCamelCase ( self : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[Any]="\n" ) -> List[str]: _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__UpperCamelCase ) > 0: words.append(bytearray(__UpperCamelCase ).decode('''utf-8''' , errors='''replace''' ) ) _UpperCamelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(__UpperCamelCase ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: words.append(bytearray(__UpperCamelCase ).decode('''utf-8''' , errors='''replace''' ) ) _UpperCamelCase = ''.join(__UpperCamelCase ) return text
359
"""simple docstring""" def lowercase ( a__ : Tuple , a__ : str ) -> Tuple: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowercase ( a__ : Optional[int] , a__ : List[str]=0 ) -> Optional[Any]: return sorted(a__ , key=lambda a__ : x[column] ) def lowercase ( a__ : Optional[int] , a__ : Optional[int] , a__ : Tuple=float('''inf''' ) ) -> int: for i in range(points_counts - 1 ): for j in range(i + 1 , a__ ): _UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _UpperCamelCase = current_dis return min_dis def lowercase ( a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Optional[Any]=float('''inf''' ) ) -> str: for i in range(min(6 , points_counts - 1 ) , a__ ): for j in range(max(0 , i - 6 ) , a__ ): _UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _UpperCamelCase = current_dis return min_dis def lowercase ( a__ : int , a__ : str , a__ : Any ) -> str: # base case if points_counts <= 3: return dis_between_closest_pair(a__ , a__ ) # recursion _UpperCamelCase = points_counts // 2 _UpperCamelCase = closest_pair_of_points_sqr( a__ , points_sorted_on_y[:mid] , a__ ) _UpperCamelCase = closest_pair_of_points_sqr( a__ , points_sorted_on_y[mid:] , points_counts - mid ) _UpperCamelCase = min(a__ , a__ ) _UpperCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(a__ ) _UpperCamelCase = dis_between_closest_in_strip( a__ , len(a__ ) , a__ ) return min(a__ , a__ ) def lowercase ( a__ : Dict , a__ : List[Any] ) -> Optional[Any]: _UpperCamelCase = column_based_sort(a__ , column=0 ) _UpperCamelCase = column_based_sort(a__ , column=1 ) return ( closest_pair_of_points_sqr( a__ , a__ , a__ ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
54
0
"""simple docstring""" import sys def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = [[0 for x in range(SCREAMING_SNAKE_CASE )] for x in range(SCREAMING_SNAKE_CASE )] lowerCAmelCase : Tuple = [[0 for x in range(SCREAMING_SNAKE_CASE )] for x in range(SCREAMING_SNAKE_CASE )] for chain_length in range(2 , SCREAMING_SNAKE_CASE ): for a in range(1 , n - chain_length + 1 ): lowerCAmelCase : List[Any] = a + chain_length - 1 lowerCAmelCase : List[Any] = sys.maxsize for c in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Union[str, Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowerCAmelCase : str = cost lowerCAmelCase : Optional[int] = c return matrix, sol def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if i == j: print("A" + str(SCREAMING_SNAKE_CASE ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , optimal_solution[i][j] ) print_optiomal_solution(SCREAMING_SNAKE_CASE , optimal_solution[i][j] + 1 , SCREAMING_SNAKE_CASE ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] lowerCAmelCase : List[Any] = len(SCREAMING_SNAKE_CASE ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowerCAmelCase , lowerCAmelCase : List[Any] = matrix_chain_order(SCREAMING_SNAKE_CASE ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(SCREAMING_SNAKE_CASE , 1 , n - 1 ) if __name__ == "__main__": main()
108
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : str = XLMRobertaTokenizer _lowerCAmelCase : int = XLMRobertaTokenizerFast _lowerCAmelCase : str = True _lowerCAmelCase : Dict = True def _snake_case ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing snake_case_ : List[str] = XLMRobertaTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : str ): snake_case_ : List[Any] = '''<pad>''' snake_case_ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def _snake_case ( self : Union[str, Any] ): snake_case_ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowercase_ ) , 1002 ) def _snake_case ( self : Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def _snake_case ( self : Dict ): snake_case_ : Optional[Any] = XLMRobertaTokenizer(lowercase_ , keep_accents=lowercase_ ) snake_case_ : Dict = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) snake_case_ : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _snake_case ( self : List[str] ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case_ : int = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) snake_case_ : int = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) snake_case_ : Optional[Any] = tempfile.mkdtemp() snake_case_ : Tuple = tokenizer_r.save_pretrained(lowercase_ ) snake_case_ : List[str] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) snake_case_ : str = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way snake_case_ : Union[str, Any] = tokenizer_r.from_pretrained(lowercase_ ) snake_case_ : List[Any] = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True snake_case_ : Optional[Any] = tempfile.mkdtemp() snake_case_ : List[str] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) snake_case_ : List[str] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way snake_case_ : List[Any] = tokenizer_r.from_pretrained(lowercase_ ) snake_case_ : List[str] = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False snake_case_ : Optional[Any] = tempfile.mkdtemp() snake_case_ : List[Any] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) snake_case_ : Tuple = tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case_ : Optional[Any] = tokenizer_r.from_pretrained(lowercase_ ) snake_case_ : Dict = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @cached_property def _snake_case ( self : List[str] ): return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def _snake_case ( self : Optional[Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowercase_ , f.name ) snake_case_ : Any = XLMRobertaTokenizer(f.name , keep_accents=lowercase_ ) snake_case_ : List[Any] = pickle.dumps(lowercase_ ) pickle.loads(lowercase_ ) def _snake_case ( self : Tuple ): if not self.test_rust_tokenizer: return snake_case_ : List[str] = self.get_tokenizer() snake_case_ : Optional[int] = self.get_rust_tokenizer() snake_case_ : Dict = '''I was born in 92000, and this is falsé.''' snake_case_ : Optional[int] = tokenizer.tokenize(lowercase_ ) snake_case_ : Tuple = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) snake_case_ : List[str] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) snake_case_ : str = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) snake_case_ : int = self.get_rust_tokenizer() snake_case_ : Any = tokenizer.encode(lowercase_ ) snake_case_ : int = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) @slow def _snake_case ( self : Tuple ): snake_case_ : int = '''Hello World!''' snake_case_ : int = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def _snake_case ( self : List[Any] ): snake_case_ : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) snake_case_ : Optional[int] = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def _snake_case ( self : Dict ): # fmt: off snake_case_ : int = {'''input_ids''': [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
264
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ['''torch'''] def __init__( self : int , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) def lowerCamelCase__ ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ["torch"] ) def lowerCamelCase__ ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ["torch"] ) def lowerCamelCase__ ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ["torch"] ) def lowerCamelCase__ ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ["torch"] ) def lowerCamelCase__ ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ["torch"] ) def lowerCamelCase__ ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ["torch"] ) def lowerCamelCase__ ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : str = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ['''torch'''] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Tuple ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : str = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : int ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : int = ['''torch'''] def __init__( self : str , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : int = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''torch'''] def __init__( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ['''torch'''] def __init__( self : int , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : str = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] )
352
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
319
0
def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" for n in range(1 , 100_0000 ): yield n * (n + 1) // 2 def UpperCamelCase ( __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = 1 lowercase__ = 2 while i * i <= n: lowercase__ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def UpperCamelCase ( ) -> Tuple: """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(__magic_name__ ) > 500 ) if __name__ == "__main__": print(solution())
305
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Dict: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCamelCase__ = (l + r) // 2 if v[m] >= key: UpperCamelCase__ = m else: UpperCamelCase__ = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 UpperCamelCase__ = [0] * len(_UpperCamelCase ) UpperCamelCase__ = 1 UpperCamelCase__ = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: UpperCamelCase__ = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ = v[i] length += 1 else: UpperCamelCase__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
31
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Optional[int] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class _UpperCamelCase ( A_ ): '''simple docstring''' __UpperCAmelCase : str ="""markuplm""" def __init__( self , __a=3_05_22 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=2 , __a=0.0_2 , __a=1e-1_2 , __a=0 , __a=0 , __a=2 , __a=2_56 , __a=10_24 , __a=2_16 , __a=10_01 , __a=32 , __a=50 , __a="absolute" , __a=True , __a=None , **__a , ): super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout # additional properties __lowerCAmelCase = max_depth __lowerCAmelCase = max_xpath_tag_unit_embeddings __lowerCAmelCase = max_xpath_subs_unit_embeddings __lowerCAmelCase = tag_pad_id __lowerCAmelCase = subs_pad_id __lowerCAmelCase = xpath_unit_hidden_size
57
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCAmelCase__ = 'tiny-wmt19-en-ru' # Build # borrowed from a test UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(vocab, range(len(vocab)))) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = Path(tmpdirname) UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) UpperCAmelCase__ = FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCAmelCase__ = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCAmelCase__ = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test UpperCAmelCase__ = tokenizer(['Making tiny model'], return_tensors='pt') UpperCAmelCase__ = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
288
0
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency snake_case_ = { '''E''': 12.70, '''T''': 9.06, '''A''': 8.17, '''O''': 7.51, '''I''': 6.97, '''N''': 6.75, '''S''': 6.33, '''H''': 6.09, '''R''': 5.99, '''D''': 4.25, '''L''': 4.03, '''C''': 2.78, '''U''': 2.76, '''M''': 2.41, '''W''': 2.36, '''F''': 2.23, '''G''': 2.02, '''Y''': 1.97, '''P''': 1.93, '''B''': 1.29, '''V''': 0.98, '''K''': 0.77, '''J''': 0.15, '''X''': 0.15, '''Q''': 0.10, '''Z''': 0.07, } snake_case_ = '''ETAOINSHRDLCUMWFGYPBVKJXQZ''' snake_case_ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def snake_case__ ( SCREAMING_SNAKE_CASE_ : tuple ): '''simple docstring''' return x[0] def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : str = get_letter_count(SCREAMING_SNAKE_CASE_ ) lowercase__ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(SCREAMING_SNAKE_CASE_ ) lowercase__ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=SCREAMING_SNAKE_CASE_ ) lowercase__ : str = ''.join(freq_to_letter[freq] ) lowercase__ : Tuple = list(freq_to_letter_str.items() ) freq_pairs.sort(key=SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ) lowercase__ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : List[str] = get_frequency_order(SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[int] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
360
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } snake_case_ = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } snake_case_ = '''</w>''' snake_case_ = '''@@ ''' def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[Any] = set() lowercase__ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : Optional[int] = char return pairs # Speech2Text2 has no max input length snake_case_ = {'''facebook/s2t-wav2vec2-large-en-de''': 1_024} class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : List[str] = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , a , a="<s>" , a="<pad>" , a="</s>" , a="<unk>" , a=False , a=None , **a , ): super().__init__( unk_token=a , bos_token=a , eos_token=a , pad_token=a , do_lower_case=a , **a , ) lowercase__ : str = do_lower_case with open(a , encoding='utf-8') as vocab_handle: lowercase__ : Tuple = json.load(a) lowercase__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""") lowercase__ : int = None lowercase__ : List[Any] = None else: with open(a , encoding='utf-8') as merges_handle: lowercase__ : List[Any] = merges_handle.read().split('\n')[:-1] lowercase__ : Optional[int] = [tuple(merge.split()[:2]) for merge in merges] lowercase__ : Tuple = dict(zip(a , range(len(a)))) lowercase__ : List[str] = {} @property def snake_case_ ( self): return len(self.decoder) def snake_case_ ( self): return dict(self.encoder , **self.added_tokens_encoder) def snake_case_ ( self , a): lowercase__ : int = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowercase__ : Any = get_pairs(a) if not pairs: return token while True: lowercase__ : List[str] = min(a , key=lambda a: self.bpe_ranks.get(a , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : Dict = bigram lowercase__ : Union[str, Any] = [] lowercase__ : int = 0 while i < len(a): try: lowercase__ : Dict = word.index(a , a) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) lowercase__ : Optional[int] = j if word[i] == first and i < len(a) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ : str = tuple(a) lowercase__ : Union[str, Any] = new_word if len(a) == 1: break else: lowercase__ : Optional[Any] = get_pairs(a) lowercase__ : List[str] = ' '.join(a) if word == "\n " + BPE_TOKEN_MERGES: lowercase__ : Optional[int] = '\n' + BPE_TOKEN_MERGES if word.endswith(a): lowercase__ : Dict = word.replace(a , '') lowercase__ : int = word.replace(' ' , a) lowercase__ : List[str] = word return word def snake_case_ ( self , a): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.') if self.do_lower_case: lowercase__ : int = text.lower() lowercase__ : Optional[int] = text.split() lowercase__ : Optional[int] = [] for token in text: if token: split_tokens.extend(list(self.bpe(a).split(' '))) return split_tokens def snake_case_ ( self , a): return self.encoder.get(a , self.encoder.get(self.unk_token)) def snake_case_ ( self , a): lowercase__ : Union[str, Any] = self.decoder.get(a , self.unk_token) return result def snake_case_ ( self , a): lowercase__ : Union[str, Any] = ' '.join(a) # make sure @@ tokens are concatenated lowercase__ : Optional[int] = ''.join(string.split(a)) return string def snake_case_ ( self , a , a = None): if not os.path.isdir(a): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return lowercase__ : Optional[Any] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ : List[Any] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(a , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a) + '\n') lowercase__ : Optional[Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(a , 'w' , encoding='utf-8') as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a: kv[1]): if index != token_index: logger.warning( f"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!') lowercase__ : Dict = token_index writer.write(' '.join(a) + '\n') index += 1 return (vocab_file, merges_file)
