code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __snake_case : Optional[int] = 10 def __lowerCamelCase ( __snake_case : int, __snake_case : Union[str, Any], __snake_case : Dict, __snake_case : List[Any] ) -> List[str]: """simple docstring""" for i in range(UpperCamelCase_, UpperCamelCase_ ): if array[i] == target: return i return -1 def __lowerCamelCase ( __snake_case : List[str], __snake_case : List[str] ) -> List[str]: """simple docstring""" A__ : Optional[int] =0 A__ : str =len(UpperCamelCase_ ) while left <= right: if right - left < precision: return lin_search(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) A__ : Tuple =(left + right) // 3 + 1 A__ : str =2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: A__ : List[Any] =one_third - 1 elif array[two_third] < target: A__ : Dict =two_third + 1 else: A__ : List[Any] =one_third + 1 A__ : Dict =two_third - 1 else: return -1 def __lowerCamelCase ( __snake_case : Dict, __snake_case : int, __snake_case : Any, __snake_case : Any ) -> Any: """simple docstring""" if left < right: if right - left < precision: return lin_search(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) A__ : str =(left + right) // 3 + 1 A__ : Any =2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(UpperCamelCase_, one_third - 1, UpperCamelCase_, UpperCamelCase_ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) else: return rec_ternary_search(one_third + 1, two_third - 1, UpperCamelCase_, UpperCamelCase_ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __snake_case : int = input('Enter numbers separated by comma:\n').strip() __snake_case : int = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." __snake_case : Any = int(input('Enter the number to be found in the list:\n').strip()) __snake_case : int = ite_ternary_search(collection, target) __snake_case : List[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print('Not found')
134
from __future__ import annotations _SCREAMING_SNAKE_CASE : Optional[int] = [] def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" for i in range(len(UpperCamelCase_ ) ): if board[row][i] == 1: return False for i in range(len(UpperCamelCase_ ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCamelCase_ ,-1 ,-1 ) ,range(UpperCamelCase_ ,-1 ,-1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCamelCase_ ,-1 ,-1 ) ,range(UpperCamelCase_ ,len(UpperCamelCase_ ) ) ): if board[i][j] == 1: return False return True def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" if row >= len(UpperCamelCase_ ): solution.append(UpperCamelCase_ ) printboard(UpperCamelCase_ ) print() return True for i in range(len(UpperCamelCase_ ) ): if is_safe(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): snake_case = 1 solve(UpperCamelCase_ ,row + 1 ) snake_case = 0 return False def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" for i in range(len(UpperCamelCase_ ) ): for j in range(len(UpperCamelCase_ ) ): if board[i][j] == 1: print('''Q''' ,end=''' ''' ) else: print('''.''' ,end=''' ''' ) print() # n=int(input("The no. of queens")) _SCREAMING_SNAKE_CASE : Tuple = 8 _SCREAMING_SNAKE_CASE : List[Any] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
127
0
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration _SCREAMING_SNAKE_CASE = pytest.mark.integration _SCREAMING_SNAKE_CASE = {'comet'} _SCREAMING_SNAKE_CASE = importlib.util.find_spec('fairseq') is not None _SCREAMING_SNAKE_CASE = {'code_eval'} _SCREAMING_SNAKE_CASE = os.name == 'nt' _SCREAMING_SNAKE_CASE = {'bertscore', 'frugalscore', 'perplexity'} _SCREAMING_SNAKE_CASE = importlib.util.find_spec('transformers') is not None def snake_case ( snake_case__ :str) -> Optional[Any]: @wraps(snake_case__) def wrapper(self :List[Any] , snake_case__ :Optional[Any]): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""") else: test_case(self , snake_case__) return wrapper def snake_case ( snake_case__ :str) -> Optional[int]: @wraps(snake_case__) def wrapper(self :Tuple , snake_case__ :List[str]): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""") else: test_case(self , snake_case__) return wrapper def snake_case ( snake_case__ :Dict) -> Tuple: @wraps(snake_case__) def wrapper(self :str , snake_case__ :Tuple): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""") else: test_case(self , snake_case__) return wrapper def snake_case ( ) -> str: _A = [metric_dir.split(os.sep)[-2] for metric_dir in glob.glob("""./metrics/*/""")] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _a , _a , _a ) @local class a ( parameterized.TestCase ): """simple docstring""" lowerCamelCase :int = {} lowerCamelCase :List[Any] = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: _A = "[...]" _A = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , _a ) ).module_path ) _A = datasets.load.import_main_class(metric_module.__name__ , dataset=_a ) # check parameters _A = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_a , metric_module.__name__ ): with self.use_local_metrics(): try: _A = doctest.testmod(_a , verbose=_a , raise_on_error=_a ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Dict: _A = "[...]" _A = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , _a ) ).module_path ) # run doctest with self.use_local_metrics(): _A = doctest.testmod(_a , verbose=_a , raise_on_error=_a ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_a ): yield else: yield @contextmanager def UpperCAmelCase ( self ) -> Dict: def load_local_metric(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): return load_metric(os.path.join("""metrics""" , _a ) , *_a , **_a ) with patch("""datasets.load_metric""" ) as mock_load_metric: _A = load_local_metric yield @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ ) -> Dict: def wrapper(lowerCAmelCase_ ): _A = contextmanager(_a ) _A = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""") def snake_case ( snake_case__ :str) -> Dict: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""") # handle pytest cli flags class a ( _a ): """simple docstring""" def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Any: assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""") as mock_create_predictor: _A = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""") def snake_case ( snake_case__ :Optional[int]) -> Any: import torch def bert_cos_score_idf(snake_case__ :Union[str, Any] , snake_case__ :Union[str, Any] , *snake_case__ :Optional[int] , **snake_case__ :Optional[Any]): return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case__)) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model"""), patch( """bert_score.scorer.bert_cos_score_idf""") as mock_bert_cos_score_idf: _A = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""") def snake_case ( snake_case__ :Any) -> Tuple: def load_from_checkpoint(snake_case__ :Optional[Any]): class a : """simple docstring""" def UpperCAmelCase ( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Dict: assert len(_a ) == 2 _A = [0.19, 0.92] return scores, sum(_a ) / len(_a ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""") as mock_download_model: _A = None with patch("""comet.load_from_checkpoint""") as mock_load_from_checkpoint: _A = load_from_checkpoint yield def snake_case ( ) -> Any: _A = load_metric(os.path.join("""metrics""" , """seqeval""")) _A = "ERROR" _A = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(snake_case__ , match=re.escape(snake_case__)): metric.compute(predictions=[] , references=[] , scheme=snake_case__)
370
from collections.abc import Sequence def snake_case ( snake_case__ :Sequence[float] , snake_case__ :bool = False) -> float: if not arr: return 0 _A = 0 if allow_empty_subarrays else float("""-inf""") _A = 0.0 for num in arr: _A = max(0 if allow_empty_subarrays else num , curr_sum + num) _A = max(snake_case__ , snake_case__) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _SCREAMING_SNAKE_CASE = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'''{max_subarray_sum(nums) = }''')
81
0
"""simple docstring""" from collections import namedtuple _lowercase = namedtuple('''from_to''', '''from_ to''') _lowercase = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.001, 10_00), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.00_454, 264.172), '''cubicyard''': from_to(0.76_455, 1.30_795), '''cubicfoot''': from_to(0.028, 35.3_147), '''cup''': from_to(0.000_236_588, 4_226.75), } def _snake_case ( snake_case__ : float , snake_case__ : str , snake_case__ : str ): if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ', '.join(snake_case__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ', '.join(snake_case__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
74
"""simple docstring""" import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = (CMStochasticIterativeScheduler,) lowercase__ = 10 def _UpperCAmelCase ( self : Optional[int] , **lowerCAmelCase_ : str): """simple docstring""" lowercase_ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**lowerCAmelCase_) return config def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = 1_0 lowercase_ = self.get_scheduler_config() lowercase_ = self.scheduler_classes[0](**lowerCAmelCase_) scheduler.set_timesteps(lowerCAmelCase_) lowercase_ = scheduler.timesteps[0] lowercase_ = scheduler.timesteps[1] lowercase_ = self.dummy_sample lowercase_ = 0.1 * sample lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_).prev_sample lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = 1 scheduler.set_timesteps(lowerCAmelCase_) lowercase_ = scheduler.timesteps lowercase_ = torch.manual_seed(0) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCAmelCase_): # 1. scale model input lowercase_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_) # 2. predict noise residual lowercase_ = model(lowerCAmelCase_ , lowerCAmelCase_) # 3. predict previous sample x_t-1 lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(lowerCAmelCase_)) lowercase_ = torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 192.7_614) < 1E-2 assert abs(result_mean.item() - 0.2_510) < 1E-3 def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = [1_0_6, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_) lowercase_ = scheduler.timesteps lowercase_ = torch.manual_seed(0) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input lowercase_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_) # 2. predict noise residual lowercase_ = model(lowerCAmelCase_ , lowerCAmelCase_) # 3. predict previous sample x_t-1 lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(lowerCAmelCase_)) lowercase_ = torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 347.6_357) < 1E-2 assert abs(result_mean.item() - 0.4_527) < 1E-3 def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = [3_9, 3_0, 1_2, 1_5, 0] with self.assertRaises(lowerCAmelCase_ , msg="""`timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = [3_9, 3_0, 1_2, 1, 0] lowercase_ = len(lowerCAmelCase_) with self.assertRaises(lowerCAmelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`."""): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_)
136
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __lowerCAmelCase ( unittest.TestCase): def __init__( self: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str=7 , _lowerCAmelCase: str=3 , _lowerCAmelCase: int=18 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: Optional[Any]=4_00 , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: int=None , _lowerCAmelCase: List[str]=True , ): lowercase :Union[str, Any] = size if size is not None else {"height": 18, "width": 18} lowercase :int = parent lowercase :Optional[Any] = batch_size lowercase :Tuple = num_channels lowercase :int = image_size lowercase :List[Any] = min_resolution lowercase :Any = max_resolution lowercase :Union[str, Any] = do_resize lowercase :int = size lowercase :List[Any] = do_normalize def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __lowerCAmelCase ( lowerCAmelCase , unittest.TestCase): _a = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :List[Any] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , "clusters" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "size" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_normalize" ) ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) lowercase :List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) lowercase :Optional[int] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , obj[key] ) ) else: self.assertEqual(obj[key] , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Any = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase :Union[str, Any] = os.path.join(_lowerCAmelCase , "image_processor.json" ) image_processor_first.to_json_file(_lowerCAmelCase ) lowercase :Union[str, Any] = self.image_processing_class.from_json_file(_lowerCAmelCase ).to_dict() lowercase :str = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_lowerCAmelCase ) lowercase :Optional[int] = self.image_processing_class.from_pretrained(_lowerCAmelCase ).to_dict() lowercase :Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) @unittest.skip("ImageGPT requires clusters at initialization" ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): pass def UpperCAmelCase__ ( ): lowercase :Optional[Any] = load_dataset("hf-internal-testing/fixtures_image_utils", split="test" ) lowercase :Union[str, Any] = Image.open(dataset[4]["file"] ) lowercase :Optional[int] = Image.open(dataset[5]["file"] ) lowercase :List[str] = [imagea, imagea] return images @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :List[Any] = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) lowercase :str = prepare_images() # test non-batched lowercase :int = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) lowercase :Optional[int] = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , _lowerCAmelCase ) # test batched lowercase :Optional[int] = image_processing(_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) lowercase :int = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _lowerCAmelCase )
158
from collections.abc import Iterable from typing import Generic, TypeVar _UpperCAmelCase : Any = TypeVar("_T") class __lowerCAmelCase ( Generic[_T]): def __init__( self: Union[str, Any] , _lowerCAmelCase: Iterable[_T] | None = None ): lowercase :list[_T] = list(iterable or [] ) lowercase :list[_T] = [] def __len__( self: Dict ): return len(self._stacka ) + len(self._stacka ) def __repr__( self: List[Any] ): return F"Queue({tuple(self._stacka[::-1] + self._stacka )})" def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: _T ): self._stacka.append(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :int = self._stacka.pop lowercase :List[Any] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
158
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class _a ( a__ ): '''simple docstring''' A : List[str] = '''data2vec-text''' def __init__( self, A=30_522, A=768, A=12, A=12, A=3_072, A="gelu", A=0.1, A=0.1, A=512, A=2, A=0.02, A=1E-12, A=1, A=0, A=2, A="absolute", A=True, A=None, **A, ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_, bos_token_id=UpperCamelCase_, eos_token_id=UpperCamelCase_, **UpperCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : Dict = position_embedding_type SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class _a ( a__ ): '''simple docstring''' @property def UpperCamelCase_ ( self ): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
251
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class snake_case_( unittest.TestCase ): def __init__( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any]=1_3 , UpperCamelCase_ : Tuple=7 , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : int=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : List[str]=9_9 , UpperCamelCase_ : str=3_2 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : int=4 , UpperCamelCase_ : Optional[Any]=3_7 , UpperCamelCase_ : Optional[int]="gelu" , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : str=5_1_2 , UpperCamelCase_ : Optional[Any]=1_6 , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ): lowerCAmelCase : str = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : int = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : Tuple = use_attention_mask lowerCAmelCase : Dict = use_token_type_ids lowerCAmelCase : Optional[int] = use_labels lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : str = type_sequence_label_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : int = num_choices def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[int] = None if self.use_attention_mask: lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Union[str, Any] = None if self.use_token_type_ids: lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Union[str, Any] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ ( self : int ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[Any] = config_and_inputs lowerCAmelCase : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : int = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = True lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = True __UpperCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowerCamelCase__ ( self : List[str] ): for model_class_name in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ ) @require_flax class snake_case_( unittest.TestCase ): @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : str = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : Any = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) lowerCAmelCase : Union[str, Any] = model(UpperCamelCase_ )[0] lowerCAmelCase : str = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , UpperCamelCase_ ) # compare the actual values for a slice. lowerCAmelCase : Optional[Any] = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Dict = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : str = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) lowerCAmelCase : str = model(UpperCamelCase_ )[0] # compare the actual values for a slice. lowerCAmelCase : str = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
60
0
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Union[str, Any] = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ["""PoolFormerFeatureExtractor"""] _lowercase : Any = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
91
0
"""simple docstring""" from math import factorial, pi def __UpperCAmelCase ( lowercase ,lowercase = 30 ): """simple docstring""" if not isinstance(lowercase ,(int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase ,lowercase ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) _UpperCAmelCase = float(lowercase ) _UpperCAmelCase = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase ) ) def __UpperCAmelCase ( lowercase ,lowercase = 30 ): """simple docstring""" if not isinstance(lowercase ,(int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase ,lowercase ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) _UpperCAmelCase = float(lowercase ) _UpperCAmelCase = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
289
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } UpperCAmelCase__ = { """b0""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 2_2_4, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 2_4_0, """dropout_rate""": 0.2, """dw_padding""": [1_6], }, """b2""": { """hidden_dim""": 1_4_0_8, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 2_6_0, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 1_6], }, """b3""": { """hidden_dim""": 1_5_3_6, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 3_0_0, """dropout_rate""": 0.3, """dw_padding""": [5, 1_8], }, """b4""": { """hidden_dim""": 1_7_9_2, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 3_8_0, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_0_4_8, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 4_5_6, """dropout_rate""": 0.4, """dw_padding""": [1_3, 2_7], }, """b6""": { """hidden_dim""": 2_3_0_4, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 5_2_8, """dropout_rate""": 0.5, """dw_padding""": [3_1], }, """b7""": { """hidden_dim""": 2_5_6_0, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 6_0_0, """dropout_rate""": 0.5, """dw_padding""": [1_8], }, } def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = EfficientNetConfig() _UpperCAmelCase = CONFIG_MAP[model_name]["""hidden_dim"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""width_coef"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""depth_coef"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""dropout_rate"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""dw_padding"""] _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = 10_00 _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = EfficientNetImageProcessor( size={"""height""": size, """width""": size} ,image_mean=[0.4_85, 0.4_56, 0.4_06] ,image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] ,do_center_crop=lowercase ,) return preprocessor def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] _UpperCAmelCase = sorted(set(lowercase ) ) _UpperCAmelCase = len(lowercase ) _UpperCAmelCase = {b: str(lowercase ) for b, i in zip(lowercase ,range(lowercase ) )} _UpperCAmelCase = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: _UpperCAmelCase = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) _UpperCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: _UpperCAmelCase = """efficientnet.""" + item[1] _UpperCAmelCase = """classifier.weight""" _UpperCAmelCase = """classifier.bias""" return key_mapping def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue _UpperCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: _UpperCAmelCase = torch.from_numpy(lowercase ).permute(3 ,2 ,0 ,1 ) elif "depthwise_kernel" in key: _UpperCAmelCase = torch.from_numpy(lowercase ).permute(2 ,3 ,0 ,1 ) elif "kernel" in key: _UpperCAmelCase = torch.from_numpy(np.transpose(lowercase ) ) else: _UpperCAmelCase = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = model_classes[model_name]( include_top=lowercase ,weights="""imagenet""" ,input_tensor=lowercase ,input_shape=lowercase ,pooling=lowercase ,classes=10_00 ,classifier_activation="""softmax""" ,) _UpperCAmelCase = original_model.trainable_variables _UpperCAmelCase = original_model.non_trainable_variables _UpperCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _UpperCAmelCase = param.numpy() _UpperCAmelCase = list(tf_params.keys() ) # Load HuggingFace model _UpperCAmelCase = get_efficientnet_config(lowercase ) _UpperCAmelCase = EfficientNetForImageClassification(lowercase ).eval() _UpperCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) _UpperCAmelCase = rename_keys(lowercase ) replace_params(lowercase ,lowercase ,lowercase ) # Initialize preprocessor and preprocess input image _UpperCAmelCase = convert_image_processor(lowercase ) _UpperCAmelCase = preprocessor(images=prepare_img() ,return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): _UpperCAmelCase = hf_model(**lowercase ) _UpperCAmelCase = outputs.logits.detach().numpy() # Original model inference _UpperCAmelCase = False _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = prepare_img().resize((image_size, image_size) ,resample=PIL.Image.NEAREST ) _UpperCAmelCase = image.img_to_array(lowercase ) _UpperCAmelCase = np.expand_dims(lowercase ,axis=0 ) _UpperCAmelCase = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase ,lowercase ,atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) _UpperCAmelCase = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") UpperCAmelCase__ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
289
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def snake_case_ ( lowerCAmelCase_ : Optional[int] ): return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : int = create_tensor(lowerCAmelCase_ ) __lowercase : str = gather(lowerCAmelCase_ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : List[str] = [state.process_index] __lowercase : int = gather_object(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == state.num_processes, F"{gathered_obj}, {len(lowerCAmelCase_ )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), F"{gathered_obj} != {list(range(state.num_processes ) )}" def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : List[str] = create_tensor(lowerCAmelCase_ ) __lowercase : str = broadcast(lowerCAmelCase_ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def snake_case_ ( lowerCAmelCase_ : Any ): # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: __lowercase : Tuple = torch.arange(state.num_processes + 1 ).to(state.device ) else: __lowercase : str = torch.arange(state.num_processes ).to(state.device ) __lowercase : List[Any] = pad_across_processes(lowerCAmelCase_ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): # For now runs on only two processes if state.num_processes != 2: return __lowercase : Union[str, Any] = create_tensor(lowerCAmelCase_ ) __lowercase : List[Any] = reduce(lowerCAmelCase_ , """sum""" ) __lowercase : Optional[Any] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ ), F"{reduced_tensor} != {truth_tensor}" def snake_case_ ( lowerCAmelCase_ : Tuple ): # For now runs on only two processes if state.num_processes != 2: return __lowercase : Optional[int] = create_tensor(lowerCAmelCase_ ) __lowercase : Tuple = reduce(lowerCAmelCase_ , """mean""" ) __lowercase : Optional[Any] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ ), F"{reduced_tensor} != {truth_tensor}" def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): # For xla_spawn (TPUs) main() def snake_case_ ( ): __lowercase : Optional[int] = PartialState() state.print(F"State: {state}" ) state.print("""testing gather""" ) test_gather(lowerCAmelCase_ ) state.print("""testing gather_object""" ) test_gather_object(lowerCAmelCase_ ) state.print("""testing broadcast""" ) test_broadcast(lowerCAmelCase_ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(lowerCAmelCase_ ) state.print("""testing reduce_sum""" ) test_reduce_sum(lowerCAmelCase_ ) state.print("""testing reduce_mean""" ) test_reduce_mean(lowerCAmelCase_ ) if __name__ == "__main__": main()
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _A ( _a ,_a ,_a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : str = StableDiffusionInpaintPipeline UpperCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase : int = frozenset([] ) def __snake_case ( self : Dict): torch.manual_seed(0) a : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , ) a : Tuple = PNDMScheduler(skip_prk_steps=__UpperCAmelCase) torch.manual_seed(0) a : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) a : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) a : Any = CLIPTextModel(__UpperCAmelCase) a : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") a : Optional[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any]=0): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase)).to(__UpperCAmelCase) a : List[str] = image.cpu().permute(0 , 2 , 3 , 1)[0] a : Union[str, Any] = Image.fromarray(np.uinta(__UpperCAmelCase)).convert("RGB").resize((64, 64)) a : Dict = Image.fromarray(np.uinta(image + 4)).convert("RGB").resize((64, 64)) if str(__UpperCAmelCase).startswith("mps"): a : Tuple = torch.manual_seed(__UpperCAmelCase) else: a : Tuple = torch.Generator(device=__UpperCAmelCase).manual_seed(__UpperCAmelCase) a : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __snake_case ( self : List[str]): a : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator a : Tuple = self.get_dummy_components() a : Optional[int] = StableDiffusionInpaintPipeline(**__UpperCAmelCase) a : int = sd_pipe.to(__UpperCAmelCase) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase) a : Any = self.get_dummy_inputs(__UpperCAmelCase) a : Optional[int] = sd_pipe(**__UpperCAmelCase).images a : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a : int = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __snake_case ( self : str): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Union[str, Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Dict): a : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png") a : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png") a : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy") a : Tuple = "stabilityai/stable-diffusion-2-inpainting" a : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(__UpperCAmelCase , safety_checker=__UpperCAmelCase) pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) pipe.enable_attention_slicing() a : Any = "Face of a yellow cat, high resolution, sitting on a park bench" a : str = torch.manual_seed(0) a : Union[str, Any] = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="np" , ) a : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def __snake_case ( self : Any): a : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png") a : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png") a : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy") a : Optional[Any] = "stabilityai/stable-diffusion-2-inpainting" a : Any = StableDiffusionInpaintPipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=__UpperCAmelCase , ) pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) pipe.enable_attention_slicing() a : Optional[int] = "Face of a yellow cat, high resolution, sitting on a park bench" a : Dict = torch.manual_seed(0) a : List[Any] = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="np" , ) a : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def __snake_case ( self : int): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png") a : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png") a : Optional[Any] = "stabilityai/stable-diffusion-2-inpainting" a : Optional[int] = PNDMScheduler.from_pretrained(__UpperCAmelCase , subfolder="scheduler") a : int = StableDiffusionInpaintPipeline.from_pretrained( __UpperCAmelCase , safety_checker=__UpperCAmelCase , scheduler=__UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() a : Optional[int] = "Face of a yellow cat, high resolution, sitting on a park bench" a : Optional[int] = torch.manual_seed(0) a : str = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="np" , ) a : int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
40
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCamelCase_ : Dict = logging.getLogger(__name__) lowerCamelCase_ : Tuple = """pytorch_model.bin""" @dataclasses.dataclass class __A : """simple docstring""" __lowerCAmelCase = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."}, ) @dataclasses.dataclass class __A : """simple docstring""" __lowerCAmelCase = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) __lowerCAmelCase = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "A csv or a json file containing the validation data."} ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "The name of the task to train on."}, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class __A : """simple docstring""" __lowerCAmelCase = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) __lowerCAmelCase = dataclasses.field( default="accuracy", metadata={"help": "The evaluation metric used for the task."} ) __lowerCAmelCase = dataclasses.field( default="no", metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" }, ) __lowerCAmelCase = dataclasses.field( default=10, metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."}, ) __lowerCAmelCase = dataclasses.field( default=0.0, metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." }, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."}, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."}, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Whether to fine-tune on labeled data after pseudo training."}, ) __lowerCAmelCase = dataclasses.field( default=0.0, metadata={"help": "Confidence threshold for pseudo-labeled data filtering."}, ) __lowerCAmelCase = dataclasses.field( default=100, metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."}, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Random seed for initialization."}, ) def _A ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: a =dataset.filter(lambda lowercase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 a =int(eval_result * len(lowercase ) ) print(lowercase ) a =dataset.sort('''probability''' , reverse=lowercase ) a =dataset.select(range(lowercase ) ) a =dataset.remove_columns(['''label''', '''probability'''] ) a =dataset.rename_column('''prediction''' , '''label''' ) a =dataset.map(lambda lowercase : {"label": idalabel[example["label"]]} ) a =dataset.shuffle(seed=args.seed ) a =os.path.join(lowercase , f'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(lowercase , index=lowercase ) else: dataset.to_json(lowercase ) def _A ( lowercase , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() a =STModelArguments(model_name_or_path=lowercase ) a =STDataArguments(train_file=lowercase , infer_file=lowercase ) a =STTrainingArguments(output_dir=lowercase ) a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowercase ).items(): setattr(lowercase , lowercase , lowercase ) for key, value in kwargs.items(): if hasattr(lowercase , lowercase ): setattr(lowercase , lowercase , lowercase ) # Sanity checks a ={} a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None a =args.train_file a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None a =args.eval_file for key in data_files: a =data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: a =extension else: assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) a =f'''{args.output_dir}/self-train_iter-{{}}'''.format a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) accelerator.wait_for_everyone() a =None a =None a =0 a =False # Show the progress bar a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): a =data_dir_format(lowercase ) assert os.path.exists(lowercase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 a =os.path.join(lowercase , '''stage-1''' ) a ={ '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowercase , lowercase ): arguments_dict.update({key: value} ) a =os.path.join(lowercase , '''best-checkpoint''' , lowercase ) if os.path.exists(lowercase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , lowercase , lowercase , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , lowercase ) finetune(**lowercase ) accelerator.wait_for_everyone() assert os.path.exists(lowercase ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , lowercase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data a =os.path.join(lowercase , '''best-checkpoint''' ) a =os.path.join(lowercase , '''stage-2''' ) # Update arguments_dict a =model_path a =data_files['''train'''] a =current_output_dir a =os.path.join(lowercase , '''best-checkpoint''' , lowercase ) if os.path.exists(lowercase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , lowercase , lowercase , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , lowercase ) finetune(**lowercase ) accelerator.wait_for_everyone() assert os.path.exists(lowercase ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , lowercase ) a =iteration a =data_dir_format(iteration + 1 ) a =AutoConfig.from_pretrained(os.path.join(lowercase , '''best-checkpoint''' ) ) a =config.idalabel a =os.path.join(lowercase , '''eval_results_best-checkpoint.json''' ) a =os.path.join(lowercase , '''test_results_best-checkpoint.json''' ) assert os.path.exists(lowercase ) with open(lowercase , '''r''' ) as f: a =float(json.load(lowercase )[args.eval_metric] ) a =os.path.join(lowercase , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(lowercase ) # Loading the dataset from local csv or json files. a =load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] a =load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(lowercase , exist_ok=lowercase ) shutil.copy(lowercase , os.path.join(lowercase , f'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(lowercase ): shutil.copy(lowercase , os.path.join(lowercase , f'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) accelerator.wait_for_everyone() a =os.path.join(lowercase , f'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: a =eval_result if best_iteration is None: a =new_iteration a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: a =new_iteration a =new_eval_result a =0 else: if new_eval_result == best_eval_result: a =new_iteration a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , lowercase ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(lowercase , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(lowercase , '''eval_results_best-iteration.json''' ) , )
81
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Any = "roberta" def __init__( self , _a=5_0_2_6_5 , _a=7_6_8 , _a=1_2 , _a=1_2 , _a=3_0_7_2 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=2 , _a=0.02 , _a=1e-1_2 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ) -> Optional[Any]: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _a : Tuple = vocab_size _a : int = hidden_size _a : str = num_hidden_layers _a : int = num_attention_heads _a : Tuple = hidden_act _a : str = intermediate_size _a : List[Any] = hidden_dropout_prob _a : Union[str, Any] = attention_probs_dropout_prob _a : List[Any] = max_position_embeddings _a : Union[str, Any] = type_vocab_size _a : int = initializer_range _a : Optional[int] = layer_norm_eps _a : Dict = position_embedding_type _a : int = use_cache _a : List[str] = classifier_dropout class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
15
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : Optional[int] ,__a : List[str] ,__a : List[Any] ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('''.''' ): _a : Optional[Any] = getattr(__a ,__a ) if weight_type is not None: _a : Dict = getattr(__a ,__a ).shape else: _a : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : List[Any] = value elif weight_type == "weight_g": _a : Any = value elif weight_type == "weight_v": _a : Union[str, Any] = value elif weight_type == "bias": _a : Optional[int] = value else: _a : List[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __a : Any ,__a : Union[str, Any] ,__a : Union[str, Any] ) -> int: """simple docstring""" _a : Union[str, Any] = [] _a : Union[str, Any] = fairseq_model.state_dict() _a : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a : int = False if "conv_layers" in name: load_conv_layer( __a ,__a ,__a ,__a ,hf_model.config.feat_extract_norm == '''group''' ,) _a : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): _a : Union[str, Any] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): _a : Any = True if "*" in mapped_key: _a : Optional[int] = name.split(__a )[0].split('''.''' )[-2] _a : Any = mapped_key.replace('''*''' ,__a ) if "weight_g" in name: _a : List[Any] = '''weight_g''' elif "weight_v" in name: _a : List[str] = '''weight_v''' elif "weight" in name: _a : Any = '''weight''' elif "bias" in name: _a : str = '''bias''' else: _a : Any = None set_recursively(__a ,__a ,__a ,__a ,__a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : Any ) -> Tuple: """simple docstring""" _a : int = full_name.split('''conv_layers.''' )[-1] _a : Any = name.split('''.''' ) _a : List[Any] = int(items[0] ) _a : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _a : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : List[str]=None ,__a : Optional[int]=None ,__a : int=True ) -> List[Any]: """simple docstring""" if config_path is not None: _a : Tuple = HubertConfig.from_pretrained(__a ) else: _a : Any = HubertConfig() if is_finetuned: if dict_path: _a : Tuple = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Any = target_dict.pad_index _a : Tuple = target_dict.bos_index _a : Optional[int] = target_dict.eos_index _a : Optional[Any] = len(target_dict.symbols ) _a : Tuple = os.path.join(__a ,'''vocab.json''' ) if not os.path.isdir(__a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) ) return os.makedirs(__a ,exist_ok=__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices ,__a ) _a : Tuple = WavaVecaCTCTokenizer( __a ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__a ,) _a : Tuple = True if config.feat_extract_norm == '''layer''' else False _a : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__a ,return_attention_mask=__a ,) _a : List[Any] = WavaVecaProcessor(feature_extractor=__a ,tokenizer=__a ) processor.save_pretrained(__a ) _a : Tuple = HubertForCTC(__a ) else: _a : Tuple = HubertModel(__a ) if is_finetuned: _a , _a , _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _a , _a , _a : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a : Any = model[0].eval() recursively_load_weights(__a ,__a ,__a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
15
1
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase_ ( unittest.TestCase ): @slow def _snake_case ( self ) -> int: _lowerCAmelCase = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) _lowerCAmelCase = AutoTokenizer.from_pretrained("google/mt5-small" ) _lowerCAmelCase = tokenizer("Hello there" , return_tensors="np" ).input_ids _lowerCAmelCase = tokenizer("Hi I am" , return_tensors="np" ).input_ids _lowerCAmelCase = shift_tokens_right(_lowerCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) _lowerCAmelCase = model(_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ).logits _lowerCAmelCase = optax.softmax_cross_entropy(_lowerCAmelCase , onehot(_lowerCAmelCase , logits.shape[-1] ) ).mean() _lowerCAmelCase = -(labels.shape[-1] * loss.item()) _lowerCAmelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
158
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int = 1000 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
158
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) _UpperCamelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = self.dummy_uncond_unet _UpperCamelCase : List[Any] = PNDMScheduler() _UpperCamelCase : Any = PNDMPipeline(unet=__a , scheduler=__a ) pndm.to(__a ) pndm.set_progress_bar_config(disable=__a ) _UpperCamelCase : Optional[int] = torch.manual_seed(0 ) _UpperCamelCase : str = pndm(generator=__a , num_inference_steps=20 , output_type="numpy" ).images _UpperCamelCase : int = torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = pndm(generator=__a , num_inference_steps=20 , output_type="numpy" , return_dict=__a )[0] _UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCamelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase : Optional[int] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : int ) -> Dict: _UpperCamelCase : Optional[int] = "google/ddpm-cifar10-32" _UpperCamelCase : Optional[int] = UNetaDModel.from_pretrained(__a ) _UpperCamelCase : Optional[Any] = PNDMScheduler() _UpperCamelCase : str = PNDMPipeline(unet=__a , scheduler=__a ) pndm.to(__a ) pndm.set_progress_bar_config(disable=__a ) _UpperCamelCase : Union[str, Any] = torch.manual_seed(0 ) _UpperCamelCase : Tuple = pndm(generator=__a , output_type="numpy" ).images _UpperCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase : str = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
368
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowerCamelCase__ = True except ImportError: lowerCamelCase__ = False try: from torch.hub import _get_torch_home lowerCamelCase__ = _get_torch_home() except ImportError: lowerCamelCase__ = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) lowerCamelCase__ = os.path.join(torch_cache_home, "transformers") lowerCamelCase__ = "https://cdn.huggingface.co" lowerCamelCase__ = "https://s3.amazonaws.com/models.huggingface.co/bert" lowerCamelCase__ = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) lowerCamelCase__ = os.path.join(PATH, "config.yaml") lowerCamelCase__ = os.path.join(PATH, "attributes.txt") lowerCamelCase__ = os.path.join(PATH, "objects.txt") lowerCamelCase__ = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) lowerCamelCase__ = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) lowerCamelCase__ = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) lowerCamelCase__ = "pytorch_model.bin" lowerCamelCase__ = "config.yaml" def lowercase__ ( lowercase_=OBJECTS ,lowercase_=ATTRIBUTES ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) _UpperCamelCase : Any = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = OrderedDict() with open(lowercase_ ,"rb" ) as f: _UpperCamelCase : List[str] = pkl.load(lowercase_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): _UpperCamelCase : List[str] = ckp.pop(lowercase_ ) if isinstance(lowercase_ ,np.ndarray ): _UpperCamelCase : List[Any] = torch.tensor(lowercase_ ) else: assert isinstance(lowercase_ ,torch.tensor ), type(lowercase_ ) _UpperCamelCase : Optional[Any] = v return r class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = {} def __init__( self : str , __a : dict , __a : str = "root" , __a : Any=0 ) -> Any: _UpperCamelCase : Optional[Any] = name _UpperCamelCase : Optional[Any] = level _UpperCamelCase : Union[str, Any] = {} for k, v in dictionary.items(): if v is None: raise ValueError() _UpperCamelCase : Optional[int] = copy.deepcopy(__a ) _UpperCamelCase : Dict = copy.deepcopy(__a ) if isinstance(__a , __a ): _UpperCamelCase : Union[str, Any] = Config(__a , name=__a , level=level + 1 ) _UpperCamelCase : Optional[Any] = v setattr(self , __a , __a ) _UpperCamelCase : Optional[Any] = d def __repr__( self : List[str] ) -> List[Any]: return str(list((self._pointer.keys()) ) ) def __setattr__( self : Dict , __a : Union[str, Any] , __a : Optional[int] ) -> int: _UpperCamelCase : Any = val _UpperCamelCase : Optional[Any] = val _UpperCamelCase : Dict = key.split("." ) _UpperCamelCase : int = len(__a ) - 1 _UpperCamelCase : List[str] = self._pointer if len(__a ) > 1: for i, l in enumerate(__a ): if hasattr(self , __a ) and isinstance(getattr(self , __a ) , __a ): setattr(getattr(self , __a ) , ".".join(levels[i:] ) , __a ) if l == last_level: _UpperCamelCase : str = val else: _UpperCamelCase : List[str] = pointer[l] def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._pointer def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Tuple , __a : List[str] ) -> Dict: with open(F'''{file_name}''' , "w" ) as stream: dump(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : List[Any] , __a : Dict ) -> List[Any]: with open(F'''{file_name}''' , "w" ) as stream: json.dump(__a , __a ) @staticmethod def __SCREAMING_SNAKE_CASE ( __a : Union[str, Any] ) -> Optional[int]: with open(__a ) as stream: _UpperCamelCase : int = load(__a , Loader=__a ) return data def __str__( self : List[str] ) -> Tuple: _UpperCamelCase : List[str] = " " if self._name != "root": _UpperCamelCase : Dict = F'''{t * (self._level-1)}{self._name}:\n''' else: _UpperCamelCase : Any = "" _UpperCamelCase : Any = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__a , __a ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(__a ).__name__})\n''' _UpperCamelCase : Optional[Any] = level return r[:-1] @classmethod def __SCREAMING_SNAKE_CASE ( cls : Dict , __a : str , **__a : str ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : int = cls.get_config_dict(__a , **__a ) return cls(__a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , __a : str , **__a : Union[str, Any] ) -> Tuple: _UpperCamelCase : Tuple = kwargs.pop("cache_dir" , __a ) _UpperCamelCase : Optional[int] = kwargs.pop("force_download" , __a ) _UpperCamelCase : str = kwargs.pop("resume_download" , __a ) _UpperCamelCase : Any = kwargs.pop("proxies" , __a ) _UpperCamelCase : List[Any] = kwargs.pop("local_files_only" , __a ) if os.path.isdir(__a ): _UpperCamelCase : Optional[Any] = os.path.join(__a , __a ) elif os.path.isfile(__a ) or is_remote_url(__a ): _UpperCamelCase : Optional[int] = pretrained_model_name_or_path else: _UpperCamelCase : int = hf_bucket_url(__a , filename=__a , use_cdn=__a ) try: # Load from URL or cache if already cached _UpperCamelCase : Optional[int] = cached_path( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _UpperCamelCase : List[Any] = Config.load_yaml(__a ) except EnvironmentError: _UpperCamelCase : Union[str, Any] = "Can't load config for" raise EnvironmentError(__a ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(__a ), kwargs def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : str = torch.load("dump.pt" ,map_location=in_tensor.device ) _UpperCamelCase : str = in_tensor.numpy() _UpperCamelCase : Union[str, Any] = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowercase_ ,lowercase_ ,rtol=0.01 ,atol=0.1 ), ( F'''{sum([1 for x in np.isclose(lowercase_ ,lowercase_ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Dict = urlparse(lowercase_ ) return parsed.scheme in ("http", "https") def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=True ) -> str: """simple docstring""" _UpperCamelCase : int = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _UpperCamelCase : List[str] = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=0 ,lowercase_=None ,) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowercase_ ,lowercase_ ): ua += "; " + "; ".join("{}/{}".format(lowercase_ ,lowercase_ ) for k, v in user_agent.items() ) elif isinstance(lowercase_ ,lowercase_ ): ua += "; " + user_agent _UpperCamelCase : Any = {"user-agent": ua} if resume_size > 0: _UpperCamelCase : str = "bytes=%d-" % (resume_size,) _UpperCamelCase : str = requests.get(lowercase_ ,stream=lowercase_ ,proxies=lowercase_ ,headers=lowercase_ ) if response.status_code == 416: # Range not satisfiable return _UpperCamelCase : List[str] = response.headers.get("Content-Length" ) _UpperCamelCase : Union[str, Any] = resume_size + int(lowercase_ ) if content_length is not None else None _UpperCamelCase : Optional[int] = tqdm( unit="B" ,unit_scale=lowercase_ ,total=lowercase_ ,initial=lowercase_ ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowercase_ ) ) temp_file.write(lowercase_ ) progress.close() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=10 ,lowercase_=False ,lowercase_=None ,lowercase_=False ,) -> Tuple: """simple docstring""" if cache_dir is None: _UpperCamelCase : str = TRANSFORMERS_CACHE if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : Dict = str(lowercase_ ) os.makedirs(lowercase_ ,exist_ok=lowercase_ ) _UpperCamelCase : Dict = None if not local_files_only: try: _UpperCamelCase : List[Any] = requests.head(lowercase_ ,allow_redirects=lowercase_ ,proxies=lowercase_ ,timeout=lowercase_ ) if response.status_code == 200: _UpperCamelCase : str = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _UpperCamelCase : int = url_to_filename(lowercase_ ,lowercase_ ) # get cache path to put the file _UpperCamelCase : Any = os.path.join(lowercase_ ,lowercase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowercase_ ): return cache_path else: _UpperCamelCase : Optional[int] = [ file for file in fnmatch.filter(os.listdir(lowercase_ ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(lowercase_ ) > 0: return os.path.join(lowercase_ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(lowercase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _UpperCamelCase : Dict = cache_path + ".lock" with FileLock(lowercase_ ): # If the download just completed while the lock was activated. if os.path.exists(lowercase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _UpperCamelCase : List[str] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(lowercase_ ,"a+b" ) as f: yield f _UpperCamelCase : Union[str, Any] = _resumable_file_manager if os.path.exists(lowercase_ ): _UpperCamelCase : str = os.stat(lowercase_ ).st_size else: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Tuple = partial(tempfile.NamedTemporaryFile ,dir=lowercase_ ,delete=lowercase_ ) _UpperCamelCase : Optional[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,lowercase_ ,temp_file.name ,) http_get( lowercase_ ,lowercase_ ,proxies=lowercase_ ,resume_size=lowercase_ ,user_agent=lowercase_ ,) os.replace(temp_file.name ,lowercase_ ) _UpperCamelCase : Optional[int] = {"url": url, "etag": etag} _UpperCamelCase : List[str] = cache_path + ".json" with open(lowercase_ ,"w" ) as meta_file: json.dump(lowercase_ ,lowercase_ ) return cache_path def lowercase__ ( lowercase_ ,lowercase_=None ) -> int: """simple docstring""" _UpperCamelCase : Optional[int] = url.encode("utf-8" ) _UpperCamelCase : List[str] = shaaaa(lowercase_ ) _UpperCamelCase : List[str] = url_hash.hexdigest() if etag: _UpperCamelCase : Optional[Any] = etag.encode("utf-8" ) _UpperCamelCase : Optional[Any] = shaaaa(lowercase_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=False ,lowercase_=False ,lowercase_=False ,) -> str: """simple docstring""" if cache_dir is None: _UpperCamelCase : List[Any] = TRANSFORMERS_CACHE if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : str = str(lowercase_ ) if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : str = str(lowercase_ ) if is_remote_url(lowercase_ ): # URL, so get it from the cache (downloading if necessary) _UpperCamelCase : Union[str, Any] = get_from_cache( lowercase_ ,cache_dir=lowercase_ ,force_download=lowercase_ ,proxies=lowercase_ ,resume_download=lowercase_ ,user_agent=lowercase_ ,local_files_only=lowercase_ ,) elif os.path.exists(lowercase_ ): # File, and it exists. _UpperCamelCase : List[str] = url_or_filename elif urlparse(lowercase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(lowercase_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(lowercase_ ) ) if extract_compressed_file: if not is_zipfile(lowercase_ ) and not tarfile.is_tarfile(lowercase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _UpperCamelCase, _UpperCamelCase : Any = os.path.split(lowercase_ ) _UpperCamelCase : Optional[int] = output_file.replace("." ,"-" ) + "-extracted" _UpperCamelCase : Any = os.path.join(lowercase_ ,lowercase_ ) if os.path.isdir(lowercase_ ) and os.listdir(lowercase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions _UpperCamelCase : Optional[int] = output_path + ".lock" with FileLock(lowercase_ ): shutil.rmtree(lowercase_ ,ignore_errors=lowercase_ ) os.makedirs(lowercase_ ) if is_zipfile(lowercase_ ): with ZipFile(lowercase_ ,"r" ) as zip_file: zip_file.extractall(lowercase_ ) zip_file.close() elif tarfile.is_tarfile(lowercase_ ): _UpperCamelCase : int = tarfile.open(lowercase_ ) tar_file.extractall(lowercase_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(lowercase_ ) ) return output_path_extracted return output_path def lowercase__ ( lowercase_ ,lowercase_="," ) -> Optional[int]: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) if os.path.isfile(lowercase_ ): with open(lowercase_ ) as f: _UpperCamelCase : Tuple = eval(f.read() ) else: _UpperCamelCase : str = requests.get(lowercase_ ) try: _UpperCamelCase : Optional[int] = requests.json() except Exception: _UpperCamelCase : Union[str, Any] = req.content.decode() assert data is not None, "could not connect" try: _UpperCamelCase : List[Any] = eval(lowercase_ ) except Exception: _UpperCamelCase : int = data.split("\n" ) req.close() return data def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : List[Any] = requests.get(lowercase_ ) _UpperCamelCase : Optional[int] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowercase_ ) with open(lowercase_ ,"rb" ) as stream: _UpperCamelCase : Union[str, Any] = pkl.load(lowercase_ ) _UpperCamelCase : Union[str, Any] = weights.pop("model" ) _UpperCamelCase : Optional[int] = {} for k, v in model.items(): _UpperCamelCase : str = torch.from_numpy(lowercase_ ) if "running_var" in k: _UpperCamelCase : List[Any] = torch.tensor([0] ) _UpperCamelCase : str = k.replace("running_var" ,"num_batches_tracked" ) _UpperCamelCase : Any = zero return new def lowercase__ ( ) -> Dict: """simple docstring""" print(F'''{os.path.abspath(os.path.join(lowercase_ ,os.pardir ) )}/demo.ipynb''' ) def lowercase__ ( lowercase_ ,lowercase_="RGB" ) -> int: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) if os.path.isfile(lowercase_ ): _UpperCamelCase : Optional[Any] = cva.imread(lowercase_ ) else: _UpperCamelCase : Optional[int] = get_image_from_url(lowercase_ ) assert img is not None, F'''could not connect to: {im}''' _UpperCamelCase : Optional[int] = cva.cvtColor(lowercase_ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": _UpperCamelCase : List[Any] = img[:, :, ::-1] return img def lowercase__ ( lowercase_ ,lowercase_=1 ) -> List[Any]: """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(lowercase_ ) ,lowercase_ ))
310
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__:Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Optional[Any] = {"""tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__:Any = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class snake_case__ ( UpperCAmelCase__ ): _snake_case : Any = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[str] = ["""input_ids""", """attention_mask"""] _snake_case : str = None def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<unk>" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="<pad>" , lowerCamelCase=False , lowerCamelCase=False , **lowerCamelCase , ): super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , add_prefix_space=lowercase_ , clean_up_tokenization_spaces=lowercase_ , **lowercase_ , ) __a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowercase_ ) != add_prefix_space: __a = getattr(lowercase_ , pre_tok_state.pop("type" ) ) __a = add_prefix_space __a = pre_tok_class(**lowercase_ ) __a = add_prefix_space def a__ ( self , *lowerCamelCase , **lowerCamelCase ): __a = kwargs.get("is_split_into_words" , lowercase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._batch_encode_plus(*lowercase_ , **lowercase_ ) def a__ ( self , *lowerCamelCase , **lowerCamelCase ): __a = kwargs.get("is_split_into_words" , lowercase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._encode_plus(*lowercase_ , **lowercase_ ) def a__ ( self , lowerCamelCase , lowerCamelCase = None ): __a = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def a__ ( self , lowerCamelCase ): __a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: __a = input_ids[-self.model_max_length :] return input_ids
261
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[str] , *lowercase_ : Dict , **lowercase_ : Union[str, Any]): '''simple docstring''' warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_)
91
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __snake_case (_a ): def __init__( self : Dict , _UpperCAmelCase : TransformeraDModel , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : KarrasDiffusionSchedulers , _UpperCAmelCase : Optional[Dict[int, str]] = None , ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules(transformer=_UpperCAmelCase , vae=_UpperCAmelCase , scheduler=_UpperCAmelCase ) # create a imagenet -> id dictionary for easier use _lowerCAmelCase : Optional[int] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): _lowerCAmelCase : Any = int(_UpperCAmelCase ) _lowerCAmelCase : Optional[int] = dict(sorted(self.labels.items() ) ) def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : Union[str, List[str]] ) -> List[int]: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase : Dict = list(_UpperCAmelCase ) for l in label: if l not in self.labels: raise ValueError( f"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}." ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : int , _UpperCAmelCase : List[int] , _UpperCAmelCase : float = 4.0 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' _lowerCAmelCase : Tuple = len(_UpperCAmelCase ) _lowerCAmelCase : str = self.transformer.config.sample_size _lowerCAmelCase : Optional[Any] = self.transformer.config.in_channels _lowerCAmelCase : List[Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_UpperCAmelCase , device=self.device , dtype=self.transformer.dtype , ) _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents _lowerCAmelCase : Tuple = torch.tensor(_UpperCAmelCase , device=self.device ).reshape(-1 ) _lowerCAmelCase : Optional[Any] = torch.tensor([1000] * batch_size , device=self.device ) _lowerCAmelCase : Optional[Any] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: _lowerCAmelCase : Any = latent_model_input[: len(_UpperCAmelCase ) // 2] _lowerCAmelCase : Optional[int] = torch.cat([half, half] , dim=0 ) _lowerCAmelCase : List[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Tuple = t if not torch.is_tensor(_UpperCAmelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _lowerCAmelCase : Optional[Any] = latent_model_input.device.type == """mps""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase : int = torch.floataa if is_mps else torch.floataa else: _lowerCAmelCase : str = torch.intaa if is_mps else torch.intaa _lowerCAmelCase : List[str] = torch.tensor([timesteps] , dtype=_UpperCAmelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: _lowerCAmelCase : Tuple = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Union[str, Any] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output _lowerCAmelCase : List[str] = self.transformer( _UpperCAmelCase , timestep=_UpperCAmelCase , class_labels=_UpperCAmelCase ).sample # perform guidance if guidance_scale > 1: _lowerCAmelCase , _lowerCAmelCase : Tuple = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = torch.split(_UpperCAmelCase , len(_UpperCAmelCase ) // 2 , dim=0 ) _lowerCAmelCase : int = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _lowerCAmelCase : Tuple = torch.cat([half_eps, half_eps] , dim=0 ) _lowerCAmelCase : Union[str, Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _lowerCAmelCase , _lowerCAmelCase : Tuple = torch.split(_UpperCAmelCase , _UpperCAmelCase , dim=1 ) else: _lowerCAmelCase : Optional[Any] = noise_pred # compute previous image: x_t -> x_t-1 _lowerCAmelCase : str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample if guidance_scale > 1: _lowerCAmelCase , _lowerCAmelCase : List[Any] = latent_model_input.chunk(2 , dim=0 ) else: _lowerCAmelCase : Optional[Any] = latent_model_input _lowerCAmelCase : str = 1 / self.vae.config.scaling_factor * latents _lowerCAmelCase : Tuple = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase : int = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase : List[str] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : Dict = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_UpperCAmelCase )
159
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __snake_case (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : int ) -> Any: '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Any = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on _lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _lowerCAmelCase : Optional[Any] = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , **_UpperCAmelCase : Any ) -> str: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , **_UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase : Tuple = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: '''simple docstring''' _lowerCAmelCase : Tuple = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) _lowerCAmelCase : List[str] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Tuple = image_processor(_UpperCAmelCase , return_tensors="""np""" ) _lowerCAmelCase : Union[str, Any] = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Union[str, Any] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : int = processor(text=_UpperCAmelCase ) _lowerCAmelCase : Dict = tokenizer(_UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Any = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : Tuple = """lower newer""" _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Optional[int] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(_UpperCAmelCase ): processor() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : str = processor.batch_decode(_UpperCAmelCase ) _lowerCAmelCase : List[str] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : Dict = """lower newer""" _lowerCAmelCase : Optional[int] = self.prepare_image_inputs() _lowerCAmelCase : Union[str, Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
159
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __UpperCAmelCase : def __init__( self: str , UpperCAmelCase_: Tuple , UpperCAmelCase_: int=13 , UpperCAmelCase_: List[Any]=7 , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=99 , UpperCAmelCase_: List[Any]=64 , UpperCAmelCase_: Optional[Any]=5 , UpperCAmelCase_: Optional[int]=4 , UpperCAmelCase_: Optional[Any]=64 , UpperCAmelCase_: List[Any]="gelu" , UpperCAmelCase_: Tuple=0.1 , UpperCAmelCase_: Tuple=0.1 , UpperCAmelCase_: Optional[int]=512 , UpperCAmelCase_: Dict=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: Tuple=0.02 , UpperCAmelCase_: List[Any]=3 , UpperCAmelCase_: Optional[Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: str ): '''simple docstring''' return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: str ): '''simple docstring''' return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MPNetModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MPNetForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = MPNetForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Dict , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_choices _SCREAMING_SNAKE_CASE = MPNetForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = MPNetForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : str = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __snake_case : Dict = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) __snake_case : str = False __snake_case : Tuple = True def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MPNetModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Dict ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*UpperCAmelCase_ ) @require_torch class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MPNetModel.from_pretrained("""microsoft/mpnet-base""" ) _SCREAMING_SNAKE_CASE = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
1
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> str: """simple docstring""" lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Tuple = len(__UpperCamelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCAmelCase_ : Any = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None lowerCAmelCase_ : List[str] = sorted_collection[point] if current_item == item: return point else: if point < left: lowerCAmelCase_ : Dict = left lowerCAmelCase_ : str = point elif point > right: lowerCAmelCase_ : List[str] = right lowerCAmelCase_ : List[str] = point else: if item < current_item: lowerCAmelCase_ : Union[str, Any] = point - 1 else: lowerCAmelCase_ : Tuple = point + 1 return None def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCAmelCase_ : str = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif point > right: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , point - 1 ) else: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , point + 1 , __UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase ) -> List[str]: """simple docstring""" if collection != sorted(__UpperCamelCase ): raise ValueError("Collection must be ascending sorted" ) return True if __name__ == "__main__": import sys lowercase__ = 0 if debug == 1: lowercase__ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("""Sequence must be ascending sorted to apply interpolation search""") lowercase__ = 67 lowercase__ = interpolation_search(collection, target) if result is not None: print(F"""{target} found at positions: {result}""") else: print("""Not found""")
358
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : Tuple = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) lowerCAmelCase_ : str = np.array(__UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __UpperCamelCase ) ) , x.transpose() ) , __UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = (1, 2, 1) lowerCAmelCase_ : str = (1, 1, 0, 7) lowerCAmelCase_ : List[Any] = SARIMAX( __UpperCamelCase , exog=__UpperCamelCase , order=__UpperCamelCase , seasonal_order=__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = model.fit(disp=__UpperCamelCase , maxiter=600 , method="nm" ) lowerCAmelCase_ : Optional[Any] = model_fit.predict(1 , len(__UpperCamelCase ) , exog=[test_match] ) return result[0] def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : int = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : Dict = regressor.predict(__UpperCamelCase ) return y_pred[0] def __lowerCamelCase ( __UpperCamelCase ) -> float: """simple docstring""" train_user.sort() lowerCAmelCase_ : Optional[Any] = np.percentile(__UpperCamelCase , 25 ) lowerCAmelCase_ : List[Any] = np.percentile(__UpperCamelCase , 75 ) lowerCAmelCase_ : Union[str, Any] = qa - qa lowerCAmelCase_ : List[Any] = qa - (iqr * 0.1) return low_lim def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> bool: """simple docstring""" lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Union[str, Any] = 0 for i in list_vote: if i > actual_result: lowerCAmelCase_ : Tuple = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowercase__ = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] lowercase__ = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) lowercase__ = Normalizer().fit_transform(data_input_df.values) # split data lowercase__ = normalize_df[:, 2].tolist() lowercase__ = normalize_df[:, 0].tolist() lowercase__ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowercase__ = normalize_df[:, [1, 2]].tolist() lowercase__ = x[: len(x) - 1] lowercase__ = x[len(x) - 1 :] # for linear regression & sarimax lowercase__ = total_date[: len(total_date) - 1] lowercase__ = total_user[: len(total_user) - 1] lowercase__ = total_match[: len(total_match) - 1] lowercase__ = total_date[len(total_date) - 1 :] lowercase__ = total_user[len(total_user) - 1 :] lowercase__ = total_match[len(total_match) - 1 :] # voting system with forecasting lowercase__ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowercase__ = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
161
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Tuple = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "roberta" def __init__( self : Optional[int] ,A : Optional[int]=5_02_65 ,A : Union[str, Any]=7_68 ,A : Tuple=12 ,A : Any=12 ,A : List[Any]=30_72 ,A : str="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Dict=5_12 ,A : Union[str, Any]=2 ,A : Tuple=0.02 ,A : Dict=1E-12 ,A : Optional[Any]=1 ,A : int=0 ,A : Union[str, Any]=2 ,A : str="absolute" ,A : Optional[int]=True ,A : Dict=None ,**A : Optional[Any] ,): super().__init__(pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,**A ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = initializer_range __A = layer_norm_eps __A = position_embedding_type __A = use_cache __A = classifier_dropout class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def UpperCamelCase_ ( self : List[Any] ): if self.task == "multiple-choice": __A = {0: "batch", 1: "choice", 2: "sequence"} else: __A = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
15
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): SCREAMING_SNAKE_CASE :Any = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: SCREAMING_SNAKE_CASE :int = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" __A = (images / 2 + 0.5).clamp(0 , 1 ) __A = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A = numpy_to_pil(a_ ) return images def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if images.ndim == 3: __A = images[None, ...] __A = (images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __A = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: __A = [Image.fromarray(a_ ) for image in images] return pil_images
15
1
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase__ = """โ–""" lowercase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class __lowerCamelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : int = BertGenerationTokenizer a_ : Dict = False a_ : str = True def lowerCamelCase ( self : Any ): super().setUp() lowerCAmelCase_ : Optional[Any] = BertGenerationTokenizer(__lowercase , keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Dict = '''<s>''' lowerCAmelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(__lowercase ) , 10_02 ) def lowerCamelCase ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : str = BertGenerationTokenizer(__lowercase , keep_accents=__lowercase ) lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowercase , ["โ–This", "โ–is", "โ–a", "โ–t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [2_85, 46, 10, 1_70, 3_82] , ) lowerCAmelCase_ : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsรฉ." ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "รฉ", ".", ] , ) lowerCAmelCase_ : Any = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase_ : Tuple = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowerCamelCase ( self : List[Any] ): return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def lowerCamelCase ( self : int ): lowerCAmelCase_ : Optional[Any] = '''Hello World!''' lowerCAmelCase_ : Optional[int] = [1_85_36, 22_60, 1_01] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @slow def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Optional[Any] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowerCAmelCase_ : Union[str, Any] = [ 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, ] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @require_torch @slow def lowerCamelCase ( self : Any ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCAmelCase_ : Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase_ : Optional[int] = ''' '''.join(__lowercase ) lowerCAmelCase_ : Optional[int] = self.big_tokenizer.encode_plus(__lowercase , return_tensors="pt" , return_token_type_ids=__lowercase ) lowerCAmelCase_ : List[str] = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__lowercase ) lowerCAmelCase_ : List[Any] = BertGenerationConfig() lowerCAmelCase_ : Optional[Any] = BertGenerationEncoder(__lowercase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowercase ) model(**__lowercase ) @slow def lowerCamelCase ( self : int ): # fmt: off lowerCAmelCase_ : List[str] = {'''input_ids''': [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
367
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def __lowerCamelCase ( __UpperCamelCase ) -> np.ndarray: """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def __lowerCamelCase ( __UpperCamelCase ) -> np.ndarray: """simple docstring""" return (gray > 127) & (gray <= 255) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> np.ndarray: """simple docstring""" lowerCAmelCase_ : List[str] = np.zeros_like(__UpperCamelCase ) lowerCAmelCase_ : Dict = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowerCAmelCase_ : List[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowerCAmelCase_ : List[str] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowerCAmelCase_ : int = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowercase__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" lowercase__ = np.array(Image.open(lena_path)) # kernel to be applied lowercase__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowercase__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowercase__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
161
0
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class snake_case ( _a ): SCREAMING_SNAKE_CASE_ : List[str] = ["""image_processor"""] SCREAMING_SNAKE_CASE_ : Dict = """SamImageProcessor""" def __init__( self : int , UpperCamelCase__ : str)-> Optional[int]: '''simple docstring''' super().__init__(A_) __lowerCAmelCase: List[Any] = self.image_processor __lowerCAmelCase: Optional[Any] = -1_0 __lowerCAmelCase: Union[str, Any] = self.image_processor.size["longest_edge"] def __call__( self : List[Any] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : Tuple , )-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Any = self.image_processor( A_ , return_tensors=A_ , **A_ , ) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase: Tuple = encoding_image_processor["original_sizes"] if hasattr(A_ , "numpy"): # Checks if Torch or TF tensor __lowerCAmelCase: Optional[Any] = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[Any] = self._check_and_preprocess_points( input_points=A_ , input_labels=A_ , input_boxes=A_ , ) __lowerCAmelCase: Tuple = self._normalize_and_convert( A_ , A_ , input_points=A_ , input_labels=A_ , input_boxes=A_ , return_tensors=A_ , ) return encoding_image_processor def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : List[str]="pt" , )-> List[str]: '''simple docstring''' if input_points is not None: if len(A_) != len(A_): __lowerCAmelCase: Optional[int] = [ self._normalize_coordinates(self.target_size , A_ , original_sizes[0]) for point in input_points ] else: __lowerCAmelCase: int = [ self._normalize_coordinates(self.target_size , A_ , A_) for point, original_size in zip(A_ , A_) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase: str = self._pad_points_and_labels(A_ , A_) __lowerCAmelCase: Any = np.array(A_) if input_labels is not None: __lowerCAmelCase: List[str] = np.array(A_) if input_boxes is not None: if len(A_) != len(A_): __lowerCAmelCase: Dict = [ self._normalize_coordinates(self.target_size , A_ , original_sizes[0] , is_bounding_box=A_) for box in input_boxes ] else: __lowerCAmelCase: int = [ self._normalize_coordinates(self.target_size , A_ , A_ , is_bounding_box=A_) for box, original_size in zip(A_ , A_) ] __lowerCAmelCase: Optional[int] = np.array(A_) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase: Dict = torch.from_numpy(A_) # boxes batch size of 1 by default __lowerCAmelCase: Optional[int] = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase: List[str] = tf.convert_to_tensor(A_) # boxes batch size of 1 by default __lowerCAmelCase: Any = tf.expand_dims(A_ , 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes}) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase: Union[str, Any] = torch.from_numpy(A_) # point batch size of 1 by default __lowerCAmelCase: List[Any] = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase: List[str] = tf.convert_to_tensor(A_) # point batch size of 1 by default __lowerCAmelCase: Dict = tf.expand_dims(A_ , 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({"input_points": input_points}) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase: Optional[int] = torch.from_numpy(A_) # point batch size of 1 by default __lowerCAmelCase: List[Any] = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase: Dict = tf.convert_to_tensor(A_) # point batch size of 1 by default __lowerCAmelCase: Optional[Any] = tf.expand_dims(A_ , 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels}) return encoding_image_processor def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: str = max([point.shape[0] for point in input_points]) __lowerCAmelCase: Tuple = [] for i, point in enumerate(A_): if point.shape[0] != expected_nb_points: __lowerCAmelCase: Any = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value] , axis=0) __lowerCAmelCase: List[str] = np.append(input_labels[i] , [self.point_pad_value]) processed_input_points.append(A_) __lowerCAmelCase: str = processed_input_points return input_points, input_labels def lowercase_ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any]=False)-> str: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: Any = original_size __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = self.image_processor._get_preprocess_shape(A_ , longest_edge=A_) __lowerCAmelCase: List[str] = deepcopy(A_).astype(A_) if is_bounding_box: __lowerCAmelCase: Optional[int] = coords.reshape(-1 , 2 , 2) __lowerCAmelCase: Any = coords[..., 0] * (new_w / old_w) __lowerCAmelCase: Optional[int] = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase: Optional[Any] = coords.reshape(-1 , 4) return coords def lowercase_ ( self : int , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[str]=None , )-> Optional[int]: '''simple docstring''' if input_points is not None: if hasattr(A_ , "numpy"): # Checks for TF or Torch tensor __lowerCAmelCase: List[str] = input_points.numpy().tolist() if not isinstance(A_ , A_) or not isinstance(input_points[0] , A_): raise ValueError("Input points must be a list of list of floating points.") __lowerCAmelCase: Tuple = [np.array(A_) for input_point in input_points] else: __lowerCAmelCase: Dict = None if input_labels is not None: if hasattr(A_ , "numpy"): __lowerCAmelCase: Any = input_labels.numpy().tolist() if not isinstance(A_ , A_) or not isinstance(input_labels[0] , A_): raise ValueError("Input labels must be a list of list integers.") __lowerCAmelCase: int = [np.array(A_) for label in input_labels] else: __lowerCAmelCase: List[Any] = None if input_boxes is not None: if hasattr(A_ , "numpy"): __lowerCAmelCase: Optional[Any] = input_boxes.numpy().tolist() if ( not isinstance(A_ , A_) or not isinstance(input_boxes[0] , A_) or not isinstance(input_boxes[0][0] , A_) ): raise ValueError("Input boxes must be a list of list of list of floating points.") __lowerCAmelCase: List[Any] = [np.array(A_).astype(np.floataa) for box in input_boxes] else: __lowerCAmelCase: Dict = None return input_points, input_labels, input_boxes @property def lowercase_ ( self : Tuple)-> int: '''simple docstring''' __lowerCAmelCase: Dict = self.image_processor.model_input_names return list(dict.fromkeys(A_)) def lowercase_ ( self : List[Any] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : List[str])-> List[str]: '''simple docstring''' return self.image_processor.post_process_masks(*A_ , **A_)
217
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
0
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCAmelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = BarthezTokenizer snake_case = BarthezTokenizerFast snake_case = True snake_case = True def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' super().setUp() _A = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__UpperCAmelCase ) _A = tokenizer def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = "<pad>" _A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__UpperCAmelCase ) , 101122 ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = ["A long paragraph for summarization.", "Another paragraph for summarization."] _A = [0, 57, 3018, 70307, 91, 2] _A = self.tokenizer( __UpperCAmelCase , max_length=len(__UpperCAmelCase ) , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _A = batch.input_ids.tolist()[0] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' if not self.test_rust_tokenizer: return _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = "I was born in 92000, and this is falsรฉ." _A = tokenizer.tokenize(__UpperCAmelCase ) _A = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _A = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) _A = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _A = self.get_rust_tokenizer() _A = tokenizer.encode(__UpperCAmelCase ) _A = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _A = [ "Le transformeur est un modรจle d\'apprentissage profond introduit en 2017, " "utilisรฉ principalement dans le domaine du traitement automatique des langues (TAL).", "ร€ l\'instar des rรฉseaux de neurones rรฉcurrents (RNN), les transformeurs sont conรงus " "pour gรฉrer des donnรฉes sรฉquentielles, telles que le langage naturel, pour des tรขches " "telles que la traduction et la synthรจse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__UpperCAmelCase , )
354
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def __lowercase ( __lowercase , __lowercase , __lowercase ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(__lowercase , 2 ) - pow(__lowercase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__lowercase , 2 ) - pow(__lowercase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__lowercase , 2 ) + pow(__lowercase , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
174
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) @dataclass class __lowerCAmelCase : """simple docstring""" _SCREAMING_SNAKE_CASE = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) _SCREAMING_SNAKE_CASE = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) _SCREAMING_SNAKE_CASE = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _SCREAMING_SNAKE_CASE = field( default=a , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowerCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" snake_case_ = self.task_name.lower() class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 'train' _SCREAMING_SNAKE_CASE = 'dev' _SCREAMING_SNAKE_CASE = 'test' class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 def __init__( self : Any , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> Any: """simple docstring""" warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the ๐Ÿค— Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , _lowerCAmelCase , ) snake_case_ = args snake_case_ = glue_processors[args.task_name]() snake_case_ = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: snake_case_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) # Load data features from cache or dataset file snake_case_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) snake_case_ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) snake_case_ , snake_case_ = label_list[2], label_list[1] snake_case_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case_ = cached_features_file + ".lock" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: snake_case_ = time.time() snake_case_ = torch.load(_lowerCAmelCase ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(F'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: snake_case_ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: snake_case_ = self.processor.get_test_examples(args.data_dir ) else: snake_case_ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: snake_case_ = examples[:limit_length] snake_case_ = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) snake_case_ = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Union[str, Any] ) -> Tuple: """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCAmelCase : List[str] ) -> InputFeatures: """simple docstring""" return self.features[i] def lowerCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" return self.label_list
159
from math import pi def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :int )->float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
159
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""", # See all SEW models at https://huggingface.co/models?filter=sew } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """sew""" def __init__( self : Optional[int] , lowerCamelCase_ : List[Any]=32 , lowerCamelCase_ : List[str]=768 , lowerCamelCase_ : str=12 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Any=3072 , lowerCamelCase_ : Union[str, Any]=2 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Optional[Any]=0.1 , lowerCamelCase_ : str=0.0_2 , lowerCamelCase_ : List[str]=1E-5 , lowerCamelCase_ : Union[str, Any]="group" , lowerCamelCase_ : str="gelu" , lowerCamelCase_ : str=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase_ : List[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase_ : List[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase_ : str=False , lowerCamelCase_ : str=128 , lowerCamelCase_ : List[str]=16 , lowerCamelCase_ : Any=True , lowerCamelCase_ : Tuple=0.0_5 , lowerCamelCase_ : int=10 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Tuple=0.0 , lowerCamelCase_ : Optional[Any]=10 , lowerCamelCase_ : Any=0 , lowerCamelCase_ : List[str]="mean" , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : List[str]=256 , lowerCamelCase_ : Dict=0 , lowerCamelCase_ : Tuple=1 , lowerCamelCase_ : Tuple=2 , **lowerCamelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) UpperCamelCase = hidden_size UpperCamelCase = feat_extract_norm UpperCamelCase = feat_extract_activation UpperCamelCase = list(lowerCamelCase_ ) UpperCamelCase = list(lowerCamelCase_ ) UpperCamelCase = list(lowerCamelCase_ ) UpperCamelCase = conv_bias UpperCamelCase = num_conv_pos_embeddings UpperCamelCase = num_conv_pos_embedding_groups UpperCamelCase = len(self.conv_dim ) UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = squeeze_factor UpperCamelCase = hidden_act UpperCamelCase = num_attention_heads UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = feat_proj_dropout UpperCamelCase = final_dropout UpperCamelCase = layerdrop UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks # ctc loss UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # sequence classification UpperCamelCase = use_weighted_layer_sum UpperCamelCase = classifier_proj_size @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
165
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowercase( UpperCamelCase_ = True , *UpperCamelCase_ , **UpperCamelCase_ ) -> int: '''simple docstring''' if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) UpperCamelCase = False if main_process_only: UpperCamelCase = PartialState().local_process_index == 0 return _tqdm(*UpperCamelCase_ , **UpperCamelCase_ , disable=UpperCamelCase_ )
165
1
"""simple docstring""" import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp __UpperCAmelCase = 5 __UpperCAmelCase = 10 @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :int = SpeechaTextTokenizer UpperCAmelCase_ :List[str] = False UpperCAmelCase_ :Any = True def __lowerCAmelCase ( self ) -> Tuple: super().setUp() lowerCAmelCase_ :Union[str, Any] = sp.SentencePieceProcessor() spm_model.Load(_A ) lowerCAmelCase_ :Optional[Any] = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_A ) )] lowerCAmelCase_ :int = dict(zip(_A , range(len(_A ) ) ) ) lowerCAmelCase_ :int = Path(self.tmpdirname ) save_json(_A , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_A , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) lowerCAmelCase_ :Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :int = """<pad>""" lowerCAmelCase_ :Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(_A ) , 1001 ) def __lowerCAmelCase ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCAmelCase_ :List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_A , ["""โ–This""", """โ–is""", """โ–a""", """โ–t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [289, 50, 14, 174, 386] , ) lowerCAmelCase_ :List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsรฉ.""" ) self.assertListEqual( _A , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """รฉ""", """."""] , ) lowerCAmelCase_ :List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual(_A , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCAmelCase_ :Union[str, Any] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Any = {"""input_ids""": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): UpperCAmelCase_ :List[str] = 'valhalla/s2t_mustc_multilinguial_medium' UpperCAmelCase_ :Optional[int] = 'C\'est trop cool' UpperCAmelCase_ :int = 'Esto es genial' @classmethod def __lowerCAmelCase ( cls ) -> Optional[int]: lowerCAmelCase_ :int = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __lowerCAmelCase ( self ) -> Optional[int]: self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self.assertEqual(self.tokenizer.vocab_size , 1_0000 ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertIn(_A , self.tokenizer.all_special_ids ) lowerCAmelCase_ :Optional[Any] = [ES_CODE, 4, 1601, 47, 7647, 2] lowerCAmelCase_ :Dict = self.tokenizer.decode(_A , skip_special_tokens=_A ) lowerCAmelCase_ :Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A ) self.assertEqual(_A , _A ) self.assertNotIn(self.tokenizer.eos_token , _A ) def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Tuple = """fr""" lowerCAmelCase_ :str = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _A ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :int = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCAmelCase_ :Optional[int] = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
84
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def snake_case ( UpperCAmelCase )-> Dict: """simple docstring""" __A = torch.exp(UpperCAmelCase ) __A = torch.sum(UpperCAmelCase , dim=1 ) # sum of exp(x_i) __A = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(UpperCAmelCase ) - B / A class UpperCamelCase__ ( nn.Module): def __init__( self :Any , _A :int ) -> Union[str, Any]: '''simple docstring''' super().__init__() __A = config.output_attentions __A = config.output_hidden_states __A = nn.ModuleList([BertLayer(_A ) for _ in range(config.num_hidden_layers )] ) __A = nn.ModuleList([BertHighway(_A ) for _ in range(config.num_hidden_layers )] ) __A = [-1 for _ in range(config.num_hidden_layers )] def lowercase_ ( self :Any , _A :List[Any] ) -> Tuple: '''simple docstring''' if (type(_A ) is float) or (type(_A ) is int): for i in range(len(self.early_exit_entropy ) ): __A = x else: __A = x def lowercase_ ( self :Optional[Any] , _A :List[str] ) -> Dict: '''simple docstring''' __A = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def lowercase_ ( self :List[Any] , _A :Tuple , _A :Tuple=None , _A :int=None , _A :List[Any]=None , _A :str=None , ) -> Tuple: '''simple docstring''' __A = () __A = () __A = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __A = all_hidden_states + (hidden_states,) __A = layer_module( _A , _A , head_mask[i] , _A , _A ) __A = layer_outputs[0] if self.output_attentions: __A = all_attentions + (layer_outputs[1],) __A = (hidden_states,) if self.output_hidden_states: __A = current_outputs + (all_hidden_states,) if self.output_attentions: __A = current_outputs + (all_attentions,) __A = self.highway[i](_A ) # logits, pooled_output if not self.training: __A = highway_exit[0] __A = entropy(_A ) __A = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __A = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __A = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_A , i + 1 ) else: __A = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __A = all_hidden_states + (hidden_states,) __A = (hidden_states,) if self.output_hidden_states: __A = outputs + (all_hidden_states,) if self.output_attentions: __A = outputs + (all_attentions,) __A = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , SCREAMING_SNAKE_CASE , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Tuple , _A :List[str] ) -> str: '''simple docstring''' super().__init__(_A ) __A = config __A = BertEmbeddings(_A ) __A = DeeBertEncoder(_A ) __A = BertPooler(_A ) self.init_weights() def lowercase_ ( self :Union[str, Any] ) -> str: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def lowercase_ ( self :Optional[Any] ) -> Dict: '''simple docstring''' return self.embeddings.word_embeddings def lowercase_ ( self :Tuple , _A :Tuple ) -> Union[str, Any]: '''simple docstring''' __A = value def lowercase_ ( self :int , _A :int ) -> Tuple: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_A ) @add_start_docstrings_to_model_forward(_A ) def lowercase_ ( self :Tuple , _A :int=None , _A :List[Any]=None , _A :Optional[int]=None , _A :Optional[int]=None , _A :Optional[int]=None , _A :Any=None , _A :List[str]=None , _A :Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __A = input_ids.size() elif inputs_embeds is not None: __A = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __A = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __A = torch.ones(_A , device=_A ) if encoder_attention_mask is None: __A = torch.ones(_A , device=_A ) if token_type_ids is None: __A = torch.zeros(_A , dtype=torch.long , device=_A ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __A = self.get_extended_attention_mask(_A , _A , _A ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __A = encoder_attention_mask[:, None, None, :] __A = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __A = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __A = self.get_head_mask(_A , self.config.num_hidden_layers ) __A = self.embeddings( input_ids=_A , position_ids=_A , token_type_ids=_A , inputs_embeds=_A ) __A = self.encoder( _A , attention_mask=_A , head_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) __A = encoder_outputs[0] __A = self.pooler(_A ) __A = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Optional[Any] , _A :str , _A :List[str] ) -> Optional[int]: '''simple docstring''' __A = message __A = exit_layer # start from 1! class UpperCamelCase__ ( nn.Module): def __init__( self :Any , _A :Dict ) -> Tuple: '''simple docstring''' super().__init__() __A = BertPooler(_A ) __A = nn.Dropout(config.hidden_dropout_prob ) __A = nn.Linear(config.hidden_size , config.num_labels ) def lowercase_ ( self :List[Any] , _A :Optional[Any] ) -> int: '''simple docstring''' __A = encoder_outputs[0] __A = self.pooler(_A ) # "return" pooler_output # BertModel __A = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __A = bmodel_output[1] __A = self.dropout(_A ) __A = self.classifier(_A ) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , SCREAMING_SNAKE_CASE , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :str , _A :Optional[Any] ) -> str: '''simple docstring''' super().__init__(_A ) __A = config.num_labels __A = config.num_hidden_layers __A = DeeBertModel(_A ) __A = nn.Dropout(config.hidden_dropout_prob ) __A = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_A ) def lowercase_ ( self :Tuple , _A :str=None , _A :Optional[int]=None , _A :Any=None , _A :str=None , _A :int=None , _A :Tuple=None , _A :Any=None , _A :List[str]=-1 , _A :Optional[Any]=False , ) -> List[str]: '''simple docstring''' __A = self.num_layers try: __A = self.bert( _A , attention_mask=_A , token_type_ids=_A , position_ids=_A , head_mask=_A , inputs_embeds=_A , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __A = outputs[1] __A = self.dropout(_A ) __A = self.classifier(_A ) __A = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __A = e.message __A = e.exit_layer __A = outputs[0] if not self.training: __A = entropy(_A ) __A = [] __A = [] if labels is not None: if self.num_labels == 1: # We are doing regression __A = MSELoss() __A = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __A = CrossEntropyLoss() __A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __A = [] for highway_exit in outputs[-1]: __A = highway_exit[0] if not self.training: highway_logits_all.append(_A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __A = MSELoss() __A = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __A = CrossEntropyLoss() __A = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_A ) if train_highway: __A = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __A = (loss,) + outputs if not self.training: __A = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __A = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
161
0
def A (__A : int = 1000 ) -> int: """simple docstring""" UpperCAmelCase_ = -1 UpperCAmelCase_ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c UpperCAmelCase_ = (n * n - 2 * a * n) // (2 * n - 2 * a) UpperCAmelCase_ = n - a - b if c * c == (a * a + b * b): UpperCAmelCase_ = a * b * c if candidate >= product: UpperCAmelCase_ = candidate return product if __name__ == "__main__": print(f"{solution() = }")
7