216
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case_ : Union[str, Any] = TypeVar("T") class __snake_case ( Generic[T] ): UpperCAmelCase__ : deque[T] # Cache store of keys UpperCAmelCase__ : set[T] # References of the keys in cache UpperCAmelCase__ : int = 1_0 # Maximum capacity of cache def __init__( self : Optional[int] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = deque() UpperCAmelCase_ = set() if not n: UpperCAmelCase_ = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''') else: UpperCAmelCase_ = n def lowerCamelCase ( self : int , _snake_case : T): """simple docstring""" if x not in self.key_reference: if len(self.dq_store) == LRUCache._MAX_CAPACITY: UpperCAmelCase_ = self.dq_store.pop() self.key_reference.remove(_snake_case) else: self.dq_store.remove(_snake_case) self.dq_store.appendleft(_snake_case) self.key_reference.add(_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" for k in self.dq_store: print(_snake_case) def __repr__( self : Optional[Any]): """simple docstring""" return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store)}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
51
"""simple docstring""" import math import random def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = False ): '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value a__ : Tuple = 0.02 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(lowerCAmelCase_ ): # Forward propagation __SCREAMING_SNAKE_CASE = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __SCREAMING_SNAKE_CASE = (expected / 100) - layer_a # Error delta __SCREAMING_SNAKE_CASE = layer_1_error * sigmoid_function(lowerCAmelCase_ , lowerCAmelCase_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() a__ : List[str] = int(input('''Expected value: ''')) a__ : str = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
54
0
def A_ ( _lowerCAmelCase ) -> float: return 10 - x * x def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) UpperCamelCase : Union[str, Any] = a while (b - a) >= 0.01: # Find middle point UpperCamelCase : List[Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: UpperCamelCase : int = c else: UpperCamelCase : List[Any] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
140
from scipy.stats import spearmanr import datasets __lowerCamelCase : List[str] = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ __lowerCamelCase : List[Any] = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ __lowerCamelCase : Optional[int] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def __UpperCamelCase( self , A_ , A_ , A_=False ): '''simple docstring''' UpperCamelCase : Tuple = spearmanr(A_ , A_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
140
1
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase__ = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } lowerCAmelCase__ = '''▁''' class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self : Any ,lowercase__ : Any ,lowercase__ : Tuple="</s>" ,lowercase__ : Union[str, Any]="<unk>" ,lowercase__ : Union[str, Any]="<pad>" ,lowercase__ : int=1_0_0 ,lowercase__ : List[Any]=None ,lowercase__ : Optional[Dict[str, Any]] = None ,lowercase__ : int=True ,**lowercase__ : int ,): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowercase = [F"<extra_id_{i}>" for i in range(lowercase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __lowercase = len(set(filter(lambda lowercase__ : bool('''extra_id''' in str(lowercase__ ) ) ,lowercase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( F"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to" ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) __lowercase = legacy __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase__ ,unk_token=lowercase__ ,pad_token=lowercase__ ,extra_ids=lowercase__ ,additional_special_tokens=lowercase__ ,sp_model_kwargs=self.sp_model_kwargs ,legacy=lowercase__ ,**lowercase__ ,) __lowercase = vocab_file __lowercase = extra_ids __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : Dict ,lowercase__ : Optional[Any] ,lowercase__ : Any ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __lowercase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F" {pretrained_model_name_or_path} automatically truncating your input to" F" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" F" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' ,lowercase__ ,) return max_model_length @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ,lowercase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ ,token_ids_a=lowercase__ ,already_has_special_tokens=lowercase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowercase__ )) + [1] return ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] def SCREAMING_SNAKE_CASE ( self : List[str] ): return list( set(filter(lambda lowercase__ : bool(re.search(r'''<extra_id_\d+>''' ,lowercase__ ) ) is not None ,self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE ( self : int ): return [self._convert_token_to_id(lowercase__ ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[int] ): if len(lowercase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = self._add_eos_if_not_present(lowercase__ ) if token_ids_a is None: return token_ids_a else: __lowercase = self._add_eos_if_not_present(lowercase__ ) return token_ids_a + token_ids_a def __getstate__( self : Optional[Any] ): __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : Optional[int] ,lowercase__ : int ): __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : "TextInput" ,**lowercase__ : Optional[int] ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: __lowercase = SPIECE_UNDERLINE + text.replace(lowercase__ ,''' ''' ) return super().tokenize(lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Optional[int] ,**lowercase__ : Any ): if not self.legacy: __lowercase = text.startswith(lowercase__ ) if is_first: __lowercase = text[1:] __lowercase = self.sp_model.encode(lowercase__ ,out_type=lowercase__ ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(lowercase__ ): __lowercase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Dict ): if token.startswith('''<extra_id_''' ): __lowercase = re.match(r'''<extra_id_(\d+)>''' ,lowercase__ ) __lowercase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[Any] ): if index < self.sp_model.get_piece_size(): __lowercase = self.sp_model.IdToPiece(lowercase__ ) else: __lowercase = F"<extra_id_{self.vocab_size - 1 - index}>" return token def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): __lowercase = [] __lowercase = '''''' __lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__ ) + token __lowercase = True __lowercase = [] else: current_sub_tokens.append(lowercase__ ) __lowercase = False out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( lowercase__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
104
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : Optional[torch.FloatTensor] = None class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = 2 @register_to_config def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1_00 , SCREAMING_SNAKE_CASE_ : float = 1.007 , SCREAMING_SNAKE_CASE_ : float = 80 , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 50 , ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = sigma_max # setable values A: int = None A: np.IntTensor = None A: torch.FloatTensor = None # sigma(t_i) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Optional[Any]: '''simple docstring''' A: List[Any] = num_inference_steps A: List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy() A: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) A: str = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] A: Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A: str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: A: List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) A: Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device ) A: Optional[Any] = sigma + gamma * sigma A: List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: Union[str, Any] = sample_hat + sigma_hat * model_output A: str = (sample_hat - pred_original_sample) / sigma_hat A: Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: int = sample_prev + sigma_prev * model_output A: List[Any] = (sample_prev - pred_original_sample) / sigma_prev A: Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict: '''simple docstring''' raise NotImplementedError()
319
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase__ = TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Any , a_ : Any , a_ : Any ): lowerCAmelCase_ : str = None lowerCAmelCase_ : Optional[int] = len(_a ) lowerCAmelCase_ : Optional[Any] = [any_type for _ in range(self.N )] + arr lowerCAmelCase_ : Optional[int] = fnc self.build() def lowerCamelCase ( self : Tuple ): for p in range(self.N - 1 , 0 , -1 ): lowerCAmelCase_ : Optional[int] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCamelCase ( self : int , a_ : Optional[Any] , a_ : Optional[int] ): p += self.N lowerCAmelCase_ : int = v while p > 1: lowerCAmelCase_ : Tuple = p // 2 lowerCAmelCase_ : Dict = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCamelCase ( self : Optional[int] , a_ : List[str] , a_ : List[Any] ): # noqa: E741 lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = l + self.N, r + self.N lowerCAmelCase_ : List[str] = None while l <= r: if l % 2 == 1: lowerCAmelCase_ : int = self.st[l] if res is None else self.fn(_a , self.st[l] ) if r % 2 == 0: lowerCAmelCase_ : List[str] = self.st[r] if res is None else self.fn(_a , self.st[r] ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase__ = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] lowercase__ = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } lowercase__ = SegmentTree(test_array, min) lowercase__ = SegmentTree(test_array, max) lowercase__ = SegmentTree(test_array, lambda a, b: a + b) def __lowerCamelCase ( ) -> Any: """simple docstring""" for i in range(len(__a ) ): for j in range(__a , len(__a ) ): lowerCAmelCase_ : List[str] = reduce(__a , test_array[i : j + 1] ) lowerCAmelCase_ : Union[str, Any] = reduce(__a , test_array[i : j + 1] ) lowerCAmelCase_ : Dict = reduce(lambda __UpperCamelCase , __UpperCamelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__a , __a ) assert max_range == max_segment_tree.query(__a , __a ) assert sum_range == sum_segment_tree.query(__a , __a ) test_all_segments() for index, value in test_updates.items(): lowercase__ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
350
"""simple docstring""" import qiskit def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> qiskit.result.counts.Counts: """simple docstring""" lowerCAmelCase_ : int = qiskit.Aer.get_backend("aer_simulator" ) lowerCAmelCase_ : List[Any] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCAmelCase_ : Tuple = qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": lowercase__ = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
161
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: int = ["speech"] def __init__( self : str , *A : Any , **A : Any ): requires_backends(self , ["speech"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[Any] = ["speech"] def __init__( self : str , *A : Union[str, Any] , **A : str ): requires_backends(self , ["speech"] )
31
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __SCREAMING_SNAKE_CASE : Optional[int] = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
31
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = 42 class lowercase_ ( lowercase , lowercase ): '''simple docstring''' __snake_case = True @register_to_config def __init__( self : Any , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 3 , __UpperCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , __UpperCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , __UpperCAmelCase : Tuple[int] = (64,) , __UpperCAmelCase : int = 1 , __UpperCAmelCase : str = "silu" , __UpperCAmelCase : int = 4 , __UpperCAmelCase : int = 32 , __UpperCAmelCase : int = 32 , __UpperCAmelCase : float = 0.18215 , ) ->Any: """simple docstring""" super().__init__() # pass init params to Encoder a = Encoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , down_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , double_z=__UpperCAmelCase , ) # pass init params to Decoder a = Decoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , up_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , act_fn=__UpperCAmelCase , ) a = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) a = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) a = False a = False # only relevant if vae tiling is enabled a = self.config.sample_size a = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) a = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) a = 0.25 def __lowerCAmelCase ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any]=False ) ->Union[str, Any]: """simple docstring""" if isinstance(__UpperCAmelCase , (Encoder, Decoder) ): a = value def __lowerCAmelCase ( self : int , __UpperCAmelCase : bool = True ) ->Union[str, Any]: """simple docstring""" a = use_tiling def __lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" self.enable_tiling(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" a = True def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" a = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCAmelCase ( self : Union[str, Any] ) ->Dict[str, AttentionProcessor]: """simple docstring""" a = {} def fn_recursive_add_processors(__UpperCAmelCase : str , __UpperCAmelCase : torch.nn.Module , __UpperCAmelCase : Dict[str, AttentionProcessor] ): if hasattr(__UpperCAmelCase , '''set_processor''' ): a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return processors def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) ->Any: """simple docstring""" a = len(self.attn_processors.keys() ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(__UpperCAmelCase )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__UpperCAmelCase : str , __UpperCAmelCase : torch.nn.Module , __UpperCAmelCase : Dict ): if hasattr(__UpperCAmelCase , '''set_processor''' ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): module.set_processor(__UpperCAmelCase ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : bool = True ) ->AutoencoderKLOutput: """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: a = [self.encoder(__UpperCAmelCase ) for x_slice in x.split(1 )] a = torch.cat(__UpperCAmelCase ) else: a = self.encoder(__UpperCAmelCase ) a = self.quant_conv(__UpperCAmelCase ) a = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : bool = True ) ->Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) a = self.post_quant_conv(__UpperCAmelCase ) a = self.decoder(__UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) @apply_forward_hook def __lowerCAmelCase ( self : int , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : bool = True ) ->Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_slicing and z.shape[0] > 1: a = [self._decode(__UpperCAmelCase ).sample for z_slice in z.split(1 )] a = torch.cat(__UpperCAmelCase ) else: a = self._decode(__UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Any ) ->Optional[int]: """simple docstring""" a = min(a.shape[2] , b.shape[2] , __UpperCAmelCase ) for y in range(__UpperCAmelCase ): a = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = min(a.shape[3] , b.shape[3] , __UpperCAmelCase ) for x in range(__UpperCAmelCase ): a = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : bool = True ) ->AutoencoderKLOutput: """simple docstring""" a = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) a = int(self.tile_latent_min_size * self.tile_overlap_factor ) a = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. a = [] for i in range(0 , x.shape[2] , __UpperCAmelCase ): a = [] for j in range(0 , x.shape[3] , __UpperCAmelCase ): a = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] a = self.encoder(__UpperCAmelCase ) a = self.quant_conv(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) a = [] for i, row in enumerate(__UpperCAmelCase ): a = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: a = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: a = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) a = torch.cat(__UpperCAmelCase , dim=2 ) a = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : bool = True ) ->Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" a = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) a = int(self.tile_sample_min_size * self.tile_overlap_factor ) a = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. a = [] for i in range(0 , z.shape[2] , __UpperCAmelCase ): a = [] for j in range(0 , z.shape[3] , __UpperCAmelCase ): a = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] a = self.post_quant_conv(__UpperCAmelCase ) a = self.decoder(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) a = [] for i, row in enumerate(__UpperCAmelCase ): a = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: a = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: a = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) a = torch.cat(__UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[torch.Generator] = None , ) ->Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" a = sample a = self.encode(__UpperCAmelCase ).latent_dist if sample_posterior: a = posterior.sample(generator=__UpperCAmelCase ) else: a = posterior.mode() a = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