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Optional[Any] = 128022 snake_case_ : Optional[int] = 128028 @require_sentencepiece class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MaMaaaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''โ–This''', '''โ–is''', '''โ–a''', '''โ–t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = Path(self.tmpdirname) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file''']) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<s>''') self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('''Skip this test while all models are still to be uploaded.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''โ–This''', '''โ–is''', '''โ–a''', '''โ–t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_snake_case , ['''โ–This''', '''โ–is''', '''โ–a''', '''โ–t''', '''est''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertEqual(_snake_case , '''This is a test''') @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Dict = '''facebook/m2m100_418M''' UpperCAmelCase__ : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__ : Dict = [ '''Selon moi, il y a deux niveaux de rรฉponse de la part du gouvernement franรงais.''', '''L\'affaire NSA souligne l\'absence totale de dรฉbat sur le renseignement''', ] # fmt: off UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''') UpperCAmelCase_ = 1 return cls def lowerCamelCase ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006) self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022) self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076) self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size) self.assertEqual(vocab['''<unk>'''] , 3) self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids) # fmt: off UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case) self.assertEqual(_snake_case , _snake_case) self.assertNotIn(self.tokenizer.eos_token , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case) self.assertDictEqual(new_tok.lang_token_to_id , _snake_case) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''') self.assertEqual( nested_simplify(_snake_case) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
7
1
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowercase ( _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : Union[str, Any] ) ->Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = AlbertConfig.from_json_file(_snake_case ) print(f"""Building PyTorch model from configuration: {config}""" ) __snake_case : Tuple = AlbertForPreTraining(_snake_case ) # Load weights from tf checkpoint load_tf_weights_in_albert(_snake_case , _snake_case , _snake_case ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
102
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : List[Any] = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] a__ : str = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
161
0
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Union[str, Any] = GPTSwaTokenizer A__ : Optional[Any] = False A__ : List[Any] = True A__ : Union[str, Any] = False def lowerCamelCase_ ( self : Tuple ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ = GPTSwaTokenizer(__UpperCamelCase , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : List[str] , __UpperCamelCase : Tuple ): """simple docstring""" UpperCamelCase_ = """This is a test""" UpperCamelCase_ = """This is a test""" return input_text, output_text def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase_ = """<s>""" UpperCamelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__UpperCamelCase ) , 2_0_0_0 ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0 ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase_ = GPTSwaTokenizer(__UpperCamelCase ) UpperCamelCase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCamelCase , ["""โ–This""", """โ–is""", """โ–a""", """โ–t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) UpperCamelCase_ = tokenizer.tokenize("""I was born in 92000, and this is falsรฉ.""" ) # fmt: off self.assertListEqual( __UpperCamelCase , ["""โ–I""", """โ–was""", """โ–bor""", """n""", """โ–in""", """โ–""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """โ–and""", """โ–this""", """โ–is""", """โ–f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on UpperCamelCase_ = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) UpperCamelCase_ = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) # fmt: off self.assertListEqual( __UpperCamelCase , ["""โ–I""", """โ–was""", """โ–bor""", """n""", """โ–in""", """โ–""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """โ–and""", """โ–this""", """โ–is""", """โ–f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase_ = GPTSwaTokenizer(__UpperCamelCase ) UpperCamelCase_ = ["""This is a test""", """I was born in 92000, and this is falsรฉ."""] UpperCamelCase_ = [ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__UpperCamelCase , __UpperCamelCase ): self.assertListEqual(tokenizer.encode_fast(__UpperCamelCase ) , __UpperCamelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(tokenizer.decode_fast(__UpperCamelCase ) , __UpperCamelCase ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase_ = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Hรคj svรคjs lillebrรถr! =)""", """Det รคr inget fel pรฅ Mr. Cool""", ] # fmt: off UpperCamelCase_ = {"""input_ids""": [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=__UpperCamelCase , )
355
from math import pow, sqrt def lowerCamelCase__ ( *a__ : float ) -> bool: UpperCamelCase_ = len(a__ ) > 0 and all(value > 0.0 for value in values ) return result def lowerCamelCase__ ( a__ : float , a__ : float ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(a__ , a__ ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def lowerCamelCase__ ( a__ : float , a__ : float , a__ : float ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(a__ , a__ , a__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def lowerCamelCase__ ( a__ : float , a__ : float , a__ : float ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(a__ , a__ , a__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def lowerCamelCase__ ( a__ : float , a__ : float , a__ : float ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(a__ , a__ , a__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def lowerCamelCase__ ( a__ : float , a__ : float , a__ : float ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(a__ , a__ , a__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
261
0
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" lowerCamelCase__ = MODEL_FOR_MASKED_LM_MAPPING lowerCamelCase__ = TF_MODEL_FOR_MASKED_LM_MAPPING def A ( self : List[str] ) -> List[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def A ( self : List[str] ) -> List[Any]: UpperCAmelCase : Tuple = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) UpperCAmelCase : str = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 38015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 25506, '''token_str''': ''' accuser'''}, ] , ) UpperCAmelCase : Optional[Any] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-05, '''token''': 38015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-05, '''token''': 25506, '''token_str''': ''' accuser''', }, ] , ) UpperCAmelCase : Any = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 13606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) UpperCAmelCase : List[Any] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 35676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase : int = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-05, '''token''': 35676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase : Tuple = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 2941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 13606, '''token_str''': ''' Clara'''}, ] , ) UpperCAmelCase : int = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ [ { '''score''': 2.2E-05, '''token''': 35676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-05, '''token''': 35676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : List[Any] = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() UpperCAmelCase : List[Any] = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__snake_case , __snake_case ) @slow @require_torch def A ( self : Optional[Any] ) -> int: UpperCAmelCase : Tuple = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(__snake_case ) @slow @require_tf def A ( self : Dict ) -> Optional[int]: UpperCAmelCase : Tuple = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(__snake_case ) def A ( self : Dict , __snake_case : Any ) -> str: UpperCAmelCase : List[str] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_08, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_07, '''token''': 1573, '''token_str''': ''' Chris'''}, ] , ) UpperCAmelCase : Optional[int] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_51, '''token''': 2201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_14, '''token''': 12790, '''token_str''': ''' Lyon''', }, ] , ) UpperCAmelCase : Tuple = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_00, '''token''': 13606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_00, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def A ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : List[str] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Union[str, Any] = None self.run_pipeline_test(__snake_case , [] ) @require_tf def A ( self : Dict ) -> List[Any]: UpperCAmelCase : List[str] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None self.run_pipeline_test(__snake_case , [] ) def A ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : int , __snake_case : Optional[int] ) -> Union[str, Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : Optional[Any] = [ F"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def A ( self : List[str] , __snake_case : Any , __snake_case : str ) -> str: UpperCAmelCase : int = fill_masker.tokenizer UpperCAmelCase : Tuple = fill_masker.model UpperCAmelCase : Optional[Any] = fill_masker( F"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : int = fill_masker([F"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : Union[str, Any] = fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( __snake_case , [ [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], ] , ) with self.assertRaises(__snake_case ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__snake_case ): fill_masker('''This is''' ) self.run_test_top_k(__snake_case , __snake_case ) self.run_test_targets(__snake_case , __snake_case ) self.run_test_top_k_targets(__snake_case , __snake_case ) self.fill_mask_with_duplicate_targets_and_top_k(__snake_case , __snake_case ) self.fill_mask_with_multiple_masks(__snake_case , __snake_case ) def A ( self : Any , __snake_case : Any , __snake_case : List[Any] ) -> List[Any]: UpperCAmelCase : Tuple = tokenizer.get_vocab() UpperCAmelCase : List[str] = sorted(vocab.keys() )[:2] # Pipeline argument UpperCAmelCase : Any = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , targets=__snake_case ) UpperCAmelCase : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , __snake_case ) UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(__snake_case ) ) # Call argument UpperCAmelCase : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : Tuple = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , __snake_case ) UpperCAmelCase : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(__snake_case ) ) # Score equivalence UpperCAmelCase : int = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case ) UpperCAmelCase : int = [top_mask['''token_str'''] for top_mask in outputs] UpperCAmelCase : Optional[int] = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ) == set(__snake_case ): UpperCAmelCase : List[str] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case ) UpperCAmelCase : str = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) # Raises with invalid with self.assertRaises(__snake_case ): UpperCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__snake_case ): UpperCAmelCase : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[''''''] ) with self.assertRaises(__snake_case ): UpperCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets='''''' ) def A ( self : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] ) -> Optional[Any]: UpperCAmelCase : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , top_k=2 ) UpperCAmelCase : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : Tuple = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) def A ( self : Dict , __snake_case : List[Any] , __snake_case : Tuple ) -> int: UpperCAmelCase : List[str] = tokenizer.get_vocab() UpperCAmelCase : Optional[int] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) # top_k=2, ntargets=3 UpperCAmelCase : Union[str, Any] = sorted(vocab.keys() )[:3] UpperCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=__snake_case ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCAmelCase : Union[str, Any] = [el['''token_str'''] for el in sorted(__snake_case , key=lambda __snake_case : x["score"] , reverse=__snake_case )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ).issubset(__snake_case ): UpperCAmelCase : Tuple = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=__snake_case ) # They should yield exactly the same result self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) def A ( self : Tuple , __snake_case : Dict , __snake_case : Dict ) -> Union[str, Any]: UpperCAmelCase : List[str] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : str = tokenizer.get_vocab() # String duplicates + id duplicates UpperCAmelCase : Optional[int] = sorted(vocab.keys() )[:3] UpperCAmelCase : Union[str, Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCAmelCase : List[Any] = fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=__snake_case , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__snake_case ) , 3 ) def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : Optional[Any] = fill_masker( F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( __snake_case , [ [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], ] , )
23
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _UpperCAmelCase : List[str] = 8 def __magic_name__( lowerCamelCase, lowerCamelCase=BITS): __lowerCAmelCase = x.device __lowerCAmelCase = (x * 2_5_5).int().clamp(0, 2_5_5) __lowerCAmelCase = 2 ** torch.arange(bits - 1, -1, -1, device=lowerCamelCase) __lowerCAmelCase = rearrange(lowerCamelCase, '''d -> d 1 1''') __lowerCAmelCase = rearrange(lowerCamelCase, '''b c h w -> b c 1 h w''') __lowerCAmelCase = ((x & mask) != 0).float() __lowerCAmelCase = rearrange(lowerCamelCase, '''b c d h w -> b (c d) h w''') __lowerCAmelCase = bits * 2 - 1 return bits def __magic_name__( lowerCamelCase, lowerCamelCase=BITS): __lowerCAmelCase = x.device __lowerCAmelCase = (x > 0).int() __lowerCAmelCase = 2 ** torch.arange(bits - 1, -1, -1, device=lowerCamelCase, dtype=torch.intaa) __lowerCAmelCase = rearrange(lowerCamelCase, '''d -> d 1 1''') __lowerCAmelCase = rearrange(lowerCamelCase, '''b (c d) h w -> b c d h w''', d=8) __lowerCAmelCase = reduce(x * mask, '''b c d h w -> b c h w''', '''sum''') return (dec / 2_5_5).clamp(0.0, 1.0) def __magic_name__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = 0.0, lowerCamelCase = True, lowerCamelCase=None, lowerCamelCase = True, ): if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''') # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> ฮท # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __lowerCAmelCase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __lowerCAmelCase = self.alphas_cumprod[timestep] __lowerCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __lowerCAmelCase = self.bit_scale if self.config.clip_sample: __lowerCAmelCase = torch.clamp(lowerCamelCase, -scale, lowerCamelCase) # 5. compute variance: "sigma_t(ฮท)" -> see formula (16) # ฯƒ_t = sqrt((1 โˆ’ ฮฑ_tโˆ’1)/(1 โˆ’ ฮฑ_t)) * sqrt(1 โˆ’ ฮฑ_t/ฮฑ_tโˆ’1) __lowerCAmelCase = self._get_variance(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCAmelCase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __lowerCAmelCase = model_output.device if torch.is_tensor(lowerCamelCase) else '''cpu''' __lowerCAmelCase = torch.randn(model_output.shape, dtype=model_output.dtype, generator=lowerCamelCase).to(lowerCamelCase) __lowerCAmelCase = self._get_variance(lowerCamelCase, lowerCamelCase) ** 0.5 * eta * noise __lowerCAmelCase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowerCamelCase, pred_original_sample=lowerCamelCase) def __magic_name__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase="epsilon", lowerCamelCase=None, lowerCamelCase = True, ): __lowerCAmelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __lowerCAmelCase , __lowerCAmelCase = torch.split(lowerCamelCase, sample.shape[1], dim=1) else: __lowerCAmelCase = None # 1. compute alphas, betas __lowerCAmelCase = self.alphas_cumprod[t] __lowerCAmelCase = self.alphas_cumprod[t - 1] if t > 0 else self.one __lowerCAmelCase = 1 - alpha_prod_t __lowerCAmelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __lowerCAmelCase = model_output else: raise ValueError(F"""Unsupported prediction_type {prediction_type}.""") # 3. Clip "predicted x_0" __lowerCAmelCase = self.bit_scale if self.config.clip_sample: __lowerCAmelCase = torch.clamp(lowerCamelCase, -scale, lowerCamelCase) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCAmelCase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __lowerCAmelCase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample ยต_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowerCAmelCase = 0 if t > 0: __lowerCAmelCase = torch.randn( model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=lowerCamelCase).to(model_output.device) __lowerCAmelCase = (self._get_variance(lowerCamelCase, predicted_variance=lowerCamelCase) ** 0.5) * noise __lowerCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowerCamelCase, pred_original_sample=lowerCamelCase) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase = 1.0 , ): super().__init__() __lowerCAmelCase = bit_scale __lowerCAmelCase = ( ddim_bit_scheduler_step if isinstance(__lowercase , __lowercase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__lowercase , scheduler=__lowercase ) @torch.no_grad() def __call__(self , __lowercase = 2_56 , __lowercase = 2_56 , __lowercase = 50 , __lowercase = None , __lowercase = 1 , __lowercase = "pil" , __lowercase = True , **__lowercase , ): __lowerCAmelCase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__lowercase , ) __lowerCAmelCase = decimal_to_bits(__lowercase ) * self.bit_scale __lowerCAmelCase = latents.to(self.device ) self.scheduler.set_timesteps(__lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __lowerCAmelCase = self.unet(__lowercase , __lowercase ).sample # compute the previous noisy sample x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample __lowerCAmelCase = bits_to_decimal(__lowercase ) if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(__lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowercase )
174
0
import math def lowerCamelCase__ ( a ) -> list[int]: _A: Dict = [] _A: int = 2 _A: Any = int(math.sqrt(a ) ) # Size of every segment _A: int = [True] * (end + 1) _A: Any = [] while start <= end: if temp[start] is True: in_prime.append(a ) for i in range(start * start , end + 1 , a ): _A: int = False start += 1 prime += in_prime _A: Union[str, Any] = end + 1 _A: List[Any] = min(2 * end , a ) while low <= n: _A: Any = [True] * (high - low + 1) for each in in_prime: _A: Optional[int] = math.floor(low / each ) * each if t < low: t += each for j in range(a , high + 1 , a ): _A: Union[str, Any] = False for j in range(len(a ) ): if temp[j] is True: prime.append(j + low ) _A: Optional[int] = high + 1 _A: Dict = min(high + end , a ) return prime print(sieve(10**6))
301
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A_ : Tuple = logging.get_logger(__name__) def A ( snake_case__ , snake_case__=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE__ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def A ( snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE__ = """""" else: SCREAMING_SNAKE_CASE__ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-config.hidden_size :] def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = dct.pop(snake_case__ ) SCREAMING_SNAKE_CASE__ = val def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def A ( snake_case__ , snake_case__ , snake_case__=True ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ViTConfig() # patch_size if model_name[-1] == "8": SCREAMING_SNAKE_CASE__ = 8 # set labels if required if not base_model: SCREAMING_SNAKE_CASE__ = 10_00 SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" SCREAMING_SNAKE_CASE__ = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(snake_case__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: SCREAMING_SNAKE_CASE__ = 3_84 SCREAMING_SNAKE_CASE__ = 15_36 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 6 # load original model from torch hub SCREAMING_SNAKE_CASE__ = torch.hub.load("""facebookresearch/dino:main""" , snake_case__ ) original_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ = original_model.state_dict() if base_model: remove_classification_head_(snake_case__ ) SCREAMING_SNAKE_CASE__ = create_rename_keys(snake_case__ , base_model=snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , snake_case__ , snake_case__ ) # load HuggingFace model if base_model: SCREAMING_SNAKE_CASE__ = ViTModel(snake_case__ , add_pooling_layer=snake_case__ ).eval() else: SCREAMING_SNAKE_CASE__ = ViTForImageClassification(snake_case__ ).eval() model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by ViTImageProcessor SCREAMING_SNAKE_CASE__ = ViTImageProcessor() SCREAMING_SNAKE_CASE__ = image_processor(images=prepare_img() , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = encoding["""pixel_values"""] SCREAMING_SNAKE_CASE__ = model(snake_case__ ) if base_model: SCREAMING_SNAKE_CASE__ = original_model(snake_case__ ) assert torch.allclose(snake_case__ , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: SCREAMING_SNAKE_CASE__ = original_model(snake_case__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(snake_case__ , outputs.logits , atol=1e-3 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) A_ : int = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
165
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : int ) -> int: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=__UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions if self.add_downsample: SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=True ) -> Any: SCREAMING_SNAKE_CASE__ = () for resnet, attn in zip(self.resnets , self.attentions ): SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE__ = self.downsamplers_a(__UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=__UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets if self.add_downsample: SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any]=True ) -> List[Any]: SCREAMING_SNAKE_CASE__ = () for resnet in self.resnets: SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE__ = self.downsamplers_a(__UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions if self.add_upsample: SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any=True ) -> Union[str, Any]: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) if self.add_upsample: SCREAMING_SNAKE_CASE__ = self.upsamplers_a(__UpperCAmelCase ) return hidden_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets if self.add_upsample: SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str]=True ) -> Dict: for resnet in self.resnets: # pop res hidden states SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) if self.add_upsample: SCREAMING_SNAKE_CASE__ = self.upsamplers_a(__UpperCAmelCase ) return hidden_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: # there is always at least one resnet SCREAMING_SNAKE_CASE__ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] SCREAMING_SNAKE_CASE__ = [] for _ in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions def __call__( self : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : List[str]=True ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.resnets[0](__UpperCAmelCase , __UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) return hidden_states
165
1
from __future__ import annotations import typing from collections import Counter def _lowerCAmelCase ( __lowerCAmelCase ) -> typing.Counter[int]: """simple docstring""" snake_case__ : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(__lowerCAmelCase , max_perimeter + 1 ): snake_case__ : Any = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCAmelCase ): snake_case__ : Union[str, Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _lowerCAmelCase ( __lowerCAmelCase = 1000 ) -> int: """simple docstring""" snake_case__ : Union[str, Any] = pythagorean_triple(__lowerCAmelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
44
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device A__ = False class a ( unittest.TestCase ): pass @nightly @require_torch_gpu class a ( unittest.TestCase ): def __lowerCamelCase ( self :List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self :List[str] ): snake_case__ : Dict = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ,torch_dtype=torch.floataa ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) snake_case__ : List[Any] = torch.manual_seed(0 ) snake_case__ : Optional[int] = pipe.dual_guided( prompt='''first prompt''' ,image=__lowercase ,text_to_image_strength=0.75 ,generator=__lowercase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ,).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowercase ) snake_case__ : Any = VersatileDiffusionPipeline.from_pretrained(__lowercase ,torch_dtype=torch.floataa ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : List[str] = generator.manual_seed(0 ) snake_case__ : Any = pipe.dual_guided( prompt='''first prompt''' ,image=__lowercase ,text_to_image_strength=0.75 ,generator=__lowercase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ,).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __lowerCamelCase ( self :Dict ): snake_case__ : Optional[int] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ,torch_dtype=torch.floataa ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : List[Any] = '''cyberpunk 2077''' snake_case__ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) snake_case__ : Optional[int] = torch.manual_seed(0 ) snake_case__ : Any = pipe.dual_guided( prompt=__lowercase ,image=__lowercase ,text_to_image_strength=0.75 ,generator=__lowercase ,guidance_scale=7.5 ,num_inference_steps=5_0 ,output_type='''numpy''' ,).images snake_case__ : int = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : List[str] = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 snake_case__ : Any = '''A painting of a squirrel eating a burger ''' snake_case__ : List[str] = torch.manual_seed(0 ) snake_case__ : int = pipe.text_to_image( prompt=__lowercase ,generator=__lowercase ,guidance_scale=7.5 ,num_inference_steps=5_0 ,output_type='''numpy''' ).images snake_case__ : Optional[int] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : str = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 snake_case__ : List[Any] = pipe.image_variation(__lowercase ,generator=__lowercase ,output_type='''numpy''' ).images snake_case__ : str = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Optional[int] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
44
1
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int: '''simple docstring''' A__ = -1 A__ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c A__ = (n * n - 2 * a * n) // (2 * n - 2 * a) A__ = n - a - b if c * c == (a * a + b * b): A__ = a * b * c if candidate >= product: A__ = candidate return product if __name__ == "__main__": print(f"""{solution() = }""")
7
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowercase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : tuple , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , ) -> Union[str, Any]: '''simple docstring''' output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) else: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ) -> Tuple: '''simple docstring''' A__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A__ = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A__ = 'cpu' A__ = Path(SCREAMING_SNAKE_CASE__ ) # VAE DECODER A__ = AutoencoderKL.from_pretrained(model_path + '/vae' ) A__ = vae_decoder.config.latent_channels # forward only through the decoder part A__ = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE__ , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE__ , ) del vae_decoder if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowercase_ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
7
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : int = OmegaConf.load(_lowerCamelCase) __UpperCamelCase : Any = torch.load(_lowerCamelCase , map_location="cpu")["model"] __UpperCamelCase : Tuple = list(state_dict.keys()) # extract state_dict for VQVAE __UpperCamelCase : List[str] = {} __UpperCamelCase : Optional[int] = "first_stage_model." for key in keys: if key.startswith(_lowerCamelCase): __UpperCamelCase : List[Any] = state_dict[key] # extract state_dict for UNetLDM __UpperCamelCase : List[str] = {} __UpperCamelCase : str = "model.diffusion_model." for key in keys: if key.startswith(_lowerCamelCase): __UpperCamelCase : Optional[int] = state_dict[key] __UpperCamelCase : str = config.model.params.first_stage_config.params __UpperCamelCase : int = config.model.params.unet_config.params __UpperCamelCase : int = VQModel(**_lowerCamelCase).eval() vqvae.load_state_dict(_lowerCamelCase) __UpperCamelCase : int = UNetLDMModel(**_lowerCamelCase).eval() unet.load_state_dict(_lowerCamelCase) __UpperCamelCase : int = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_lowerCamelCase , ) __UpperCamelCase : Dict = LDMPipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) pipeline.save_pretrained(_lowerCamelCase) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) lowercase : Dict = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
151
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int]) -> Dict: '''simple docstring''' return EnvironmentCommand() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict) -> Dict: '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file) class lowerCamelCase__ ( __lowercase): '''simple docstring''' @staticmethod def _lowerCamelCase ( a :ArgumentParser ) -> str: __UpperCamelCase : List[Any] = parser.add_parser("env" ) download_parser.set_defaults(func=a ) download_parser.add_argument( "--accelerate-config_file" , default=a , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=a ) def __init__( self :Tuple , a :Dict , *a :List[str] ) -> None: __UpperCamelCase : List[str] = accelerate_config_file def _lowerCamelCase ( self :int ) -> Dict: __UpperCamelCase : int = "not installed" if is_safetensors_available(): import safetensors __UpperCamelCase : List[str] = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors __UpperCamelCase : Optional[Any] = f'{safetensors.__version__} but is ignored because of PyTorch version too old.' __UpperCamelCase : List[str] = "not installed" __UpperCamelCase : List[str] = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __UpperCamelCase : Tuple = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(a ): __UpperCamelCase : Dict = load_config_from_file(self._accelerate_config_file ).to_dict() __UpperCamelCase : int = ( "\n".join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(a , a ) else f'\t{accelerate_config}' ) __UpperCamelCase : List[Any] = "not installed" __UpperCamelCase : Dict = "NA" if is_torch_available(): import torch __UpperCamelCase : Optional[int] = torch.__version__ __UpperCamelCase : Optional[Any] = torch.cuda.is_available() __UpperCamelCase : Dict = "not installed" __UpperCamelCase : str = "NA" if is_tf_available(): import tensorflow as tf __UpperCamelCase : Optional[Any] = tf.__version__ try: # deprecated in v2.1 __UpperCamelCase : Dict = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __UpperCamelCase : Optional[Any] = bool(tf.config.list_physical_devices("GPU" ) ) __UpperCamelCase : List[Any] = "not installed" __UpperCamelCase : Any = "not installed" __UpperCamelCase : Tuple = "not installed" __UpperCamelCase : Optional[int] = "NA" if is_flax_available(): import flax import jax import jaxlib __UpperCamelCase : int = flax.__version__ __UpperCamelCase : Any = jax.__version__ __UpperCamelCase : Optional[int] = jaxlib.__version__ __UpperCamelCase : List[Any] = jax.lib.xla_bridge.get_backend().platform __UpperCamelCase : Optional[Any] = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": f'{safetensors_version}', "Accelerate version": f'{accelerate_version}', "Accelerate config": f'{accelerate_config_str}', "PyTorch version (GPU?)": f'{pt_version} ({pt_cuda_available})', "Tensorflow version (GPU?)": f'{tf_version} ({tf_cuda_available})', "Flax version (CPU?/GPU?/TPU?)": f'{flax_version} ({jax_backend})', "Jax version": f'{jax_version}', "JaxLib version": f'{jaxlib_version}', "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a ) ) return info @staticmethod def _lowerCamelCase ( a :str ) -> int: return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
151
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : str =field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a : ClassVar[Features] =Features({"text": Value("string" )} ) a : ClassVar[Features] =Features({"labels": ClassLabel} ) a : str ="text" a : str ="labels" def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , snake_case__ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowerCAmelCase : Optional[int] = copy.deepcopy(self ) lowerCAmelCase : str = self.label_schema.copy() lowerCAmelCase : Dict = features[self.label_column] lowerCAmelCase : Union[str, Any] = label_schema return task_template @property def lowercase__ ( self ): """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
108
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__:Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Any = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE__:Optional[int] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _lowerCamelCase( a , a , a , a , a ): for attribute in key.split("." ): __a = getattr(a , a ) if weight_type is not None: __a = getattr(a , a ).shape else: __a = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value else: __a = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowerCamelCase( a , a ): __a = [] __a = fairseq_model.state_dict() __a = hf_model.feature_extractor __a = hf_model.adapter for name, value in fairseq_dict.items(): __a = False if "conv_layers" in name: load_conv_layer( a , a , a , a , hf_model.config.feat_extract_norm == "group" , ) __a = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(a , a , a , a ) __a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __a = True if "*" in mapped_key: __a = name.split(a )[0].split("." )[-2] __a = mapped_key.replace("*" , a ) if "weight_g" in name: __a = "weight_g" elif "weight_v" in name: __a = "weight_v" elif "bias" in name: __a = "bias" elif "weight" in name: __a = "weight" else: __a = None set_recursively(a , a , a , a , a ) continue if not is_used: unused_weights.append(a ) logger.warning(F"Unused weights: {unused_weights}" ) def _lowerCamelCase( a , a , a , a , a ): __a = full_name.split("conv_layers." )[-1] __a = name.split("." ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __a = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __a = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __a = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __a = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a ) def _lowerCamelCase( a , a , a , a ): __a = full_name.split("adaptor." )[-1] __a = name.split("." ) if items[1].isdigit(): __a = int(items[1] ) else: __a = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." __a = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." __a = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." __a = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." __a = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(a , a ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." __a = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." __a = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(a ) def _lowerCamelCase( a ): __a , __a = emb.weight.shape __a = nn.Linear(a , a , bias=a ) __a = emb.weight.data return lin_layer @torch.no_grad() def _lowerCamelCase( a , a , a , a , a , a , a , a , a , a , a , ): __a = WavaVecaConfig.from_pretrained( a , add_adapter=a , adapter_stride=a , adapter_kernel_size=a , use_auth_token=a , output_hidden_size=a , ) __a = MBartConfig.from_pretrained(a ) # load model __a , __a , __a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) __a = model[0].eval() # load feature extractor __a = WavaVecaFeatureExtractor.from_pretrained(a , use_auth_token=a ) # set weights for wav2vec2 encoder __a = WavaVecaModel(a ) recursively_load_weights_wavaveca(model.encoder , a ) # load decoder weights __a = MBartForCausalLM(a ) __a , __a = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) __a = SpeechEncoderDecoderModel(encoder=a , decoder=a ) __a = False __a = MBartaaTokenizer(a ) tokenizer.save_pretrained(a ) __a = hf_wavavec.config.to_dict() __a = tokenizer.pad_token_id __a = tokenizer.bos_token_id __a = tokenizer.eos_token_id __a = "mbart50" __a = "wav2vec2" __a = tokenizer.eos_token_id __a = 2_5_0_0_0_4 __a = tokenizer.eos_token_id __a = SpeechEncoderDecoderConfig.from_dict(a ) hf_wavavec.save_pretrained(a ) feature_extractor.save_pretrained(a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=250004, type=int, help="""`decoder_start_token_id` of model config""") SCREAMING_SNAKE_CASE__:List[Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
261
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""", } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : str = '''switch_transformers''' __UpperCAmelCase : List[str] = ['''past_key_values'''] __UpperCAmelCase : Any = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , UpperCamelCase__=3_2128 , UpperCamelCase__=768 , UpperCamelCase__=64 , UpperCamelCase__=2048 , UpperCamelCase__=64 , UpperCamelCase__=12 , UpperCamelCase__=3 , UpperCamelCase__=12 , UpperCamelCase__=3 , UpperCamelCase__=12 , UpperCamelCase__=8 , UpperCamelCase__=False , UpperCamelCase__=0.01 , UpperCamelCase__="float32" , UpperCamelCase__=False , UpperCamelCase__=32 , UpperCamelCase__=128 , UpperCamelCase__=0.1 , UpperCamelCase__=1e-6 , UpperCamelCase__=0.001 , UpperCamelCase__=0.001 , UpperCamelCase__=1.0 , UpperCamelCase__="relu" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=0 , UpperCamelCase__=1 , **UpperCamelCase__ , ) -> Dict: '''simple docstring''' snake_case : List[Any] = vocab_size snake_case : Any = d_model snake_case : int = d_kv snake_case : List[str] = d_ff snake_case : List[Any] = num_sparse_encoder_layers snake_case : Dict = num_layers snake_case : Optional[int] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry snake_case : int = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: snake_case : Optional[Any] = self.num_layers // self.num_sparse_encoder_layers else: snake_case : List[Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: snake_case : Tuple = self.num_decoder_layers // self.num_sparse_decoder_layers else: snake_case : int = self.num_decoder_layers # HACK: this will create 0 sparse layers snake_case : Optional[Any] = num_heads snake_case : Any = num_experts snake_case : Union[str, Any] = expert_capacity snake_case : Any = router_bias snake_case : Dict = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) snake_case : Union[str, Any] = router_dtype snake_case : Dict = router_ignore_padding_tokens snake_case : Optional[Any] = relative_attention_num_buckets snake_case : List[str] = relative_attention_max_distance snake_case : List[Any] = dropout_rate snake_case : Union[str, Any] = layer_norm_epsilon snake_case : Optional[Any] = initializer_factor snake_case : List[str] = feed_forward_proj snake_case : Optional[int] = use_cache snake_case : List[str] = add_router_probs snake_case : Optional[int] = router_z_loss_coef snake_case : List[str] = router_aux_loss_coef snake_case : Optional[int] = self.feed_forward_proj.split("-" ) snake_case : Tuple = act_info[-1] snake_case : Any = act_info[0] == "gated" if len(UpperCamelCase__ ) > 1 and act_info[0] != "gated" or len(UpperCamelCase__ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": snake_case : Union[str, Any] = "gelu_new" super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ , )
112
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCAmelCase ( lowercase : List[str] , lowercase : int , lowercase : Dict , lowercase : Dict , lowercase : int ) -> int: """simple docstring""" with open(lowercase ) as metadata_file: snake_case : str = json.load(lowercase ) snake_case : Optional[Any] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path snake_case : Tuple = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file snake_case : Optional[Any] = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] snake_case : Dict = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks snake_case : Tuple = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) snake_case : str = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: snake_case : str = json.load(lowercase ) snake_case : List[str] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) snake_case : Dict = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens snake_case : Tuple = tokenizer.convert_tokens_to_ids(["@"] )[0] snake_case : str = tokenizer.convert_tokens_to_ids(["#"] )[0] snake_case : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] snake_case : str = word_emb[ent_init_index].unsqueeze(0 ) snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case : Tuple = state_dict[bias_name] snake_case : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) snake_case : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case : Optional[int] = F'encoder.layer.{layer_index}.attention.self.' snake_case : Optional[Any] = state_dict[prefix + matrix_name] snake_case : Optional[Any] = state_dict[prefix + matrix_name] snake_case : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case : List[Any] = state_dict["entity_embeddings.entity_embeddings.weight"] snake_case : str = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) snake_case : Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case : Optional[int] = state_dict["entity_predictions.bias"] snake_case : Optional[int] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case : Union[str, Any] = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) snake_case : Tuple = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): snake_case : Any = state_dict[key] else: snake_case : Tuple = state_dict[key] snake_case ,snake_case : Optional[Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case : Optional[Any] = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) snake_case : List[str] = "ISO 639-3 uses the code fas for the dialects spoken across Iran and ใ‚ขใƒ•ใ‚ฌใƒ‹ใ‚นใ‚ฟใƒณ (Afghanistan)." snake_case : str = (0, 9) snake_case : Union[str, Any] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) snake_case : int = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : int = torch.Size((1, 33, 768) ) snake_case : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : Any = torch.Size((1, 1, 768) ) snake_case : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction snake_case : List[str] = MLukeTokenizer.from_pretrained(lowercase ) snake_case : List[Any] = "Tokyo is the capital of <mask>." snake_case : Optional[Any] = (24, 30) snake_case : List[str] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) snake_case : Any = model(**lowercase ) snake_case : int = encoding["input_ids"][0].tolist() snake_case : str = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) snake_case : Tuple = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) snake_case : Tuple = outputs.entity_logits[0][0].argmax().item() snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> Dict: """simple docstring""" snake_case : Tuple = ["[MASK]", "[PAD]", "[UNK]"] snake_case : Optional[Any] = [json.loads(lowercase ) for line in open(lowercase )] snake_case : Any = {} for entry in data: snake_case : Union[str, Any] = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case : Union[str, Any] = entity_id break snake_case : Dict = F'{language}:{entity_name}' snake_case : str = entity_id return new_mapping if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) __snake_case = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
112
1
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = CodeGenTokenizer _snake_case = CodeGenTokenizerFast _snake_case = True _snake_case = {'''add_prefix_space''': True} _snake_case = False def A__ ( self ) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] __lowerCAmelCase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) __lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowerCAmelCase = {"""unk_token""": """<unk>"""} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case_ ) ) def A__ ( self , **snake_case_ ) -> int: kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def A__ ( self , **snake_case_ ) -> int: kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **snake_case_ ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = """lower newer""" __lowerCAmelCase = """lower newer""" return input_text, output_text def A__ ( self ) -> Dict: __lowerCAmelCase = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = """lower newer""" __lowerCAmelCase = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowerCAmelCase = tokenizer.tokenize(snake_case_ , add_prefix_space=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Dict: if not self.test_rust_tokenizer: return __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer(add_prefix_space=snake_case_ ) __lowerCAmelCase = """lower newer""" # Testing tokenization __lowerCAmelCase = tokenizer.tokenize(snake_case_ , add_prefix_space=snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ , add_prefix_space=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens __lowerCAmelCase = self.get_rust_tokenizer(add_prefix_space=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_prefix_space=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing the unknown token __lowerCAmelCase = tokens + [rust_tokenizer.unk_token] __lowerCAmelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def A__ ( self , *snake_case_ , **snake_case_ ) -> Optional[Any]: # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def A__ ( self , snake_case_=15 ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) # Simple input __lowerCAmelCase = """This is a simple input""" __lowerCAmelCase = ["""This is a simple input 1""", """This is a simple input 2"""] __lowerCAmelCase = ("""This is a simple input""", """This is a pair""") __lowerCAmelCase = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Simple input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Simple input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" , ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Pair input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" , ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input __lowerCAmelCase = """This is a simple input""" __lowerCAmelCase = ["""This is a simple input looooooooong""", """This is a simple input"""] __lowerCAmelCase = ("""This is a simple input""", """This is a pair""") __lowerCAmelCase = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] __lowerCAmelCase = tokenizer.pad_token_id __lowerCAmelCase = tokenizer(snake_case_ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) __lowerCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , truncate=snake_case_ , return_tensors="""np""" ) __lowerCAmelCase = tokenizer(*snake_case_ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) __lowerCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , truncate=snake_case_ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def A__ ( self ) -> int: __lowerCAmelCase = """$$$""" __lowerCAmelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=snake_case_ , add_bos_token=snake_case_ ) __lowerCAmelCase = """This is a simple input""" __lowerCAmelCase = ["""This is a simple input 1""", """This is a simple input 2"""] __lowerCAmelCase = tokenizer.bos_token_id __lowerCAmelCase = tokenizer(snake_case_ ) __lowerCAmelCase = tokenizer(snake_case_ ) self.assertEqual(out_s.input_ids[0] , snake_case_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __lowerCAmelCase = tokenizer.decode(out_s.input_ids ) __lowerCAmelCase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , snake_case_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def A__ ( self ) -> int: __lowerCAmelCase = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) __lowerCAmelCase = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" __lowerCAmelCase = """\nif len_a > len_b: result = a\nelse: result = b""" __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] __lowerCAmelCase = tokenizer.decode(snake_case_ , truncate_before_pattern=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: pass
301
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
1
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> int: assert column_title.isupper() snake_case_ = 0 snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1 snake_case_ = 0 while index >= 0: snake_case_ = (ord(column_title[index] ) - 64) * pow(26 , _SCREAMING_SNAKE_CASE ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
233
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class __A : '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : int ) ->None: """simple docstring""" snake_case_ = value snake_case_ = None snake_case_ = None class __A : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : Node ) ->None: """simple docstring""" snake_case_ = tree def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Node | None ) ->int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : str ) ->Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
233
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _a : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[Any] = KandinskyImgaImgPipeline _UpperCamelCase : Optional[Any] = ["prompt", "image_embeds", "negative_image_embeds", "image"] _UpperCamelCase : List[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] _UpperCamelCase : Dict = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCamelCase : Union[str, Any] = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 100 @property def __A ( self ): _lowerCAmelCase : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _lowerCAmelCase : int = MultilingualCLIP(a__ ) _lowerCAmelCase : Union[str, Any] = text_encoder.eval() return text_encoder @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase : Optional[Any] = UNetaDConditionModel(**a__ ) return model @property def __A ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : str = VQModel(**self.dummy_movq_kwargs ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : int = self.dummy_unet _lowerCAmelCase : Dict = self.dummy_movq _lowerCAmelCase : Tuple = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCAmelCase : Optional[Any] = DDIMScheduler(**a__ ) _lowerCAmelCase : List[Any] = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __A ( self , a__ , a__=0 ): _lowerCAmelCase : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a__ ) ).to(a__ ) _lowerCAmelCase : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a__ ) # create init_image _lowerCAmelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(a__ ) ).to(a__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : List[Any] = Image.fromarray(np.uinta(a__ ) ).convert("""RGB""" ).resize((256, 256) ) if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[Any] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : Any = """cpu""" _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : int = self.pipeline_class(**a__ ) _lowerCAmelCase : Optional[int] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : Tuple = pipe( **self.get_dummy_inputs(a__ ) , return_dict=a__ , )[0] _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] _lowerCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : str = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) _lowerCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _lowerCAmelCase : Union[str, Any] = """A red cartoon frog, 4k""" _lowerCAmelCase : int = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(a__ ) _lowerCAmelCase : Tuple = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) _lowerCAmelCase : Any = pipeline.to(a__ ) pipeline.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( a__ , generator=a__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _lowerCAmelCase : Union[str, Any] = pipeline( a__ , image=a__ , image_embeds=a__ , negative_image_embeds=a__ , generator=a__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _lowerCAmelCase : Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ )
44
1
from __future__ import annotations import math def lowerCamelCase__ ( snake_case_ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase__ ( snake_case_ : Optional[int] ) -> list[int]: __snake_case = str(__SCREAMING_SNAKE_CASE ) __snake_case = [n] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def lowerCamelCase__ ( snake_case_ : int ) -> bool: if len(str(__SCREAMING_SNAKE_CASE ) ) > 3: if not is_prime(int(str(__SCREAMING_SNAKE_CASE )[-3:] ) ) or not is_prime(int(str(__SCREAMING_SNAKE_CASE )[:3] ) ): return False return True def lowerCamelCase__ ( snake_case_ : List[str] = 11 ) -> list[int]: __snake_case = [] __snake_case = 13 while len(__SCREAMING_SNAKE_CASE ) != count: if validate(__SCREAMING_SNAKE_CASE ): __snake_case = list_truncated_nums(__SCREAMING_SNAKE_CASE ) if all(is_prime(__SCREAMING_SNAKE_CASE ) for i in list_nums ): list_truncated_primes.append(__SCREAMING_SNAKE_CASE ) num += 2 return list_truncated_primes def lowerCamelCase__ ( ) -> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'{sum(compute_truncated_primes(11)) = }')
370
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer snake_case_ = logging.get_logger(__name__) snake_case_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} snake_case_ = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } snake_case_ = {'allegro/herbert-base-cased': 514} snake_case_ = {} class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Dict = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Any = HerbertTokenizer def __init__(self : Dict , a__ : Tuple=None , a__ : Optional[int]=None , a__ : List[str]=None , a__ : Optional[int]="<s>" , a__ : Optional[Any]="<unk>" , a__ : Any="<pad>" , a__ : List[Any]="<mask>" , a__ : Any="</s>" , **a__ : Tuple , ): """simple docstring""" super().__init__( a__ , a__ , tokenizer_file=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , sep_token=a__ , **a__ , ) def a (self : List[str] , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a (self : List[str] , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] def a (self : Optional[int] , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a (self : int , a__ : str , a__ : Optional[str] = None ): """simple docstring""" __snake_case = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ )
238
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class A_ ( _snake_case ): '''simple docstring''' def __init__( self : int ) -> Dict: UpperCAmelCase : Optional[Any] = [] def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : int , **lowercase_ : Optional[int] ) -> List[Any]: self.events.append('on_init_end' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple , **lowercase_ : Union[str, Any] ) -> List[Any]: self.events.append('on_train_begin' ) def UpperCAmelCase_ ( self : Any , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Dict , **lowercase_ : str ) -> Tuple: self.events.append('on_train_end' ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: self.events.append('on_epoch_begin' ) def UpperCAmelCase_ ( self : str , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Optional[int]: self.events.append('on_epoch_end' ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , **lowercase_ : int ) -> Any: self.events.append('on_step_begin' ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Tuple , **lowercase_ : Optional[int] ) -> Optional[int]: self.events.append('on_step_end' ) def UpperCAmelCase_ ( self : Any , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Union[str, Any] , **lowercase_ : List[str] ) -> List[str]: self.events.append('on_evaluate' ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Optional[int]: self.events.append('on_predict' ) def UpperCAmelCase_ ( self : str , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Dict , **lowercase_ : Optional[int] ) -> Any: self.events.append('on_save' ) def UpperCAmelCase_ ( self : str , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Optional[int] , **lowercase_ : Union[str, Any] ) -> int: self.events.append('on_log' ) def UpperCAmelCase_ ( self : Any , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Optional[Any] , **lowercase_ : Optional[Any] ) -> Optional[Any]: self.events.append('on_prediction_step' ) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: UpperCAmelCase : Any = tempfile.mkdtemp() def UpperCAmelCase_ ( self : List[str] ) -> str: shutil.rmtree(self.output_dir ) def UpperCAmelCase_ ( self : Any , lowercase_ : List[Any]=0 , lowercase_ : Optional[Any]=0 , lowercase_ : str=64 , lowercase_ : int=64 , lowercase_ : Optional[Any]=None , lowercase_ : Tuple=False , **lowercase_ : int ) -> Union[str, Any]: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. UpperCAmelCase : Optional[int] = RegressionDataset(length=lowercase_ ) UpperCAmelCase : Dict = RegressionDataset(length=lowercase_ ) UpperCAmelCase : Any = RegressionModelConfig(a=lowercase_ , b=lowercase_ ) UpperCAmelCase : Any = RegressionPreTrainedModel(lowercase_ ) UpperCAmelCase : Dict = TrainingArguments(self.output_dir , disable_tqdm=lowercase_ , report_to=[] , **lowercase_ ) return Trainer( lowercase_ , lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , callbacks=lowercase_ , ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Union[str, Any] , lowercase_ : str ) -> Any: self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) # Order doesn't matter UpperCAmelCase : Tuple = sorted(lowercase_ , key=lambda lowercase_ : cb.__name__ if isinstance(lowercase_ , lowercase_ ) else cb.__class__.__name__ ) UpperCAmelCase : List[Any] = sorted(lowercase_ , key=lambda lowercase_ : cb.__name__ if isinstance(lowercase_ , lowercase_ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase_ , lowercase_ ): if isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ): self.assertEqual(lowercase_ , lowercase_ ) elif isinstance(lowercase_ , lowercase_ ) and not isinstance(lowercase_ , lowercase_ ): self.assertEqual(lowercase_ , cba.__class__ ) elif not isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ): self.assertEqual(cba.__class__ , lowercase_ ) else: self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Optional[int] ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = ['on_init_end', 'on_train_begin'] UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = len(trainer.get_eval_dataloader() ) UpperCAmelCase : Any = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(lowercase_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def UpperCAmelCase_ ( self : int ) -> Optional[int]: UpperCAmelCase : Dict = self.get_trainer() UpperCAmelCase : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) # Callbacks passed at init are added to the default callbacks UpperCAmelCase : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback UpperCAmelCase : Any = self.get_trainer(disable_tqdm=lowercase_ ) UpperCAmelCase : int = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Dict = DEFAULT_CALLBACKS.copy() + [ProgressCallback] UpperCAmelCase : Union[str, Any] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase_ ) expected_callbacks.remove(lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) UpperCAmelCase : Tuple = self.get_trainer() UpperCAmelCase : Optional[int] = trainer.pop_callback(lowercase_ ) self.assertEqual(cb.__class__ , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) trainer.add_callback(lowercase_ ) expected_callbacks.insert(0 , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) # We can also add, pop, or remove by instance UpperCAmelCase : Union[str, Any] = self.get_trainer() UpperCAmelCase : Any = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase_ ) expected_callbacks.remove(lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) UpperCAmelCase : List[Any] = self.get_trainer() UpperCAmelCase : Any = trainer.callback_handler.callbacks[0] UpperCAmelCase : List[str] = trainer.pop_callback(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) trainer.add_callback(lowercase_ ) expected_callbacks.insert(0 , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=lowercase_ ) UpperCAmelCase : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() UpperCAmelCase : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) # Independent log/save/eval UpperCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() UpperCAmelCase : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) UpperCAmelCase : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() UpperCAmelCase : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) UpperCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() UpperCAmelCase : List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) UpperCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() UpperCAmelCase : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) # A bit of everything UpperCAmelCase : Union[str, Any] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() UpperCAmelCase : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: UpperCAmelCase : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(lowercase_ ) in warn_mock.call_args[0][0]
151
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : Optional[Union[str, Path]] = None UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : Optional[Dict] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = True UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : int = 1 UpperCAmelCase_ : Optional[Union[str, bool]] = None UpperCAmelCase_ : bool = False UpperCAmelCase_ : Optional[Dict] = None UpperCAmelCase_ : Optional[str] = None def UpperCAmelCase_ ( self : Tuple ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(lowercase_ ) for k, v in self.__dict__.items()} )
151
1
"""simple docstring""" from manim import * class UpperCAmelCase_ ( _lowercase): def _UpperCamelCase ( self : Union[str, Any] ) -> Any: _UpperCamelCase = Rectangle(height=0.5 , width=0.5 ) _UpperCamelCase = Rectangle(height=0.2_5 , width=0.2_5 ) _UpperCamelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCamelCase = [mem.copy() for i in range(6 )] _UpperCamelCase = [mem.copy() for i in range(6 )] _UpperCamelCase = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase = VGroup(__a , __a ).arrange(__a , buff=0 ) _UpperCamelCase = Text('''CPU''' , font_size=24 ) _UpperCamelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) _UpperCamelCase = [mem.copy() for i in range(4 )] _UpperCamelCase = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase = Text('''GPU''' , font_size=24 ) _UpperCamelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) gpu.move_to([-1, -1, 0] ) self.add(__a ) _UpperCamelCase = [mem.copy() for i in range(6 )] _UpperCamelCase = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase = Text('''Model''' , font_size=24 ) _UpperCamelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.add(__a ) _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = [] for i, rect in enumerate(__a ): rect.set_stroke(__a ) _UpperCamelCase = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__a , buff=0.0 ) self.add(__a ) model_cpu_arr.append(__a ) self.add(*__a , *__a , *__a ) _UpperCamelCase = [mem.copy() for i in range(6 )] _UpperCamelCase = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase = Text('''Loaded Checkpoint''' , font_size=24 ) _UpperCamelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) checkpoint.move_to([3, 0.5, 0] ) self.add(__a ) _UpperCamelCase = [] _UpperCamelCase = [] for i, rect in enumerate(__a ): _UpperCamelCase = fill.copy().set_fill(__a , opacity=0.7 ) target.move_to(__a ) ckpt_arr.append(__a ) _UpperCamelCase = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__a ) self.add(*__a , *__a ) _UpperCamelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCamelCase = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>โ—</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__a , __a ) _UpperCamelCase = MarkupText( F'''<span fgcolor=\'{BLUE}\'>โ—</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__a ) _UpperCamelCase = MarkupText( F'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) _UpperCamelCase = [meta_mem.copy() for i in range(6 )] _UpperCamelCase = [meta_mem.copy() for i in range(6 )] _UpperCamelCase = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase = VGroup(__a , __a ).arrange(__a , buff=0 ) _UpperCamelCase = Text('''Disk''' , font_size=24 ) _UpperCamelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(__a , run_time=3 ) , Write(__a , run_time=1 ) , Create(__a , run_time=1 ) ) _UpperCamelCase = [] for i, rect in enumerate(__a ): _UpperCamelCase = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__a , run_time=1.5 ) ) self.play(*__a ) self.play(FadeOut(__a ) ) _UpperCamelCase = MarkupText(F'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__a , run_time=3 ) ) self.play( FadeOut(__a , __a , *__a , *__a ) , ) self.wait()
361
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
54
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self : int , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = 3 __SCREAMING_SNAKE_CASE : Tuple = 2_5_0 __SCREAMING_SNAKE_CASE : Tuple = ids_tensor((batch_size, length) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = torch.ones((batch_size, length) , device=lowerCAmelCase__ , dtype=torch.float ) / length return input_ids, scores def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self._get_tensors(5 ) __SCREAMING_SNAKE_CASE : str = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = self._get_tensors(1_0 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = MaxLengthCriteria(max_length=1_0 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_tensors(1_0 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self._get_tensors(1_0 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[int] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self._get_tensors(5 ) __SCREAMING_SNAKE_CASE : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[int] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(lowerCAmelCase__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) __SCREAMING_SNAKE_CASE : Any = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(lowerCAmelCase__ ) , 1 )
112
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : str = int(_lowerCamelCase ) if n_element < 1: __SCREAMING_SNAKE_CASE : List[str] = ValueError("""a should be a positive number""" ) raise my_error __SCREAMING_SNAKE_CASE : List[Any] = [1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = (0, 0, 0) __SCREAMING_SNAKE_CASE : List[str] = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') UpperCamelCase__ : List[str] = hamming(int(n)) print('''-----------------------------------------------------''') print(f"The list with nth numbers is: {hamming_numbers}") print('''-----------------------------------------------------''')
112
1
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class A__ : def __init__( self : List[Any] , a : Optional[int] , a : Tuple=13 , a : Union[str, Any]=7 , a : str=True , a : Optional[Any]=True , a : int=True , a : int=True , a : Tuple=99 , a : List[str]=64 , a : str=32 , a : Optional[Any]=5 , a : List[Any]=4 , a : Tuple=37 , a : str="gelu" , a : Union[str, Any]=0.1 , a : Dict=0.1 , a : List[Any]=512 , a : Optional[int]=16 , a : Optional[Any]=2 , a : Dict=0.0_2 , a : int=3 , a : Optional[Any]=4 , a : Union[str, Any]=None , ): '''simple docstring''' lowerCAmelCase__ : Tuple = parent lowerCAmelCase__ : int = batch_size lowerCAmelCase__ : int = seq_length lowerCAmelCase__ : Union[str, Any] = is_training lowerCAmelCase__ : Optional[Any] = use_input_mask lowerCAmelCase__ : List[str] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : str = embedding_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : List[str] = intermediate_size lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : List[str] = attention_probs_dropout_prob lowerCAmelCase__ : Optional[int] = max_position_embeddings lowerCAmelCase__ : Union[str, Any] = type_vocab_size lowerCAmelCase__ : Any = type_sequence_label_size lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : List[str] = num_choices lowerCAmelCase__ : Any = scope def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Optional[int] = None if self.use_input_mask: lowerCAmelCase__ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : int = None if self.use_token_type_ids: lowerCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : int = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Dict = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Any , a : str , a : Any , a : Union[str, Any] , a : Any , a : List[str] , a : Tuple , a : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = MobileBertModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Any = model(a , attention_mask=a , token_type_ids=a ) lowerCAmelCase__ : Any = model(a , token_type_ids=a ) lowerCAmelCase__ : int = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self : Optional[Any] , a : Any , a : List[str] , a : Optional[Any] , a : List[str] , a : List[str] , a : List[Any] , a : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : str = MobileBertForMaskedLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Tuple , a : Optional[Any] , a : Tuple , a : Optional[int] , a : Dict , a : List[Any] , a : List[Any] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = MobileBertForNextSentencePrediction(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[Any] = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : str , a : str , a : Union[str, Any] , a : List[Any] , a : List[str] , a : Any , a : Any , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : str = MobileBertForPreTraining(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model( a , attention_mask=a , token_type_ids=a , labels=a , next_sentence_label=a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : Tuple , a : Dict , a : List[str] , a : Any , a : int , a : List[str] , a : str , a : Any ): '''simple docstring''' lowerCAmelCase__ : Tuple = MobileBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : List[str] , a : List[str] , a : List[str] , a : List[Any] , a : Dict , a : List[Any] , a : Tuple , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.num_labels lowerCAmelCase__ : int = MobileBertForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Union[str, Any] = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : str , a : Any , a : List[Any] , a : Optional[int] , a : List[Any] , a : Optional[int] , a : List[Any] , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.num_labels lowerCAmelCase__ : Any = MobileBertForTokenClassification(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[Any] = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : Any , a : Union[str, Any] , a : Optional[int] , a : Any , a : Optional[int] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.num_choices lowerCAmelCase__ : List[Any] = MobileBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Any = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() ( lowerCAmelCase__ ) : List[str] = config_and_inputs lowerCAmelCase__ : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _lowerCamelCase ( self : Optional[Any] , a : Dict , a : Optional[Any] , a : str=False ): '''simple docstring''' lowerCAmelCase__ : List[Any] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class in get_values(a ): lowerCAmelCase__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a ) lowerCAmelCase__ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : List[str] = MobileBertModelTester(self ) lowerCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*a ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: return torch.tensor( SCREAMING_SNAKE_CASE_ , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase__ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(a ) lowerCAmelCase__ : Any = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(a )[0] lowerCAmelCase__ : Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , a ) lowerCAmelCase__ : Any = torch.tensor( [ [ [-2.4736526E07, 8.2691656E04, 1.6521838E05], [-5.7541704E-01, 3.9056022E00, 4.4011507E00], [2.6047359E00, 1.5677652E00, -1.7324188E-01], ] ] , device=a , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase__ : List[Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase__ : Optional[Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
369
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Any , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Optional[Any] , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *a : List[str] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *a : Dict , **a : List[str] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Dict , **a : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *a : str , **a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : Union[str, Any] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Tuple , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.17.0.dev0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowerCamelCase : int = logging.getLogger(__name__) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[str] = field( default='''tab_fact''' , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) _A : Optional[str] = field( default='''tab_fact''' , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} , ) _A : int = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _A : bool = field( default=__a , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) _A : bool = field( default=__a , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''A csv or a json file containing the training data.'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) _A : Optional[str] = field(default=__a , metadata={'''help''': '''A csv or a json file containing the test data.'''} ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowercase : str = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowercase : List[str] = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class lowerCAmelCase : '''simple docstring''' _A : str = field( default=__a , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _A : bool = field( default=__a , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _A : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _A : bool = field( default=__a , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def snake_case_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase : Any = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowercase : str = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) datasets.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __lowercase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowercase : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowercase : Tuple = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowercase : Optional[Any] = data_args.train_file.split(""".""" )[-1] __lowercase : int = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowercase : Union[str, Any] = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowercase : str = load_dataset("""csv""" , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowercase : List[Any] = load_dataset("""json""" , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowercase : List[Any] = raw_datasets["""train"""].features["""label"""].names __lowercase : Optional[Any] = len(lowerCAmelCase_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowercase : int = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCAmelCase_ , ) __lowercase : List[Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowercase : Optional[Any] = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowercase : Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowercase : str = {"""Refused""": 0, """Entailed""": 1} __lowercase : Tuple = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) __lowercase : Tuple = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase_ : int ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase_ : List[Any] ): __lowercase : str = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowercase : str = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowercase : Any = examples["""statement"""] __lowercase : Tuple = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowercase : Union[str, Any] = tokenizer(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ) __lowercase : List[Any] = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowercase : int = raw_datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowercase : List[str] = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowercase : List[Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowercase : List[str] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowercase : str = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowercase : Optional[Any] = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowercase : int = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase_ ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase_ : EvalPrediction ): __lowercase : int = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase_ ) else p.predictions __lowercase : Union[str, Any] = np.argmax(lowerCAmelCase_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowercase : int = default_data_collator elif training_args.fpaa: __lowercase : List[Any] = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) else: __lowercase : int = None # Initialize our Trainer __lowercase : List[str] = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: __lowercase : List[Any] = None if training_args.resume_from_checkpoint is not None: __lowercase : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase : Dict = last_checkpoint __lowercase : Any = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) __lowercase : Optional[int] = train_result.metrics __lowercase : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowercase : List[Any] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowerCAmelCase_ ) trainer.save_metrics("""train""" , lowerCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase : List[str] = trainer.evaluate(eval_dataset=lowerCAmelCase_ ) __lowercase : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ ) __lowercase : Dict = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowercase : Optional[Any] = predict_dataset.remove_columns("""label""" ) __lowercase : Optional[int] = trainer.predict(lowerCAmelCase_ , metric_key_prefix="""predict""" ).predictions __lowercase : Dict = np.argmax(lowerCAmelCase_ , axis=1 ) __lowercase : int = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowerCAmelCase_ ): __lowercase : Tuple = label_list[item] writer.write(F"{index}\t{item}\n" ) __lowercase : Union[str, Any] = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Any ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
233
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : int , __a : Tuple=13 , __a : int=32 , __a : List[Any]=3 , __a : Dict=4 , __a : List[str]=[10, 20, 30, 40] , __a : Any=[2, 2, 3, 2] , __a : List[str]=True , __a : Any=True , __a : Optional[Any]=37 , __a : Dict="gelu" , __a : Tuple=10 , __a : Dict=0.02 , __a : Optional[Any]=["stage2", "stage3", "stage4"] , __a : Optional[int]=[2, 3, 4] , __a : int=None , ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = parent __lowercase : str = batch_size __lowercase : List[str] = image_size __lowercase : int = num_channels __lowercase : Optional[int] = num_stages __lowercase : str = hidden_sizes __lowercase : Dict = depths __lowercase : List[str] = is_training __lowercase : Optional[Any] = use_labels __lowercase : Optional[Any] = intermediate_size __lowercase : Tuple = hidden_act __lowercase : List[Any] = num_labels __lowercase : Dict = initializer_range __lowercase : List[str] = out_features __lowercase : str = out_indices __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : Optional[int] = None if self.use_labels: __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCAmelCase ( self : int , __a : Tuple , __a : Dict , __a : List[str] ) -> Dict: """simple docstring""" __lowercase : str = ConvNextVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Union[str, Any] = model(__a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self : Any , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = ConvNextVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Union[str, Any] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : str , __a : Any , __a : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = ConvNextVaBackbone(config=__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowercase : List[str] = None __lowercase : str = ConvNextVaBackbone(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase : Optional[int] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Dict = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase : Optional[Any] = config_and_inputs __lowercase : int = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Any = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _A : Any = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) _A : str = False _A : Dict = False _A : str = False _A : str = False _A : Dict = False def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = ConvNextVaModelTester(self ) __lowercase : Optional[int] = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: __lowercase , __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() __lowercase : str = True if model_class.__name__ in [ *get_values(__a ), *get_values(__a ), ]: continue __lowercase : Union[str, Any] = model_class(__a ) model.to(__a ) model.train() __lowercase : Tuple = self._prepare_for_class(__a , __a , return_labels=__a ) __lowercase : Dict = model(**__a ).loss loss.backward() def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: __lowercase , __lowercase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() __lowercase : Dict = False __lowercase : Optional[Any] = True if ( model_class.__name__ in [*get_values(__a ), *get_values(__a )] or not model_class.supports_gradient_checkpointing ): continue __lowercase : List[Any] = model_class(__a ) model.to(__a ) model.gradient_checkpointing_enable() model.train() __lowercase : List[str] = self._prepare_for_class(__a , __a , return_labels=__a ) __lowercase : int = model(**__a ).loss loss.backward() def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : int = model_class(__a ) __lowercase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : str = [*signature.parameters.keys()] __lowercase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(__a : Any , __a : Tuple , __a : Tuple ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase : Any = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : int = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Optional[Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = ConvNextVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(__a ) __lowercase : Dict = self.default_image_processor __lowercase : Any = prepare_img() __lowercase : int = preprocessor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : int = model(**__a ) # verify the logits __lowercase : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : Tuple = torch.tensor([0.9996, 0.1966, -0.4386] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
233
1
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: UpperCAmelCase_ = None UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase_ = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = TaTokenizer lowerCAmelCase_ = [] def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_="</s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_=100 , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Dict: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _snake_case = [F'''<extra_id_{i}>''' for i in range(lowerCAmelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens _snake_case = len(set(filter(lambda lowerCAmelCase_ : bool('extra_id_' in str(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , extra_ids=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , ) _snake_case = vocab_file _snake_case = False if not self.vocab_file else True _snake_case = extra_ids @staticmethod def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: _snake_case = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , lowerCAmelCase_ , ) return max_model_length def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _snake_case = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: _snake_case = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _snake_case = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase ( self ) -> Any: return list( set(filter(lambda lowerCAmelCase_ : bool(re.search(r'<extra_id_\d+>' , lowerCAmelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def lowerCAmelCase ( self ) -> Dict: return [self.convert_tokens_to_ids(lowerCAmelCase_ ) for token in self.get_sentinel_tokens()]
295
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self , lowerCAmelCase_ = 128 , lowerCAmelCase_ = 256 , lowerCAmelCase_ = 20_00.0 , lowerCAmelCase_ = 768 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2048 , lowerCAmelCase_ = 0.1 , ) -> Union[str, Any]: super().__init__() _snake_case = nn.Sequential( nn.Linear(lowerCAmelCase_ , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , ) _snake_case = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Dropout(p=lowerCAmelCase_ ) _snake_case = nn.ModuleList() for lyr_num in range(lowerCAmelCase_ ): # FiLM conditional T5 decoder _snake_case = DecoderLayer(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) self.decoders.append(lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ ) _snake_case = nn.Dropout(p=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _snake_case = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case , _snake_case , _snake_case = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _snake_case = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _snake_case = self.conditioning_emb(lowerCAmelCase_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _snake_case = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _snake_case = torch.broadcast_to( torch.arange(lowerCAmelCase_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _snake_case = self.position_encoding(lowerCAmelCase_ ) _snake_case = self.continuous_inputs_projection(lowerCAmelCase_ ) inputs += position_encodings _snake_case = self.dropout(lowerCAmelCase_ ) # decoder: No padding present. _snake_case = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _snake_case = [(x, self.encoder_decoder_mask(lowerCAmelCase_ , lowerCAmelCase_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings _snake_case = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _snake_case = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _snake_case = lyr( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , )[0] _snake_case = self.decoder_norm(lowerCAmelCase_ ) _snake_case = self.post_dropout(lowerCAmelCase_ ) _snake_case = self.spec_out(lowerCAmelCase_ ) return spec_out class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1E-6 ) -> Tuple: super().__init__() _snake_case = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ ) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> Tuple: _snake_case = self.layer[0]( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) if encoder_hidden_states is not None: _snake_case = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _snake_case = self.layer[1]( lowerCAmelCase_ , key_value_states=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) # Apply Film Conditional Feed Forward layer _snake_case = self.layer[-1](lowerCAmelCase_ , lowerCAmelCase_ ) return (hidden_states,) class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: super().__init__() _snake_case = TaLayerNorm(lowerCAmelCase_ ) _snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) _snake_case = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> str: # pre_self_attention_layer_norm _snake_case = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: _snake_case = self.FiLMLayer(lowerCAmelCase_ , lowerCAmelCase_ ) # Self-attention block _snake_case = self.attention(lowerCAmelCase_ ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: super().__init__() _snake_case = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> Dict: _snake_case = self.layer_norm(lowerCAmelCase_ ) _snake_case = self.attention( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , attention_mask=attention_mask.squeeze(1 ) , ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return layer_output class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: super().__init__() _snake_case = TaDenseGatedActDense(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) _snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Union[str, Any]: _snake_case = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: _snake_case = self.film(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.DenseReluDense(lowerCAmelCase_ ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__() _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) _snake_case = NewGELUActivation() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Any: _snake_case = self.act(self.wi_a(lowerCAmelCase_ ) ) _snake_case = self.wi_a(lowerCAmelCase_ ) _snake_case = hidden_gelu * hidden_linear _snake_case = self.dropout(lowerCAmelCase_ ) _snake_case = self.wo(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=1E-6 ) -> str: super().__init__() _snake_case = nn.Parameter(torch.ones(lowerCAmelCase_ ) ) _snake_case = eps def lowerCAmelCase ( self , lowerCAmelCase_ ) -> int: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _snake_case = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCAmelCase_ ) _snake_case = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _snake_case = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCamelCase_ ( nn.Module ): def lowerCAmelCase ( self , lowerCAmelCase_ ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(lowerCAmelCase_ , 3.0 )) )) class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: super().__init__() _snake_case = nn.Linear(lowerCAmelCase_ , out_features * 2 , bias=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = self.scale_bias(lowerCAmelCase_ ) _snake_case , _snake_case = torch.chunk(lowerCAmelCase_ , 2 , -1 ) _snake_case = x * (1 + scale) + shift return x
295
1
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE (*a_ , **a_ ): '''simple docstring''' pass def lowercase ( _snake_case : Image ) ->str: """simple docstring""" __snake_case : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_DEPTH_ESTIMATION_MAPPING def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : str = DepthEstimationPipeline(model=a_ , image_processor=a_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , a_ ) import datasets __snake_case : List[Any] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) __snake_case : List[str] = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , a_ , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @slow @require_torch def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''Intel/dpt-large''' __snake_case : List[Any] = pipeline('''depth-estimation''' , model=a_ ) __snake_case : Optional[int] = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) __snake_case : Optional[Any] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
102
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase : List[Any] = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
238
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
361
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _A : str ={ '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Union[str, Any] ={ '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Dict ={ '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Dict ={ '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } _A : str ={ '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } _A : int ={ '''num_train_timesteps''': 151, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: if isinstance(UpperCamelCase , UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ) -> Any: lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.0.weight'''] lowerCamelCase__ : int = checkpoint[f'''{old_prefix}.in_layers.0.bias'''] lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.2.weight'''] lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.2.bias'''] lowerCamelCase__ : Optional[Any] = checkpoint[f'''{old_prefix}.emb_layers.1.weight'''] lowerCamelCase__ : Optional[int] = checkpoint[f'''{old_prefix}.emb_layers.1.bias'''] lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.out_layers.0.weight'''] lowerCamelCase__ : Tuple = checkpoint[f'''{old_prefix}.out_layers.0.bias'''] lowerCamelCase__ : str = checkpoint[f'''{old_prefix}.out_layers.3.weight'''] lowerCamelCase__ : int = checkpoint[f'''{old_prefix}.out_layers.3.bias'''] if has_skip: lowerCamelCase__ : Tuple = checkpoint[f'''{old_prefix}.skip_connection.weight'''] lowerCamelCase__ : List[Any] = checkpoint[f'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None ) -> str: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = checkpoint[f'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.norm.weight'''] lowerCamelCase__ : Optional[int] = checkpoint[f'''{old_prefix}.norm.bias'''] lowerCamelCase__ : List[Any] = weight_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : List[Any] = bias_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Any = weight_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Union[str, Any] = bias_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Optional[Any] = ( checkpoint[f'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[Any]: lowerCamelCase__ : str = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : Optional[int] = checkpoint["""time_embed.0.weight"""] lowerCamelCase__ : List[Any] = checkpoint["""time_embed.0.bias"""] lowerCamelCase__ : int = checkpoint["""time_embed.2.weight"""] lowerCamelCase__ : Optional[Any] = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: lowerCamelCase__ : Optional[Any] = checkpoint["""label_emb.weight"""] lowerCamelCase__ : Tuple = checkpoint["""input_blocks.0.0.weight"""] lowerCamelCase__ : List[str] = checkpoint["""input_blocks.0.0.bias"""] lowerCamelCase__ : Optional[Any] = unet_config["""down_block_types"""] lowerCamelCase__ : Any = unet_config["""layers_per_block"""] lowerCamelCase__ : Any = unet_config["""attention_head_dim"""] lowerCamelCase__ : List[Any] = unet_config["""block_out_channels"""] lowerCamelCase__ : str = 1 lowerCamelCase__ : str = channels_list[0] for i, layer_type in enumerate(UpperCamelCase ): lowerCamelCase__ : List[Any] = channels_list[i] lowerCamelCase__ : List[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCamelCase ): lowerCamelCase__ : int = f'''down_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Dict = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : Tuple = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ : List[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCamelCase ): lowerCamelCase__ : Tuple = f'''down_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Optional[Any] = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : str = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ : Union[str, Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) lowerCamelCase__ : Any = f'''down_blocks.{i}.attentions.{j}''' lowerCamelCase__ : Dict = f'''input_blocks.{current_layer}.1''' lowerCamelCase__ : Tuple = convert_attention( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Tuple = f'''down_blocks.{i}.downsamplers.0''' lowerCamelCase__ : str = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : Union[str, Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 lowerCamelCase__ : Union[str, Any] = current_channels # hardcoded the mid-block for now lowerCamelCase__ : Any = """mid_block.resnets.0""" lowerCamelCase__ : Optional[Any] = """middle_block.0""" lowerCamelCase__ : int = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : List[Any] = """mid_block.attentions.0""" lowerCamelCase__ : Dict = """middle_block.1""" lowerCamelCase__ : int = convert_attention(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Any = """mid_block.resnets.1""" lowerCamelCase__ : Tuple = """middle_block.2""" lowerCamelCase__ : int = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Any = unet_config["""up_block_types"""] for i, layer_type in enumerate(UpperCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ : int = f'''up_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Optional[Any] = f'''output_blocks.{current_layer}.0''' lowerCamelCase__ : Any = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Dict = f'''up_blocks.{i}.upsamplers.0''' lowerCamelCase__ : List[str] = f'''output_blocks.{current_layer-1}.1''' lowerCamelCase__ : Optional[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ : str = f'''up_blocks.{i}.resnets.{j}''' lowerCamelCase__ : List[Any] = f'''output_blocks.{current_layer}.0''' lowerCamelCase__ : Optional[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) lowerCamelCase__ : Optional[Any] = f'''up_blocks.{i}.attentions.{j}''' lowerCamelCase__ : Any = f'''output_blocks.{current_layer}.1''' lowerCamelCase__ : Optional[int] = convert_attention( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Tuple = f'''up_blocks.{i}.upsamplers.0''' lowerCamelCase__ : Tuple = f'''output_blocks.{current_layer-1}.2''' lowerCamelCase__ : List[str] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Dict = checkpoint["""out.0.weight"""] lowerCamelCase__ : Dict = checkpoint["""out.0.bias"""] lowerCamelCase__ : Dict = checkpoint["""out.2.weight"""] lowerCamelCase__ : Tuple = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": _A : Tuple =argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') _A : Tuple =parser.parse_args() _A : Optional[int] =strabool(args.class_cond) _A : List[str] =os.path.basename(args.unet_path) print(F'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: _A : int =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _A : Tuple =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _A : Any =TEST_UNET_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: _A : str =None _A : Optional[int] =con_pt_to_diffuser(args.unet_path, unet_config) _A : Optional[int] =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _A : Tuple =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _A : int =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _A : Union[str, Any] =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') _A : str =CMStochasticIterativeScheduler(**scheduler_config) _A : Optional[Any] =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
129
0
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase__ : List[str] = open # noqa: we just need to have a builtin inside this module to test it properly
98