26
from math import ceil, sqrt def _a ( a :int = 1_000_000 ) -> int: a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
26
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[Any]: def merge(__UpperCAmelCase , __UpperCAmelCase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowerCAmelCase__ ) <= 1: return collection lowercase__: List[str] = len(lowerCAmelCase__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __A = input("Enter numbers separated by a comma:\n").strip() __A = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
177
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def __UpperCamelCase ( lowerCAmelCase__ : Any ): # vision encoder if "img_encoder.pos_embed" in name: __a : Any = name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: __a : str = name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: __a : int = name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: __a : Union[str, Any] = name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: __a : List[Any] = name.replace('''blocks''' , '''layers''' ) if "attn" in name and "pre_assign" not in name: __a : Tuple = name.replace('''attn''' , '''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: __a : List[Any] = name.replace('''proj''' , '''out_proj''' ) if "pre_assign_attn.attn.proj" in name: __a : Any = name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: __a : Union[str, Any] = name.replace('''norm1''' , '''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: __a : Optional[int] = name.replace('''norm2''' , '''layer_norm2''' ) if "img_encoder.norm" in name: __a : Union[str, Any] = name.replace('''img_encoder.norm''' , '''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: __a : List[Any] = name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: __a : Any = name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: __a : Any = name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''' ) if "ln_1" in name: __a : str = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: __a : Union[str, Any] = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: __a : Union[str, Any] = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: __a : Union[str, Any] = name.replace('''c_proj''' , '''fc2''' ) if "text_encoder" in name: __a : Optional[int] = name.replace('''text_encoder''' , '''text_model''' ) if "ln_final" in name: __a : str = name.replace('''ln_final''' , '''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: __a : List[str] = name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''' ) if "img_projector.linear_out." in name: __a : str = name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: __a : int = name.replace('''text_projector.linear_hidden''' , '''text_projection''' ) if "text_projector.linear_out" in name: __a : List[str] = name.replace('''text_projector.linear_out''' , '''text_projection.3''' ) return name def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ): for key in orig_state_dict.copy().keys(): __a : List[Any] = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __a : Tuple = key.split('''.''' ) __a , __a : List[Any] = int(key_split[2] ), int(key_split[4] ) __a : List[Any] = config.vision_config.hidden_size if "weight" in key: __a : int = val[:dim, :] __a : List[str] = val[dim : dim * 2, :] __a : List[Any] = val[-dim:, :] else: __a : List[str] = val[:dim] __a : int = val[dim : dim * 2] __a : Any = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __a : int = key.split('''.''' ) __a : str = int(key_split[3] ) __a : List[Any] = config.text_config.hidden_size if "weight" in key: __a : List[str] = val[:dim, :] __a : Any = val[ dim : dim * 2, : ] __a : Dict = val[-dim:, :] else: __a : List[str] = val[:dim] __a : Any = val[dim : dim * 2] __a : Any = val[-dim:] else: __a : Union[str, Any] = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __a : List[Any] = val.squeeze_() else: __a : Dict = val return orig_state_dict def __UpperCamelCase ( ): __a : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a : str = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]="groupvit-gcc-yfcc" , lowerCAmelCase__ : int=False ): __a : Union[str, Any] = GroupViTConfig() __a : int = GroupViTModel(lowerCAmelCase__ ).eval() __a : Any = torch.load(lowerCAmelCase__ , map_location='''cpu''' )['''model'''] __a : Optional[Any] = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) __a , __a : Dict = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result __a : Any = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) __a : Optional[Any] = prepare_img() __a : Optional[int] = processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''pt''' ) with torch.no_grad(): __a : Tuple = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": __a : List[str] = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __a : List[str] = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f"Model name {model_name} not supported." ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print('''Successfully saved processor and model to''' , lowerCAmelCase__ ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ , organization='''nielsr''' ) model.push_to_hub(lowerCAmelCase__ , organization='''nielsr''' ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) lowercase__ =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
216
0
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __lowercase ( lowerCamelCase : Optional[int] ): UpperCamelCase_ : Dict = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): UpperCamelCase_ : Tuple = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): UpperCamelCase_ : List[Any] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCamelCase_ : Optional[Any] = key[key.find('patch_embed' ) + len('patch_embed' )] UpperCamelCase_ : List[str] = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(lowerCamelCase )-1}" ) if "norm" in key: UpperCamelCase_ : int = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCamelCase_ : int = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] UpperCamelCase_ : int = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(lowerCamelCase )-1}" ) if "layer_norm1" in key: UpperCamelCase_ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: UpperCamelCase_ : str = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 UpperCamelCase_ : Union[str, Any] = key[key.find('block' ) + len('block' )] UpperCamelCase_ : Dict = key.replace(F"block{idx}" , F"block.{int(lowerCamelCase )-1}" ) if "attn.q" in key: UpperCamelCase_ : Optional[Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: UpperCamelCase_ : Any = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: UpperCamelCase_ : Optional[int] = key.replace('attn' , 'attention.self' ) if "fc1" in key: UpperCamelCase_ : int = key.replace('fc1' , 'dense1' ) if "fc2" in key: UpperCamelCase_ : Optional[int] = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: UpperCamelCase_ : Tuple = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: UpperCamelCase_ : Union[str, Any] = key.replace('linear_fuse.conv' , 'linear_fuse' ) UpperCamelCase_ : Tuple = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCamelCase_ : Optional[Any] = key[key.find('linear_c' ) + len('linear_c' )] UpperCamelCase_ : List[str] = key.replace(F"linear_c{idx}" , F"linear_c.{int(lowerCamelCase )-1}" ) if "bot_conv" in key: UpperCamelCase_ : Union[str, Any] = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: UpperCamelCase_ : Optional[int] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: UpperCamelCase_ : List[Any] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: UpperCamelCase_ : Tuple = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: UpperCamelCase_ : Any = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: UpperCamelCase_ : int = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: UpperCamelCase_ : Optional[Any] = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): UpperCamelCase_ : str = key.replace('module.last_layer_depth' , 'head.head' ) UpperCamelCase_ : Optional[Any] = value return new_state_dict def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCamelCase_ : Union[str, Any] = state_dict.pop(F"glpn.encoder.block.{i}.{j}.attention.self.kv.weight" ) UpperCamelCase_ : int = state_dict.pop(F"glpn.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict UpperCamelCase_ : Union[str, Any] = kv_weight[ : config.hidden_sizes[i], : ] UpperCamelCase_ : int = kv_bias[: config.hidden_sizes[i]] UpperCamelCase_ : Union[str, Any] = kv_weight[ config.hidden_sizes[i] :, : ] UpperCamelCase_ : Optional[int] = kv_bias[config.hidden_sizes[i] :] def __lowercase ( ): UpperCamelCase_ : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase_ : Optional[Any] = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : List[str] , lowerCamelCase : Dict=False , lowerCamelCase : Optional[int]=None ): UpperCamelCase_ : List[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) UpperCamelCase_ : Tuple = GLPNImageProcessor() # prepare image UpperCamelCase_ : List[Any] = prepare_img() UpperCamelCase_ : str = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict UpperCamelCase_ : Any = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) ) # rename keys UpperCamelCase_ : str = rename_keys(lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict UpperCamelCase_ : Dict = GLPNForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass UpperCamelCase_ : Optional[Any] = model(lowerCamelCase ) UpperCamelCase_ : str = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCamelCase_ : Tuple = torch.tensor( [[4.4_1_4_7, 4.0_8_7_3, 4.0_6_7_3], [3.7_8_9_0, 3.2_8_8_1, 3.1_5_2_5], [3.7_6_7_4, 3.5_4_2_3, 3.4_9_1_3]] ) elif "kitti" in model_name: UpperCamelCase_ : Any = torch.tensor( [[3.4_2_9_1, 2.7_8_6_5, 2.5_1_5_1], [3.2_8_4_1, 2.7_0_2_1, 2.3_5_0_2], [3.1_1_4_7, 2.4_6_2_5, 2.2_4_8_1]] ) else: raise ValueError(F"Unknown model name: {model_name}" ) UpperCamelCase_ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) a_ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
50
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" debug_launcher(test_script.main ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: """simple docstring""" debug_launcher(test_ops.main )
50
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
140
from queue import PriorityQueue from typing import Any import numpy as np def UpperCamelCase ( __lowercase : dict ,__lowercase : str ,__lowercase : set ,__lowercase : set ,__lowercase : dict ,__lowercase : dict ,__lowercase : PriorityQueue ,__lowercase : dict ,__lowercase : float | int ,): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue A_ : List[str] = cst_fwd.get(__lowercase ,np.inf ) A_ : Any = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ : Any = new_cost_f A_ : Optional[int] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ : str = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCamelCase ( __lowercase : str ,__lowercase : str ,__lowercase : dict ,__lowercase : dict ): '''simple docstring''' A_ : List[str] = -1 A_ : List[Any] = set() A_ : Union[str, Any] = set() A_ : int = {source: 0} A_ : List[Any] = {destination: 0} A_ : Dict = {source: None} A_ : Optional[int] = {destination: None} A_ : PriorityQueue[Any] = PriorityQueue() A_ : PriorityQueue[Any] = PriorityQueue() A_ : Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ : List[str] = queue_forward.get() visited_forward.add(__lowercase ) A_ , A_ : Union[str, Any] = queue_backward.get() visited_backward.add(__lowercase ) A_ : int = pass_and_relaxation( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,) A_ : str = pass_and_relaxation( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ : int = shortest_distance return shortest_path_distance _UpperCAmelCase = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } _UpperCAmelCase = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
140
1
import mpmath # for roots of unity import numpy as np class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None ) -> List[Any]: # Input as list __lowerCAmelCase = list(poly_a or [0] )[:] __lowerCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __lowerCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __lowerCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __lowerCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __lowerCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __lowerCAmelCase = self.__multiply() def lowercase ( self : Optional[int] , lowerCAmelCase_ : str ) -> Optional[int]: __lowerCAmelCase = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(lowerCAmelCase_ ) <= 1: return dft[0] # __lowerCAmelCase = self.c_max_length // 2 while next_ncol > 0: __lowerCAmelCase = [[] for i in range(lowerCAmelCase_ )] __lowerCAmelCase = self.root**next_ncol # First half of next step __lowerCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCAmelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __lowerCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCAmelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __lowerCAmelCase = new_dft __lowerCAmelCase = next_ncol // 2 return dft[0] def lowercase ( self : Optional[int] ) -> Any: __lowerCAmelCase = self.__dft('A' ) __lowerCAmelCase = self.__dft('B' ) __lowerCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __lowerCAmelCase = 2 while next_ncol <= self.c_max_length: __lowerCAmelCase = [[] for i in range(lowerCAmelCase_ )] __lowerCAmelCase = self.root ** (next_ncol // 2) __lowerCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __lowerCAmelCase = new_inverse_c next_ncol *= 2 # Unpack __lowerCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> int: __lowerCAmelCase = 'A = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) __lowerCAmelCase = 'B = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) __lowerCAmelCase = 'A*B = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return f"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
356