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging a__ : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __SCREAMING_SNAKE_CASE = json.loads(lowerCAmelCase_ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __SCREAMING_SNAKE_CASE = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __SCREAMING_SNAKE_CASE = json.loads(lowerCAmelCase_ ) if not mpi_options.get("sagemaker_mpi_enabled" , lowerCAmelCase_ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : str = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def UpperCAmelCase_ ( self : List[str] ) -> Any: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , UpperCAmelCase__ , ) @cached_property def UpperCAmelCase_ ( self : List[str] ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: __SCREAMING_SNAKE_CASE = torch.device("cpu" ) __SCREAMING_SNAKE_CASE = 0 elif is_sagemaker_model_parallel_available(): __SCREAMING_SNAKE_CASE = smp.local_rank() __SCREAMING_SNAKE_CASE = torch.device("cuda" , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) __SCREAMING_SNAKE_CASE = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) __SCREAMING_SNAKE_CASE = torch.device("cuda" , self.local_rank ) __SCREAMING_SNAKE_CASE = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __SCREAMING_SNAKE_CASE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __SCREAMING_SNAKE_CASE = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) __SCREAMING_SNAKE_CASE = torch.device("cuda" , self.local_rank ) __SCREAMING_SNAKE_CASE = 1 if device.type == "cuda": torch.cuda.set_device(UpperCAmelCase__ ) return device @property def UpperCAmelCase_ ( self : Dict ) -> Any: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: return not is_sagemaker_model_parallel_available() @property def UpperCAmelCase_ ( self : Tuple ) -> int: return False
54
0
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[Any] ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def __a ( self : int , _lowercase : Optional[int] ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) ) class __snake_case ( unittest.TestCase ): """simple docstring""" def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(_lowercase , model.state_dict() ) SCREAMING_SNAKE_CASE__ = os.path.join(_lowercase , """index.json""" ) self.assertTrue(os.path.isfile(_lowercase ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: SCREAMING_SNAKE_CASE__ = os.path.join(_lowercase , f"""{key}.dat""" ) self.assertTrue(os.path.isfile(_lowercase ) ) # TODO: add tests on the fact weights are properly loaded def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: SCREAMING_SNAKE_CASE__ = torch.randn(2 , 3 , dtype=_lowercase ) with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = offload_weight(_lowercase , """weight""" , _lowercase , {} ) SCREAMING_SNAKE_CASE__ = os.path.join(_lowercase , """weight.dat""" ) self.assertTrue(os.path.isfile(_lowercase ) ) self.assertDictEqual(_lowercase , {"""weight""": {"""shape""": [2, 3], """dtype""": str(_lowercase ).split(""".""" )[1]}} ) SCREAMING_SNAKE_CASE__ = load_offloaded_weight(_lowercase , index["""weight"""] ) self.assertTrue(torch.equal(_lowercase , _lowercase ) ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ModelForTest() SCREAMING_SNAKE_CASE__ = model.state_dict() SCREAMING_SNAKE_CASE__ = {k: v for k, v in state_dict.items() if """linear2""" not in k} SCREAMING_SNAKE_CASE__ = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = OffloadedWeightsLoader(state_dict=_lowercase , save_folder=_lowercase ) # Every key is there with the right value self.assertEqual(sorted(_lowercase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_lowercase , weight_map[key] ) ) SCREAMING_SNAKE_CASE__ = {k: v for k, v in state_dict.items() if """weight""" in k} SCREAMING_SNAKE_CASE__ = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = OffloadedWeightsLoader(state_dict=_lowercase , save_folder=_lowercase ) # Every key is there with the right value self.assertEqual(sorted(_lowercase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_lowercase , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(_lowercase , _lowercase ) # Duplicates are removed SCREAMING_SNAKE_CASE__ = OffloadedWeightsLoader(state_dict=_lowercase , save_folder=_lowercase ) # Every key is there with the right value self.assertEqual(sorted(_lowercase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_lowercase , weight_map[key] ) ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} SCREAMING_SNAKE_CASE__ = extract_submodules_state_dict(_lowercase , ["""a.1""", """a.2"""] ) self.assertDictEqual(_lowercase , {"""a.1""": 0, """a.2""": 2} ) SCREAMING_SNAKE_CASE__ = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} SCREAMING_SNAKE_CASE__ = extract_submodules_state_dict(_lowercase , ["""a.1""", """a.2"""] ) self.assertDictEqual(_lowercase , {"""a.1.a""": 0, """a.2.a""": 2} )
357
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
204
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: int ) -> List[Any]: UpperCAmelCase_ : str = inspect.getfile(accelerate.test_utils ) UpperCAmelCase_ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCAmelCase_ : Dict = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def A__ ( self: Tuple ) -> Optional[int]: UpperCAmelCase_ : str = F''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCAmelCase_ : str = [sys.executable] + distributed_args execute_subprocess_async(lowerCamelCase_ ,env=os.environ.copy() )
345
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __UpperCamelCase : int = 299792458 # Symbols __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = symbols("""ct x y z""") def a_ ( _A ) -> float: """simple docstring""" if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def a_ ( _A ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(_A ) ** 2 ) def a_ ( _A ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(_A ), -gamma(_A ) * beta(_A ), 0, 0], [-gamma(_A ) * beta(_A ), gamma(_A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def a_ ( _A , _A = None ) -> np.ndarray: """simple docstring""" # Ensure event is not empty if event is None: snake_case__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __UpperCamelCase : List[Any] = transform(29979245) print("""Example of four vector: """) print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __UpperCamelCase : List[Any] = {ct: c, x: 1, y: 1, z: 1} __UpperCamelCase : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
307
0
def __lowerCAmelCase (SCREAMING_SNAKE_CASE=2_8123 )-> Tuple: """simple docstring""" snake_case_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i snake_case_ = set() snake_case_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(lowercase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
362
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
267
0
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase( lowercase__ ) -> Tuple: '''simple docstring''' return getitem, k def _lowerCamelCase( lowercase__ , lowercase__ ) -> int: '''simple docstring''' return setitem, k, v def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return delitem, k def _lowerCamelCase( lowercase__ , lowercase__ , *lowercase__ ) -> Tuple: '''simple docstring''' try: return fun(lowercase__ , *lowercase__ ), None except Exception as e: return None, e lowerCAmelCase = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) lowerCAmelCase = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] lowerCAmelCase = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] lowerCAmelCase = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def _lowerCamelCase( lowercase__ ) -> List[Any]: '''simple docstring''' __lowercase= HashMap(initial_block_size=4 ) __lowercase= {} for _, (fun, *args) in enumerate(lowercase__ ): __lowercase, __lowercase= _run_operation(lowercase__ , lowercase__ , *lowercase__ ) __lowercase, __lowercase= _run_operation(lowercase__ , lowercase__ , *lowercase__ ) assert my_res == py_res assert str(lowercase__ ) == str(lowercase__ ) assert set(lowercase__ ) == set(lowercase__ ) assert len(lowercase__ ) == len(lowercase__ ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase( ) -> str: '''simple docstring''' def is_public(lowercase__ ) -> bool: return not name.startswith('_' ) __lowercase= {name for name in dir({} ) if is_public(lowercase__ )} __lowercase= {name for name in dir(HashMap() ) if is_public(lowercase__ )} assert dict_public_names > hash_public_names
295
import os import numpy import onnx def _lowerCamelCase( lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase= a.name __lowercase= b.name __lowercase= '' __lowercase= '' __lowercase= a == b __lowercase= name_a __lowercase= name_b return res def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowercase__ , lowercase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowercase__ , lowercase__ ) _graph_replace_input_with(node_proto.attribute[1].g , lowercase__ , lowercase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowercase__ , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> str: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(lowercase__ , lowercase__ , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= list(model.graph.initializer ) __lowercase= list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __lowercase= inits[i].name __lowercase= inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowercase__ , lowercase__ ) def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' __lowercase= os.path.dirname(lowercase__ ) __lowercase= os.path.basename(lowercase__ ) __lowercase= onnx.load(os.path.join(lowercase__ , lowercase__ ) ) __lowercase= list(model.graph.initializer ) __lowercase= set() __lowercase= {} __lowercase= [] __lowercase= 0 for i in range(len(lowercase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowercase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowercase__ ) dup_set.add(lowercase__ ) __lowercase= inits[j].data_type __lowercase= numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print('unexpected data type: ' , lowercase__ ) total_reduced_size += mem_size __lowercase= inits[i].name __lowercase= inits[j].name if name_i in dup_map: dup_map[name_i].append(lowercase__ ) else: __lowercase= [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , 'GB' ) __lowercase= sorted(lowercase__ ) _remove_dup_initializers_from_model(lowercase__ , lowercase__ , lowercase__ ) __lowercase= 'optimized_' + model_file_name __lowercase= os.path.join(lowercase__ , lowercase__ ) onnx.save(lowercase__ , lowercase__ ) return new_model
295
1
'''simple docstring''' lowercase__ = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) lowercase__ = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 1_2, "Pm": 1_5, "Em": 1_8, "Zm": 2_1, "Ym": 2_4, } def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: '''simple docstring''' snake_case : str = from_type.lower().strip('''s''' ) snake_case : Tuple = to_type.lower().strip('''s''' ) snake_case : Dict = UNIT_SYMBOL.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case : Tuple = UNIT_SYMBOL.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if from_sanitized not in METRIC_CONVERSION: snake_case : List[Any] = ( F'Invalid \'from_type\' value: {from_type!r}.\n' F'Conversion abbreviations are: {", ".join(SCREAMING_SNAKE_CASE__ )}' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) if to_sanitized not in METRIC_CONVERSION: snake_case : Optional[Any] = ( F'Invalid \'to_type\' value: {to_type!r}.\n' F'Conversion abbreviations are: {", ".join(SCREAMING_SNAKE_CASE__ )}' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) snake_case : str = METRIC_CONVERSION[from_sanitized] snake_case : List[str] = METRIC_CONVERSION[to_sanitized] snake_case : Tuple = 1 if from_exponent > to_exponent: snake_case : str = from_exponent - to_exponent else: snake_case : Optional[int] = -(to_exponent - from_exponent) return value * pow(10 , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": from doctest import testmod testmod()
83
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = ["""image_processor""", """tokenizer"""] lowerCamelCase = """CLIPImageProcessor""" lowerCamelCase = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : Optional[int] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase__ , ) snake_case : Optional[Any] = kwargs.pop('''feature_extractor''' ) snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : Dict , UpperCamelCase__ : str=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Any ) -> Any: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: snake_case : List[str] = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: snake_case : List[Any] = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: snake_case : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def lowerCAmelCase ( self : Any , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : Optional[int] ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCAmelCase ( self : Union[str, Any] , *UpperCamelCase__ : str , **UpperCamelCase__ : Any ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def lowerCAmelCase ( self : int ) -> str: """simple docstring""" snake_case : int = self.tokenizer.model_input_names snake_case : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
83
1
import random from .binary_exp_mod import bin_exp_mod def snake_case_ ( snake_case , snake_case=10_00 ) -> Dict: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowercase__: List[str] = n - 1 lowercase__: Tuple = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowercase__: List[str] = 0 while count < prec: lowercase__: Dict = random.randint(2 , n - 1 ) lowercase__: List[Any] = bin_exp_mod(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if b != 1: lowercase__: Union[str, Any] = True for _ in range(lowerCamelCase_ ): if b == n - 1: lowercase__: int = False break lowercase__: List[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": __lowerCAmelCase = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
196
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __snake_case : Dict =logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def __init__(self ,**__lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(**__lowerCamelCase ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__(self ,__lowerCamelCase ,**__lowerCamelCase ) -> List[Any]: """simple docstring""" return super().__call__(__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,**__lowerCamelCase ) -> Any: """simple docstring""" lowerCAmelCase__ : str = {} if "candidate_labels" in kwargs: lowerCAmelCase__ : List[str] = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowerCAmelCase__ : int = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=None ,__lowerCamelCase="This is a sound of {}." ) -> str: """simple docstring""" if isinstance(__lowerCamelCase ,__lowerCamelCase ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowerCAmelCase__ : List[str] = requests.get(__lowerCamelCase ).content else: with open(__lowerCamelCase ,'''rb''' ) as f: lowerCAmelCase__ : int = f.read() if isinstance(__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase__ : Tuple = ffmpeg_read(__lowerCamelCase ,self.feature_extractor.sampling_rate ) if not isinstance(__lowerCamelCase ,np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) lowerCAmelCase__ : Any = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors='''pt''' ) lowerCAmelCase__ : Union[str, Any] = candidate_labels lowerCAmelCase__ : str = [hypothesis_template.format(__lowerCamelCase ) for x in candidate_labels] lowerCAmelCase__ : Any = self.tokenizer(__lowerCamelCase ,return_tensors=self.framework ,padding=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = [text_inputs] return inputs def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = model_inputs.pop('''candidate_labels''' ) lowerCAmelCase__ : List[str] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,__lowerCamelCase ): lowerCAmelCase__ : List[str] = text_inputs[0] else: # Batching case. lowerCAmelCase__ : List[str] = text_inputs[0][0] lowerCAmelCase__ : Union[str, Any] = self.model(**__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : Any = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Optional[int] = model_outputs.pop('''candidate_labels''' ) lowerCAmelCase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowerCAmelCase__ : str = logits.softmax(dim=0 ) lowerCAmelCase__ : Dict = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) lowerCAmelCase__ : Any = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__lowerCamelCase ,__lowerCamelCase ) ,key=lambda __lowerCamelCase : -x[0] ) ] return result
129
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel UpperCamelCase__ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } UpperCamelCase__ = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ) -> Dict: UpperCAmelCase__ : str = create_model( '''HTSAT-tiny''' , '''roberta''' , lowerCAmelCase__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=lowerCAmelCase__ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def a__ ( lowerCAmelCase__ ) -> Union[str, Any]: UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : str = r'''.*sequential.(\d+).*''' UpperCAmelCase__ : int = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase__ : str = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase__ : List[str] = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase__ : str = key.replace(F"""sequential.{sequential_layer}.""" , F"""layers.{int(lowerCAmelCase__ )//3}.linear.""" ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Union[str, Any] = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase__ : List[Any] = 1 if projecton_layer == 0 else 2 UpperCAmelCase__ : Union[str, Any] = key.replace(F"""_projection.{projecton_layer}.""" , F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase__ : Optional[Any] = value UpperCAmelCase__ : Any = mixed_qkv.size(0 ) // 3 UpperCAmelCase__ : Any = mixed_qkv[:qkv_dim] UpperCAmelCase__ : Dict = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase__ : Optional[int] = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase__ : Dict = query_layer UpperCAmelCase__ : Union[str, Any] = key_layer UpperCAmelCase__ : List[str] = value_layer else: UpperCAmelCase__ : int = value return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Union[str, Any]: UpperCAmelCase__ : str = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase__ : Tuple = clap_model.state_dict() UpperCAmelCase__ : Dict = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = ClapConfig() UpperCAmelCase__ : List[Any] = enable_fusion UpperCAmelCase__ : Optional[int] = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') UpperCamelCase__ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
361
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[float, list[float]]: UpperCAmelCase__ : Optional[Any] = list(range(len(lowerCAmelCase__ ) ) ) UpperCAmelCase__ : Optional[Any] = [v / w for v, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] index.sort(key=lambda lowerCAmelCase__ : ratio[i] , reverse=lowerCAmelCase__ ) UpperCAmelCase__ : float = 0 UpperCAmelCase__ : list[float] = [0] * len(lowerCAmelCase__ ) for i in index: if weight[i] <= capacity: UpperCAmelCase__ : List[str] = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase__ : Tuple = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
299
0
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE_ ( __A : str ) -> List[Any]: """simple docstring""" if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(__A ): return ext raise Exception( F"""Unable to determine file format from file extension {path}. """ F"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" a_ : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) a_ : List[str] = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format a_ : List[Any] = PipelineDataFormat.from_str( format=__A , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(__A , __A ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Pipeline , SCREAMING_SNAKE_CASE__ : PipelineDataFormat ) -> str: a_ : List[str] = nlp a_ : Dict = reader @staticmethod def SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict: a_ : List[Any] = parser.add_parser('run' , help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' ) run_parser.add_argument('--input' , type=A_ , help='Path to the file to use for inference' ) run_parser.add_argument('--output' , type=A_ , help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' , type=A_ , help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' , type=A_ , help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' , type=A_ , help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' , type=A_ , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=A_ , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=A_ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' ) run_parser.set_defaults(func=A_ ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ , a_ : List[Any] = self._nlp, [] for entry in self._reader: a_ : Dict = nlp(**A_ ) if self._reader.is_multi_columns else nlp(A_ ) if isinstance(A_ , A_ ): outputs.append(A_ ) else: outputs += output # Saving data if self._nlp.binary_output: a_ : str = self._reader.save_binary(A_ ) logger.warning(F"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(A_ )
32
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class A: '''simple docstring''' def __init__( self : str , A_ : Optional[Any] , ) -> str: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = 2 lowerCamelCase_ = 99 lowerCamelCase_ = 0 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.02 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = 'last' lowerCamelCase_ = True lowerCamelCase_ = None lowerCamelCase_ = 0 def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) lowerCamelCase_ = None if self.use_input_lengths: lowerCamelCase_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a__ ( self : int , A_ : List[str] , A_ : List[Any] , A_ : str , A_ : List[Any] , A_ : int , A_ : Tuple , A_ : Optional[int] , A_ : Optional[int] , A_ : str , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertModel(config=A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} lowerCamelCase_ = model(A_ ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : Tuple , A_ : List[str] , A_ : int , A_ : List[Any] , A_ : Any , A_ : Any , A_ : Dict , A_ : str , A_ : List[Any] , A_ : Union[str, Any] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = TFFlaubertWithLMHeadModel(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , A_ : Tuple , A_ : Any , A_ : Any , A_ : List[Any] , A_ : Dict , A_ : List[Any] , A_ : Union[str, Any] , A_ : Optional[int] , A_ : List[Any] , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertForQuestionAnsweringSimple(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[int] , A_ : List[Any] , A_ : str , A_ : List[str] , A_ : Dict , A_ : Optional[Any] , A_ : Tuple , A_ : str , A_ : Optional[int] , A_ : Tuple , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertForSequenceClassification(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : Dict , A_ : Optional[Any] , A_ : List[Any] , A_ : int , A_ : Any , A_ : Union[str, Any] , A_ : str , A_ : Any , A_ : Union[str, Any] , A_ : List[str] , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFFlaubertForTokenClassification(config=A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : List[Any] , A_ : Optional[int] , A_ : List[Any] , A_ : Optional[int] , A_ : Tuple , A_ : Union[str, Any] , A_ : int , A_ : str , A_ : Tuple , A_ : str , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.num_choices lowerCamelCase_ = TFFlaubertForMultipleChoice(config=A_ ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False def a__ ( self : Union[str, Any] , A_ : Any , A_ : List[Any] , A_ : Union[str, Any] , A_ : str , A_ : List[str] ) -> Optional[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = TFFlaubertModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , emb_dim=37 ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) lowerCamelCase_ = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" lowerCamelCase_ = model(A_ )[0] lowerCamelCase_ = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. lowerCamelCase_ = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
204
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list: lowerCAmelCase__ : int = word.split() def justify(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Any = max_width - width lowerCAmelCase__ : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCAmelCase__ : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCAmelCase__ : int = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCAmelCase__ : Any = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(SCREAMING_SNAKE_CASE_ ): num_spaces_between_words_list[i] += 1 lowerCAmelCase__ : List[Any] = [] for i in range(SCREAMING_SNAKE_CASE_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : list[str] = [] lowerCAmelCase__ : str = 0 for word in words: if width + len(SCREAMING_SNAKE_CASE_ ) + len(SCREAMING_SNAKE_CASE_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(SCREAMING_SNAKE_CASE_ ) width += len(SCREAMING_SNAKE_CASE_ ) else: # justify the line and add it to result answer.append(justify(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # reset new line and new width lowerCAmelCase__ : Any = [word], len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = max_width - width - len(SCREAMING_SNAKE_CASE_ ) answer.append(' '.join(SCREAMING_SNAKE_CASE_ ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
361
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCAmelCase__ = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCAmelCase_ ( __snake_case , __snake_case=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , __snake_case )
5
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() UpperCAmelCase : Tuple = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def a__ ( a__ , a__ , a__ , a__ , a__=False , a__=True ): """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __SCREAMING_SNAKE_CASE = cached_file(a__ , a__ , force_download=not use_cached_models ) __SCREAMING_SNAKE_CASE = config_class.from_json_file(a__ ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True print(F'Building TensorFlow model from configuration: {config}' ) __SCREAMING_SNAKE_CASE = model_class(a__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __SCREAMING_SNAKE_CASE = cached_file( a__ , a__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __SCREAMING_SNAKE_CASE = load_pytorch_checkpoint_in_tfa_model(a__ , a__ ) if compare_with_pt_model: __SCREAMING_SNAKE_CASE = tf_model(tf_model.dummy_inputs , training=a__ ) # build the network __SCREAMING_SNAKE_CASE = torch.load(a__ , map_location="""cpu""" ) __SCREAMING_SNAKE_CASE = pt_model_class.from_pretrained( pretrained_model_name_or_path=a__ , config=a__ , state_dict=a__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = pt_model(**pt_model.dummy_inputs ) __SCREAMING_SNAKE_CASE = pto[0].numpy() __SCREAMING_SNAKE_CASE = tfo[0].numpy() __SCREAMING_SNAKE_CASE = np.amax(np.abs(np_pt - np_tf ) ) print(F'Max absolute difference between models outputs {diff}' ) assert diff <= 2E-2, F'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(F'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(a__ , save_format="""h5""" ) def a__ ( a__ , a__ , a__=None , a__=None , a__=False , a__=False , a__=False , a__=False , ): """simple docstring""" if args_model_type is None: __SCREAMING_SNAKE_CASE = list(MODEL_CLASSES.keys() ) else: __SCREAMING_SNAKE_CASE = [args_model_type] for j, model_type in enumerate(a__ , start=1 ): print("""=""" * 1_00 ) print(F' Converting model type {j}/{len(a__ )}: {model_type}' ) print("""=""" * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __SCREAMING_SNAKE_CASE = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __SCREAMING_SNAKE_CASE = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(a__ , a__ ) , start=1 ): print("""-""" * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F' Skipping finetuned checkpoint {model_shortcut_name}' ) continue __SCREAMING_SNAKE_CASE = model_shortcut_name elif only_convert_finetuned_models: print(F' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( F' Converting checkpoint {i}/{len(a__ )}: {model_shortcut_name} - model_type {model_type}' ) print("""-""" * 1_00 ) if config_shortcut_name in aws_config_map: __SCREAMING_SNAKE_CASE = cached_file(a__ , a__ , force_download=not use_cached_models ) else: __SCREAMING_SNAKE_CASE = config_shortcut_name if model_shortcut_name in aws_model_maps: __SCREAMING_SNAKE_CASE = cached_file(a__ , a__ , force_download=not use_cached_models ) else: __SCREAMING_SNAKE_CASE = model_shortcut_name if os.path.isfile(a__ ): __SCREAMING_SNAKE_CASE = """converted_model""" convert_pt_checkpoint_to_tf( model_type=a__ , pytorch_checkpoint_path=a__ , config_file=a__ , tf_dump_path=os.path.join(a__ , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=a__ , ) if remove_cached_files: os.remove(a__ ) os.remove(a__ ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( f"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') UpperCAmelCase : List[Any] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
267
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Tuple = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase : Any = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" __lowerCAmelCase : List[Any] = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase : List[Any] = DisjunctiveConstraint(lowerCAmelCase ) __lowerCAmelCase : List[str] = dc.update(1 ) __lowerCAmelCase : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase : int = dc.update(2 ) __lowerCAmelCase : int = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase : Any = dc.update(3 ) __lowerCAmelCase : int = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase : Dict = DisjunctiveConstraint(lowerCAmelCase ) __lowerCAmelCase : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase : Union[str, Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase : Optional[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase : Optional[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
353
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Dict =(EulerDiscreteScheduler,) lowerCamelCase : Dict =10 def SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowerCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = self.scheduler_classes[0] __lowerCAmelCase : int = self.get_scheduler_config() __lowerCAmelCase : Any = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCAmelCase : str = torch.manual_seed(0 ) __lowerCAmelCase : List[Any] = self.dummy_model() __lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCAmelCase : int = sample.to(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Tuple = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : str = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = output.prev_sample __lowerCAmelCase : str = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : Optional[int] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.scheduler_classes[0] __lowerCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowerCAmelCase : List[str] = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCAmelCase : Any = torch.manual_seed(0 ) __lowerCAmelCase : int = self.dummy_model() __lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCAmelCase : List[Any] = sample.to(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Any = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Any = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : Dict = output.prev_sample __lowerCAmelCase : List[str] = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : Optional[int] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = self.scheduler_classes[0] __lowerCAmelCase : Dict = self.get_scheduler_config() __lowerCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __lowerCAmelCase : Dict = self.dummy_model() __lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowerCAmelCase : Dict = sample.to(lowerCAmelCase ) for t in scheduler.timesteps: __lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[str] = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : int = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : Any = output.prev_sample __lowerCAmelCase : int = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = self.scheduler_classes[0] __lowerCAmelCase : Optional[int] = self.get_scheduler_config() __lowerCAmelCase : List[Any] = scheduler_class(**lowerCAmelCase , use_karras_sigmas=lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase ) __lowerCAmelCase : str = torch.manual_seed(0 ) __lowerCAmelCase : str = self.dummy_model() __lowerCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowerCAmelCase : int = sample.to(lowerCAmelCase ) for t in scheduler.timesteps: __lowerCAmelCase : int = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Tuple = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : List[Any] = output.prev_sample __lowerCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
139
0
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) snake_case_ : Dict = parser.parse_args() snake_case_ : List[Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
83
'''simple docstring''' def A__ ( UpperCAmelCase_ = 1_0_0_0 ): _UpperCamelCase : Dict = 3 _UpperCamelCase : Any = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"""{solution() = }""")
83
1
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a =logging.get_logger(__name__) a ={ """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } a ={ """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } a ={ """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : List[str] = set() __lowerCamelCase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase : Any = char __lowerCamelCase : Union[str, Any] = set(lowerCamelCase__ ) return pairs class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[str] = VOCAB_FILES_NAMES _UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Any="<s>" ,SCREAMING_SNAKE_CASE__ : Dict="</s>" ,SCREAMING_SNAKE_CASE__ : int="</s>" ,SCREAMING_SNAKE_CASE__ : Dict="<s>" ,SCREAMING_SNAKE_CASE__ : Optional[int]="<unk>" ,SCREAMING_SNAKE_CASE__ : Dict="<pad>" ,SCREAMING_SNAKE_CASE__ : List[str]="<mask>" ,**SCREAMING_SNAKE_CASE__ : Any ,): super().__init__( bos_token=SCREAMING_SNAKE_CASE__ ,eos_token=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,sep_token=SCREAMING_SNAKE_CASE__ ,cls_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,mask_token=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Tuple = vocab_file __lowerCamelCase : Any = merges_file __lowerCamelCase : Optional[int] = {} __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : List[Any] = 1 __lowerCamelCase : Any = 2 __lowerCamelCase : str = 3 self.add_from_file(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE__ ,encoding='utf-8') as merges_handle: __lowerCamelCase : Tuple = merges_handle.read().split('\n')[:-1] __lowerCamelCase : int = [tuple(merge.split()[:-1]) for merge in merges] __lowerCamelCase : Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE__ ,range(len(SCREAMING_SNAKE_CASE__)))) __lowerCamelCase : Tuple = {} def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase : str = [self.cls_token_id] __lowerCamelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ,SCREAMING_SNAKE_CASE__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ ,token_ids_a=SCREAMING_SNAKE_CASE__ ,already_has_special_tokens=SCREAMING_SNAKE_CASE__) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None): __lowerCamelCase : Any = [self.sep_token_id] __lowerCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def lowerCAmelCase ( self : List[Any]): return len(self.encoder) def lowerCAmelCase ( self : Any): return dict(self.encoder ,**self.added_tokens_encoder) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[str]): if token in self.cache: return self.cache[token] __lowerCamelCase : str = tuple(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = tuple(list(word[:-1]) + [word[-1] + '</w>']) __lowerCamelCase : Optional[int] = get_pairs(SCREAMING_SNAKE_CASE__) if not pairs: return token while True: __lowerCamelCase : str = min(SCREAMING_SNAKE_CASE__ ,key=lambda SCREAMING_SNAKE_CASE__: self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ ,float('inf'))) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase : Dict = bigram __lowerCamelCase : str = [] __lowerCamelCase : Dict = 0 while i < len(SCREAMING_SNAKE_CASE__): try: __lowerCamelCase : List[Any] = word.index(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __lowerCamelCase : List[str] = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __lowerCamelCase : List[str] = tuple(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = new_word if len(SCREAMING_SNAKE_CASE__) == 1: break else: __lowerCamelCase : Any = get_pairs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = '@@ '.join(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = word[:-4] __lowerCamelCase : int = word return word def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : List[str]): __lowerCamelCase : Tuple = [] __lowerCamelCase : Tuple = re.findall(R'\S+\n?' ,SCREAMING_SNAKE_CASE__) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__).split(' '))) return split_tokens def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Optional[int]): return self.encoder.get(SCREAMING_SNAKE_CASE__ ,self.encoder.get(self.unk_token)) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int): return self.decoder.get(SCREAMING_SNAKE_CASE__ ,self.unk_token) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Dict): __lowerCamelCase : Dict = ' '.join(SCREAMING_SNAKE_CASE__).replace('@@ ' ,'').strip() return out_string def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[str] = None): if not os.path.isdir(SCREAMING_SNAKE_CASE__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __lowerCamelCase : str = os.path.join( SCREAMING_SNAKE_CASE__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) __lowerCamelCase : Tuple = os.path.join( SCREAMING_SNAKE_CASE__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE__): copyfile(self.vocab_file ,SCREAMING_SNAKE_CASE__) if os.path.abspath(self.merges_file) != os.path.abspath(SCREAMING_SNAKE_CASE__): copyfile(self.merges_file ,SCREAMING_SNAKE_CASE__) return out_vocab_file, out_merge_file def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): try: with open(SCREAMING_SNAKE_CASE__ ,'r' ,encoding='utf-8') as fd: self.add_from_file(SCREAMING_SNAKE_CASE__) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F"Incorrect encoding detected in {f}, please rebuild the dataset") return __lowerCamelCase : Optional[Any] = f.readlines() for lineTmp in lines: __lowerCamelCase : Union[str, Any] = lineTmp.strip() __lowerCamelCase : Optional[Any] = line.rfind(' ') if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'') __lowerCamelCase : Union[str, Any] = line[:idx] __lowerCamelCase : Tuple = len(self.encoder)
113
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py a ="""src/transformers""" a ="""docs/source/en""" a =""".""" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: with open(lowerCamelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Any = f.readlines() # Find the start prompt. __lowerCamelCase : List[str] = 0 while not lines[start_index].startswith(lowerCamelCase__ ): start_index += 1 start_index += 1 __lowerCamelCase : int = start_index while not lines[end_index].startswith(lowerCamelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | a ="""Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. a =re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") a =re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. a =re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. a =direct_transformers_import(TRANSFORMERS_PATH) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[str]: __lowerCamelCase : int = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowerCamelCase__ ) return [m.group(0 ) for m in matches] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: __lowerCamelCase : int = 2 if text == 'โœ…' or text == 'โŒ' else len(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = (width - text_length) // 2 __lowerCamelCase : List[Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def SCREAMING_SNAKE_CASE__ ( ) -> str: __lowerCamelCase : Union[str, Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __lowerCamelCase : List[str] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __lowerCamelCase : Dict = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : List[str] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCamelCase__ ): __lowerCamelCase : List[Any] = None if attr_name.endswith('Tokenizer' ): __lowerCamelCase : Dict = slow_tokenizers __lowerCamelCase : List[Any] = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): __lowerCamelCase : Union[str, Any] = fast_tokenizers __lowerCamelCase : str = attr_name[:-1_3] elif _re_tf_models.match(lowerCamelCase__ ) is not None: __lowerCamelCase : List[str] = tf_models __lowerCamelCase : Optional[int] = _re_tf_models.match(lowerCamelCase__ ).groups()[0] elif _re_flax_models.match(lowerCamelCase__ ) is not None: __lowerCamelCase : List[Any] = flax_models __lowerCamelCase : Optional[Any] = _re_flax_models.match(lowerCamelCase__ ).groups()[0] elif _re_pt_models.match(lowerCamelCase__ ) is not None: __lowerCamelCase : Optional[int] = pt_models __lowerCamelCase : Any = _re_pt_models.match(lowerCamelCase__ ).groups()[0] if lookup_dict is not None: while len(lowerCamelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): __lowerCamelCase : List[Any] = True break # Try again after removing the last word in the name __lowerCamelCase : str = ''.join(camel_case_split(lowerCamelCase__ )[:-1] ) # Let's build that table! __lowerCamelCase : str = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __lowerCamelCase : Union[str, Any] = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __lowerCamelCase : List[Any] = [len(lowerCamelCase__ ) + 2 for c in columns] __lowerCamelCase : int = max([len(lowerCamelCase__ ) for name in model_names] ) + 2 # Build the table per se __lowerCamelCase : Union[str, Any] = '|' + '|'.join([_center_text(lowerCamelCase__ , lowerCamelCase__ ) for c, w in zip(lowerCamelCase__ , lowerCamelCase__ )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" __lowerCamelCase : List[str] = {True: 'โœ…', False: 'โŒ'} for name in model_names: __lowerCamelCase : Optional[int] = model_name_to_prefix[name] __lowerCamelCase : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCamelCase__ , lowerCamelCase__ ) for l, w in zip(lowerCamelCase__ , lowerCamelCase__ )] ) + "|\n" return table def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__=False ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = _find_text_in_file( filename=os.path.join(lowerCamelCase__ , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) __lowerCamelCase : List[Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCamelCase__ , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": a =argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a =parser.parse_args() check_model_table(args.fix_and_overwrite)
113
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str]=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = "" else: __lowerCAmelCase = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def _a ( SCREAMING_SNAKE_CASE_ : str ): __lowerCAmelCase = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = val def _a ( ): __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 10_00 __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 3_84 __lowerCAmelCase = 15_36 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load("facebookresearch/dino:main" , SCREAMING_SNAKE_CASE_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(SCREAMING_SNAKE_CASE_ , add_pooling_layer=SCREAMING_SNAKE_CASE_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowerCAmelCase = encoding["pixel_values"] __lowerCAmelCase = model(SCREAMING_SNAKE_CASE_ ) if base_model: __lowerCAmelCase = original_model(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: __lowerCAmelCase = original_model(SCREAMING_SNAKE_CASE_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) UpperCamelCase__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
92
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
0
'''simple docstring''' def UpperCamelCase_( snake_case : int , snake_case : int , snake_case : int ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: snake_case_ = _modexpt(__a , exponent // 2 , __a ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__a , exponent - 1 , __a )) % modulo_value def UpperCamelCase_( snake_case : int = 1_7_7_7 , snake_case : int = 1_8_5_5 , snake_case : int = 8 ): '''simple docstring''' snake_case_ = base for _ in range(1 , __a ): snake_case_ = _modexpt(__a , __a , 1_0**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
365
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE : Tuple = get_logger(__name__) def UpperCamelCase_( snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : int , snake_case : List[Any]=0 ): '''simple docstring''' os.makedirs(snake_case , exist_ok=snake_case ) with FSDP.state_dict_type( snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' snake_case_ = os.path.join(snake_case , snake_case ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(snake_case , snake_case ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Saving model to {output_model_file}' ) torch.save(snake_case , snake_case ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = os.path.join(snake_case , f'{MODEL_NAME}_{model_index}' ) os.makedirs(snake_case , exist_ok=snake_case ) logger.info(f'Saving model to {ckpt_dir}' ) snake_case_ = {"model": state_dict} dist_cp.save_state_dict( state_dict=snake_case , storage_writer=dist_cp.FileSystemWriter(snake_case ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def UpperCamelCase_( snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : int , snake_case : Union[str, Any] , snake_case : Any=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(snake_case ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return snake_case_ = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Loading model from {input_model_file}' ) snake_case_ = torch.load(snake_case ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Loading model from {input_model_file}' ) snake_case_ = torch.load(snake_case ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = ( os.path.join(snake_case , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) snake_case_ = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=snake_case , storage_reader=dist_cp.FileSystemReader(snake_case ) , planner=DefaultLoadPlanner() , ) snake_case_ = state_dict["model"] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(snake_case ) def UpperCamelCase_( snake_case : str , snake_case : List[str] , snake_case : Any , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Tuple=0 ): '''simple docstring''' os.makedirs(snake_case , exist_ok=snake_case ) with FSDP.state_dict_type( snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ = FSDP.optim_state_dict(snake_case , snake_case ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(snake_case , snake_case ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: snake_case_ = os.path.join(snake_case , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(snake_case , exist_ok=snake_case ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(snake_case ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def UpperCamelCase_( snake_case : Optional[Any] , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : int , snake_case : Optional[int] , snake_case : Union[str, Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) snake_case_ = torch.load(snake_case ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: snake_case_ = ( os.path.join(snake_case , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) snake_case_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(snake_case ) , ) snake_case_ = optim_state["optimizer"] logger.info(f'Optimizer loaded from {ckpt_dir}' ) snake_case_ = FSDP.optim_state_dict_to_load(snake_case , snake_case , snake_case ) optimizer.load_state_dict(snake_case )
92
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Any = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } lowerCAmelCase_ :Dict = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(__A ) , __A ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__A ) , x.transpose() ) ) lowerCAmelCase_ :Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__A , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :str = np.random.randn(3 , 4 ) lowerCAmelCase_ :Optional[Any] = torch.tensor(__A ) self.assertTrue(np.allclose(transpose(__A ) , transpose(__A ).numpy() ) ) lowerCAmelCase_ :Dict = np.random.randn(3 , 4 , 5 ) lowerCAmelCase_ :Union[str, Any] = torch.tensor(__A ) self.assertTrue(np.allclose(transpose(__A , axes=(1, 2, 0) ) , transpose(__A , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Tuple = np.random.randn(3 , 4 ) lowerCAmelCase_ :Any = tf.constant(__A ) self.assertTrue(np.allclose(transpose(__A ) , transpose(__A ).numpy() ) ) lowerCAmelCase_ :Optional[Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase_ :Optional[int] = tf.constant(__A ) self.assertTrue(np.allclose(transpose(__A , axes=(1, 2, 0) ) , transpose(__A , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Any = np.random.randn(3 , 4 ) lowerCAmelCase_ :Optional[int] = jnp.array(__A ) self.assertTrue(np.allclose(transpose(__A ) , np.asarray(transpose(__A ) ) ) ) lowerCAmelCase_ :int = np.random.randn(3 , 4 , 5 ) lowerCAmelCase_ :int = jnp.array(__A ) self.assertTrue(np.allclose(transpose(__A , axes=(1, 2, 0) ) , np.asarray(transpose(__A , axes=(1, 2, 0) ) ) ) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__A , (4, 3) ) , np.reshape(__A , (4, 3) ) ) ) lowerCAmelCase_ :List[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__A , (12, 5) ) , np.reshape(__A , (12, 5) ) ) ) @require_torch def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Dict = np.random.randn(3 , 4 ) lowerCAmelCase_ :Optional[Any] = torch.tensor(__A ) self.assertTrue(np.allclose(reshape(__A , (4, 3) ) , reshape(__A , (4, 3) ).numpy() ) ) lowerCAmelCase_ :List[Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase_ :List[Any] = torch.tensor(__A ) self.assertTrue(np.allclose(reshape(__A , (12, 5) ) , reshape(__A , (12, 5) ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :List[Any] = np.random.randn(3 , 4 ) lowerCAmelCase_ :List[str] = tf.constant(__A ) self.assertTrue(np.allclose(reshape(__A , (4, 3) ) , reshape(__A , (4, 3) ).numpy() ) ) lowerCAmelCase_ :Optional[Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase_ :Any = tf.constant(__A ) self.assertTrue(np.allclose(reshape(__A , (12, 5) ) , reshape(__A , (12, 5) ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Optional[int] = np.random.randn(3 , 4 ) lowerCAmelCase_ :Union[str, Any] = jnp.array(__A ) self.assertTrue(np.allclose(reshape(__A , (4, 3) ) , np.asarray(reshape(__A , (4, 3) ) ) ) ) lowerCAmelCase_ :List[Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase_ :List[Any] = jnp.array(__A ) self.assertTrue(np.allclose(reshape(__A , (12, 5) ) , np.asarray(reshape(__A , (12, 5) ) ) ) ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Union[str, Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__A ) , np.squeeze(__A ) ) ) lowerCAmelCase_ :Optional[int] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__A , axis=2 ) , np.squeeze(__A , axis=2 ) ) ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase_ :List[Any] = torch.tensor(__A ) self.assertTrue(np.allclose(squeeze(__A ) , squeeze(__A ).numpy() ) ) lowerCAmelCase_ :Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase_ :Optional[Any] = torch.tensor(__A ) self.assertTrue(np.allclose(squeeze(__A , axis=2 ) , squeeze(__A , axis=2 ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :str = np.random.randn(1 , 3 , 4 ) lowerCAmelCase_ :Optional[int] = tf.constant(__A ) self.assertTrue(np.allclose(squeeze(__A ) , squeeze(__A ).numpy() ) ) lowerCAmelCase_ :Dict = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase_ :Union[str, Any] = tf.constant(__A ) self.assertTrue(np.allclose(squeeze(__A , axis=2 ) , squeeze(__A , axis=2 ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Tuple = np.random.randn(1 , 3 , 4 ) lowerCAmelCase_ :str = jnp.array(__A ) self.assertTrue(np.allclose(squeeze(__A ) , np.asarray(squeeze(__A ) ) ) ) lowerCAmelCase_ :Any = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase_ :Optional[int] = jnp.array(__A ) self.assertTrue(np.allclose(squeeze(__A , axis=2 ) , np.asarray(squeeze(__A , axis=2 ) ) ) ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__A , axis=1 ) , np.expand_dims(__A , axis=1 ) ) ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :int = np.random.randn(3 , 4 ) lowerCAmelCase_ :str = torch.tensor(__A ) self.assertTrue(np.allclose(expand_dims(__A , axis=1 ) , expand_dims(__A , axis=1 ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :str = np.random.randn(3 , 4 ) lowerCAmelCase_ :Any = tf.constant(__A ) self.assertTrue(np.allclose(expand_dims(__A , axis=1 ) , expand_dims(__A , axis=1 ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[str] = np.random.randn(3 , 4 ) lowerCAmelCase_ :int = jnp.array(__A ) self.assertTrue(np.allclose(expand_dims(__A , axis=1 ) , np.asarray(expand_dims(__A , axis=1 ) ) ) )
84
class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE: def __init__( self: List[str] ) -> Union[str, Any]: snake_case__ = [ [], [], [], ] def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: int ) -> None: try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(UpperCamelCase ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def lowerCAmelCase_ ( self: List[Any] ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self: Union[str, Any] ) -> str: return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __SCREAMING_SNAKE_CASE: def __init__( self: Union[str, Any] ) -> Any: snake_case__ = [] def lowerCAmelCase_ ( self: str , UpperCamelCase: int ) -> None: if len(self.queue ) == 1_00: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(UpperCamelCase ) def lowerCAmelCase_ ( self: int ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: snake_case__ = min(self.queue ) self.queue.remove(UpperCamelCase ) return data def __str__( self: Optional[Any] ) -> str: return str(self.queue ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
307
0
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: __a = 1 - (matter_density + radiation_density + dark_energy) __a = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __a = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation __snake_case :Union[str, Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
367
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): def get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCAmelCase ) __a = f'{_stra[0:_stra.index(_UpperCAmelCase )]} {_stra[_stra.index(_UpperCAmelCase ) + 1:]}' return "".join(_UpperCAmelCase ) # matching characters __a = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) __a = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) __a = len(_UpperCAmelCase ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(_UpperCAmelCase , _UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(_UpperCAmelCase ) + match_count / len(_UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
131
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class a__ ( _a ): _a : Optional[int] = '''nllb-moe''' _a : Dict = ['''past_key_values'''] _a : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _A=1_2_8_1_1_2 , _A=1_0_2_4 , _A=1_2 , _A=4_0_9_6 , _A=1_6 , _A=1_2 , _A=4_0_9_6 , _A=1_6 , _A=0.05 , _A=0.05 , _A=True , _A=True , _A="relu" , _A=1_0_2_4 , _A=0.1 , _A=0.1 , _A=0.0 , _A=0.02 , _A=2 , _A=True , _A=False , _A="float32" , _A=False , _A=1_2_8 , _A=6_4 , _A=4 , _A=4 , _A=0.0_01 , _A=0.0_01 , _A="all" , _A=False , _A=False , _A=1.0 , _A=0.2 , _A=1 , _A=0 , _A=2 , _A=False , **_A , ): """simple docstring""" __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = router_z_loss_coef __lowerCAmelCase = router_aux_loss_coef __lowerCAmelCase = decoder_sparse_step __lowerCAmelCase = encoder_sparse_step __lowerCAmelCase = num_experts __lowerCAmelCase = expert_capacity __lowerCAmelCase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}""" ) __lowerCAmelCase = router_dtype __lowerCAmelCase = router_ignore_padding_tokens __lowerCAmelCase = batch_prioritized_routing __lowerCAmelCase = second_expert_policy __lowerCAmelCase = normalize_router_prob_before_dropping __lowerCAmelCase = moe_eval_capacity_token_fraction __lowerCAmelCase = moe_token_dropout __lowerCAmelCase = output_router_logits super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
92
'''simple docstring''' import math def A_ ( snake_case , snake_case ): if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(snake_case ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
139
0
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase_ ( _UpperCamelCase ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> XGBClassifier: """simple docstring""" snake_case_ : Optional[Any] = XGBClassifier() classifier.fit(_UpperCamelCase , _UpperCamelCase ) return classifier def lowerCamelCase_ ( ) -> None: """simple docstring""" snake_case_ : Optional[Any] = load_iris() snake_case_ , snake_case_ : str = data_handling(_UpperCamelCase ) snake_case_ , snake_case_ , snake_case_ , snake_case_ : Dict = train_test_split( _UpperCamelCase , _UpperCamelCase , test_size=0.25 ) snake_case_ : List[str] = iris['''target_names'''] # Create an XGBoost Classifier from the training data snake_case_ : int = xgboost(_UpperCamelCase , _UpperCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , display_labels=_UpperCamelCase , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
279
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = [] snake_case_ : List[str] = [] for i in range(self.num_layers ): snake_case_ : Tuple = self.in_channels if i == 0 else self.out_channels snake_case_ : Dict = FlaxResnetBlockaD( in_channels=__magic_name__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : str = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__magic_name__ ) snake_case_ : Union[str, Any] = resnets snake_case_ : Union[str, Any] = attentions if self.add_downsample: snake_case_ : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> List[Any]: '''simple docstring''' snake_case_ : str = () for resnet, attn in zip(self.resnets , self.attentions ): snake_case_ : Optional[Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) snake_case_ : List[str] = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) output_states += (hidden_states,) if self.add_downsample: snake_case_ : Union[str, Any] = self.downsamplers_a(__magic_name__ ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = [] for i in range(self.num_layers ): snake_case_ : List[Any] = self.in_channels if i == 0 else self.out_channels snake_case_ : Tuple = FlaxResnetBlockaD( in_channels=__magic_name__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : Dict = resnets if self.add_downsample: snake_case_ : Optional[int] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__=True ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = () for resnet in self.resnets: snake_case_ : List[Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) output_states += (hidden_states,) if self.add_downsample: snake_case_ : str = self.downsamplers_a(__magic_name__ ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = [] for i in range(self.num_layers ): snake_case_ : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels snake_case_ : Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : List[str] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__magic_name__ ) snake_case_ : List[Any] = resnets snake_case_ : Tuple = attentions if self.add_upsample: snake_case_ : List[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> Union[str, Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states snake_case_ : Dict = res_hidden_states_tuple[-1] snake_case_ : List[Any] = res_hidden_states_tuple[:-1] snake_case_ : Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case_ : Tuple = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) snake_case_ : Tuple = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) if self.add_upsample: snake_case_ : Optional[Any] = self.upsamplers_a(__magic_name__ ) return hidden_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = True lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = [] for i in range(self.num_layers ): snake_case_ : Tuple = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case_ : Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels snake_case_ : int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : Tuple = resnets if self.add_upsample: snake_case_ : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states snake_case_ : Tuple = res_hidden_states_tuple[-1] snake_case_ : List[Any] = res_hidden_states_tuple[:-1] snake_case_ : Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case_ : Optional[Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) if self.add_upsample: snake_case_ : Optional[int] = self.upsamplers_a(__magic_name__ ) return hidden_states class __lowerCAmelCase ( nn.Module ): lowerCamelCase_ : int lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 1 lowerCamelCase_ : int = 1 lowerCamelCase_ : bool = False lowerCamelCase_ : bool = False lowerCamelCase_ : jnp.dtype = jnp.floataa def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Dict = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] snake_case_ : int = [] for _ in range(self.num_layers ): snake_case_ : str = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__magic_name__ ) snake_case_ : Dict = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__magic_name__ ) snake_case_ : Optional[Any] = resnets snake_case_ : Optional[int] = attentions def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ) -> Optional[int]: '''simple docstring''' snake_case_ : List[Any] = self.resnets[0](__magic_name__ , __magic_name__ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): snake_case_ : Tuple = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) snake_case_ : Union[str, Any] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ ) return hidden_states
279
1
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=0 ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = 1.0 if scale is None else scale SCREAMING_SNAKE_CASE = 0.0 if loc is None else loc super().__init__(lowerCAmelCase__ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCAmelCase__ )] ) @property def __A ( self ) -> Tuple: return self.base_dist.mean * self.scale + self.loc @property def __A ( self ) -> Union[str, Any]: return self.base_dist.variance * self.scale**2 @property def __A ( self ) -> List[Any]: return self.variance.sqrt() class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> None: super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = args_dim SCREAMING_SNAKE_CASE = nn.ModuleList([nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) for dim in args_dim.values()] ) SCREAMING_SNAKE_CASE = domain_map def __A ( self , lowerCAmelCase__ ) -> Tuple[torch.Tensor]: SCREAMING_SNAKE_CASE = [proj(lowerCAmelCase__ ) for proj in self.proj] return self.domain_map(*lowerCAmelCase__ ) class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> int: super().__init__() SCREAMING_SNAKE_CASE = function def __A ( self , lowerCAmelCase__ , *lowerCAmelCase__ ) -> List[Any]: return self.function(lowerCAmelCase__ , *lowerCAmelCase__ ) class lowerCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ : type SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : Dict[str, int] def __init__( self , lowerCAmelCase__ = 1 ) -> None: SCREAMING_SNAKE_CASE = dim SCREAMING_SNAKE_CASE = {k: dim * self.args_dim[k] for k in self.args_dim} def __A ( self , lowerCAmelCase__ ) -> Union[str, Any]: if self.dim == 1: return self.distribution_class(*lowerCAmelCase__ ) else: return Independent(self.distribution_class(*lowerCAmelCase__ ) , 1 ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Distribution: SCREAMING_SNAKE_CASE = self._base_distribution(lowerCAmelCase__ ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCAmelCase__ , loc=lowerCAmelCase__ , scale=lowerCAmelCase__ , event_dim=self.event_dim ) @property def __A ( self ) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def __A ( self ) -> int: return len(self.event_shape ) @property def __A ( self ) -> float: return 0.0 def __A ( self , lowerCAmelCase__ ) -> nn.Module: return ParameterProjection( in_features=lowerCAmelCase__ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __A ( self , *lowerCAmelCase__ ) -> Dict: raise NotImplementedError() @staticmethod def __A ( lowerCAmelCase__ ) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCAmelCase__ ) + 4.0 )) / 2.0 class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} SCREAMING_SNAKE_CASE_ : type = StudentT @classmethod def __A ( cls , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: SCREAMING_SNAKE_CASE = cls.squareplus(lowerCAmelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) SCREAMING_SNAKE_CASE = 2.0 + cls.squareplus(lowerCAmelCase__ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict[str, int] = {"loc": 1, "scale": 1} SCREAMING_SNAKE_CASE_ : type = Normal @classmethod def __A ( cls , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: SCREAMING_SNAKE_CASE = cls.squareplus(lowerCAmelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict[str, int] = {"total_count": 1, "logits": 1} SCREAMING_SNAKE_CASE_ : type = NegativeBinomial @classmethod def __A ( cls , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: SCREAMING_SNAKE_CASE = cls.squareplus(lowerCAmelCase__ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __A ( self , lowerCAmelCase__ ) -> Distribution: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCAmelCase__ , logits=lowerCAmelCase__ ) else: return Independent(self.distribution_class(total_count=lowerCAmelCase__ , logits=lowerCAmelCase__ ) , 1 ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> Distribution: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
113
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowercase (SCREAMING_SNAKE_CASE_ : BertModel , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> Dict: SCREAMING_SNAKE_CASE = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') SCREAMING_SNAKE_CASE = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = model.state_dict() def to_tf_var_name(SCREAMING_SNAKE_CASE_ : str ): for patt, repl in iter(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return F'bert/{name}' def create_tf_var(SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : tf.Session ): SCREAMING_SNAKE_CASE = tf.dtypes.as_dtype(tensor.dtype ) SCREAMING_SNAKE_CASE = tf.get_variable(dtype=SCREAMING_SNAKE_CASE_ , shape=tensor.shape , name=SCREAMING_SNAKE_CASE_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(SCREAMING_SNAKE_CASE_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: SCREAMING_SNAKE_CASE = to_tf_var_name(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): SCREAMING_SNAKE_CASE = torch_tensor.T SCREAMING_SNAKE_CASE = create_tf_var(tensor=SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ , session=SCREAMING_SNAKE_CASE_ ) tf.keras.backend.set_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = session.run(SCREAMING_SNAKE_CASE_ ) print(F'Successfully created {tf_name}: {np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}' ) SCREAMING_SNAKE_CASE = tf.train.Saver(tf.trainable_variables() ) saver.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any]=None ) -> Any: SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Directory in which to save tensorflow model' ) SCREAMING_SNAKE_CASE = parser.parse_args(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=SCREAMING_SNAKE_CASE_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
113
1
A : Tuple = ''' # Transformers ์„ค์น˜ ๋ฐฉ๋ฒ• ! pip install transformers datasets # ๋งˆ์ง€๋ง‰ ๋ฆด๋ฆฌ์Šค ๋Œ€์‹  ์†Œ์Šค์—์„œ ์„ค์น˜ํ•˜๋ ค๋ฉด, ์œ„ ๋ช…๋ น์„ ์ฃผ์„์œผ๋กœ ๋ฐ”๊พธ๊ณ  ์•„๋ž˜ ๋ช…๋ น์„ ํ•ด์ œํ•˜์„ธ์š”. # ! pip install git+https://github.com/huggingface/transformers.git ''' A : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] A : int = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
276
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( __a :int ) -> int: """simple docstring""" A__ = prime_factors(__a ) if is_square_free(__a ): return -1 if len(__a ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
276
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCAmelCase : Optional[int] = logging.getLogger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=None): super().__init__( lowerCAmelCase__ , question_encoder_tokenizer=lowerCAmelCase__ , generator_tokenizer=lowerCAmelCase__ , index=lowerCAmelCase__ , init_retrieval=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = None def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : int): logger.info("initializing retrieval") # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized") # needs to be set manually SCREAMING_SNAKE_CASE_: Dict = self._infer_socket_ifname() # avoid clash with the NCCL port SCREAMING_SNAKE_CASE_: List[Any] = str(distributed_port + 1) SCREAMING_SNAKE_CASE_: int = dist.new_group(ranks=lowerCAmelCase__ , backend="gloo") # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main") self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return dist.get_rank(group=self.process_group) == 0 def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=torch.floataa): SCREAMING_SNAKE_CASE_: str = torch.empty(lowerCAmelCase__ , dtype=lowerCAmelCase__) dist.scatter(lowerCAmelCase__ , src=0 , scatter_list=lowerCAmelCase__ , group=self.process_group) return target_tensor def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names SCREAMING_SNAKE_CASE_: Any = next((addr for addr in addrs if addr.startswith("e")) , lowerCAmelCase__) return ifname def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int): # single GPU training if not dist.is_initialized(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._main_retrieve(lowerCAmelCase__ , lowerCAmelCase__) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase__) # distributed training SCREAMING_SNAKE_CASE_: Dict = dist.get_world_size(group=self.process_group) # gather logic SCREAMING_SNAKE_CASE_: Optional[Any] = None if self._is_main(): SCREAMING_SNAKE_CASE_: Optional[int] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(lowerCAmelCase__)] dist.gather(torch.tensor(lowerCAmelCase__) , dst=0 , gather_list=lowerCAmelCase__ , group=self.process_group) # scatter logic SCREAMING_SNAKE_CASE_: Optional[Any] = question_hidden_states.shape[0] SCREAMING_SNAKE_CASE_: Dict = [] SCREAMING_SNAKE_CASE_: List[Any] = [] if self._is_main(): assert len(lowerCAmelCase__) == world_size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._main_retrieve(torch.cat(lowerCAmelCase__).numpy() , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = torch.tensor(lowerCAmelCase__), torch.tensor(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._scattered(lowerCAmelCase__ , [n_queries, n_docs] , target_type=torch.intaa) SCREAMING_SNAKE_CASE_: int = self._scattered(lowerCAmelCase__ , [n_queries, n_docs, question_hidden_states.shape[1]]) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase__)
13
from queue import PriorityQueue from typing import Any import numpy as np def _a ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : set , SCREAMING_SNAKE_CASE_ : set , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : PriorityQueue , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue __lowerCAmelCase = cst_fwd.get(SCREAMING_SNAKE_CASE_ , np.inf ) __lowerCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __lowerCAmelCase = new_cost_f __lowerCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __lowerCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : dict ): __lowerCAmelCase = -1 __lowerCAmelCase = set() __lowerCAmelCase = set() __lowerCAmelCase = {source: 0} __lowerCAmelCase = {destination: 0} __lowerCAmelCase = {source: None} __lowerCAmelCase = {destination: None} __lowerCAmelCase = PriorityQueue() __lowerCAmelCase = PriorityQueue() __lowerCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __lowerCAmelCase , __lowerCAmelCase = queue_forward.get() visited_forward.add(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase , __lowerCAmelCase = queue_backward.get() visited_backward.add(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = pass_and_relaxation( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __lowerCAmelCase = pass_and_relaxation( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __lowerCAmelCase = shortest_distance return shortest_path_distance UpperCamelCase__ = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } UpperCamelCase__ = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
92
0
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCamelCase__ : Union[str, Any] = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class lowerCamelCase_ ( tr.AbstractTransform ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : str = " " ): SCREAMING_SNAKE_CASE_ = sentence_delimiter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : str ): return list(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = [] for sent_idx, sentence in enumerate(_lowerCAmelCase ): chars.extend(self.process_string(_lowerCAmelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(_lowerCAmelCase ) - 1: chars.append(self.sentence_delimiter ) return chars lowerCamelCase__ : int = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCamelCase__ : int = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCamelCase__ : Dict = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' lowerCamelCase__ : Optional[int] = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' lowerCamelCase__ : int = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=False ): if concatenate_texts: return jiwer.compute_measures( _lowerCAmelCase , _lowerCAmelCase , truth_transform=_lowerCAmelCase , hypothesis_transform=_lowerCAmelCase , )["wer"] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for prediction, reference in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = jiwer.compute_measures( _lowerCAmelCase , _lowerCAmelCase , truth_transform=_lowerCAmelCase , hypothesis_transform=_lowerCAmelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
210
import cva import numpy as np class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : float , _lowerCAmelCase : int ): if k in (0.04, 0.06): SCREAMING_SNAKE_CASE_ = k SCREAMING_SNAKE_CASE_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : Tuple ): return str(self.k ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = cva.imread(_lowerCAmelCase , 0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = img.copy() SCREAMING_SNAKE_CASE_ = cva.cvtColor(_lowerCAmelCase , cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.gradient(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = dx**2 SCREAMING_SNAKE_CASE_ = dy**2 SCREAMING_SNAKE_CASE_ = dx * dy SCREAMING_SNAKE_CASE_ = 0.04 SCREAMING_SNAKE_CASE_ = self.window_size // 2 for y in range(_lowerCAmelCase , h - offset ): for x in range(_lowerCAmelCase , w - offset ): SCREAMING_SNAKE_CASE_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE_ = wxx + wyy SCREAMING_SNAKE_CASE_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase__ : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase__ , lowerCamelCase__ : str = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
210
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) __UpperCamelCase : Any = logging.getLogger(__name__) def a_ ( _A ) -> List[Any]: """simple docstring""" snake_case__ = git.Repo(search_parent_directories=_a ) snake_case__ = { '''repo_id''': str(_a ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_a , 'git_log.json' ) , 'w' ) as f: json.dump(_a , _a , indent=4 ) def a_ ( _A ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: snake_case__ = 0 snake_case__ = -1 snake_case__ = True snake_case__ = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 snake_case__ = int(os.environ['WORLD_SIZE'] ) snake_case__ = int(os.environ['N_GPU_NODE'] ) snake_case__ = int(os.environ['RANK'] ) # number of nodes / node ID snake_case__ = params.world_size // params.n_gpu_per_node snake_case__ = params.global_rank // params.n_gpu_per_node snake_case__ = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 snake_case__ = 1 snake_case__ = 0 snake_case__ = 0 snake_case__ = 0 snake_case__ = 1 snake_case__ = 1 snake_case__ = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode snake_case__ = params.node_id == 0 and params.local_rank == 0 snake_case__ = params.n_nodes > 1 # summary snake_case__ = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def a_ ( _A ) -> int: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
307
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a : def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=13 , _SCREAMING_SNAKE_CASE : Tuple=32 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : List[Any]=3 , _SCREAMING_SNAKE_CASE : str=16 , _SCREAMING_SNAKE_CASE : Union[str, Any]=[1, 2, 1] , _SCREAMING_SNAKE_CASE : List[Any]=[2, 2, 4] , _SCREAMING_SNAKE_CASE : str=2 , _SCREAMING_SNAKE_CASE : Optional[int]=2.0 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Dict=0.0 , _SCREAMING_SNAKE_CASE : str=0.0 , _SCREAMING_SNAKE_CASE : List[str]=0.1 , _SCREAMING_SNAKE_CASE : Tuple="gelu" , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : List[Any]=0.02 , _SCREAMING_SNAKE_CASE : Any=1E-5 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Any=10 , _SCREAMING_SNAKE_CASE : Union[str, Any]=8 , )-> Dict: lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : Optional[Any] = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : Dict = embed_dim lowerCAmelCase__ : Optional[Any] = depths lowerCAmelCase__ : Tuple = num_heads lowerCAmelCase__ : Dict = window_size lowerCAmelCase__ : List[str] = mlp_ratio lowerCAmelCase__ : str = qkv_bias lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = drop_path_rate lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Tuple = use_absolute_embeddings lowerCAmelCase__ : int = patch_norm lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Dict = is_training lowerCAmelCase__ : Any = scope lowerCAmelCase__ : int = use_labels lowerCAmelCase__ : Tuple = type_sequence_label_size lowerCAmelCase__ : Any = encoder_stride def UpperCAmelCase__( self : str )-> Optional[int]: lowerCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = None if self.use_labels: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__( self : Optional[int] )-> str: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )-> int: lowerCAmelCase__ : Union[str, Any] = SwinvaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : List[str] = model(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )-> List[Any]: lowerCAmelCase__ : Optional[int] = SwinvaForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Dict = SwinvaForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] )-> Union[str, Any]: lowerCAmelCase__ : Tuple = self.type_sequence_label_size lowerCAmelCase__ : Optional[Any] = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Any = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__( self : Tuple )-> str: lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = config_and_inputs lowerCAmelCase__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( _lowercase , _lowercase , unittest.TestCase): _a : str = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _a : Tuple = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) _a : List[str] = False _a : int = False _a : Optional[int] = False _a : Optional[Any] = False def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : Tuple = SwinvaModelTester(self ) lowerCAmelCase__ : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) def UpperCAmelCase__( self : str )-> int: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__( self : Optional[int] )-> Optional[Any]: lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase__( self : Optional[Any] )-> Dict: pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase__( self : Tuple )-> Optional[int]: pass def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__( self : Any )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Dict = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Tuple = [*signature.parameters.keys()] lowerCAmelCase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = True for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : str = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[str] = outputs.attentions lowerCAmelCase__ : Union[str, Any] = len(self.model_tester.depths ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = config.window_size**2 lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCAmelCase__ : int = len(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine lowerCAmelCase__ : str = True lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): lowerCAmelCase__ : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase__ : str = 2 self.assertEqual(out_len + added_hidden_states , len(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[Any] = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] )-> Tuple: lowerCAmelCase__ : Any = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Any = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.hidden_states lowerCAmelCase__ : Optional[int] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swinv2 has a different seq_length lowerCAmelCase__ : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCAmelCase__ : Dict = outputs.reshaped_hidden_states self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = reshaped_hidden_states[0].shape lowerCAmelCase__ : Tuple = ( reshaped_hidden_states[0].view(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__( self : Tuple )-> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase__ : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any )-> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Tuple = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) def UpperCAmelCase__( self : Dict )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : Optional[Any] )-> int: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[Any] = SwinvaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Dict )-> List[str]: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Dict = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _a ( unittest.TestCase): @cached_property def UpperCAmelCase__( self : Tuple )-> Optional[Any]: return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ : Any = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits lowerCAmelCase__ : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
131
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''bloom''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self : List[Any] , _UpperCAmelCase : Optional[int]=250880 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : str=1e-5 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=1 , _UpperCAmelCase : str=False , **_UpperCAmelCase : str , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ = kwargs.pop("n_embed" , _UpperCAmelCase ) UpperCAmelCase_ = hidden_size if n_embed is None else n_embed UpperCAmelCase_ = n_layer UpperCAmelCase_ = n_head UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_range UpperCAmelCase_ = use_cache UpperCAmelCase_ = pretraining_tp UpperCAmelCase_ = apply_residual_connection_post_layernorm UpperCAmelCase_ = hidden_dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.12''' ) def __init__( self : Optional[int] , _UpperCAmelCase : PretrainedConfig , _UpperCAmelCase : str = "default" , _UpperCAmelCase : List[PatchingSpec] = None , _UpperCAmelCase : bool = False , ) -> Any: '''simple docstring''' super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , "pad_token_id" , _UpperCAmelCase ): # TODO: how to do that better? UpperCAmelCase_ = 0 @property def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' UpperCAmelCase_ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction="inputs" , inverted_values_shape=_UpperCAmelCase ) UpperCAmelCase_ = {0: "batch", 1: "past_sequence + sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return common_inputs @property def lowercase__ ( self : int ) -> int: '''simple docstring''' return self._config.n_layer @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return self._config.n_head @property def lowercase__ ( self : List[str] ) -> float: '''simple docstring''' return 1e-3 def lowercase__ ( self : Optional[int] , _UpperCAmelCase : "PreTrainedTokenizer" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() UpperCAmelCase_ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCAmelCase_ , UpperCAmelCase_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCAmelCase_ = seqlen + 2 UpperCAmelCase_ = self._config.hidden_size // self.num_attention_heads UpperCAmelCase_ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCAmelCase_ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCAmelCase_ = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] UpperCAmelCase_ = common_inputs["attention_mask"] if self.use_past: UpperCAmelCase_ = ordered_inputs["attention_mask"].dtype UpperCAmelCase_ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' return 13
241
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowerCamelCase = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowerCamelCase = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowerCamelCase = """zero2""" lowerCamelCase = """zero3""" lowerCamelCase = [ZEROa, ZEROa] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param UpperCAmelCase_ = parameterized.to_safe_name("_".join(str(lowerCAmelCase__ ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test lowerCamelCase = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> Any: '''simple docstring''' self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def lowercase__ ( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = models[model] UpperCAmelCase_ = self.run_trainer( stage=_UpperCAmelCase , model_name=_UpperCAmelCase , eval_steps=_UpperCAmelCase , num_train_epochs=1 , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) self.do_checks(_UpperCAmelCase ) return output_dir def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir("./xxx" , after=_UpperCAmelCase ) UpperCAmelCase_ = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_UpperCAmelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files UpperCAmelCase_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() UpperCAmelCase_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] UpperCAmelCase_ = self.get_launcher(_UpperCAmelCase ) UpperCAmelCase_ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_UpperCAmelCase , env=self.get_env() ) return output_dir def lowercase__ ( self : List[Any] , _UpperCAmelCase : int=False ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
241
1
def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''only integers accepted as input''' ) else: snake_case_ : Tuple = str(abs(_UpperCamelCase ) ) snake_case_ : Tuple = [list(_UpperCamelCase ) for char in range(len(_UpperCamelCase ) )] for index in range(len(_UpperCamelCase ) ): num_transpositions[index].pop(_UpperCamelCase ) return max( int(''''''.join(list(_UpperCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
279
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase ( _a ): lowerCamelCase_ : Any = '''megatron-bert''' def __init__(self , __magic_name__=2_9056 , __magic_name__=1024 , __magic_name__=24 , __magic_name__=16 , __magic_name__=4096 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=512 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=1e-12 , __magic_name__=0 , __magic_name__="absolute" , __magic_name__=True , **__magic_name__ , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=__magic_name__ , **__magic_name__ ) snake_case_ : Union[str, Any] = vocab_size snake_case_ : Dict = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : List[str] = intermediate_size snake_case_ : Dict = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : Any = type_vocab_size snake_case_ : int = initializer_range snake_case_ : int = layer_norm_eps snake_case_ : List[str] = position_embedding_type snake_case_ : Dict = use_cache
279
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ] ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='utf-8' , check=_UpperCAmelCase , ) assert hasattr(self , 'env' ) def A ( self : int , UpperCamelCase__ : Optional[int]=1 ): """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=_UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCAmelCase , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , ) def A ( self : List[str] , UpperCamelCase__ : Optional[int] ): """simple docstring""" TrainingJobAnalytics(_UpperCAmelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.create_estimator() # run training estimator.fit() # result dataframe UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _UpperCAmelCase )
369
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase , _a ): """simple docstring""" def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = load_tool('text-to-speech' ) self.tool.setup() def A ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = self.tool('hey' ) UpperCamelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def A ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = self.tool('hey' ) UpperCamelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
249
0
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : int = CLIPTokenizer __UpperCamelCase : Dict = CLIPTokenizerFast __UpperCamelCase : List[str] = True __UpperCamelCase : Optional[Any] = {} __UpperCamelCase : str = False def __UpperCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # fmt: off _a : Optional[Any] =["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _a : List[Any] =dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) _a : List[Any] =["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _a : Dict ={"""unk_token""": """<unk>"""} _a : List[str] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _a : Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(SCREAMING_SNAKE_CASE ) ) def __UpperCAmelCase ( self :List[Any] , **SCREAMING_SNAKE_CASE :Optional[int] ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Any , **SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :str ) -> int: '''simple docstring''' _a : int ="""lower newer""" _a : List[str] ="""lower newer""" return input_text, output_text def __UpperCAmelCase ( self :str ) -> List[str]: '''simple docstring''' _a : Any =CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a : Dict ="""lower newer""" _a : str =["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _a : int =tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : List[str] =tokens + [tokenizer.unk_token] _a : Optional[Any] =[1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) @require_ftfy def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _a : List[str] =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) _a : Tuple =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) _a : Union[str, Any] ="""A\n'll 11p223RFโ˜†ho!!to?'d'd''d of a cat to-$''d.""" _a : List[str] =tokenizer_s.tokenize(SCREAMING_SNAKE_CASE ) _a : List[Any] =tokenizer_r.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _a : int ="""xa\u0303y""" + """ """ + """x\xe3y""" _a : Tuple =tokenizer_s.tokenize(SCREAMING_SNAKE_CASE ) _a : str =tokenizer_r.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test that the tokenization is identical on unicode of space type _a : Tuple =[ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _a : List[Any] =tokenizer_s.tokenize(SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =tokenizer_r.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test that the tokenization is identical on unicode of line break type _a : int =[ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "โ€ฆ" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _a : int =tokenizer_s.tokenize(SCREAMING_SNAKE_CASE ) _a : List[str] =tokenizer_r.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[str] ) -> Any: '''simple docstring''' # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _a : int ="""hello""" # `hello` is a token in the vocabulary of `pretrained_name` _a : Any =f"{text_of_1_token} {text_of_1_token}" _a : str =self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , ) _a : Union[str, Any] =tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE ) + 1, len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) _a : Union[str, Any] =f" {text}" _a : int =self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , ) _a : int =tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE ) + 1, 1 + len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) def __UpperCAmelCase ( self :List[str] ) -> str: '''simple docstring''' # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(SCREAMING_SNAKE_CASE ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def __UpperCAmelCase ( self :int ) -> Dict: '''simple docstring''' super().test_tokenization_python_rust_equals() def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' # CLIP always lower cases letters pass
276
'''simple docstring''' class A__ : def __init__( self :List[Any] ) -> None: '''simple docstring''' _a : dict[str, TrieNode] ={} # Mapping from char to TrieNode _a : List[str] =False def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :list[str] ) -> None: '''simple docstring''' for word in words: self.insert(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :str ) -> None: '''simple docstring''' _a : str =self for char in word: if char not in curr.nodes: _a : Dict =TrieNode() _a : List[Any] =curr.nodes[char] _a : int =True def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :str ) -> bool: '''simple docstring''' _a : int =self for char in word: if char not in curr.nodes: return False _a : List[Any] =curr.nodes[char] return curr.is_leaf def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :str ) -> None: '''simple docstring''' def _delete(SCREAMING_SNAKE_CASE :TrieNode , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :int ) -> bool: if index == len(SCREAMING_SNAKE_CASE ): # If word does not exist if not curr.is_leaf: return False _a : Any =False return len(curr.nodes ) == 0 _a : int =word[index] _a : int =curr.nodes.get(SCREAMING_SNAKE_CASE ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _a : List[Any] =_delete(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , SCREAMING_SNAKE_CASE , 0 ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : TrieNode ,_UpperCAmelCase : str ) -> None: if node.is_leaf: print(_UpperCAmelCase ,end=""" """ ) for key, value in node.nodes.items(): print_words(_UpperCAmelCase ,word + key ) def SCREAMING_SNAKE_CASE_ ( ) -> bool: _a : List[str] ="""banana bananas bandana band apple all beast""".split() _a : List[Any] =TrieNode() root.insert_many(_UpperCAmelCase ) # print_words(root, "") assert all(root.find(_UpperCAmelCase ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : bool ) -> None: print(str(_UpperCAmelCase ) ,"""works!""" if passes else """doesn't work :(""" ) def SCREAMING_SNAKE_CASE_ ( ) -> None: assert test_trie() def SCREAMING_SNAKE_CASE_ ( ) -> None: print_results("""Testing trie functionality""" ,test_trie() ) if __name__ == "__main__": main()
276
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowerCamelCase__ = (720, 1280) # Height, Width lowerCamelCase__ = (0.4, 0.6) # if height or width lower than this scale, drop it. lowerCamelCase__ = 1 / 100 lowerCamelCase__ = """""" lowerCamelCase__ = """""" lowerCamelCase__ = """""" lowerCamelCase__ = 250 def lowerCAmelCase__ ( ) -> None: lowerCAmelCase__ , lowerCAmelCase__ : Any = get_dataset(__lowerCamelCase , __lowerCamelCase ) for index in range(__lowerCamelCase ): lowerCAmelCase__ : Dict = random.sample(range(len(__lowerCamelCase ) ) , 4 ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = update_image_and_anno( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , filter_scale=__lowerCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCAmelCase__ : List[Any] = random_chars(32 ) lowerCAmelCase__ : Any = path.split(os.sep )[-1].rsplit('.' , 1 )[0] lowerCAmelCase__ : Union[str, Any] = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) lowerCAmelCase__ : List[Any] = [] for anno in new_annos: lowerCAmelCase__ : List[Any] = anno[3] - anno[1] lowerCAmelCase__ : Optional[int] = anno[4] - anno[2] lowerCAmelCase__ : str = anno[1] + width / 2 lowerCAmelCase__ : Optional[int] = anno[2] + height / 2 lowerCAmelCase__ : Any = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(__lowerCamelCase ) with open(F'''{file_root}.txt''' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> tuple[list, list]: lowerCAmelCase__ : List[Any] = [] lowerCAmelCase__ : List[Any] = [] for label_file in glob.glob(os.path.join(__lowerCamelCase , '*.txt' ) ): lowerCAmelCase__ : Any = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__lowerCamelCase ) as in_file: lowerCAmelCase__ : int = in_file.readlines() lowerCAmelCase__ : List[Any] = os.path.join(__lowerCamelCase , F'''{label_name}.jpg''' ) lowerCAmelCase__ : List[Any] = [] for obj_list in obj_lists: lowerCAmelCase__ : Optional[int] = obj_list.rstrip('\n' ).split(' ' ) lowerCAmelCase__ : int = float(obj[1] ) - float(obj[3] ) / 2 lowerCAmelCase__ : List[str] = float(obj[2] ) - float(obj[4] ) / 2 lowerCAmelCase__ : Dict = float(obj[1] ) + float(obj[3] ) / 2 lowerCAmelCase__ : Tuple = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__lowerCamelCase ) labels.append(__lowerCamelCase ) return img_paths, labels def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0.0 , ) -> tuple[list, list, str]: lowerCAmelCase__ : Tuple = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowerCAmelCase__ : Optional[int] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase__ : Optional[int] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase__ : int = int(scale_x * output_size[1] ) lowerCAmelCase__ : List[str] = int(scale_y * output_size[0] ) lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : Tuple = [] for i, index in enumerate(__lowerCamelCase ): lowerCAmelCase__ : List[str] = all_img_list[index] path_list.append(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = all_annos[index] lowerCAmelCase__ : List[str] = cva.imread(__lowerCamelCase ) if i == 0: # top-left lowerCAmelCase__ : Tuple = cva.resize(__lowerCamelCase , (divid_point_x, divid_point_y) ) lowerCAmelCase__ : Tuple = img for bbox in img_annos: lowerCAmelCase__ : str = bbox[1] * scale_x lowerCAmelCase__ : int = bbox[2] * scale_y lowerCAmelCase__ : Dict = bbox[3] * scale_x lowerCAmelCase__ : Dict = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowerCAmelCase__ : Union[str, Any] = cva.resize(__lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) lowerCAmelCase__ : Union[str, Any] = img for bbox in img_annos: lowerCAmelCase__ : Optional[int] = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase__ : List[Any] = bbox[2] * scale_y lowerCAmelCase__ : Optional[int] = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase__ : List[str] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowerCAmelCase__ : Union[str, Any] = cva.resize(__lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase__ : List[str] = img for bbox in img_annos: lowerCAmelCase__ : Union[str, Any] = bbox[1] * scale_x lowerCAmelCase__ : Tuple = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase__ : List[Any] = bbox[3] * scale_x lowerCAmelCase__ : Optional[int] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowerCAmelCase__ : List[Any] = cva.resize( __lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase__ : Optional[Any] = img for bbox in img_annos: lowerCAmelCase__ : str = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase__ : Optional[int] = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase__ : List[Any] = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase__ : Union[str, Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowerCAmelCase__ : int = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: assert number_char > 1, "The number of character should greater than 1" lowerCAmelCase__ : Optional[int] = ascii_lowercase + digits return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) ) if __name__ == "__main__": main() print("""DONE โœ…""")