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Any ) -> Optional[int]: __lowerCAmelCase = 1_0 def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = [1, 2, 3, 4] __lowerCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Optional[Any]: __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , [] ) def lowercase ( self : Any ) -> str: __lowerCAmelCase = '' __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , [] ) self.assertEqual(lowerCAmelCase_ , [] ) def lowercase ( self : int ) -> int: __lowerCAmelCase = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) __lowerCAmelCase = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = ['It was the best of times.'] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Any: __lowerCAmelCase = torch.tensor([1, 2, 3, 4] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 0 ).numpy() , expected.numpy() ) def lowercase ( self : List[Any] ) -> Optional[int]: __lowerCAmelCase = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 2_3 ).numpy() , expected.numpy() ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 1 ).numpy() , expected.numpy() ) def lowercase ( self : Optional[Any] ) -> Optional[int]: __lowerCAmelCase = 1_0_1 __lowerCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) __lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __lowerCAmelCase = compute_token_type_ids(lowerCAmelCase_ , lowerCAmelCase_ ) np.testing.assert_array_equal(lowerCAmelCase_ , lowerCAmelCase_ )
207
0
def lowerCamelCase_ ( lowerCamelCase__ ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 lowerCamelCase_ = 1 lowerCamelCase_ = 1 while repunit: lowerCamelCase_ = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowerCamelCase_ ( lowerCamelCase__ = 1_0_0_0_0_0_0 ): lowerCamelCase_ = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(lowerCamelCase__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
19
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent a__ : Optional[Any] = {"UserAgent": UserAgent().random} def snake_case ( UpperCAmelCase )-> dict: """simple docstring""" __A = script.contents[0] __A = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCamelCase__ : def __init__( self :Optional[Any] , _A :Optional[Any] ) -> Optional[Any]: '''simple docstring''' __A = F'https://www.instagram.com/{username}/' __A = self.get_json() def lowercase_ ( self :Union[str, Any] ) -> dict: '''simple docstring''' __A = requests.get(self.url , headers=_A ).text __A = BeautifulSoup(_A , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self :Union[str, Any] ) -> str: '''simple docstring''' return F'{self.__class__.__name__}(\'{self.username}\')' def __str__( self :List[Any] ) -> str: '''simple docstring''' return F'{self.fullname} ({self.username}) is {self.biography}' @property def lowercase_ ( self :Optional[Any] ) -> str: '''simple docstring''' return self.user_data["username"] @property def lowercase_ ( self :str ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def lowercase_ ( self :Union[str, Any] ) -> str: '''simple docstring''' return self.user_data["biography"] @property def lowercase_ ( self :str ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def lowercase_ ( self :Tuple ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def lowercase_ ( self :int ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def lowercase_ ( self :List[Any] ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def lowercase_ ( self :Tuple ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase_ ( self :Tuple ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def lowercase_ ( self :Dict ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def lowercase_ ( self :Union[str, Any] ) -> bool: '''simple docstring''' return self.user_data["is_private"] def snake_case ( UpperCAmelCase = "github" )-> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions __A = InstagramUser(UpperCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() a__ : List[str] = InstagramUser("github") print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
161
0
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]: '''simple docstring''' lowercase_ = {} lowercase_ = 2 while True: lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase ) if factor: lowercase_ = factor + prime while x in factor_map: x += factor lowercase_ = factor else: lowercase_ = prime yield prime prime += 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int: '''simple docstring''' lowercase_ = sieve() lowercase_ = 1 while True: lowercase_ = next(__lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase_ = """""" else: lowercase_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[ : config.hidden_size, : ] lowercase_ = in_proj_bias[: config.hidden_size] lowercase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ = in_proj_weight[ -config.hidden_size :, : ] lowercase_ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = dct.pop(__lowerCAmelCase ) lowercase_ = val def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = ViTMSNConfig() lowercase_ = 10_00 lowercase_ = """datasets/huggingface/label-files""" lowercase_ = """imagenet-1k-id2label.json""" lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) ) lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase_ = 3_84 lowercase_ = 15_36 lowercase_ = 6 elif "l16" in checkpoint_url: lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 elif "b4" in checkpoint_url: lowercase_ = 4 elif "l7" in checkpoint_url: lowercase_ = 7 lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 lowercase_ = ViTMSNModel(__lowerCAmelCase ) lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""] lowercase_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCAmelCase ) lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) lowercase_ = ViTImageProcessor( size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**__lowerCAmelCase ) lowercase_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
def lowerCAmelCase_ ( snake_case_,snake_case_ ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) _A : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(snake_case_ ) ) return round(snake_case_,ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
26
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=False , _a=True , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Dict: _A : str = parent _A : int = batch_size _A : Optional[int] = num_channels _A : List[Any] = image_size _A : int = min_resolution _A : Optional[int] = max_resolution _A : Any = do_resize _A : List[str] = size if size is not None else {"""height""": 18, """width""": 20} _A : Optional[int] = do_thumbnail _A : str = do_align_axis _A : List[Any] = do_pad _A : Optional[Any] = do_normalize _A : Tuple = image_mean _A : List[str] = image_std def a__ ( self ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DonutImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : List[str] = DonutImageProcessingTester(self ) @property def a__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Optional[Any]: _A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) self.assertTrue(hasattr(_a , """do_thumbnail""" ) ) self.assertTrue(hasattr(_a , """do_align_long_axis""" ) ) self.assertTrue(hasattr(_a , """do_pad""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) _A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def a__ ( self ) -> Union[str, Any]: pass @is_flaky() def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def a__ ( self ) -> Dict: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : str = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
26
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ : Optional[Any] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Any = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : List[Any] = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
69
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : Tuple = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : int = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys SCREAMING_SNAKE_CASE_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
69
1
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase : def __init__( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any=2 , UpperCAmelCase : Dict=3 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : str=2 , UpperCAmelCase : int=7 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : str=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int=99 , UpperCAmelCase : List[Any]=36 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Optional[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : str=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Optional[int]=16 , UpperCAmelCase : int=2 , UpperCAmelCase : Union[str, Any]=0.0_2 , UpperCAmelCase : Optional[int]=6 , UpperCAmelCase : List[Any]=6 , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=1000 , ) -> Optional[int]: lowerCamelCase__ : Optional[int] = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : str = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : str = is_training lowerCamelCase__ : int = use_input_mask lowerCamelCase__ : Union[str, Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : Any = hidden_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads lowerCamelCase__ : Optional[Any] = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : List[Any] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : Any = type_sequence_label_size lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : Tuple = coordinate_size lowerCamelCase__ : Any = shape_size lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : List[str] = num_choices lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase__ : List[Any] = text_seq_length lowerCamelCase__ : Tuple = (image_size // patch_size) ** 2 + 1 lowerCamelCase__ : Optional[Any] = self.text_seq_length + self.image_seq_length def A_ ( self : Union[str, Any] ) -> Any: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) lowerCamelCase__ : Union[str, Any] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase__ : str = bbox[i, j, 3] lowerCamelCase__ : Union[str, Any] = bbox[i, j, 1] lowerCamelCase__ : Optional[int] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase__ : Optional[int] = bbox[i, j, 2] lowerCamelCase__ : Optional[int] = bbox[i, j, 0] lowerCamelCase__ : Any = tmp_coordinate lowerCamelCase__ : List[str] = tf.constant(UpperCAmelCase ) lowerCamelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : int = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCamelCase__ : int = None if self.use_token_type_ids: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCamelCase__ : Dict = None lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCamelCase__ : int = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def A_ ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any ) -> str: lowerCamelCase__ : List[Any] = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image lowerCamelCase__ : str = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) lowerCamelCase__ : Any = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCamelCase__ : Optional[int] = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCamelCase__ : int = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def A_ ( self : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any] ) -> Optional[int]: lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str] ) -> str: lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : Any = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) lowerCamelCase__ : Optional[int] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def A_ ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]: lowerCamelCase__ : List[Any] = 2 lowerCamelCase__ : List[str] = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) lowerCamelCase__ : Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : str ) -> Optional[Any]: lowerCamelCase__ : Tuple = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : Union[str, Any] = config_and_inputs lowerCamelCase__ : Dict = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def A_ ( self : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] ) -> str: return True def A_ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int]=False ) -> dict: lowerCamelCase__ : str = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): lowerCamelCase__ : int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): lowerCamelCase__ : List[Any] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): lowerCamelCase__ : int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) lowerCamelCase__ : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): lowerCamelCase__ : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def A_ ( self : Dict ) -> Union[str, Any]: lowerCamelCase__ : str = TFLayoutLMvaModelTester(self ) lowerCamelCase__ : int = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A_ ( self : Union[str, Any] ) -> Tuple: self.config_tester.run_common_tests() def A_ ( self : Optional[int] ) -> Tuple: lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label lowerCamelCase__ : Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) lowerCamelCase__ : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] lowerCamelCase__ : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs lowerCamelCase__ : str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) lowerCamelCase__ : Tuple = prepared_for_class.pop('input_ids' ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions lowerCamelCase__ : Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) lowerCamelCase__ : Tuple = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: lowerCamelCase__ : Tuple = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: lowerCamelCase__ : Union[str, Any] = -100 lowerCamelCase__ : List[str] = tf.convert_to_tensor(UpperCAmelCase ) lowerCamelCase__ : Tuple = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict lowerCamelCase__ : Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) lowerCamelCase__ : Any = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple lowerCamelCase__ : Dict = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function lowerCamelCase__ : Dict = prepared_for_class.keys() - inputs_dict.keys() lowerCamelCase__ : Tuple = inspect.signature(model.call ).parameters lowerCamelCase__ : str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple lowerCamelCase__ : Optional[Any] = {0: 'input_ids'} for label_key in label_keys: lowerCamelCase__ : int = signature_names.index(UpperCAmelCase ) lowerCamelCase__ : int = label_key lowerCamelCase__ : int = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple lowerCamelCase__ : Tuple = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: lowerCamelCase__ : int = prepared_for_class[value] lowerCamelCase__ : Union[str, Any] = tuple(UpperCAmelCase ) # Send to model lowerCamelCase__ : Tuple = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def A_ ( self : List[str] ) -> List[Any]: ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Any: ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A_ ( self : str ) -> List[str]: ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def A_ ( self : List[Any] ) -> List[Any]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[Any] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class lowerCAmelCase ( unittest.TestCase ): @cached_property def A_ ( self : int ) -> Tuple: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : List[Any] = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) lowerCamelCase__ : List[str] = self.default_image_processor lowerCamelCase__ : Any = prepare_img() lowerCamelCase__ : Any = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values lowerCamelCase__ : List[Any] = tf.constant([[1, 2]] ) lowerCamelCase__ : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass lowerCamelCase__ : Optional[int] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits lowerCamelCase__ : str = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) lowerCamelCase__ : List[str] = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
50