368
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = DanceDiffusionPipeline lowercase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } lowercase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase = False lowercase = False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=a , use_timestep_embedding=a , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase__ : Tuple = IPNDMScheduler() lowerCAmelCase__ : str = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Dict , a : List[str]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Optional[Any] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : List[str] = DanceDiffusionPipeline(**a ) lowerCAmelCase__ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a ) lowerCAmelCase__ : List[Any] = pipe(**a ) lowerCAmelCase__ : List[str] = output.audios lowerCAmelCase__ : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase__ : List[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device lowerCAmelCase__ : List[str] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase__ : List[str] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : int = output.audios lowerCAmelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : Dict = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = torch_device lowerCAmelCase__ : List[Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Optional[int] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : str = output.audios lowerCAmelCase__ : Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : int = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
307
0
class _UpperCamelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' __lowercase = 0 __lowercase = 0 __lowercase = {} def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' if vertex not in self.adjacency: __lowercase = {} self.num_vertices += 1 def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' self.add_vertex(lowerCAmelCase__ ) self.add_vertex(lowerCAmelCase__ ) if head == tail: return __lowercase = weight __lowercase = weight def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.get_edges() for edge in edges: __lowercase , __lowercase , __lowercase = edge edges.remove((tail, head, weight) ) for i in range(len(lowerCAmelCase__ ) ): __lowercase = list(edges[i] ) edges.sort(key=lambda lowerCAmelCase__ : e[2] ) for i in range(len(lowerCAmelCase__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __lowercase = edges[i][2] + 1 for edge in edges: __lowercase , __lowercase , __lowercase = edge __lowercase = weight __lowercase = weight def __str__( self ) -> str: '''simple docstring''' __lowercase = '''''' for tail in self.adjacency: for head in self.adjacency[tail]: __lowercase = self.adjacency[head][tail] string += F"{head} -> {tail} == {weight}\n" return string.rstrip('''\n''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return self.adjacency.keys() @staticmethod def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Optional[Any]: '''simple docstring''' __lowercase = Graph() if vertices is None: __lowercase = [] if edges is None: __lowercase = [] for vertex in vertices: g.add_vertex(lowerCAmelCase__ ) for edge in edges: g.add_edge(*lowerCAmelCase__ ) return g class _UpperCamelCase : """simple docstring""" def __init__( self ) -> int: '''simple docstring''' __lowercase = {} __lowercase = {} def __len__( self ) -> Any: '''simple docstring''' return len(self.parent ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' if item in self.parent: return self.find(lowerCAmelCase__ ) __lowercase = item __lowercase = 0 return item def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' if item not in self.parent: return self.make_set(lowerCAmelCase__ ) if item != self.parent[item]: __lowercase = self.find(self.parent[item] ) return self.parent[item] def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' __lowercase = self.find(lowerCAmelCase__ ) __lowercase = self.find(lowerCAmelCase__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __lowercase = roota return roota if self.rank[roota] < self.rank[roota]: __lowercase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __lowercase = roota return roota return None @staticmethod def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ) -> str: '''simple docstring''' __lowercase = graph.num_vertices __lowercase = Graph.UnionFind() __lowercase = [] while num_components > 1: __lowercase = {} for vertex in graph.get_vertices(): __lowercase = -1 __lowercase = graph.get_edges() for edge in edges: __lowercase , __lowercase , __lowercase = edge edges.remove((tail, head, weight) ) for edge in edges: __lowercase , __lowercase , __lowercase = edge __lowercase = union_find.find(lowerCAmelCase__ ) __lowercase = union_find.find(lowerCAmelCase__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowercase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowercase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __lowercase , __lowercase , __lowercase = cheap_edge[vertex] if union_find.find(lowerCAmelCase__ ) != union_find.find(lowerCAmelCase__ ): union_find.union(lowerCAmelCase__ , lowerCAmelCase__ ) mst_edges.append(cheap_edge[vertex] ) __lowercase = num_components - 1 __lowercase = Graph.build(edges=lowerCAmelCase__ ) return mst
210
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __a : Optional[Any] = logging.get_logger(__name__) __a : List[str] = TypeVar("""DatasetType""", Dataset, IterableDataset) def UpperCAmelCase ( lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(lowercase ): if not isinstance(lowercase , (Dataset, IterableDataset) ): if isinstance(lowercase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowercase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase ).__name__}." ) if i == 0: __lowercase , __lowercase = ( (Dataset, IterableDataset) if isinstance(lowercase , lowercase ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase , lowercase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowercase , lowercase , lowercase , info=lowercase , split=lowercase , stopping_strategy=lowercase ) else: return _interleave_iterable_datasets( lowercase , lowercase , lowercase , info=lowercase , split=lowercase , stopping_strategy=lowercase ) def UpperCAmelCase ( lowercase , lowercase = None , lowercase = None , lowercase = 0 , ): """simple docstring""" if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(lowercase ): if not isinstance(lowercase , (Dataset, IterableDataset) ): if isinstance(lowercase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowercase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase ).__name__}." ) if i == 0: __lowercase , __lowercase = ( (Dataset, IterableDataset) if isinstance(lowercase , lowercase ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase , lowercase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowercase , info=lowercase , split=lowercase , axis=lowercase ) else: return _concatenate_iterable_datasets(lowercase , info=lowercase , split=lowercase , axis=lowercase )
210
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: A_ = mf_knapsack(i - 1, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = max( mf_knapsack(i - 1, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ), mf_knapsack(i - 1, UpperCAmelCase__, UpperCAmelCase__, j - wt[i - 1] ) + val[i - 1], ) A_ = val return f[i][j] def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: A_ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1, n + 1 ): for w_ in range(1, w + 1 ): if wt[i - 1] <= w_: A_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_] ) else: A_ = dp[i - 1][w_] return dp[n][w_], dp def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: if not (isinstance(UpperCAmelCase__, (list, tuple) ) and isinstance(UpperCAmelCase__, (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) A_ = len(UpperCAmelCase__ ) if num_items != len(UpperCAmelCase__ ): A_ = ( """The number of weights must be the same as the number of values.\n""" F'''But got {num_items} weights and {len(UpperCAmelCase__ )} values''' ) raise ValueError(UpperCAmelCase__ ) for i in range(UpperCAmelCase__ ): if not isinstance(wt[i], UpperCAmelCase__ ): A_ = ( """All weights must be integers but got weight of """ F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(UpperCAmelCase__ ) A_ , A_ = knapsack(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A_ = set() _construct_solution(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return optimal_val, example_optional_set def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(UpperCAmelCase__, UpperCAmelCase__, i - 1, UpperCAmelCase__, UpperCAmelCase__ ) else: optimal_set.add(UpperCAmelCase__ ) _construct_solution(UpperCAmelCase__, UpperCAmelCase__, i - 1, j - wt[i - 1], UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = [3, 2, 4, 4] __lowerCamelCase = [4, 3, 2, 3] __lowerCamelCase = 4 __lowerCamelCase = 6 __lowerCamelCase = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] __lowerCamelCase , __lowerCamelCase = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 __lowerCamelCase , __lowerCamelCase = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('''optimal_value = ''', optimal_solution) print('''An optimal subset corresponding to the optimal value''', optimal_subset)
101
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __lowerCamelCase = logging.getLogger(__name__) class A__ ( _snake_case ): lowercase = "summarization" lowercase = ["loss"] lowercase = ROUGE_KEYS lowercase = "rouge2" def __init__( self , UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: A_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(UpperCamelCase__ , num_labels=UpperCamelCase__ , mode=self.mode , **UpperCamelCase__ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) A_ = Path(self.output_dir ) / """metrics.json""" A_ = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) A_ = 0 A_ = defaultdict(UpperCamelCase__ ) A_ = self.config.model_type A_ = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size A_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } A_ = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } A_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} A_ = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) A_ = get_git_info()["""repo_sha"""] A_ = hparams.num_workers A_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , UpperCamelCase__ ): A_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] A_ = self.decoder_start_token_id A_ = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) A_ = False A_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: A_ = self.hparams.eval_max_gen_length else: A_ = self.model.config.max_length A_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def snake_case_ ( self , UpperCamelCase__ ) -> Dict[str, List[str]]: '''simple docstring''' A_ = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(UpperCamelCase__ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) A_ = True return readable_batch def snake_case_ ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.model(UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = self.tokenizer.batch_decode( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) return lmap(str.strip , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.tokenizer.pad_token_id A_ , A_ = batch["""input_ids"""], batch["""attention_mask"""] A_ = batch["""labels"""] if isinstance(self.model , UpperCamelCase__ ): A_ = self.model._shift_right(UpperCamelCase__ ) else: A_ = shift_tokens_right(UpperCamelCase__ , UpperCamelCase__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero A_ = decoder_input_ids self.save_readable_batch(UpperCamelCase__ ) A_ = self(UpperCamelCase__ , attention_mask=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , use_cache=UpperCamelCase__ ) A_ = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id A_ = nn.CrossEntropyLoss(ignore_index=UpperCamelCase__ ) assert lm_logits.shape[-1] == self.vocab_size A_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: A_ = nn.functional.log_softmax(UpperCamelCase__ , dim=-1 ) A_ , A_ = label_smoothed_nll_loss( UpperCamelCase__ , UpperCamelCase__ , self.hparams.label_smoothing , ignore_index=UpperCamelCase__ ) return (loss,) @property def snake_case_ ( self ) -> int: '''simple docstring''' return self.tokenizer.pad_token_id def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = self._step(UpperCamelCase__ ) A_ = dict(zip(self.loss_names , UpperCamelCase__ ) ) # tokens per batch A_ = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() A_ = batch["""input_ids"""].shape[0] A_ = batch["""input_ids"""].eq(self.pad ).sum() A_ = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' return self._generative_step(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__="val" ) -> Dict: '''simple docstring''' self.step_count += 1 A_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} A_ = losses["""loss"""] A_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } A_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) A_ = torch.tensor(UpperCamelCase__ ).type_as(UpperCamelCase__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(UpperCamelCase__ ) A_ = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} A_ = self.step_count self.metrics[prefix].append(UpperCamelCase__ ) # callback writes this to self.metrics_save_path A_ = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' return calculate_rouge(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> dict: '''simple docstring''' A_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') A_ = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=UpperCamelCase__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) A_ = (time.time() - ta) / batch["""input_ids"""].shape[0] A_ = self.ids_to_clean_text(UpperCamelCase__ ) A_ = self.ids_to_clean_text(batch["""labels"""] ) A_ = self._step(UpperCamelCase__ ) A_ = dict(zip(self.loss_names , UpperCamelCase__ ) ) A_ = self.calc_generative_metrics(UpperCamelCase__ , UpperCamelCase__ ) A_ = np.mean(lmap(UpperCamelCase__ , UpperCamelCase__ ) ) base_metrics.update(gen_time=UpperCamelCase__ , gen_len=UpperCamelCase__ , preds=UpperCamelCase__ , target=UpperCamelCase__ , **UpperCamelCase__ ) return base_metrics def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' return self._generative_step(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' return self.validation_epoch_end(UpperCamelCase__ , prefix="""test""" ) def snake_case_ ( self , UpperCamelCase__ ) -> SeqaSeqDataset: '''simple docstring''' A_ = self.n_obs[type_path] A_ = self.target_lens[type_path] A_ = self.dataset_class( self.tokenizer , type_path=UpperCamelCase__ , n_obs=UpperCamelCase__ , max_target_length=UpperCamelCase__ , **self.dataset_kwargs , ) return dataset def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> DataLoader: '''simple docstring''' A_ = self.get_dataset(UpperCamelCase__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": A_ = dataset.make_sortish_sampler(UpperCamelCase__ , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCamelCase__ , batch_size=UpperCamelCase__ , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase__ , num_workers=self.num_workers , sampler=UpperCamelCase__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": A_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCamelCase__ , batch_sampler=UpperCamelCase__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( UpperCamelCase__ , batch_size=UpperCamelCase__ , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase__ , num_workers=self.num_workers , sampler=UpperCamelCase__ , ) def snake_case_ ( self ) -> DataLoader: '''simple docstring''' A_ = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=UpperCamelCase__ ) return dataloader def snake_case_ ( self ) -> DataLoader: '''simple docstring''' return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def snake_case_ ( self ) -> DataLoader: '''simple docstring''' return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' BaseTransformer.add_model_specific_args(UpperCamelCase__ , UpperCamelCase__ ) add_generic_args(UpperCamelCase__ , UpperCamelCase__ ) parser.add_argument( """--max_source_length""" , default=1024 , type=UpperCamelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=UpperCamelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=UpperCamelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=UpperCamelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=UpperCamelCase__ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=UpperCamelCase__ ) parser.add_argument("""--max_tokens_per_batch""" , type=UpperCamelCase__ , default=UpperCamelCase__ ) parser.add_argument("""--logger_name""" , type=UpperCamelCase__ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=UpperCamelCase__ , default=500 , required=UpperCamelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=UpperCamelCase__ , default="""summarization""" , required=UpperCamelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=UpperCamelCase__ , default=0.0 , required=UpperCamelCase__ ) parser.add_argument("""--src_lang""" , type=UpperCamelCase__ , default="""""" , required=UpperCamelCase__ ) parser.add_argument("""--tgt_lang""" , type=UpperCamelCase__ , default="""""" , required=UpperCamelCase__ ) parser.add_argument("""--eval_beams""" , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ ) parser.add_argument( """--val_metric""" , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=UpperCamelCase__ , default=UpperCamelCase__ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=UpperCamelCase__ , default=1 , required=UpperCamelCase__ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class A__ ( _snake_case ): lowercase = "translation" lowercase = ["loss"] lowercase = ["bleu"] lowercase = "bleu" def __init__( self , UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' super().__init__(UpperCamelCase__ , **UpperCamelCase__ ) A_ = hparams.src_lang A_ = hparams.tgt_lang def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> dict: '''simple docstring''' return calculate_bleu(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=UpperCAmelCase__ ) check_output_dir(UpperCAmelCase__, expected_items=3 ) if model is None: if "summarization" in args.task: A_ = SummarizationModule(UpperCAmelCase__ ) else: A_ = TranslationModule(UpperCAmelCase__ ) A_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): A_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger A_ = os.environ.get("""WANDB_PROJECT""", UpperCAmelCase__ ) A_ = WandbLogger(name=model.output_dir.name, project=UpperCAmelCase__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger A_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: A_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: A_ = False A_ = args.val_metric == """loss""" A_ = generic_train( UpperCAmelCase__, UpperCAmelCase__, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, UpperCAmelCase__ ), early_stopping_callback=UpperCAmelCase__, logger=UpperCAmelCase__, ) pickle_save(model.hparams, model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model A_ = """""" A_ = sorted(glob.glob(os.path.join(args.output_dir, """*.ckpt""" ), recursive=UpperCAmelCase__ ) ) if checkpoints: A_ = checkpoints[-1] A_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() __lowerCamelCase = pl.Trainer.add_argparse_args(parser) __lowerCamelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __lowerCamelCase = parser.parse_args() main(args)
101
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Optional[int] = """gptsan-japanese""" a_ : Any = [ """past_key_values""", ] a_ : Any = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[Any] , a_ : Optional[int]=3_60_00 , a_ : List[str]=12_80 , a_ : int=10_24 , a_ : List[Any]=81_92 , a_ : Tuple=40_96 , a_ : Dict=1_28 , a_ : Union[str, Any]=10 , a_ : str=0 , a_ : Optional[int]=16 , a_ : Tuple=16 , a_ : List[Any]=1_28 , a_ : List[Any]=0.0 , a_ : str=1e-5 , a_ : Optional[Any]=False , a_ : Union[str, Any]=0.0 , a_ : Optional[int]="float32" , a_ : List[Any]=False , a_ : str=False , a_ : Optional[int]=False , a_ : Any=0.002 , a_ : Optional[Any]=False , a_ : Optional[Any]=True , a_ : Optional[int]=3_59_98 , a_ : Dict=3_59_95 , a_ : int=3_59_99 , **a_ : Any , ): lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : str = max_position_embeddings lowerCAmelCase_ : Any = d_model lowerCAmelCase_ : Tuple = d_ff lowerCAmelCase_ : Any = d_ext lowerCAmelCase_ : Union[str, Any] = d_spout lowerCAmelCase_ : Tuple = num_switch_layers lowerCAmelCase_ : int = num_ext_layers lowerCAmelCase_ : str = num_switch_layers + num_ext_layers lowerCAmelCase_ : List[str] = num_heads lowerCAmelCase_ : Optional[int] = num_experts lowerCAmelCase_ : str = expert_capacity lowerCAmelCase_ : Optional[int] = dropout_rate lowerCAmelCase_ : int = layer_norm_epsilon lowerCAmelCase_ : int = router_bias lowerCAmelCase_ : Any = router_jitter_noise lowerCAmelCase_ : Tuple = router_dtype lowerCAmelCase_ : Union[str, Any] = router_ignore_padding_tokens lowerCAmelCase_ : Optional[int] = output_hidden_states lowerCAmelCase_ : Optional[int] = output_attentions lowerCAmelCase_ : Any = initializer_factor lowerCAmelCase_ : Dict = output_router_logits lowerCAmelCase_ : Optional[int] = use_cache super().__init__( separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
241
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowercase__ = get_logger() lowercase__ = None class __lowerCamelCase ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a_ : Union[str, Any]=None , a_ : Optional[Any]=None , **a_ : Tuple ): super().__init__(features=a_ ) import jax from jaxlib.xla_client import Device if isinstance(a_ , a_ ): raise ValueError( f'''Expected {device} to be a `str` not {type(a_ )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) lowerCAmelCase_ : List[Any] = device if isinstance(a_ , a_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase_ : Dict = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) lowerCAmelCase_ : Tuple = str(jax.devices()[0] ) lowerCAmelCase_ : Dict = jnp_array_kwargs @staticmethod def lowerCamelCase ( ): import jax return {str(a_ ): device for device in jax.devices()} def lowerCamelCase ( self : Tuple , a_ : Dict ): import jax import jax.numpy as jnp if isinstance(a_ , a_ ) and column: if all( isinstance(a_ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a_ , axis=0 ) return column def lowerCamelCase ( self : Tuple , a_ : Tuple ): import jax import jax.numpy as jnp if isinstance(a_ , (str, bytes, type(a_ )) ): return value elif isinstance(a_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase_ : Any = {} if isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowerCAmelCase_ : List[Any] = {"dtype": jnp.intaa} else: lowerCAmelCase_ : Tuple = {"dtype": jnp.intaa} elif isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase_ : Optional[int] = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a_ , PIL.Image.Image ): lowerCAmelCase_ : List[str] = np.asarray(a_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase_ : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a_ , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCamelCase ( self : Any , a_ : List[str] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a_ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a_ , "__array__" ) and not isinstance(a_ , jax.Array ): lowerCAmelCase_ : str = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a_ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) elif isinstance(a_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) return self._tensorize(a_ ) def lowerCamelCase ( self : Dict , a_ : dict ): return map_nested(self._recursive_tensorize , a_ , map_list=a_ ) def lowerCamelCase ( self : List[str] , a_ : pa.Table ): lowerCAmelCase_ : Tuple = self.numpy_arrow_extractor().extract_row(a_ ) lowerCAmelCase_ : Union[str, Any] = self.python_features_decoder.decode_row(a_ ) return self.recursive_tensorize(a_ ) def lowerCamelCase ( self : Any , a_ : pa.Table ): lowerCAmelCase_ : Dict = self.numpy_arrow_extractor().extract_column(a_ ) lowerCAmelCase_ : Optional[int] = self.python_features_decoder.decode_column(a_ , pa_table.column_names[0] ) lowerCAmelCase_ : List[str] = self.recursive_tensorize(a_ ) lowerCAmelCase_ : Optional[Any] = self._consolidate(a_ ) return column def lowerCamelCase ( self : Tuple , a_ : pa.Table ): lowerCAmelCase_ : Tuple = self.numpy_arrow_extractor().extract_batch(a_ ) lowerCAmelCase_ : Tuple = self.python_features_decoder.decode_batch(a_ ) lowerCAmelCase_ : List[str] = self.recursive_tensorize(a_ ) for column_name in batch: lowerCAmelCase_ : Tuple = self._consolidate(batch[column_name] ) return batch
241
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def a__( lowerCAmelCase ) -> List[str]: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def a__( lowerCAmelCase , lowerCAmelCase ) -> Any: UpperCAmelCase__ : Optional[Any] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue UpperCAmelCase__ : Dict = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) UpperCAmelCase__ : Dict = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) UpperCAmelCase__ : Optional[int] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) UpperCAmelCase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) UpperCAmelCase__ : str = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) UpperCAmelCase__ : int = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) UpperCAmelCase__ : Any = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) UpperCAmelCase__ : Tuple = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) UpperCAmelCase__ : Dict = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) UpperCAmelCase__ : List[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" ) UpperCAmelCase__ : str = key.replace("""text_encoder.module""" , """flava.text_model""" ) UpperCAmelCase__ : Any = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) UpperCAmelCase__ : str = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) UpperCAmelCase__ : List[Any] = key.replace("""text_projection""" , """flava.text_projection""" ) UpperCAmelCase__ : int = key.replace("""image_projection""" , """flava.image_projection""" ) UpperCAmelCase__ : List[Any] = value.float() for key, value in codebook_state_dict.items(): UpperCAmelCase__ : Optional[Any] = value return upgrade @torch.no_grad() def a__( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ) -> Dict: if config_path is not None: UpperCAmelCase__ : List[str] = FlavaConfig.from_pretrained(lowerCAmelCase ) else: UpperCAmelCase__ : List[str] = FlavaConfig() UpperCAmelCase__ : Optional[int] = FlavaForPreTraining(lowerCAmelCase ).eval() UpperCAmelCase__ : List[str] = convert_dalle_checkpoint(lowerCAmelCase , lowerCAmelCase , save_checkpoint=lowerCAmelCase ) if os.path.exists(lowerCAmelCase ): UpperCAmelCase__ : str = torch.load(lowerCAmelCase , map_location="""cpu""" ) else: UpperCAmelCase__ : str = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" ) UpperCAmelCase__ : str = upgrade_state_dict(lowerCAmelCase , lowerCAmelCase ) hf_model.load_state_dict(lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = hf_model.state_dict() UpperCAmelCase__ : Any = count_parameters(lowerCAmelCase ) UpperCAmelCase__ : Any = count_parameters(lowerCAmelCase ) + count_parameters(lowerCAmelCase ) assert torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) hf_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") _A = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
366
"""simple docstring""" from math import factorial, radians def a__ ( lowerCAmelCase , lowerCAmelCase = 18 , lowerCAmelCase = 10 ) -> float: UpperCAmelCase__ : List[Any] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians UpperCAmelCase__ : Any = radians(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = angle_in_radians UpperCAmelCase__ : Tuple = 3 UpperCAmelCase__ : str = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) UpperCAmelCase__ : int = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__("""doctest""").testmod()
166
0
import sys lowercase__ :Union[str, Any] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def UpperCamelCase ( lowerCAmelCase__ = N ): '''simple docstring''' lowercase = -sys.maxsize - 1 for i in range(len(lowerCAmelCase__ ) - 12 ): lowercase = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowercase = product return largest_product if __name__ == "__main__": print(F'{solution() = }')
101
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="audio-spectrogram-transformer" def __init__( self , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=16 , UpperCamelCase_=True , UpperCamelCase_=10 , UpperCamelCase_=10 , UpperCamelCase_=10_24 , UpperCamelCase_=1_28 , **UpperCamelCase_ , ) -> Optional[int]: super().__init__(**UpperCamelCase_ ) __lowercase : Optional[Any] = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : List[str] = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : List[str] = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : Dict = initializer_range __lowercase : Optional[int] = layer_norm_eps __lowercase : Optional[int] = patch_size __lowercase : List[str] = qkv_bias __lowercase : Union[str, Any] = frequency_stride __lowercase : List[Any] = time_stride __lowercase : Tuple = max_length __lowercase : int = num_mel_bins
249
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ : str = logging.get_logger(__name__) a_ : List[Any] = {'vocab_file': 'spiece.model'} a_ : Union[str, Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } a_ : List[Any] = { 'albert-base-v1': 5_12, 'albert-large-v1': 5_12, 'albert-xlarge-v1': 5_12, 'albert-xxlarge-v1': 5_12, 'albert-base-v2': 5_12, 'albert-large-v2': 5_12, 'albert-xlarge-v2': 5_12, 'albert-xxlarge-v2': 5_12, } a_ : Any = 'โ–' class _snake_case ( A__ ): _lowercase : Union[str, Any] = VOCAB_FILES_NAMES _lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , a , a=True , a=True , a=False , a="[CLS]" , a="[SEP]" , a="<unk>" , a="[SEP]" , a="<pad>" , a="[CLS]" , a="[MASK]" , a = None , **a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE = ( AddedToken(a , lstrip=a , rstrip=a , normalized=a) if isinstance(a , a) else mask_token ) SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = remove_space SCREAMING_SNAKE_CASE = keep_accents SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(a) @property def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: return len(self.sp_model) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self , a) -> Dict: SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE__ ( self , a) -> List[Any]: if self.remove_space: SCREAMING_SNAKE_CASE = ' '.join(inputs.strip().split()) else: SCREAMING_SNAKE_CASE = inputs SCREAMING_SNAKE_CASE = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: SCREAMING_SNAKE_CASE = unicodedata.normalize('NFKD' , a) SCREAMING_SNAKE_CASE = ''.join([c for c in outputs if not unicodedata.combining(a)]) if self.do_lower_case: SCREAMING_SNAKE_CASE = outputs.lower() return outputs def SCREAMING_SNAKE_CASE__ ( self , a) -> List[str]: SCREAMING_SNAKE_CASE = self.preprocess_text(a) SCREAMING_SNAKE_CASE = self.sp_model.encode(a , out_type=a) SCREAMING_SNAKE_CASE = [] for piece in pieces: if len(a) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(piece[:-1].replace(a , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: SCREAMING_SNAKE_CASE = cur_pieces[1:] else: SCREAMING_SNAKE_CASE = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(a) else: new_pieces.append(a) return new_pieces def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[Any]: return self.sp_model.PieceToId(a) def SCREAMING_SNAKE_CASE__ ( self , a) -> str: return self.sp_model.IdToPiece(a) def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[Any]: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a) + token SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(a) SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(a) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a) if token_ids_a is not None: return [1] + ([0] * len(a)) + [1] + ([0] * len(a)) + [1] return [1] + ([0] * len(a)) + [1] def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]: if not os.path.isdir(a): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return SCREAMING_SNAKE_CASE = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(a) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , a) elif not os.path.isfile(self.vocab_file): with open(a , 'wb') as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(a) return (out_vocab_file,)
327
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a_ : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( A__ ): _lowercase : List[str] = ['''pixel_values'''] def __init__( self , a = True , a = 1 / 255 , a = True , a = 8 , **a , ) -> None: super().__init__(**a) SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_pad SCREAMING_SNAKE_CASE = pad_size def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a) -> np.ndarray: return rescale(a , scale=a , data_format=a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None) -> List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_image_size(a) SCREAMING_SNAKE_CASE = (old_height // size + 1) * size - old_height SCREAMING_SNAKE_CASE = (old_width // size + 1) * size - old_width return pad(a , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=a) def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> List[str]: SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE = do_pad if do_pad is not None else self.do_pad SCREAMING_SNAKE_CASE = pad_size if pad_size is not None else self.pad_size SCREAMING_SNAKE_CASE = make_list_of_images(a) if not valid_images(a): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images] if do_rescale: SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images] if do_pad: SCREAMING_SNAKE_CASE = [self.pad(a , size=a) for image in images] SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images] SCREAMING_SNAKE_CASE = {'pixel_values': images} return BatchFeature(data=a , tensor_type=a)
327
1
"""simple docstring""" import numpy as np from PIL import Image def lowercase ( __snake_case : np.ndarray , __snake_case : int , __snake_case : int ): lowercase_ : Tuple = np.array(__snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowercase_ : Dict = 0 lowercase_ : Any = 0 lowercase_ : List[str] = 0 lowercase_ : Union[str, Any] = 0 # compute the shape of the output matrix lowercase_ : Optional[int] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowercase_ : Union[str, Any] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowercase_ : Tuple = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowercase_ : Any = 0 lowercase_ : Optional[Any] = 0 return updated_arr def lowercase ( __snake_case : np.ndarray , __snake_case : int , __snake_case : int ): lowercase_ : int = np.array(__snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowercase_ : int = 0 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : Tuple = 0 # compute the shape of the output matrix lowercase_ : List[str] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowercase_ : Optional[int] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowercase_ : str = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowercase_ : int = 0 lowercase_ : str = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image __A : List[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
33
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __UpperCamelCase : int = 299792458 # Symbols __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = symbols("""ct x y z""") def a_ ( _A ) -> float: """simple docstring""" if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def a_ ( _A ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(_A ) ** 2 ) def a_ ( _A ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(_A ), -gamma(_A ) * beta(_A ), 0, 0], [-gamma(_A ) * beta(_A ), gamma(_A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def a_ ( _A , _A = None ) -> np.ndarray: """simple docstring""" # Ensure event is not empty if event is None: snake_case__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __UpperCamelCase : List[Any] = transform(29979245) print("""Example of four vector: """) print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __UpperCamelCase : List[Any] = {ct: c, x: 1, y: 1, z: 1} __UpperCamelCase : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
307
0
def lowerCamelCase_ ( _a : list ): '''simple docstring''' if len(_snake_case ) <= 1: return [tuple(_snake_case )] UpperCAmelCase_ : str = [] def generate(_a : int , _a : list ): UpperCAmelCase_ : Any = [0] * n res.append(tuple(_snake_case ) ) UpperCAmelCase_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: UpperCAmelCase_ : Optional[int] = arr[i], arr[0] else: UpperCAmelCase_ : Optional[Any] = arr[i], arr[c[i]] res.append(tuple(_snake_case ) ) c[i] += 1 UpperCAmelCase_ : str = 0 else: UpperCAmelCase_ : Optional[int] = 0 i += 1 generate(len(_snake_case ) , _snake_case ) return res if __name__ == "__main__": UpperCamelCase_ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase_ = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
369
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy UpperCamelCase_ = logging.getLogger(__name__) UpperCamelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class _snake_case : '''simple docstring''' A__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) A__ : Optional[str] = dataclasses.field( default=__snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class _snake_case : '''simple docstring''' A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) A__ : Optional[str] = dataclasses.field( default=__snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) A__ : Optional[str] = dataclasses.field( default=__snake_case , metadata={"help": "The name of the task to train on."} , ) A__ : Optional[List[str]] = dataclasses.field( default=__snake_case , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class _snake_case : '''simple docstring''' A__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) A__ : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) A__ : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) A__ : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) A__ : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) A__ : Optional[bool] = dataclasses.field( default=__snake_case , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) A__ : Optional[bool] = dataclasses.field( default=__snake_case , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) A__ : Optional[bool] = dataclasses.field( default=__snake_case , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) A__ : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) A__ : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) A__ : Optional[int] = dataclasses.field( default=__snake_case , metadata={"help": "Random seed for initialization."} , ) def lowerCamelCase_ ( _a : str , _a : List[Any] , _a : List[Any] , _a : Dict , _a : int , _a : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: UpperCAmelCase_ : List[str] = dataset.filter(lambda _a : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 UpperCAmelCase_ : List[str] = int(eval_result * len(_a ) ) print(_a ) UpperCAmelCase_ : int = dataset.sort("""probability""" , reverse=_a ) UpperCAmelCase_ : Optional[int] = dataset.select(range(_a ) ) UpperCAmelCase_ : List[str] = dataset.remove_columns(["""label""", """probability"""] ) UpperCAmelCase_ : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) UpperCAmelCase_ : Union[str, Any] = dataset.map(lambda _a : {"label": idalabel[example["label"]]} ) UpperCAmelCase_ : int = dataset.shuffle(seed=args.seed ) UpperCAmelCase_ : int = os.path.join(_a , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(_a , index=_a ) else: dataset.to_json(_a ) def lowerCamelCase_ ( _a : Any , _a : int , _a : Dict , _a : List[Any] , **_a : int ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() UpperCAmelCase_ : Tuple = STModelArguments(model_name_or_path=_a ) UpperCAmelCase_ : str = STDataArguments(train_file=_a , infer_file=_a ) UpperCAmelCase_ : Optional[Any] = STTrainingArguments(output_dir=_a ) UpperCAmelCase_ : Optional[Any] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_a ).items(): setattr(_a , _a , _a ) for key, value in kwargs.items(): if hasattr(_a , _a ): setattr(_a , _a , _a ) # Sanity checks UpperCAmelCase_ : List[str] = {} UpperCAmelCase_ : Any = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None UpperCAmelCase_ : List[Any] = args.train_file UpperCAmelCase_ : Tuple = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None UpperCAmelCase_ : Dict = args.eval_file for key in data_files: UpperCAmelCase_ : List[str] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: UpperCAmelCase_ : int = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) UpperCAmelCase_ : int = F'''{args.output_dir}/self-train_iter-{{}}'''.format UpperCAmelCase_ : List[Any] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_a ) os.makedirs(_a , exist_ok=_a ) accelerator.wait_for_everyone() UpperCAmelCase_ : Any = None UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : List[Any] = False # Show the progress bar UpperCAmelCase_ : List[str] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): UpperCAmelCase_ : Any = data_dir_format(_a ) assert os.path.exists(_a ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 UpperCAmelCase_ : List[str] = os.path.join(_a , """stage-1""" ) UpperCAmelCase_ : Optional[int] = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_a , _a ): arguments_dict.update({key: value} ) UpperCAmelCase_ : Any = os.path.join(_a , """best-checkpoint""" , _a ) if os.path.exists(_a ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , _a , _a , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , _a ) finetune(**_a ) accelerator.wait_for_everyone() assert os.path.exists(_a ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , _a ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data UpperCAmelCase_ : Dict = os.path.join(_a , """best-checkpoint""" ) UpperCAmelCase_ : str = os.path.join(_a , """stage-2""" ) # Update arguments_dict UpperCAmelCase_ : Union[str, Any] = model_path UpperCAmelCase_ : Dict = data_files["""train"""] UpperCAmelCase_ : List[str] = current_output_dir UpperCAmelCase_ : str = os.path.join(_a , """best-checkpoint""" , _a ) if os.path.exists(_a ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , _a , _a , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , _a ) finetune(**_a ) accelerator.wait_for_everyone() assert os.path.exists(_a ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , _a ) UpperCAmelCase_ : Optional[Any] = iteration UpperCAmelCase_ : List[str] = data_dir_format(iteration + 1 ) UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(os.path.join(_a , """best-checkpoint""" ) ) UpperCAmelCase_ : str = config.idalabel UpperCAmelCase_ : Union[str, Any] = os.path.join(_a , """eval_results_best-checkpoint.json""" ) UpperCAmelCase_ : int = os.path.join(_a , """test_results_best-checkpoint.json""" ) assert os.path.exists(_a ) with open(_a , """r""" ) as f: UpperCAmelCase_ : Optional[int] = float(json.load(_a )[args.eval_metric] ) UpperCAmelCase_ : Dict = os.path.join(_a , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(_a ) # Loading the dataset from local csv or json files. UpperCAmelCase_ : Optional[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] UpperCAmelCase_ : List[str] = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(_a , exist_ok=_a ) shutil.copy(_a , os.path.join(_a , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(_a ): shutil.copy(_a , os.path.join(_a , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(_a , _a , _a , _a , _a , _a ) accelerator.wait_for_everyone() UpperCAmelCase_ : Tuple = os.path.join(_a , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: UpperCAmelCase_ : Optional[Any] = eval_result if best_iteration is None: UpperCAmelCase_ : Optional[int] = new_iteration UpperCAmelCase_ : Union[str, Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: UpperCAmelCase_ : List[str] = new_iteration UpperCAmelCase_ : Union[str, Any] = new_eval_result UpperCAmelCase_ : int = 0 else: if new_eval_result == best_eval_result: UpperCAmelCase_ : Dict = new_iteration UpperCAmelCase_ : Optional[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: UpperCAmelCase_ : List[Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , _a ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , _a ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_a , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(_a , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , _a ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_a , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(_a , """eval_results_best-iteration.json""" ) , )
59
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() lowercase__ :int = logging.get_logger(__name__) lowercase__ :Union[str, Any] = "Hello world! cรฉcรฉ herlolip" def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = FairseqRobertaModel.from_pretrained(lowerCAmelCase__ ) roberta.eval() # disable dropout lowercase = roberta.model.encoder.sentence_encoder lowercase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: lowercase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , lowerCAmelCase__ ) lowercase = XLMRobertaXLForSequenceClassification(lowerCAmelCase__ ) if classification_head else XLMRobertaXLForMaskedLM(lowerCAmelCase__ ) model.eval() # Now let's copy all the weights. # Embeddings lowercase = roberta_sent_encoder.embed_tokens.weight lowercase = roberta_sent_encoder.embed_positions.weight lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowercase = roberta_sent_encoder.layer_norm.weight lowercase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowercase = model.roberta.encoder.layer[i] lowercase = roberta_sent_encoder.layers[i] lowercase = layer.attention lowercase = roberta_layer.self_attn_layer_norm.weight lowercase = roberta_layer.self_attn_layer_norm.bias # self attention lowercase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowercase = roberta_layer.self_attn.q_proj.weight lowercase = roberta_layer.self_attn.q_proj.bias lowercase = roberta_layer.self_attn.k_proj.weight lowercase = roberta_layer.self_attn.k_proj.bias lowercase = roberta_layer.self_attn.v_proj.weight lowercase = roberta_layer.self_attn.v_proj.bias # self-attention output lowercase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowercase = roberta_layer.self_attn.out_proj.weight lowercase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowercase = roberta_layer.final_layer_norm.weight lowercase = roberta_layer.final_layer_norm.bias # intermediate lowercase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowercase = roberta_layer.fca.weight lowercase = roberta_layer.fca.bias # output lowercase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowercase = roberta_layer.fca.weight lowercase = roberta_layer.fca.bias # end of layer if classification_head: lowercase = roberta.model.classification_heads['''mnli'''].dense.weight lowercase = roberta.model.classification_heads['''mnli'''].dense.bias lowercase = roberta.model.classification_heads['''mnli'''].out_proj.weight lowercase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowercase = roberta.model.encoder.lm_head.dense.weight lowercase = roberta.model.encoder.lm_head.dense.bias lowercase = roberta.model.encoder.lm_head.layer_norm.weight lowercase = roberta.model.encoder.lm_head.layer_norm.bias lowercase = roberta.model.encoder.lm_head.weight lowercase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowercase = roberta.encode(lowerCAmelCase__ ).unsqueeze(0 ) # batch of size 1 lowercase = model(lowerCAmelCase__ )[0] if classification_head: lowercase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(lowerCAmelCase__ ) ) else: lowercase = roberta.model(lowerCAmelCase__ )[0] print(our_output.shape , their_output.shape ) lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 lowercase = torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''๐Ÿ”ฅ''' if success else '''๐Ÿ’ฉ''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(lowerCAmelCase__ ).mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) lowercase__ :Optional[int] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
101