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 def __init__( self : int , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[str]=False , UpperCAmelCase : bool = False , ) -> List[str]: lowerCamelCase__ : int = hans_processors[task]() lowerCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) lowerCamelCase__ : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = label_list[2], label_list[1] lowerCamelCase__ : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : str = cached_features_file + '.lock' with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowerCamelCase__ : int = torch.load(UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowerCamelCase__ : str = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info('Training examples: %s' , len(UpperCAmelCase ) ) lowerCamelCase__ : Dict = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info('Saving features into cached file %s' , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase : Dict ) -> InputFeatures: return self.features[i] def A_ ( self : int ) -> int: return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase : UpperCAmelCase__ = 42 def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 128 , UpperCAmelCase : Any=False , UpperCAmelCase : bool = False , ) -> Union[str, Any]: lowerCamelCase__ : Any = hans_processors[task]() lowerCamelCase__ : Optional[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : str = label_list[2], label_list[1] lowerCamelCase__ : Optional[int] = label_list lowerCamelCase__ : int = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase__ : Optional[int] = tf.data.Dataset.from_generator( UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A_ ( self : Any ) -> Any: return self.dataset def __len__( self : Tuple ) -> int: return len(self.features ) def __getitem__( self : List[str] , UpperCAmelCase : Any ) -> InputFeatures: return self.features[i] def A_ ( self : Dict ) -> str: return self.label_list class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : int , UpperCAmelCase : List[Any] ) -> int: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def A_ ( self : Any , UpperCAmelCase : int ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def A_ ( self : Any ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> List[str]: lowerCamelCase__ : List[str] = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue lowerCamelCase__ : Tuple = '%s-%s' % (set_type, line[0]) lowerCamelCase__ : str = line[5] lowerCamelCase__ : Dict = line[6] lowerCamelCase__ : int = line[7][2:] if line[7].startswith('ex' ) else line[7] lowerCamelCase__ : Dict = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[int]: lowerCamelCase__ : int = {label: i for i, label in enumerate(_UpperCAmelCase )} lowerCamelCase__ : List[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc='convert examples to features' ): if ex_index % 1_0000 == 0: logger.info('Writing example %d' % (ex_index) ) lowerCamelCase__ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) lowerCamelCase__ : List[str] = label_map[example.label] if example.label in label_map else 0 lowerCamelCase__ : Optional[int] = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features _UpperCAmelCase : str = { """hans""": 3, } _UpperCAmelCase : List[Any] = { """hans""": HansProcessor, }
50
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = """▁""" _UpperCAmelCase = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } _UpperCAmelCase = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } _UpperCAmelCase = { """facebook/m2m100_418M""": 1024, } # fmt: off _UpperCAmelCase = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] lowerCamelCase_ = [] lowerCamelCase_ = [] def __init__( self , lowercase , lowercase , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<pad>" , lowercase="<unk>" , lowercase="m2m100" , lowercase = None , lowercase=8 , **lowercase , ): """simple docstring""" A_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs A_ : List[Any] = language_codes A_ : int = FAIRSEQ_LANGUAGE_CODES[language_codes] A_ : Union[str, Any] = {lang_code: F'''__{lang_code}__''' for lang_code in fairseq_language_code} A_ : str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase , tgt_lang=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , unk_token=lowercase , pad_token=lowercase , language_codes=lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=lowercase , **lowercase , ) A_ : str = vocab_file A_ : Tuple = load_json(lowercase ) A_ : Dict = {v: k for k, v in self.encoder.items()} A_ : Tuple = spm_file A_ : Optional[int] = load_spm(lowercase , self.sp_model_kwargs ) A_ : Union[str, Any] = len(self.encoder ) A_ : List[str] = { self.get_lang_token(lowercase ): self.encoder_size + i for i, lang_code in enumerate(lowercase ) } A_ : Dict = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowercase )} A_ : List[Any] = {v: k for k, v in self.lang_token_to_id.items()} A_ : Any = src_lang if src_lang is not None else 'en' A_ : Any = tgt_lang A_ : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) A_ : int = num_madeup_words @property def lowerCAmelCase_ ( self ): """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.sp_model.encode(lowercase , out_type=lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowercase , self.encoder[self.unk_token] ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowercase , self.unk_token ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[int] = [] A_ : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token A_ : str = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) A_ : List[Any] = [1] * len(self.prefix_tokens ) A_ : Optional[int] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase )) + suffix_ones return prefix_ones + ([0] * len(lowercase )) + ([0] * len(lowercase )) + suffix_ones def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" A_ : Union[str, Any] = self.__dict__.copy() A_ : List[str] = None return state def __setstate__( self , lowercase ): """simple docstring""" A_ : Tuple = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): A_ : List[Any] = {} A_ : List[str] = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Optional[Any] = Path(lowercase ) if not save_dir.is_dir(): raise OSError(F'''{save_directory} should be a directory''' ) A_ : str = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) A_ : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowercase ) elif not os.path.isfile(self.spm_file ): with open(lowercase , 'wb' ) as fi: A_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (str(lowercase ), str(lowercase )) def lowerCAmelCase_ ( self , lowercase , lowercase = "en" , lowercase = None , lowercase = "ro" , **lowercase , ): """simple docstring""" A_ : Tuple = src_lang A_ : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) A_ : Optional[Any] = src_lang A_ : List[str] = self(lowercase , add_special_tokens=lowercase , **lowercase ) A_ : Tuple = self.get_lang_id(lowercase ) A_ : Dict = tgt_lang_id return inputs def lowerCAmelCase_ ( self ): """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase_ ( self ): """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : List[str] = self.get_lang_token(lowercase ) A_ : Optional[Any] = self.lang_token_to_id[lang_token] A_ : List[Any] = [self.cur_lang_id] A_ : Union[str, Any] = [self.eos_token_id] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : List[Any] = self.get_lang_token(lowercase ) A_ : str = self.lang_token_to_id[lang_token] A_ : Union[str, Any] = [self.cur_lang_id] A_ : Optional[int] = [self.eos_token_id] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.lang_code_to_token[lang] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : List[Any] = self.get_lang_token(lowercase ) return self.lang_token_to_id[lang_token] def UpperCamelCase ( __lowercase : str ,__lowercase : Dict[str, Any] ): '''simple docstring''' A_ : int = sentencepiece.SentencePieceProcessor(**__lowercase ) spm.Load(str(__lowercase ) ) return spm def UpperCamelCase ( __lowercase : str ): '''simple docstring''' with open(__lowercase ,'r' ) as f: return json.load(__lowercase ) def UpperCamelCase ( __lowercase : Dict ,__lowercase : str ): '''simple docstring''' with open(__lowercase ,'w' ) as f: json.dump(__lowercase ,__lowercase ,indent=2 )
192
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _UpperCAmelCase = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": _UpperCAmelCase = """hopper-medium-v2""" _UpperCAmelCase = gym.make(env_name) _UpperCAmelCase = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) _UpperCAmelCase = env.reset() _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1000 _UpperCAmelCase = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _UpperCAmelCase = pipeline(obs, planning_horizon=32) # execute action in environment _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = env.step(denorm_actions) _UpperCAmelCase = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" F""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) _UpperCAmelCase = next_observation except KeyboardInterrupt: pass print(F"""Total reward: {total_reward}""")
192
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowercase: Tuple = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def a( A : Dict , A : str , A : Any = 1_6000 ) -> List[str]: """simple docstring""" a = int(round(sample_rate * max_length ) ) if len(lowerCamelCase_ ) <= sample_length: return wav a = randint(0 , len(lowerCamelCase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _lowercase : """simple docstring""" __A = field(default=A__, metadata={"help": "Name of a dataset from the datasets package"} ) __A = field( default=A__, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __A = field( default=A__, metadata={"help": "A file containing the training audio paths and labels."} ) __A = field( default=A__, metadata={"help": "A file containing the validation audio paths and labels."} ) __A = field( default="train", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) __A = field( default="validation", metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) }, ) __A = field( default="audio", metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, ) __A = field( default="label", metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) __A = field( default=A__, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) __A = field( default=A__, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) __A = field( default=20, metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."}, ) @dataclass class _lowercase : """simple docstring""" __A = field( default="facebook/wav2vec2-base", metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, ) __A = field( default=A__, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __A = field( default=A__, metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) __A = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) __A = field( default=A__, metadata={"help": "Name or path of preprocessor config."} ) __A = field( default=A__, metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) __A = field( default=A__, metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) __A = field( default=A__, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) __A = field( default=A__, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __A = field( default=A__, metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, ) def UpperCamelCase_ (self ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`." , lowerCamelCase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def a( ) -> str: """simple docstring""" a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a , a , a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a , a , a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , lowerCamelCase_ , lowerCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a = training_args.get_process_log_level() logger.setLevel(lowerCamelCase_ ) transformers.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. a = DatasetDict() a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' "Make sure to set `--audio_column_name` to the correct audio column - one of " f'''{', '.join(raw_datasets['train'].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' "Make sure to set `--label_column_name` to the correct text column - one of " f'''{', '.join(raw_datasets['train'].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy a = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. a = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) a = feature_extractor.model_input_names[0] def train_transforms(A : List[Any] ): a = [] for audio in batch[data_args.audio_column_name]: a = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowerCamelCase_ ) a = feature_extractor(lowerCamelCase_ , sampling_rate=feature_extractor.sampling_rate ) a = {model_input_name: inputs.get(lowerCamelCase_ )} a = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(A : Optional[int] ): a = [audio["array"] for audio in batch[data_args.audio_column_name]] a = feature_extractor(lowerCamelCase_ , sampling_rate=feature_extractor.sampling_rate ) a = {model_input_name: inputs.get(lowerCamelCase_ )} a = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. a = raw_datasets["train"].features[data_args.label_column_name].names a , a = {}, {} for i, label in enumerate(lowerCamelCase_ ): a = str(lowerCamelCase_ ) a = label # Load the accuracy metric from the datasets package a = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(A : Union[str, Any] ): a = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowerCamelCase_ , references=eval_pred.label_ids ) a = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCamelCase_ ) , labelaid=lowerCamelCase_ , idalabel=lowerCamelCase_ , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: a = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowerCamelCase_ , output_all_columns=lowerCamelCase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: a = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowerCamelCase_ , output_all_columns=lowerCamelCase_ ) # Initialize our trainer a = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=lowerCamelCase_ , tokenizer=lowerCamelCase_ , ) # Training if training_args.do_train: a = None if training_args.resume_from_checkpoint is not None: a = training_args.resume_from_checkpoint elif last_checkpoint is not None: a = last_checkpoint a = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: a = trainer.evaluate() trainer.log_metrics("eval" , lowerCamelCase_ ) trainer.save_metrics("eval" , lowerCamelCase_ ) # Write model card and (optionally) push to hub a = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase_ ) else: trainer.create_model_card(**lowerCamelCase_ ) if __name__ == "__main__": main()
227
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] lowercase__ = [] lowercase__ = [] for rt in rc.restypes: lowercase__ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowercase__ = {name: i for i, name in enumerate(lowerCamelCase_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) lowercase__ = torch.tensor( lowerCamelCase_ , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase__ = torch.tensor( lowerCamelCase_ , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase__ = torch.tensor( lowerCamelCase_ , dtype=torch.floataa , device=protein['''aatype'''].device , ) lowercase__ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase__ = restype_atomaa_to_atomaa[protein_aatype] lowercase__ = restype_atomaa_mask[protein_aatype] lowercase__ = residx_atomaa_mask lowercase__ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase__ = restype_atomaa_to_atomaa[protein_aatype] lowercase__ = residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase__ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): lowercase__ = rc.restype_atoa[restype_letter] lowercase__ = rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase__ = rc.atom_order[atom_name] lowercase__ = 1 lowercase__ = restype_atomaa_mask[protein_aatype] lowercase__ = residx_atomaa_mask return protein def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = tree_map(lambda lowerCamelCase_ : torch.tensor(lowerCamelCase_ , device=batch['''aatype'''].device ) , lowerCamelCase_ , np.ndarray ) lowercase__ = tensor_tree_map(lambda lowerCamelCase_ : np.array(lowerCamelCase_ ) , make_atomaa_masks(lowerCamelCase_ ) ) return out
207
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _A = logging.get_logger(__name__) @add_end_docstrings(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , **A_ ) -> Optional[int]: super().__init__(**A_ ) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , 'vision' ) self.check_model_type(A_ ) def __call__( self , A_ , A_ = None , **A_ , ) -> int: if "text_queries" in kwargs: __UpperCamelCase =kwargs.pop('text_queries' ) if isinstance(A_ , (str, Image.Image) ): __UpperCamelCase ={'image': image, 'candidate_labels': candidate_labels} else: __UpperCamelCase =image __UpperCamelCase =super().__call__(A_ , **A_ ) return results def _a ( self , **A_ ) -> int: __UpperCamelCase ={} if "threshold" in kwargs: __UpperCamelCase =kwargs['threshold'] if "top_k" in kwargs: __UpperCamelCase =kwargs['top_k'] return {}, {}, postprocess_params def _a ( self , A_ ) -> Tuple: __UpperCamelCase =load_image(inputs['image'] ) __UpperCamelCase =inputs['candidate_labels'] if isinstance(A_ , A_ ): __UpperCamelCase =candidate_labels.split(',' ) __UpperCamelCase =torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(A_ ): __UpperCamelCase =self.tokenizer(A_ , return_tensors=self.framework ) __UpperCamelCase =self.image_processor(A_ , return_tensors=self.framework ) yield { "is_last": i == len(A_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _a ( self , A_ ) -> Optional[Any]: __UpperCamelCase =model_inputs.pop('target_size' ) __UpperCamelCase =model_inputs.pop('candidate_label' ) __UpperCamelCase =model_inputs.pop('is_last' ) __UpperCamelCase =self.model(**A_ ) __UpperCamelCase ={'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def _a ( self , A_ , A_=0.1 , A_=None ) -> Dict: __UpperCamelCase =[] for model_output in model_outputs: __UpperCamelCase =model_output['candidate_label'] __UpperCamelCase =BaseModelOutput(A_ ) __UpperCamelCase =self.image_processor.post_process_object_detection( outputs=A_ , threshold=A_ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): __UpperCamelCase =outputs['scores'][index].item() __UpperCamelCase =self._get_bounding_box(outputs['boxes'][index][0] ) __UpperCamelCase ={'score': score, 'label': label, 'box': box} results.append(A_ ) __UpperCamelCase =sorted(A_ , key=lambda A_ : x["score"] , reverse=A_ ) if top_k: __UpperCamelCase =results[:top_k] return results def _a ( self , A_ ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =box.int().tolist() __UpperCamelCase ={ 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
369
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Features ): __UpperCamelCase =np.inf def set_batch_size(SCREAMING_SNAKE_CASE__ : FeatureType ) -> None: nonlocal batch_size if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and feature.dtype == "binary": __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return None if batch_size is np.inf else batch_size class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ = None , A_ = None , A_ = None , A_ = False , A_ = False , A_ = None , **A_ , ) -> Dict: super().__init__( A_ , split=A_ , features=A_ , cache_dir=A_ , keep_in_memory=A_ , streaming=A_ , num_proc=A_ , **A_ , ) __UpperCamelCase =path_or_paths if isinstance(A_ , A_ ) else {self.split: path_or_paths} __UpperCamelCase =_PACKAGED_DATASETS_MODULES['parquet'][1] __UpperCamelCase =Parquet( cache_dir=A_ , data_files=A_ , features=A_ , hash=A_ , **A_ , ) def _a ( self ) -> List[Any]: # Build iterable dataset if self.streaming: __UpperCamelCase =self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None self.builder.download_and_prepare( download_config=A_ , download_mode=A_ , verification_mode=A_ , base_path=A_ , num_proc=self.num_proc , ) __UpperCamelCase =self.builder.as_dataset( split=self.split , verification_mode=A_ , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ = None , **A_ , ) -> List[Any]: __UpperCamelCase =dataset __UpperCamelCase =path_or_buf __UpperCamelCase =batch_size or get_writer_batch_size(dataset.features ) __UpperCamelCase =parquet_writer_kwargs def _a ( self ) -> int: __UpperCamelCase =self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __UpperCamelCase =self._write(file_obj=A_ , batch_size=A_ , **self.parquet_writer_kwargs ) else: __UpperCamelCase =self._write(file_obj=self.path_or_buf , batch_size=A_ , **self.parquet_writer_kwargs ) return written def _a ( self , A_ , A_ , **A_ ) -> int: __UpperCamelCase =0 __UpperCamelCase =parquet_writer_kwargs.pop('path_or_buf' , A_ ) __UpperCamelCase =self.dataset.features.arrow_schema __UpperCamelCase =pq.ParquetWriter(A_ , schema=A_ , **A_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , A_ ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __UpperCamelCase =query_table( table=self.dataset._data , key=slice(A_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(A_ ) written += batch.nbytes writer.close() return written
117
0
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase : '''simple docstring''' @staticmethod def _lowerCAmelCase( *__lowerCAmelCase , **__lowerCAmelCase ) -> str: pass @is_pipeline_test @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def _lowerCAmelCase( self ) -> Any: lowercase__ : Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowercase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Any = image_classifier(_lowerCamelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_lowerCamelCase ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowercase__ : Optional[int] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], ] , ) @require_tf def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : List[str] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowercase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : int = image_classifier(_lowerCamelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowercase__ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, {'''score''': 0.3_3_3, '''label''': ANY(_lowerCamelCase )}, ], ] , ) @slow @require_torch def _lowerCAmelCase( self ) -> Dict: lowercase__ : Any = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowercase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Optional[Any] = image_classifier(_lowerCamelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowercase__ : int = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Optional[int] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowercase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : List[Any] = image_classifier(_lowerCamelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowercase__ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
198
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __snake_case : Dict =logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def __init__(self ,**__lowerCamelCase ) -> Tuple: """simple docstring""" super().__init__(**_lowerCAmelCase ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__(self ,__lowerCamelCase ,**__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return super().__call__(_lowerCAmelCase ,**_lowerCAmelCase ) def lowerCAmelCase__ (self ,**__lowerCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = {} if "candidate_labels" in kwargs: lowerCAmelCase__ : Optional[int] = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowerCAmelCase__ : Union[str, Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=None ,__lowerCamelCase="This is a photo of {}." ) -> Dict: """simple docstring""" lowerCAmelCase__ : Optional[Any] = load_image(_lowerCAmelCase ) lowerCAmelCase__ : Any = self.image_processor(images=[image] ,return_tensors=self.framework ) lowerCAmelCase__ : Optional[int] = candidate_labels lowerCAmelCase__ : Optional[int] = [hypothesis_template.format(_lowerCAmelCase ) for x in candidate_labels] lowerCAmelCase__ : int = self.tokenizer(_lowerCAmelCase ,return_tensors=self.framework ,padding=_lowerCAmelCase ) lowerCAmelCase__ : Optional[int] = [text_inputs] return inputs def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Tuple = model_inputs.pop('''candidate_labels''' ) lowerCAmelCase__ : int = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_lowerCAmelCase ): lowerCAmelCase__ : Optional[Any] = text_inputs[0] else: # Batching case. lowerCAmelCase__ : Any = text_inputs[0][0] lowerCAmelCase__ : str = self.model(**_lowerCAmelCase ,**_lowerCAmelCase ) lowerCAmelCase__ : Any = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = model_outputs.pop('''candidate_labels''' ) lowerCAmelCase__ : Union[str, Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowerCAmelCase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ : Any = probs.tolist() if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCAmelCase__ : List[Any] = [scores] elif self.framework == "tf": lowerCAmelCase__ : Dict = stable_softmax(_lowerCAmelCase ,axis=-1 ) lowerCAmelCase__ : List[str] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowerCAmelCase__ : List[Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_lowerCAmelCase ,_lowerCAmelCase ) ,key=lambda __lowerCamelCase : -x[0] ) ] return result
354
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =IFInpaintingSuperResolutionPipeline snake_case_ =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} snake_case_ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""}) snake_case_ =PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" return self._get_superresolution_dummy_components() def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=0 ) -> Dict: """simple docstring""" if str(__lowerCamelCase ).startswith('''mps''' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(__lowerCamelCase ) else: lowerCAmelCase__ : int = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCAmelCase__ : str = floats_tensor((1, 3, 16, 16) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase__ : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def lowerCAmelCase__ (self ) -> int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''' ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" self._test_save_load_local() def lowerCAmelCase__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 ,)
94
0
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase ) -> list[int]: if num <= 0: snake_case_ = f'{num}: Invalid input, please enter a positive integer.' raise ValueError(UpperCAmelCase ) snake_case_ = [True] * (num + 1) snake_case_ = [] snake_case_ = 2 snake_case_ = int(math.sqrt(UpperCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(UpperCAmelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , UpperCAmelCase ): if sieve[i] is True: snake_case_ = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(UpperCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
69
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase ) -> None: create_state_space_tree(UpperCAmelCase , [] , 0 , [0 for i in range(len(UpperCAmelCase ) )] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> None: if index == len(UpperCAmelCase ): print(UpperCAmelCase ) return for i in range(len(UpperCAmelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case_ = True create_state_space_tree(UpperCAmelCase , UpperCAmelCase , index + 1 , UpperCAmelCase ) current_sequence.pop() snake_case_ = False __UpperCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) __UpperCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
69
1
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase__ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ): """simple docstring""" @register_to_config def __init__( self : Optional[Any] , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None ): """simple docstring""" super().__init__() __UpperCAmelCase : List[str] = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __UpperCAmelCase : Optional[Any] = torch.zeros(UpperCAmelCase_ , UpperCAmelCase_ ) else: __UpperCAmelCase : int = None __UpperCAmelCase : Tuple = torch.nn.Parameter(UpperCAmelCase_ ) class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def __init__( self : str , UpperCAmelCase_ : VQModel , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : TransformeraDModel , UpperCAmelCase_ : VQDiffusionScheduler , UpperCAmelCase_ : LearnedClassifierFreeSamplingEmbeddings , ): """simple docstring""" super().__init__() self.register_modules( vqvae=UpperCAmelCase_ , transformer=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Dict = len(UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else 1 # get prompt text embeddings __UpperCAmelCase : Optional[Any] = self.tokenizer( UpperCAmelCase_ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __UpperCAmelCase : str = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __UpperCAmelCase : List[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __UpperCAmelCase : int = text_input_ids[:, : self.tokenizer.model_max_length] __UpperCAmelCase : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __UpperCAmelCase : Any = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCAmelCase_ ) # duplicate text embeddings for each generation per prompt __UpperCAmelCase : str = prompt_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __UpperCAmelCase : str = self.learned_classifier_free_sampling_embeddings.embeddings __UpperCAmelCase : str = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCAmelCase_ , 1 , 1 ) else: __UpperCAmelCase : int = [""] * batch_size __UpperCAmelCase : Tuple = text_input_ids.shape[-1] __UpperCAmelCase : Tuple = self.tokenizer( UpperCAmelCase_ , padding="max_length" , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="pt" , ) __UpperCAmelCase : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __UpperCAmelCase : Any = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCAmelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase : List[str] = negative_prompt_embeds.shape[1] __UpperCAmelCase : str = negative_prompt_embeds.repeat(1 , UpperCAmelCase_ , 1 ) __UpperCAmelCase : List[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCAmelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCAmelCase : List[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : List[Any] , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , ): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : int = 1 elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : Any = len(UpperCAmelCase_ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase_ )}" ) __UpperCAmelCase : Union[str, Any] = batch_size * num_images_per_prompt __UpperCAmelCase : str = guidance_scale > 1.0 __UpperCAmelCase : Optional[int] = self._encode_prompt(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(UpperCAmelCase_ )}." ) # get the initial completely masked latents unless the user supplied it __UpperCAmelCase : str = (batch_size, self.transformer.num_latent_pixels) if latents is None: __UpperCAmelCase : List[Any] = self.transformer.num_vector_embeds - 1 __UpperCAmelCase : int = torch.full(UpperCAmelCase_ , UpperCAmelCase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," f" {self.transformer.num_vector_embeds - 1} (inclusive)." ) __UpperCAmelCase : Optional[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCAmelCase_ , device=self.device ) __UpperCAmelCase : Tuple = self.scheduler.timesteps.to(self.device ) __UpperCAmelCase : Any = latents for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ): # expand the sample if we are doing classifier free guidance __UpperCAmelCase : int = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __UpperCAmelCase : Any = self.transformer(UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , timestep=UpperCAmelCase_ ).sample if do_classifier_free_guidance: __UpperCAmelCase : Optional[Any] = model_output.chunk(2 ) __UpperCAmelCase : Optional[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(UpperCAmelCase_ , dim=1 , keepdim=UpperCAmelCase_ ) __UpperCAmelCase : int = self.truncate(UpperCAmelCase_ , UpperCAmelCase_ ) # remove `log(0)`'s (`-inf`s) __UpperCAmelCase : Optional[Any] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step(UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = self.vqvae.config.vq_embed_dim __UpperCAmelCase : Optional[Any] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __UpperCAmelCase : List[str] = self.vqvae.quantize.get_codebook_entry(UpperCAmelCase_ , shape=UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = self.vqvae.decode(UpperCAmelCase_ , force_not_quantize=UpperCAmelCase_ ).sample __UpperCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase : int = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : float ): """simple docstring""" __UpperCAmelCase : List[str] = torch.sort(UpperCAmelCase_ , 1 , descending=UpperCAmelCase_ ) __UpperCAmelCase : int = torch.exp(UpperCAmelCase_ ) __UpperCAmelCase : int = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __UpperCAmelCase : int = torch.full_like(keep_mask[:, 0:1, :] , UpperCAmelCase_ ) __UpperCAmelCase : str = torch.cat((all_true, keep_mask) , dim=1 ) __UpperCAmelCase : List[Any] = keep_mask[:, :-1, :] __UpperCAmelCase : Any = keep_mask.gather(1 , indices.argsort(1 ) ) __UpperCAmelCase : int = log_p_x_0.clone() __UpperCAmelCase : int = -torch.inf # -inf = log(0) return rv