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowercase__ :Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,): super().__init__() self.register_modules( vae=A__ ,text_encoder=A__ ,tokenizer=A__ ,unet=A__ ,scheduler=A__ ,safety_checker=A__ ,feature_extractor=A__ ,) def A__ ( self ,A__ = "auto"): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A__) def A__ ( self): self.enable_attention_slicing(A__) @torch.no_grad() def __call__( self ,A__ ,A__ = 5_1_2 ,A__ = 5_1_2 ,A__ = 5_0 ,A__ = 7.5 ,A__ = None ,A__ = 1 ,A__ = 0.0 ,A__ = None ,A__ = None ,A__ = "pil" ,A__ = True ,A__ = None ,A__ = 1 ,A__ = None ,**A__ ,): if isinstance(A__ ,A__): lowercase = 1 elif isinstance(A__ ,A__): lowercase = len(A__) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(A__)}') if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A__ ,A__) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(A__)}.') # get prompt text embeddings lowercase = self.tokenizer( A__ ,padding='''max_length''' ,max_length=self.tokenizer.model_max_length ,return_tensors='''pt''' ,) lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f' {self.tokenizer.model_max_length} tokens: {removed_text}') lowercase = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase , lowercase , lowercase = text_embeddings.shape lowercase = text_embeddings.repeat(1 ,A__ ,1) lowercase = text_embeddings.view(bs_embed * num_images_per_prompt ,A__ ,-1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase = 42 if negative_prompt is None: lowercase = [''''''] elif type(A__) is not type(A__): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(A__)} !=' f' {type(A__)}.') elif isinstance(A__ ,A__): lowercase = [negative_prompt] elif batch_size != len(A__): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(A__)}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ''' the batch size of `prompt`.''') else: lowercase = negative_prompt lowercase = text_input_ids.shape[-1] lowercase = self.tokenizer( A__ ,padding='''max_length''' ,max_length=A__ ,truncation=A__ ,return_tensors='''pt''' ,) lowercase = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase = uncond_embeddings.shape[1] lowercase = uncond_embeddings.repeat(A__ ,A__ ,1) lowercase = uncond_embeddings.view(batch_size * num_images_per_prompt ,A__ ,-1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 6_4, 6_4) lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase = torch.randn( A__ ,generator=A__ ,device='''cpu''' ,dtype=A__).to(self.device) lowercase = torch.randn(A__ ,generator=A__ ,device='''cpu''' ,dtype=A__).to( self.device) else: lowercase = torch.randn( A__ ,generator=A__ ,device=self.device ,dtype=A__) lowercase = torch.randn(A__ ,generator=A__ ,device=self.device ,dtype=A__) else: if latents_reference.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') lowercase = latents_reference.to(self.device) lowercase = latents.to(self.device) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase = 0 if dx < 0 else dx lowercase = 0 if dy < 0 else dy lowercase = max(-dx ,0) lowercase = max(-dy ,0) # import pdb # pdb.set_trace() lowercase = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(A__) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys()) lowercase = {} if accepts_eta: lowercase = eta for i, t in enumerate(self.progress_bar(A__)): # expand the latents if we are doing classifier free guidance lowercase = torch.cat([latents] * 2) if do_classifier_free_guidance else latents lowercase = self.scheduler.scale_model_input(A__ ,A__) # predict the noise residual lowercase = self.unet(A__ ,A__ ,encoder_hidden_states=A__).sample # perform guidance if do_classifier_free_guidance: lowercase , lowercase = noise_pred.chunk(2) lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase = self.scheduler.step(A__ ,A__ ,A__ ,**A__).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A__ ,A__ ,A__) lowercase = 1 / 0.18215 * latents lowercase = self.vae.decode(A__).sample lowercase = (image / 2 + 0.5).clamp(0 ,1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase = image.cpu().permute(0 ,2 ,3 ,1).float().numpy() if self.safety_checker is not None: lowercase = self.feature_extractor(self.numpy_to_pil(A__) ,return_tensors='''pt''').to( self.device) lowercase , lowercase = self.safety_checker( images=A__ ,clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)) else: lowercase = None if output_type == "pil": lowercase = self.numpy_to_pil(A__) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=A__ ,nsfw_content_detected=A__)
101
1
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 50_00 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = [(i * (3 * i - 1)) // 2 for i in range(1 , __UpperCamelCase )] for i, pentagonal_i in enumerate(__UpperCamelCase ): for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE__ = pentagonal_nums[j] SCREAMING_SNAKE_CASE__ = pentagonal_i + pentagonal_j SCREAMING_SNAKE_CASE__ = pentagonal_j - pentagonal_i if is_pentagonal(__UpperCamelCase ) and is_pentagonal(__UpperCamelCase ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
204
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __lowerCamelCase : int = logging.get_logger(__name__) class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = ["pixel_values"] def __init__( self : int , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , **_lowercase : List[Any] , ): """simple docstring""" super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ = size if size is not None else {"""shortest_edge""": 2_24} SCREAMING_SNAKE_CASE__ = get_size_dict(_lowercase , default_to_square=_lowercase ) SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else {"""height""": 2_56, """width""": 2_56} SCREAMING_SNAKE_CASE__ = get_size_dict(_lowercase , param_name="""crop_size""" ) SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = resample SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_center_crop SCREAMING_SNAKE_CASE__ = crop_size SCREAMING_SNAKE_CASE__ = do_flip_channel_order def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PIL.Image.BILINEAR , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ = get_resize_output_image_size(_lowercase , size=size["""shortest_edge"""] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Any , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(_lowercase , size=(size["""height"""], size["""width"""]) , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[Any] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Any , ): """simple docstring""" return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Tuple , _lowercase : np.ndarray , _lowercase : Optional[Union[str, ChannelDimension]] = None ): """simple docstring""" return flip_channel_order(_lowercase , data_format=_lowercase ) def __a ( self : List[str] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : int , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) SCREAMING_SNAKE_CASE__ = size if size is not None else self.size SCREAMING_SNAKE_CASE__ = get_size_dict(_lowercase , default_to_square=_lowercase ) SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ = get_size_dict(_lowercase , param_name="""crop_size""" ) SCREAMING_SNAKE_CASE__ = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = [to_numpy_array(_lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: SCREAMING_SNAKE_CASE__ = [self.flip_channel_order(image=_lowercase ) for image in images] SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE__ = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : List[Any] , _lowercase : Dict , _lowercase : List[Tuple] = None ): """simple docstring""" SCREAMING_SNAKE_CASE__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(_lowercase ): SCREAMING_SNAKE_CASE__ = target_sizes.numpy() SCREAMING_SNAKE_CASE__ = [] for idx in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_lowercase ) SCREAMING_SNAKE_CASE__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: SCREAMING_SNAKE_CASE__ = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
204
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''LayoutLMv3FeatureExtractor'''] lowerCAmelCase_ = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
279
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase = ( """This metric will be removed from the library soon, metrics should be handled with the ๐Ÿค— Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) return (preds == labels).mean() def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) __lowercase =simple_accuracy(_lowerCAmelCase , _lowerCAmelCase ) __lowercase =fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) __lowercase =pearsonr(_lowerCAmelCase , _lowerCAmelCase )[0] __lowercase =spearmanr(_lowerCAmelCase , _lowerCAmelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ), f"""Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "mrpc": return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "sts-b": return pearson_and_spearman(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "qqp": return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "rte": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "hans": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError(_lowerCAmelCase ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , 'sklearn' ) if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError(_lowerCAmelCase )
166
0
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = str(id_ ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = [] __lowerCAmelCase = {} # {vertex:distance} def __lt__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.key < other.key def __repr__( self ): '''simple docstring''' return self.id def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' self.neighbors.append(__A ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = weight def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Any: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _lowercase ) graph[b - 1].add_edge(graph[a - 1] , _lowercase ) def _lowerCAmelCase ( lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = [] for u in graph: __lowerCAmelCase = math.inf __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = graph[:] while q: __lowerCAmelCase = min(_lowercase ) q.remove(_lowercase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __lowerCAmelCase = u __lowerCAmelCase = u.edges[v.id] for i in range(1 , len(_lowercase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowerCAmelCase ( lowercase , lowercase ) -> int: for u in graph: __lowerCAmelCase = math.inf __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = list(_lowercase ) hq.heapify(_lowercase ) while h: __lowerCAmelCase = hq.heappop(_lowercase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __lowerCAmelCase = u __lowerCAmelCase = u.edges[v.id] hq.heapify(_lowercase ) for i in range(1 , len(_lowercase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowerCAmelCase ( ) -> int: pass if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' import numpy as np from transformers import Pipeline def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = np.max(lowercase , axis=-1 , keepdims=lowercase ) __lowerCAmelCase = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowercase ) class _UpperCAmelCase ( lowerCAmelCase_ ): def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = {} if "second_text" in kwargs: __lowerCAmelCase = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' return self.tokenizer(__SCREAMING_SNAKE_CASE,text_pair=__SCREAMING_SNAKE_CASE,return_tensors=self.framework ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.model(**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = model_outputs.logits[0].numpy() __lowerCAmelCase = softmax(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.argmax(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.model.config.idalabel[best_class] __lowerCAmelCase = probabilities[best_class].item() __lowerCAmelCase = logits.tolist() return {"label": label, "score": score, "logits": logits}
46
0
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): if len(__a ) != len(__a ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. snake_case_ : List[Any] = [p / w for p, w in zip(__a , __a )] # Creating a copy of the list and sorting profit/weight in ascending order snake_case_ : str = sorted(__a ) # declaring useful variables snake_case_ : str = len(__a ) snake_case_ : Union[str, Any] = 0 snake_case_ : str = 0 snake_case_ : List[Any] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight snake_case_ : Tuple = sorted_profit_by_weight[length - i - 1] snake_case_ : List[str] = profit_by_weight.index(__a ) snake_case_ : int = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) _SCREAMING_SNAKE_CASE = [int(x) for x in input("""Input profits separated by spaces: """).split()] _SCREAMING_SNAKE_CASE = [int(x) for x in input("""Input weights separated by spaces: """).split()] _SCREAMING_SNAKE_CASE = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
327
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Dict = np.asarray(_A ) snake_case_ : Tuple = np.asarray(_A ) if ignore_case: snake_case_ : List[str] = np.char.lower(_A ) snake_case_ : Any = np.char.lower(_A ) if ignore_punctuation: snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : str = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A ) snake_case_ : int = predictions == references return {"exact_match": np.mean(_A ) * 100}
327
1
'''simple docstring''' def UpperCAmelCase ( ) -> int: """simple docstring""" return [ a * b * (1_0_0_0 - a - b) for a in range(1 , 9_9_9 ) for b in range(a_ , 9_9_9 ) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'{solution() = }')
164
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : Any = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
164
1
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _a = datasets.logging.get_logger(__name__) _a = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45โ€“52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 โ€™95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' _a = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' _a = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="dummy_doc" )-> int: """simple docstring""" _UpperCAmelCase = {doc: key_lines} _UpperCAmelCase = {doc: sys_lines} _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase , _UpperCAmelCase = reader.get_doc_mentions(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase ) key_singletons_num += singletons_num if NP_only or min_span: _UpperCAmelCase = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = reader.get_doc_mentions(__lowerCAmelCase , sys_doc_lines[doc] , __lowerCAmelCase ) sys_singletons_num += singletons_num if NP_only or min_span: _UpperCAmelCase = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase ) if remove_nested: _UpperCAmelCase , _UpperCAmelCase = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _UpperCAmelCase , _UpperCAmelCase = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _UpperCAmelCase = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = get_coref_infos(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = 0 for name, metric in metrics: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = evaluator.evaluate_documents(__lowerCAmelCase , __lowerCAmelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , F"""Recall: {recall * 100:.2f}""" , F""" Precision: {precision * 100:.2f}""" , F""" F1: {fa * 100:.2f}""" , ) if conll_subparts_num == 3: _UpperCAmelCase = (conll / 3) * 100 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def __A ( __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: _UpperCAmelCase = line.split()[5] if not parse_col == "-": _UpperCAmelCase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __lowerCamelCase ( datasets.Metric): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ): """simple docstring""" _UpperCAmelCase = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: _UpperCAmelCase = util.check_gold_parse_annotation(UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _UpperCAmelCase = evaluate( key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , ) return score
39
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class UpperCAmelCase : def __init__(self : Optional[Any] , snake_case__ : Optional[Any]=None , **snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) snake_case : Optional[Any] = model snake_case : Dict = kwargs.get("model_save_dir" , snake_case__ ) snake_case : int = kwargs.get("latest_model_name" , snake_case__ ) def __call__(self : Tuple , **snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = {k: np.array(snake_case__ ) for k, v in kwargs.items()} return self.model.run(snake_case__ , snake_case__ ) @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : Union[str, Path] , snake_case__ : Optional[int]=None , snake_case__ : Optional[int]=None ) -> Any: '''simple docstring''' if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) snake_case : Optional[int] = "CPUExecutionProvider" return ort.InferenceSession(snake_case__ , providers=[provider] , sess_options=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Union[str, Path] , snake_case__ : Optional[str] = None , **snake_case__ : Any ) -> List[Any]: '''simple docstring''' snake_case : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME snake_case : Any = self.model_save_dir.joinpath(self.latest_model_name ) snake_case : str = Path(snake_case__ ).joinpath(snake_case__ ) try: shutil.copyfile(snake_case__ , snake_case__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) snake_case : List[str] = self.model_save_dir.joinpath(snake_case__ ) if src_path.exists(): snake_case : Tuple = Path(snake_case__ ).joinpath(snake_case__ ) try: shutil.copyfile(snake_case__ , snake_case__ ) except shutil.SameFileError: pass def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Optional[int] , ) -> str: '''simple docstring''' if os.path.isfile(snake_case__ ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) # saving model weights/files self._save_pretrained(snake_case__ , **snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Tuple , snake_case__ : Union[str, Path] , snake_case__ : Optional[Union[bool, str, None]] = None , snake_case__ : Optional[Union[str, None]] = None , snake_case__ : bool = False , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional["ort.SessionOptions"] = None , **snake_case__ : Tuple , ) -> Tuple: '''simple docstring''' snake_case : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(snake_case__ ): snake_case : Any = OnnxRuntimeModel.load_model( os.path.join(snake_case__ , snake_case__ ) , provider=snake_case__ , sess_options=snake_case__ ) snake_case : Union[str, Any] = Path(snake_case__ ) # load model from hub else: # download model snake_case : Dict = hf_hub_download( repo_id=snake_case__ , filename=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , ) snake_case : List[Any] = Path(snake_case__ ).parent snake_case : Union[str, Any] = Path(snake_case__ ).name snake_case : Dict = OnnxRuntimeModel.load_model(snake_case__ , provider=snake_case__ , sess_options=snake_case__ ) return cls(model=snake_case__ , **snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Optional[Any] , snake_case__ : Union[str, Path] , snake_case__ : bool = True , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , **snake_case__ : Dict , ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = None if len(str(snake_case__ ).split("@" ) ) == 2: snake_case , snake_case : int = model_id.split("@" ) return cls._from_pretrained( model_id=snake_case__ , revision=snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , use_auth_token=snake_case__ , **snake_case__ , )
59
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" for attribute in key.split('.' ): A__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: A__ = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: A__ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": A__ = value elif weight_type == "weight_g": A__ = value elif weight_type == "weight_v": A__ = value elif weight_type == "bias": A__ = value else: A__ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = [] A__ = fairseq_model.state_dict() A__ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) A__ = True else: for key, mapped_key in MAPPING.items(): A__ = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: A__ = True if "*" in mapped_key: A__ = name.split(UpperCamelCase__ )[0].split('.' )[-2] A__ = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: A__ = 'weight_g' elif "weight_v" in name: A__ = 'weight_v' elif "weight" in name: A__ = 'weight' elif "bias" in name: A__ = 'bias' else: A__ = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = full_name.split('conv_layers.' )[-1] A__ = name.split('.' ) A__ = int(items[0] ) A__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = SEWConfig() if is_finetuned: A__ = model.wav_encoder.wav_model.cfg else: A__ = model.cfg A__ = fs_config.conv_bias A__ = eval(fs_config.conv_feature_layers ) A__ = [x[0] for x in conv_layers] A__ = [x[1] for x in conv_layers] A__ = [x[2] for x in conv_layers] A__ = 'gelu' A__ = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' A__ = 0.0 A__ = fs_config.activation_fn.name A__ = fs_config.encoder_embed_dim A__ = 0.0_2 A__ = fs_config.encoder_ffn_embed_dim A__ = 1E-5 A__ = fs_config.encoder_layerdrop A__ = fs_config.encoder_attention_heads A__ = fs_config.conv_pos_groups A__ = fs_config.conv_pos A__ = len(UpperCamelCase__ ) A__ = fs_config.encoder_layers A__ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: A__ = model.cfg A__ = fs_config.final_dropout A__ = fs_config.layerdrop A__ = fs_config.activation_dropout A__ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 A__ = fs_config.attention_dropout A__ = fs_config.dropout_input A__ = fs_config.dropout A__ = fs_config.mask_channel_length A__ = fs_config.mask_channel_prob A__ = fs_config.mask_length A__ = fs_config.mask_prob A__ = 'Wav2Vec2FeatureExtractor' A__ = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True ): """simple docstring""" if is_finetuned: A__ , A__ , A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: A__ , A__ , A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: A__ = SEWConfig.from_pretrained(UpperCamelCase__ ) else: A__ = convert_config(model[0] , UpperCamelCase__ ) A__ = model[0].eval() A__ = True if config.feat_extract_norm == 'layer' else False A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) if is_finetuned: if dict_path: A__ = Dictionary.load(UpperCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A__ = target_dict.pad_index A__ = target_dict.bos_index A__ = target_dict.pad_index A__ = target_dict.bos_index A__ = target_dict.eos_index A__ = len(target_dict.symbols ) A__ = os.path.join(UpperCamelCase__ , 'vocab.json' ) if not os.path.isdir(UpperCamelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCamelCase__ ) ) return os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , UpperCamelCase__ ) A__ = WavaVecaCTCTokenizer( UpperCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCamelCase__ , ) A__ = WavaVecaProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ = SEWForCTC(UpperCamelCase__ ) else: A__ = SEWModel(UpperCamelCase__ ) feature_extractor.save_pretrained(UpperCamelCase__ ) recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __lowerCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
154
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(R"digital_image_processing/image_data/lena_small.jpg") __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase ( ): """simple docstring""" A__ = cn.convert_to_negative(UpperCamelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase ( ): """simple docstring""" with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCamelCase__ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def UpperCAmelCase ( ): """simple docstring""" A__ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase ( ): """simple docstring""" A__ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() A__ = canny.canny(UpperCamelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase ( ): """simple docstring""" assert gg.gaussian_filter(UpperCamelCase__ , 5 , sigma=0.9 ).all() def UpperCAmelCase ( ): """simple docstring""" A__ = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) A__ = conv.img_convolve(UpperCamelCase__ , UpperCamelCase__ ).astype(UpperCamelCase__ ) assert res.any() def UpperCAmelCase ( ): """simple docstring""" assert med.median_filter(UpperCamelCase__ , 3 ).any() def UpperCAmelCase ( ): """simple docstring""" A__ , A__ = sob.sobel_filter(UpperCamelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase ( ): """simple docstring""" A__ = sp.make_sepia(UpperCamelCase__ , 20 ) assert sepia.all() def UpperCAmelCase ( UpperCamelCase__ = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" A__ = bs.Burkes(imread(UpperCamelCase__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase ( UpperCamelCase__ = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" A__ = rs.NearestNeighbour(imread(UpperCamelCase__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def UpperCAmelCase ( ): """simple docstring""" A__ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. A__ = imread(UpperCamelCase__ , 0 ) # Test for get_neighbors_pixel function() return not None A__ = 0 A__ = 0 A__ = image[x_coordinate][y_coordinate] A__ = lbp.get_neighbors_pixel( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A__ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): A__ = lbp.local_binary_value(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) assert lbp_image.any()
154
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowerCamelCase : Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowerCamelCase : Any = json.load(f) @require_torch class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Tuple , A_ : int ) -> str: """simple docstring""" return FSMTTokenizer.from_pretrained(A_ ) def a__ ( self : Dict , A_ : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def a__ ( self : Optional[int] , A_ : Union[str, Any] , A_ : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = f"""facebook/wmt19-{pair}""" lowerCamelCase_ = self.get_tokenizer(A_ ) lowerCamelCase_ = self.get_model(A_ ) lowerCamelCase_ = bleu_data[pair]['src'] lowerCamelCase_ = bleu_data[pair]['tgt'] lowerCamelCase_ = tokenizer(A_ , return_tensors='pt' , truncation=A_ , padding='longest' ).to(A_ ) lowerCamelCase_ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCamelCase_ = tokenizer.batch_decode( A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ ) lowerCamelCase_ = calculate_bleu(A_ , A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'] , A_ )
204
lowerCamelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : int , lowercase : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = [False] * len(lowercase ) lowerCamelCase_ = [s] lowerCamelCase_ = True while queue: lowerCamelCase_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase ) lowerCamelCase_ = True lowerCamelCase_ = u return visited[t] def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Tuple , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = [-1] * (len(lowercase )) lowerCamelCase_ = 0 lowerCamelCase_ = [] lowerCamelCase_ = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase , lowercase , lowercase , lowercase ): lowerCamelCase_ = float('Inf' ) lowerCamelCase_ = sink while s != source: # Find the minimum value in select path lowerCamelCase_ = min(lowercase , graph[parent[s]][s] ) lowerCamelCase_ = parent[s] max_flow += path_flow lowerCamelCase_ = sink while v != source: lowerCamelCase_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase_ = parent[v] for i in range(len(lowercase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
204
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Dict =logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] ={ '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __A ( a ): __A = """vit_mae""" def __init__( self , UpperCAmelCase_=768 , UpperCAmelCase_=12 , UpperCAmelCase_=12 , UpperCAmelCase_=3072 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0_2 , UpperCAmelCase_=1E-12 , UpperCAmelCase_=224 , UpperCAmelCase_=16 , UpperCAmelCase_=3 , UpperCAmelCase_=True , UpperCAmelCase_=16 , UpperCAmelCase_=512 , UpperCAmelCase_=8 , UpperCAmelCase_=2048 , UpperCAmelCase_=0.7_5 , UpperCAmelCase_=False , **UpperCAmelCase_ , ): super().__init__(**UpperCAmelCase_ ) lowerCamelCase =hidden_size lowerCamelCase =num_hidden_layers lowerCamelCase =num_attention_heads lowerCamelCase =intermediate_size lowerCamelCase =hidden_act lowerCamelCase =hidden_dropout_prob lowerCamelCase =attention_probs_dropout_prob lowerCamelCase =initializer_range lowerCamelCase =layer_norm_eps lowerCamelCase =image_size lowerCamelCase =patch_size lowerCamelCase =num_channels lowerCamelCase =qkv_bias lowerCamelCase =decoder_num_attention_heads lowerCamelCase =decoder_hidden_size lowerCamelCase =decoder_num_hidden_layers lowerCamelCase =decoder_intermediate_size lowerCamelCase =mask_ratio lowerCamelCase =norm_pix_loss
262
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __A ( unittest.TestCase ): def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCamelCase =Vector() def _snake_case ( self ): lowerCamelCase =Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase_ ) , """(0,0,0,0,0,1)""" ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase_ ) , 4 ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2] ) lowerCamelCase =Vector([1, 2, 3, 4, 5] ) lowerCamelCase =Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCamelCase =Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) lowerCamelCase =Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) lowerCamelCase =Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) lowerCamelCase =Vector([2, -1, 4] ) # for test of dot product lowerCamelCase =Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def _snake_case ( self ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def _snake_case ( self ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) lowerCamelCase =Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase_ , UpperCAmelCase_ ) ) , """(3,4,7)""" ) def _snake_case ( self ): lowerCamelCase =Vector([1, 0, 0, 0, 0, 0] ) lowerCamelCase =x.copy() self.assertEqual(str(UpperCAmelCase_ ) , str(UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase_ ) , """(0,1,0)""" ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase =[[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase =[[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCamelCase =Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def _snake_case ( self ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
262
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _snake_case ( snake_case__ : Dict ): A = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : int ): A , A = emb.weight.shape A = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) A = emb.weight.data return lin_layer def _snake_case ( snake_case__ : List[str] , snake_case__ : Any="facebook/mbart-large-en-ro" , snake_case__ : Optional[int]=False , snake_case__ : List[str]=False ): A = torch.load(snake_case__ , map_location='cpu' )['model'] remove_ignore_keys_(snake_case__ ) A = state_dict['encoder.embed_tokens.weight'].shape[0] A = MBartConfig.from_pretrained(snake_case__ , vocab_size=snake_case__ ) if mbart_aa and finetuned: A = 'relu' A = state_dict['decoder.embed_tokens.weight'] A = MBartForConditionalGeneration(snake_case__ ) model.model.load_state_dict(snake_case__ ) if finetuned: A = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') _lowercase = parser.parse_args() _lowercase = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
74
"""simple docstring""" from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(SCREAMING_SNAKE_CASE ): return ext raise Exception( F'Unable to determine file format from file extension {path}. ' F'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) lowerCAmelCase = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format lowerCAmelCase = PipelineDataFormat.from_str( format=SCREAMING_SNAKE_CASE , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase ) -> Union[str, Any]: lowerCAmelCase = nlp lowerCAmelCase = reader @staticmethod def _snake_case ( lowercase ) -> Optional[int]: lowerCAmelCase = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=lowercase , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=lowercase , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=lowercase , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=lowercase , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=lowercase , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=lowercase , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=lowercase , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=lowercase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=lowercase ) def _snake_case ( self ) -> int: lowerCAmelCase , lowerCAmelCase = self._nlp, [] for entry in self._reader: lowerCAmelCase = nlp(**lowercase ) if self._reader.is_multi_columns else nlp(lowercase ) if isinstance(lowercase , lowercase ): outputs.append(lowercase ) else: outputs += output # Saving data if self._nlp.binary_output: lowerCAmelCase = self._reader.save_binary(lowercase ) logger.warning(f'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(lowercase )
46
0
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class a__ : '''simple docstring''' lowercase__ : Union[str, Any] = 4_2 # [batch_size x 3] lowercase__ : Dict = 4_2 # [batch_size x 3] lowercase__ : Dict = 4_2 # [batch_size x 3] lowercase__ : List[str] = 4_2 # [batch_size x 3] lowercase__ : List[Any] = 4_2 lowercase__ : Optional[int] = 4_2 lowercase__ : Union[str, Any] = 4_2 lowercase__ : Optional[int] = 4_2 lowercase__ : Dict = 4_2 def __SCREAMING_SNAKE_CASE ( self ) -> int: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def __SCREAMING_SNAKE_CASE ( self ) -> torch.Tensor: lowerCAmelCase__ = torch.arange(self.height * self.width ) lowerCAmelCase__ = torch.stack( [ pixel_indices % self.width, torch.div(UpperCamelCase__ , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ , *lowerCAmelCase__ = self.shape lowerCAmelCase__ = int(np.prod(UpperCamelCase__ ) ) lowerCAmelCase__ = self.get_image_coords() lowerCAmelCase__ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) lowerCAmelCase__ = self.get_camera_rays(UpperCamelCase__ ) lowerCAmelCase__ = rays.view(UpperCamelCase__ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> torch.Tensor: lowerCAmelCase__ , *lowerCAmelCase__ , lowerCAmelCase__ = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowerCAmelCase__ = coords.view(UpperCamelCase__ , -1 , 2 ) lowerCAmelCase__ = self.resolution() lowerCAmelCase__ = self.fov() lowerCAmelCase__ = (flat.float() / (res - 1)) * 2 - 1 lowerCAmelCase__ = fracs * torch.tan(fov / 2 ) lowerCAmelCase__ = fracs.view(UpperCamelCase__ , -1 , 2 ) lowerCAmelCase__ = ( self.z.view(UpperCamelCase__ , 1 , 3 ) + self.x.view(UpperCamelCase__ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCamelCase__ , 1 , 3 ) * fracs[:, :, 1:] ) lowerCAmelCase__ = directions / directions.norm(dim=-1 , keepdim=UpperCamelCase__ ) lowerCAmelCase__ = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCamelCase__ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCamelCase__ , *UpperCamelCase__ , 2 , 3 ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCamelCase__ , height=UpperCamelCase__ , x_fov=self.x_fov , y_fov=self.y_fov , ) def _snake_case ( A ) -> List[str]: lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): lowerCAmelCase__ = np.array([np.sin(__UpperCamelCase ), np.cos(__UpperCamelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowerCAmelCase__ = -z * 4 lowerCAmelCase__ = np.array([np.cos(__UpperCamelCase ), -np.sin(__UpperCamelCase ), 0.0] ) lowerCAmelCase__ = np.cross(__UpperCamelCase , __UpperCamelCase ) origins.append(__UpperCamelCase ) xs.append(__UpperCamelCase ) ys.append(__UpperCamelCase ) zs.append(__UpperCamelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__UpperCamelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__UpperCamelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__UpperCamelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__UpperCamelCase , axis=0 ) ).float() , width=__UpperCamelCase , height=__UpperCamelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__UpperCamelCase )) , )
369
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=99 , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=9 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=32 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_=8 , lowerCamelCase_=0.1 , lowerCamelCase_=0.002 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=0 , lowerCamelCase_=None , lowerCamelCase_=None , ) -> str: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = encoder_seq_length lowerCAmelCase__ = decoder_seq_length # For common tests lowerCAmelCase__ = self.decoder_seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_attention_mask lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = d_ff lowerCAmelCase__ = relative_attention_num_buckets lowerCAmelCase__ = dropout_rate lowerCAmelCase__ = initializer_factor lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = decoder_start_token_id lowerCAmelCase__ = None lowerCAmelCase__ = decoder_layers def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return TaConfig.from_pretrained('''google/umt5-base''' ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , ) -> List[str]: if attention_mask is None: lowerCAmelCase__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase__ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowerCamelCase_ ) if decoder_head_mask is None: lowerCAmelCase__ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowerCamelCase_ ) if cross_attn_head_mask is None: lowerCAmelCase__ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=lowerCamelCase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase__ = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ = self.get_config() lowerCAmelCase__ = config.num_attention_heads lowerCAmelCase__ = self.prepare_inputs_dict(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return config, input_dict def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.prepare_config_and_inputs() return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Dict: lowerCAmelCase__ = UMTaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = model( input_ids=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , ) lowerCAmelCase__ = model(input_ids=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ ) lowerCAmelCase__ = result.last_hidden_state lowerCAmelCase__ = result.past_key_values lowerCAmelCase__ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(lowerCamelCase_ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> int: lowerCAmelCase__ = UMTaModel(config=lowerCamelCase_ ).get_decoder().to(lowerCamelCase_ ).eval() # first forward pass lowerCAmelCase__ = model(lowerCamelCase_ , use_cache=lowerCamelCase_ ) lowerCAmelCase__ = model(lowerCamelCase_ ) lowerCAmelCase__ = model(lowerCamelCase_ , use_cache=lowerCamelCase_ ) self.parent.assertTrue(len(lowerCamelCase_ ) == len(lowerCamelCase_ ) ) self.parent.assertTrue(len(lowerCamelCase_ ) == len(lowerCamelCase_ ) + 1 ) lowerCAmelCase__ , lowerCAmelCase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ = model(lowerCamelCase_ )['''last_hidden_state'''] lowerCAmelCase__ = model(lowerCamelCase_ , past_key_values=lowerCamelCase_ )['''last_hidden_state'''] # select random slice lowerCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ = output_from_no_past[:, -1, random_slice_idx].detach() lowerCAmelCase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , ) -> List[str]: lowerCAmelCase__ = UMTaModel(config=lowerCamelCase_ ).to(lowerCamelCase_ ).half().eval() lowerCAmelCase__ = model(**lowerCamelCase_ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(lowerCamelCase_ ).any().item() ) @require_torch class a__ ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Tuple = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowercase__ : List[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () lowercase__ : Dict = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowercase__ : Optional[int] = True lowercase__ : Tuple = False lowercase__ : Optional[int] = False lowercase__ : Optional[Any] = True lowercase__ : Optional[int] = True # The small UMT5 model needs higher percentages for CPU/MP tests lowercase__ : int = [0.8, 0.9] def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ = UMTaModel(config_and_inputs[0] ).to(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( lowerCamelCase_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=lowerCamelCase_ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ = config_and_inputs[0] lowerCAmelCase__ = UMTaForConditionalGeneration(lowerCamelCase_ ).eval() model.to(lowerCamelCase_ ) lowerCAmelCase__ = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=lowerCamelCase_ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCamelCase_ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCamelCase_ ), } for attn_name, (name, mask) in zip(lowerCamelCase_ , head_masking.items() ): lowerCAmelCase__ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCAmelCase__ = torch.ones( config.num_decoder_layers , config.num_heads , device=lowerCamelCase_ ) lowerCAmelCase__ = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=lowerCamelCase_ , return_dict_in_generate=lowerCamelCase_ , **lowerCamelCase_ , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCAmelCase__ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=lowerCamelCase_ ).to(lowerCamelCase_ ) lowerCAmelCase__ = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=lowerCamelCase_ , legacy=lowerCamelCase_ ) lowerCAmelCase__ = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] lowerCAmelCase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' , padding=lowerCamelCase_ ).input_ids # fmt: off lowerCAmelCase__ = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = model.generate(input_ids.to(lowerCamelCase_ ) ) lowerCAmelCase__ = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ <extra_id_56>ajลกietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajลกie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> ํ”ผํ•ด[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] lowerCAmelCase__ = tokenizer.batch_decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
228
0
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __A = "base_with_context" def _A ( lowercase__ , lowercase__ ): lowercase__ = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) lowercase__ = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=lowercase__ ) for lyr_num, lyr in enumerate(model.encoders ): lowercase__ = weights[f'''layers_{lyr_num}'''] lowercase__ = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) lowercase__ = ly_weight["""attention"""] lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def _A ( lowercase__ , lowercase__ ): lowercase__ = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=lowercase__ ) for lyr_num, lyr in enumerate(model.encoders ): lowercase__ = weights[f'''layers_{lyr_num}'''] lowercase__ = ly_weight["""attention"""] lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowercase__ = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def _A ( lowercase__ , lowercase__ ): lowercase__ = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=lowercase__ ) lowercase__ = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowercase__ = weights[f'''layers_{lyr_num}'''] lowercase__ = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) lowercase__ = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) lowercase__ = ly_weight["""self_attention"""] lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowercase__ = ly_weight["""MultiHeadDotProductAttention_0"""] lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowercase__ = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) lowercase__ = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def _A ( lowercase__ ): lowercase__ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowercase__ = jnp.tree_util.tree_map(onp.array , lowercase__ ) lowercase__ = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] lowercase__ = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) lowercase__ = inference.parse_training_gin_file(lowercase__ , lowercase__ ) lowercase__ = inference.InferenceModel(args.checkpoint_path , lowercase__ ) lowercase__ = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) lowercase__ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) lowercase__ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) lowercase__ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowercase__ = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , lowercase__ ) lowercase__ = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , lowercase__ ) lowercase__ = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , lowercase__ ) lowercase__ = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) lowercase__ = SpectrogramDiffusionPipeline( notes_encoder=lowercase__ , continuous_encoder=lowercase__ , decoder=lowercase__ , scheduler=lowercase__ , melgan=lowercase__ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help="Path to the original jax model checkpoint.", ) __A = parser.parse_args() main(args)
164
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __A = False class A ( unittest.TestCase ): pass @slow @require_torch_gpu class A ( unittest.TestCase ): def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( image=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
164
1
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _a : Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> str: _lowerCAmelCase : Optional[int] = r"\w+[.]\d+" _lowerCAmelCase : Any = re.findall(_lowerCamelCase ,_lowerCamelCase ) for pat in pats: _lowerCAmelCase : Any = key.replace(_lowerCamelCase ,"""_""".join(pat.split(""".""" ) ) ) return key def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ,_lowerCamelCase : Optional[int] ) -> Dict: _lowerCAmelCase : Union[str, Any] = pt_tuple_key[:-1] + ("scale",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _lowerCAmelCase : str = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _lowerCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _lowerCAmelCase : Dict = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer _lowerCAmelCase : List[Any] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _lowerCAmelCase : Optional[int] = pt_tensor.transpose(2 ,3 ,1 ,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _lowerCAmelCase : Any = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": _lowerCAmelCase : Union[str, Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _lowerCAmelCase : str = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _lowerCAmelCase : str = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Any ,_lowerCamelCase : Tuple=42 ) -> Tuple: _lowerCAmelCase : str = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _lowerCAmelCase : List[str] = flax_model.init_weights(PRNGKey(_lowerCamelCase ) ) _lowerCAmelCase : Optional[Any] = flatten_dict(_lowerCamelCase ) _lowerCAmelCase : List[str] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowerCAmelCase : str = rename_key(_lowerCamelCase ) _lowerCAmelCase : Dict = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters _lowerCAmelCase : Optional[Any] = rename_key_and_reshape_tensor(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown _lowerCAmelCase : Any = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase )
370
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] )
126
0
import operator def __UpperCamelCase ( _A : list , _A : bool = False , _A : list | None = None ) ->list: """simple docstring""" lowerCamelCase_ =operator.lt if reverse else operator.gt lowerCamelCase_ =solution or [] if not arr: return solution lowerCamelCase_ =[arr.pop(0 )] for i, item in enumerate(_A ): if _operator(_A , sublist[-1] ): sublist.append(_A ) arr.pop(_A ) # merging sublist into solution list if not solution: solution.extend(_A ) else: while sublist: lowerCamelCase_ =sublist.pop(0 ) for i, xx in enumerate(_A ): if not _operator(_A , _A ): solution.insert(_A , _A ) break else: solution.append(_A ) strand_sort(_A , _A , _A ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
154
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Optional[int] = ["image_processor", "tokenizer"] _UpperCamelCase:Tuple = "ChineseCLIPImageProcessor" _UpperCamelCase:List[str] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )-> Tuple: lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =kwargs.pop("""feature_extractor""" ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )-> Optional[Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: lowerCamelCase_ =self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if images is not None: lowerCamelCase_ =self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None and images is not None: lowerCamelCase_ =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> List[str]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> Any: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.tokenizer.model_input_names lowerCamelCase_ =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self )-> int: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class
154
1
import qiskit def UpperCamelCase (lowercase_: Any , lowercase_: Tuple ) -> qiskit.result.counts.Counts: A__ : Optional[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register A__ : str = qiskit.QuantumCircuit(UpperCAmelCase__ , UpperCAmelCase__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator A__ : Optional[int] = qiskit.execute(UpperCAmelCase__ , UpperCAmelCase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCAmelCase__ ) if __name__ == "__main__": A_ : str = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
363
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable A_ : List[Any] = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
141
0