356
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _UpperCAmelCase ): if not nums: raise ValueError("List is empty" ) return sum(_UpperCAmelCase ) / len(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
37
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class a_ (_a ): __lowerCAmelCase : Any = '''glpn''' def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[3_2, 6_4, 1_6_0, 2_5_6] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=6_4 , snake_case_=1_0 , snake_case_=-1 , **snake_case_ , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : str = num_encoder_blocks _lowerCAmelCase : Optional[Any] = depths _lowerCAmelCase : List[Any] = sr_ratios _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Optional[Any] = patch_sizes _lowerCAmelCase : Optional[Any] = strides _lowerCAmelCase : Optional[Any] = mlp_ratios _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : str = drop_path_rate _lowerCAmelCase : Dict = layer_norm_eps _lowerCAmelCase : Tuple = decoder_hidden_size _lowerCAmelCase : Any = max_depth _lowerCAmelCase : Tuple = head_in_index
309
"""simple docstring""" def __lowerCamelCase ( a_ : int , a_ : str ) -> Optional[int]: __SCREAMING_SNAKE_CASE :Optional[int] = [1] for i in range(2 , a_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __SCREAMING_SNAKE_CASE :List[str] = [] __SCREAMING_SNAKE_CASE :Optional[Any] = list(range(a_ ) ) # Find permutation while factorials: __SCREAMING_SNAKE_CASE :Optional[int] = factorials.pop() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = divmod(a_ , a_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
191
0
from math import loga def snake_case_(_UpperCamelCase ) -> int: """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
278
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = (1 - _cos) / 2 _snake_case = 1 - _cos _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = (1 + _cos) / 2 _snake_case = -1 - _cos _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = _sin / 2 _snake_case = 0 _snake_case = -ba _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = 1 - alpha _snake_case = -2 * _cos _snake_case = 1 + alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = 1 + alpha * big_a _snake_case = -2 * _cos _snake_case = 1 - alpha * big_a _snake_case = 1 + alpha / big_a _snake_case = -2 * _cos _snake_case = 1 - alpha / big_a _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = (big_a + 1) - (big_a - 1) * _cos _snake_case = (big_a + 1) + (big_a - 1) * _cos _snake_case = (big_a - 1) - (big_a + 1) * _cos _snake_case = (big_a - 1) + (big_a + 1) * _cos _snake_case = 2 * sqrt(_UpperCamelCase ) * alpha _snake_case = big_a * (pmc + aaa) _snake_case = 2 * big_a * mpc _snake_case = big_a * (pmc - aaa) _snake_case = ppmc + aaa _snake_case = -2 * pmpc _snake_case = ppmc - aaa _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = (big_a + 1) - (big_a - 1) * _cos _snake_case = (big_a + 1) + (big_a - 1) * _cos _snake_case = (big_a - 1) - (big_a + 1) * _cos _snake_case = (big_a - 1) + (big_a + 1) * _cos _snake_case = 2 * sqrt(_UpperCamelCase ) * alpha _snake_case = big_a * (ppmc + aaa) _snake_case = -2 * big_a * pmpc _snake_case = big_a * (ppmc - aaa) _snake_case = pmc + aaa _snake_case = 2 * mpc _snake_case = pmc - aaa _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
278
1
from ....utils import logging lowercase : Any = logging.get_logger(__name__) class A__ ( _lowerCamelCase ): """simple docstring""" def __init__( self , lowercase , lowercase=None , lowercase=2048) -> Optional[int]: '''simple docstring''' a__ : int = config.__dict__ a__ : List[Any] = modal_hidden_size if num_labels: a__ : Union[str, Any] = num_labels
99
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor snake_case__ : int = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def _a ( lowerCamelCase: List[Any] ) -> List[Any]: '''simple docstring''' if isinstance(lowerCamelCase , torch.Tensor ): return image elif isinstance(lowerCamelCase , PIL.Image.Image ): __A = [image] __A = [trans(img.convert('''RGB''' ) ) for img in image] __A = torch.stack(lowerCamelCase ) return image class A_ ( _lowerCamelCase ): def __init__(self :List[str] , _UpperCamelCase :List[Any] , _UpperCamelCase :List[str] )-> List[Any]: super().__init__() # make sure scheduler can always be converted to DDIM __A = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) def _lowerCAmelCase (self :int , _UpperCamelCase :Optional[Any] )-> Union[str, Any]: if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def _lowerCAmelCase (self :Optional[Any] , _UpperCamelCase :Dict , _UpperCamelCase :List[str] , _UpperCamelCase :List[str] )-> Union[str, Any]: # get the original timestep using init_timestep __A = min(int(num_inference_steps * strength ) , _UpperCamelCase ) __A = max(num_inference_steps - init_timestep , 0 ) __A = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCAmelCase (self :str , _UpperCamelCase :Tuple , _UpperCamelCase :List[str] , _UpperCamelCase :int , _UpperCamelCase :List[str] , _UpperCamelCase :int , _UpperCamelCase :Dict=None )-> List[str]: if not isinstance(_UpperCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_UpperCamelCase )}""" ) __A = image.to(device=_UpperCamelCase , dtype=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(_UpperCamelCase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __A = init_latents.shape __A = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) # get latents print('''add noise to latents at timestep''' , _UpperCamelCase ) __A = self.scheduler.add_noise(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __A = init_latents return latents @torch.no_grad() def __call__(self :List[str] , _UpperCamelCase :Union[torch.FloatTensor, PIL.Image.Image] = None , _UpperCamelCase :float = 0.8 , _UpperCamelCase :int = 1 , _UpperCamelCase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCamelCase :float = 0.0 , _UpperCamelCase :int = 50 , _UpperCamelCase :Optional[bool] = None , _UpperCamelCase :Optional[str] = "pil" , _UpperCamelCase :bool = True , )-> Union[ImagePipelineOutput, Tuple]: self.check_inputs(_UpperCamelCase ) # 2. Preprocess image __A = preprocess(_UpperCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(_UpperCamelCase , device=self.device ) __A , __A = self.get_timesteps(_UpperCamelCase , _UpperCamelCase , self.device ) __A = timesteps[:1].repeat(_UpperCamelCase ) # 4. Prepare latent variables __A = self.prepare_latents(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.unet.dtype , self.device , _UpperCamelCase ) __A = latents # 5. Denoising loop for t in self.progress_bar(_UpperCamelCase ): # 1. predict noise model_output __A = self.unet(_UpperCamelCase , _UpperCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __A = self.scheduler.step( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , eta=_UpperCamelCase , use_clipped_model_output=_UpperCamelCase , generator=_UpperCamelCase , ).prev_sample __A = (image / 2 + 0.5).clamp(0 , 1 ) __A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_UpperCamelCase )
117
0
import os import pytest from transformers.dynamic_module_utils import get_imports a_ : Optional[Any] = '\nimport os\n' a_ : List[str] = '\ndef foo():\n import os\n return False\n' a_ : Optional[int] = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' a_ : str = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' a_ : Any = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' a_ : List[str] = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' a_ : Union[str, Any] = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' a_ : int = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' a_ : Tuple = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' a_ : Optional[int] = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' a_ : List[str] = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('case' , _UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'test_file.py') with open(_UpperCAmelCase , 'w') as _tmp_file: _tmp_file.write(_UpperCAmelCase) SCREAMING_SNAKE_CASE = get_imports(_UpperCAmelCase) assert parsed_imports == ["os"]
327
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a_ : Tuple = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' a_ : List[Any] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' a_ : List[str] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a=True , a=False) -> Optional[Any]: if rouge_types is None: SCREAMING_SNAKE_CASE = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] SCREAMING_SNAKE_CASE = rouge_scorer.RougeScorer(rouge_types=a , use_stemmer=a) if use_aggregator: SCREAMING_SNAKE_CASE = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE = [] for ref, pred in zip(a , a): SCREAMING_SNAKE_CASE = scorer.score(a , a) if use_aggregator: aggregator.add_scores(a) else: scores.append(a) if use_aggregator: SCREAMING_SNAKE_CASE = aggregator.aggregate() else: SCREAMING_SNAKE_CASE = {} for key in scores[0]: SCREAMING_SNAKE_CASE = [score[key] for score in scores] return result
327
1
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = " " ): '''simple docstring''' lowerCAmelCase = [] lowerCAmelCase = 0 for index, char in enumerate(SCREAMING_SNAKE_CASE ): if char == separator: split_words.append(string[last_index:index] ) lowerCAmelCase = index + 1 elif index + 1 == len(SCREAMING_SNAKE_CASE ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
46
from __future__ import annotations import collections import pprint from pathlib import Path def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" return "".join(sorted(UpperCAmelCase_ ) ) def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" return word_by_signature[signature(UpperCAmelCase_ )] snake_case : str = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') snake_case : Optional[int] = sorted({word.strip().lower() for word in data.splitlines()}) snake_case : str = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": snake_case : Optional[int] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
94
0
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
354
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_a ): super().__init__(**_a ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , _a , **_a ): return super().__call__(_a , **_a ) def __UpperCAmelCase ( self , **_a ): __a = {} if "candidate_labels" in kwargs: __a = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __a = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ): if isinstance(_a , _a ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(_a ).content else: with open(_a , '''rb''' ) as f: __a = f.read() if isinstance(_a , _a ): __a = ffmpeg_read(_a , self.feature_extractor.sampling_rate ) if not isinstance(_a , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) __a = candidate_labels __a = [hypothesis_template.format(_a ) for x in candidate_labels] __a = self.tokenizer(_a , return_tensors=self.framework , padding=_a ) __a = [text_inputs] return inputs def __UpperCAmelCase ( self , _a ): __a = model_inputs.pop('''candidate_labels''' ) __a = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _a ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**_a , **_a ) __a = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self , _a ): __a = model_outputs.pop('''candidate_labels''' ) __a = model_outputs['''logits'''][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) __a = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] ) ] return result
11
0
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowerCamelCase_ (UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : Optional[Any] ): _UpperCAmelCase : Tuple = [x.strip() for x in open(UpperCamelCase__ ).readlines()] _UpperCAmelCase : List[Any] = [x.strip() for x in open(UpperCamelCase__ ).readlines()][: len(UpperCamelCase__ )] _UpperCAmelCase : Tuple = calculate_rouge(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) if save_path is not None: save_json(UpperCamelCase__ , UpperCamelCase__ , indent=UpperCamelCase__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
263
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = '''xlm-roberta-xl''' def __init__( self ,__UpperCAmelCase=25_0880 ,__UpperCAmelCase=2560 ,__UpperCAmelCase=36 ,__UpperCAmelCase=32 ,__UpperCAmelCase=1_0240 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=514 ,__UpperCAmelCase=1 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-05 ,__UpperCAmelCase=1 ,__UpperCAmelCase=0 ,__UpperCAmelCase=2 ,__UpperCAmelCase="absolute" ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> str: super().__init__(pad_token_id=__UpperCAmelCase ,bos_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : str = num_attention_heads lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : str = attention_probs_dropout_prob lowerCAmelCase__ : Optional[int] = max_position_embeddings lowerCAmelCase__ : List[str] = type_vocab_size lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : Tuple = layer_norm_eps lowerCAmelCase__ : int = position_embedding_type lowerCAmelCase__ : Optional[Any] = use_cache lowerCAmelCase__ : Optional[Any] = classifier_dropout class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase__ : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase__ : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
37
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
278
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
278
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : str = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Optional[Any] = '''speech_to_text_2''' _UpperCAmelCase : Optional[int] = ['''past_key_values'''] _UpperCAmelCase : Dict = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Tuple , lowerCAmelCase__ : Dict=1_0000 , lowerCAmelCase__ : Dict=6 , lowerCAmelCase__ : Dict=2048 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[int]="relu" , lowerCAmelCase__ : str=256 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=0.02 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : int=1024 , **lowerCAmelCase__ : Optional[Any] , ): SCREAMING_SNAKE_CASE_: Optional[Any] = vocab_size SCREAMING_SNAKE_CASE_: Optional[Any] = d_model SCREAMING_SNAKE_CASE_: str = decoder_ffn_dim SCREAMING_SNAKE_CASE_: str = decoder_layers SCREAMING_SNAKE_CASE_: int = decoder_attention_heads SCREAMING_SNAKE_CASE_: Tuple = dropout SCREAMING_SNAKE_CASE_: Union[str, Any] = attention_dropout SCREAMING_SNAKE_CASE_: Optional[int] = activation_dropout SCREAMING_SNAKE_CASE_: List[str] = activation_function SCREAMING_SNAKE_CASE_: Union[str, Any] = init_std SCREAMING_SNAKE_CASE_: Tuple = decoder_layerdrop SCREAMING_SNAKE_CASE_: List[Any] = use_cache SCREAMING_SNAKE_CASE_: List[str] = decoder_layers SCREAMING_SNAKE_CASE_: Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_: List[Any] = max_target_positions super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
359
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
127
0
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : List[Any] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def SCREAMING_SNAKE_CASE__ ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
327
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["pixel_values"] def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256} snake_case_ : Tuple = get_size_dict(_A ) snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ : int = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Union[str, Any] = do_resize snake_case_ : str = size snake_case_ : List[str] = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : Tuple = do_rescale snake_case_ : Optional[Any] = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: """simple docstring""" snake_case_ : Tuple = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ : Optional[int] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image: """simple docstring""" snake_case_ : int = do_resize if do_resize is not None else self.do_resize snake_case_ : str = resample if resample is not None else self.resample snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : Dict = image_std if image_std is not None else self.image_std snake_case_ : int = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(_A ) snake_case_ : int = crop_size if crop_size is not None else self.crop_size snake_case_ : Any = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Optional[Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images] snake_case_ : Tuple = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
327
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : List[str] = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'data2vec-vision' def __init__( self : str , lowerCAmelCase_ : Optional[Any]=7_68 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : int=12 , lowerCAmelCase_ : Dict=30_72 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1e-12 , lowerCAmelCase_ : Dict=2_24 , lowerCAmelCase_ : int=16 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Dict=[3, 5, 7, 11] , lowerCAmelCase_ : Optional[int]=[1, 2, 3, 6] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[Any]=0.4 , lowerCAmelCase_ : Any=2_56 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2_55 , **lowerCAmelCase_ : Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase_ ) A__ : Dict =hidden_size A__ : Optional[Any] =num_hidden_layers A__ : str =num_attention_heads A__ : Any =intermediate_size A__ : Union[str, Any] =hidden_act A__ : Dict =hidden_dropout_prob A__ : Union[str, Any] =attention_probs_dropout_prob A__ : Optional[Any] =initializer_range A__ : Union[str, Any] =layer_norm_eps A__ : Dict =image_size A__ : List[Any] =patch_size A__ : Optional[Any] =num_channels A__ : Optional[int] =use_mask_token A__ : List[Any] =use_absolute_position_embeddings A__ : str =use_relative_position_bias A__ : List[Any] =use_shared_relative_position_bias A__ : Dict =layer_scale_init_value A__ : str =drop_path_rate A__ : str =use_mean_pooling # decode head attributes (semantic segmentation) A__ : List[Any] =out_indices A__ : Union[str, Any] =pool_scales # auxiliary head attributes (semantic segmentation) A__ : Optional[int] =use_auxiliary_head A__ : Tuple =auxiliary_loss_weight A__ : int =auxiliary_channels A__ : int =auxiliary_num_convs A__ : Optional[Any] =auxiliary_concat_input A__ : int =semantic_loss_ignore_index class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowercase__ ( self : Optional[Any] ) -> float: '''simple docstring''' return 1e-4
361
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Any , lowerCAmelCase_ : float ) -> float: '''simple docstring''' return 0.0 def __lowerCamelCase ( __snake_case : np.ndarray, __snake_case : int ) -> tuple[int | float, int | float]: """simple docstring""" A__ : Tuple =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) A__ : str =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __lowerCamelCase ( __snake_case : FilterType, __snake_case : int ) -> None: """simple docstring""" A__ : Any =512 A__ : int =[1] + [0] * (size - 1) A__ : int =[filter_type.process(__snake_case ) for item in inputs] A__ : Union[str, Any] =[0] * (samplerate - size) # zero-padding outputs += filler A__ : List[Any] =np.abs(np.fft.fft(__snake_case ) ) A__ : int =20 * np.logaa(__snake_case ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds A__ : Union[str, Any] =get_bounds(__snake_case, __snake_case ) plt.ylim(max([-80, bounds[0]] ), min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__snake_case ) plt.show() def __lowerCamelCase ( __snake_case : FilterType, __snake_case : int ) -> None: """simple docstring""" A__ : List[Any] =512 A__ : List[Any] =[1] + [0] * (size - 1) A__ : Dict =[filter_type.process(__snake_case ) for item in inputs] A__ : Union[str, Any] =[0] * (samplerate - size) # zero-padding outputs += filler A__ : str =np.angle(np.fft.fft(__snake_case ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi, 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__snake_case, -2 * pi ) ) plt.show()
136
0
"""simple docstring""" from math import factorial def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) __lowerCAmelCase = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __lowerCAmelCase = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
57
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): _A : Optional[int] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Optional[int] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase) _A : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Dict: _A : int = "sgugger/tiny-distilbert-classification" _A : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = "sshleifer/tiny-gpt2" _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase) _A : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def _lowerCamelCase ( self) -> int: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Any = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Any: _A : Union[str, Any] = "sshleifer/tiny-gpt2" _A : Any = AutoConfig.from_pretrained(__lowerCamelCase) # set architectures equal to `None` _A : Dict = None _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : List[Any] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision") def _lowerCamelCase ( self) -> Optional[Any]: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : List[Any] = PyTorchBenchmark(__lowerCamelCase) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> str: _A : List[str] = "sshleifer/tiny-gpt2" _A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : Tuple = "sshleifer/tinier_bart" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> str: _A : List[Any] = "sshleifer/tiny-gpt2" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> int: _A : int = "sshleifer/tinier_bart" _A : str = AutoConfig.from_pretrained(__lowerCamelCase) _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> Dict: _A : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists()) def _lowerCamelCase ( self) -> int: _A : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase): self.assertTrue(hasattr(__lowerCamelCase , "sequential")) self.assertTrue(hasattr(__lowerCamelCase , "cumulative")) self.assertTrue(hasattr(__lowerCamelCase , "current")) self.assertTrue(hasattr(__lowerCamelCase , "total")) with tempfile.TemporaryDirectory() as tmp_dir: _A : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : Optional[int] = PyTorchBenchmark(__lowerCamelCase) _A : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
11
0
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> list: """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) <= 1: return lst UpperCamelCase_ = 1 while i < len(SCREAMING_SNAKE_CASE_ ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCamelCase_ , UpperCamelCase_ = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCamelCase_ = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE :Optional[int] = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
370
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __magic_name__ ( unittest.TestCase ): def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , )-> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_attention_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_choices def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_attention_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_token_type_ids: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Optional[Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase_ ( self )-> str: for model_class_name in self.all_model_classes: UpperCamelCase_ = model_class_name.from_pretrained("albert-base-v2" ) UpperCamelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class __magic_name__ ( unittest.TestCase ): @slow def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = FlaxAlbertModel.from_pretrained("albert-base-v2" ) UpperCamelCase_ = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCamelCase_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase )[0] UpperCamelCase_ = (1, 11, 768) self.assertEqual(output.shape , _lowercase ) UpperCamelCase_ = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1e-4 ) )
60
0
def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(__lowercase , __lowercase ): raise TypeError('only integers accepted as input' ) else: __UpperCamelCase = str(abs(__lowercase ) ) __UpperCamelCase = [list(__lowercase ) for char in range(len(__lowercase ) )] for index in range(len(__lowercase ) ): num_transpositions[index].pop(__lowercase ) return max( int(''.join(list(__lowercase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
310
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports UpperCamelCase = ''' import os ''' UpperCamelCase = ''' def foo(): import os return False ''' UpperCamelCase = ''' def foo(): def bar(): if True: import os return False return bar() ''' UpperCamelCase = ''' import os try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except ImportError as e: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' UpperCamelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: A: Tuple = os.path.join(__lowercase , '''test_file.py''' ) with open(__lowercase , '''w''' ) as _tmp_file: _tmp_file.write(__lowercase ) A: List[Any] = get_imports(__lowercase ) assert parsed_imports == ["os"]
319
0
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCamelCase__ : """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple ): lowerCAmelCase_ : Optional[int] = data lowerCAmelCase_ : Tuple = [0X67_45_23_01, 0XEF_CD_AB_89, 0X98_BA_DC_FE, 0X10_32_54_76, 0XC3_D2_E1_F0] @staticmethod def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any ): return ((n << b) | (n >> (3_2 - b))) & 0XFF_FF_FF_FF def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : List[Any] = b'\x80' + b'\x00' * (6_3 - (len(self.data ) + 8) % 6_4) lowerCAmelCase_ : List[str] = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def SCREAMING_SNAKE_CASE__ ( self : int ): return [ self.padded_data[i : i + 6_4] for i in range(0 , len(self.padded_data ) , 6_4 ) ] def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] ): lowerCAmelCase_ : Optional[Any] = list(struct.unpack('>16L' , SCREAMING_SNAKE_CASE_ ) ) + [0] * 6_4 for i in range(1_6 , 8_0 ): lowerCAmelCase_ : int = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 1_4] ^ w[i - 1_6]) , 1 ) return w def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : Any = self.padding() lowerCAmelCase_ : Tuple = self.split_blocks() for block in self.blocks: lowerCAmelCase_ : List[str] = self.expand_block(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : List[str] = self.h for i in range(0 , 8_0 ): if 0 <= i < 2_0: lowerCAmelCase_ : Union[str, Any] = (b & c) | ((~b) & d) lowerCAmelCase_ : Optional[Any] = 0X5A_82_79_99 elif 2_0 <= i < 4_0: lowerCAmelCase_ : int = b ^ c ^ d lowerCAmelCase_ : Any = 0X6E_D9_EB_A1 elif 4_0 <= i < 6_0: lowerCAmelCase_ : str = (b & c) | (b & d) | (c & d) lowerCAmelCase_ : List[str] = 0X8F_1B_BC_DC elif 6_0 <= i < 8_0: lowerCAmelCase_ : Optional[Any] = b ^ c ^ d lowerCAmelCase_ : Optional[Any] = 0XCA_62_C1_D6 lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : int = ( self.rotate(SCREAMING_SNAKE_CASE_ , 5 ) + f + e + k + expanded_block[i] & 0XFF_FF_FF_FF, a, self.rotate(SCREAMING_SNAKE_CASE_ , 3_0 ), c, d, ) lowerCAmelCase_ : Any = ( self.h[0] + a & 0XFF_FF_FF_FF, self.h[1] + b & 0XFF_FF_FF_FF, self.h[2] + c & 0XFF_FF_FF_FF, self.h[3] + d & 0XFF_FF_FF_FF, self.h[4] + e & 0XFF_FF_FF_FF, ) return ("{:08x}" * 5).format(*self.h ) def UpperCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase_ : str = b'Test String' assert SHAaHash(lowerCAmelCase__ ).final_hash() == hashlib.shaa(lowerCAmelCase__ ).hexdigest() # noqa: S324 def UpperCamelCase_ ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : List[Any] = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowerCAmelCase_ : List[str] = parser.parse_args() lowerCAmelCase_ : Union[str, Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowerCAmelCase_ : Union[str, Any] = f.read() else: lowerCAmelCase_ : List[str] = bytes(lowerCAmelCase__ , 'utf-8' ) print(SHAaHash(lowerCAmelCase__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
289
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict=1_3 , SCREAMING_SNAKE_CASE_ : List[Any]=7 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]=9_9 , SCREAMING_SNAKE_CASE_ : int=1_6 , SCREAMING_SNAKE_CASE_ : List[str]=3_6 , SCREAMING_SNAKE_CASE_ : List[Any]=6 , SCREAMING_SNAKE_CASE_ : Tuple=6 , SCREAMING_SNAKE_CASE_ : List[Any]=6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_7 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE_ : List[str]=1_6 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : List[Any]=0.02 , SCREAMING_SNAKE_CASE_ : Dict=3 , SCREAMING_SNAKE_CASE_ : int=4 , SCREAMING_SNAKE_CASE_ : Tuple=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Tuple = is_training lowerCAmelCase_ : str = use_input_mask lowerCAmelCase_ : Union[str, Any] = use_token_type_ids lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : Any = embedding_size lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_hidden_groups lowerCAmelCase_ : Dict = num_attention_heads lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : int = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : List[Any] = type_vocab_size lowerCAmelCase_ : Any = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Tuple = num_labels lowerCAmelCase_ : Dict = num_choices lowerCAmelCase_ : Tuple = scope def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : str = None if self.use_input_mask: lowerCAmelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : List[Any] = None if self.use_token_type_ids: lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Union[str, Any] = None lowerCAmelCase_ : str = None if self.use_labels: lowerCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : Dict ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): lowerCAmelCase_ : Union[str, Any] = AlbertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : List[str] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): lowerCAmelCase_ : Optional[Any] = AlbertForPreTraining(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Optional[Any] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , sentence_order_label=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): lowerCAmelCase_ : str = AlbertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCAmelCase_ : List[str] = AlbertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Any = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ): lowerCAmelCase_ : Union[str, Any] = self.num_labels lowerCAmelCase_ : Union[str, Any] = AlbertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): lowerCAmelCase_ : List[str] = self.num_labels lowerCAmelCase_ : List[Any] = AlbertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ): lowerCAmelCase_ : Optional[Any] = self.num_choices lowerCAmelCase_ : int = AlbertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[Any] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) , ) : Optional[int] = config_and_inputs lowerCAmelCase_ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=False ): lowerCAmelCase_ : List[str] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : str = AlbertModelTester(self ) lowerCAmelCase_ : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ : int = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Optional[Any] = AlbertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : Any = AlbertModel.from_pretrained('albert-base-v2' ) lowerCAmelCase_ : Tuple = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] lowerCAmelCase_ : str = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
289
1