code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=_UpperCamelCase ): """simple docstring""" a_ = ["""onnx"""] def __init__( self : Optional[int] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ['onnx'] ) @classmethod def lowercase ( cls : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Any ) -> List[str]: requires_backends(cls , ['onnx'] ) @classmethod def lowercase ( cls : str , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['onnx'] )
284
from __future__ import annotations import math def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : bool, lowerCAmelCase_ : list[int], lowerCAmelCase_ : float ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(lowerCAmelCase_ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), ) return min( minimax(depth + 1, node_index * 2, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), ) def a_ ( ): __lowerCAmelCase = [90, 23, 6, 33, 21, 65, 123, 3_4423] __lowerCAmelCase = math.log(len(lowerCAmelCase_ ), 2 ) print('Optimal value : ', end='' ) print(minimax(0, 0, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
284
1
'''simple docstring''' import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a_ = open # noqa: we just need to have a builtin inside this module to test it properly
369
'''simple docstring''' from __future__ import annotations def _a( UpperCamelCase__ : List[str], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : int, UpperCamelCase__ : List[str] ): # noqa: E741 '''simple docstring''' while r - l > 1: SCREAMING_SNAKE_CASE__ : List[str] =(l + r) // 2 if v[m] >= key: SCREAMING_SNAKE_CASE__ : Dict =m else: SCREAMING_SNAKE_CASE__ : Any =m # noqa: E741 return r def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' if len(UpperCamelCase__ ) == 0: return 0 SCREAMING_SNAKE_CASE__ : List[Any] =[0] * len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Dict =1 SCREAMING_SNAKE_CASE__ : Union[str, Any] =v[0] for i in range(1, len(UpperCamelCase__ ) ): if v[i] < tail[0]: SCREAMING_SNAKE_CASE__ : List[Any] =v[i] elif v[i] > tail[length - 1]: SCREAMING_SNAKE_CASE__ : int =v[i] length += 1 else: SCREAMING_SNAKE_CASE__ : Union[str, Any] =v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
222
0
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> bool: """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) UpperCamelCase :Union[str, Any] = sorted(string.lower() ) return len(__magic_name__ ) == len(set(__magic_name__ ) ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('''Enter a string ''').strip() UpperCAmelCase_ : List[str] = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
38
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(__magic_name__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) UpperCamelCase :int = QuantumRegister(__magic_name__ , """qr""" ) UpperCamelCase :str = ClassicalRegister(__magic_name__ , """cr""" ) UpperCamelCase :str = QuantumCircuit(__magic_name__ , __magic_name__ ) UpperCamelCase :List[Any] = number_of_qubits for i in range(__magic_name__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__magic_name__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __magic_name__ , __magic_name__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__magic_name__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__magic_name__ , __magic_name__ ) # simulate with 10000 shots UpperCamelCase :str = Aer.get_backend("""qasm_simulator""" ) UpperCamelCase :Dict = execute(__magic_name__ , __magic_name__ , shots=1_0000 ) return job.result().get_counts(__magic_name__ ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
38
1
'''simple docstring''' lowerCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase : List[str] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mobilenet_v2" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : List[Any] = depth_multiplier _lowerCAmelCase : List[Any] = depth_divisible_by _lowerCAmelCase : Optional[Any] = min_depth _lowerCAmelCase : str = expand_ratio _lowerCAmelCase : str = output_stride _lowerCAmelCase : Any = first_layer_is_expansion _lowerCAmelCase : int = finegrained_output _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = tf_padding _lowerCAmelCase : Optional[int] = classifier_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = semantic_loss_ignore_index class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' return 1E-4
25
0
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case_ : List[Any] = TypeVar("T") class __a (Generic[T] ): __a : deque[T] # Cache store of keys __a : set[T] # References of the keys in cache __a : int = 10 # Maximum capacity of cache def __init__( self : Any , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : str = deque() UpperCAmelCase_ : Dict = set() if not n: UpperCAmelCase_ : int = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: UpperCAmelCase_ : int = n def UpperCAmelCase__ ( self : Tuple , __magic_name__ : T ) -> None: """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase_ : Any = self.dq_store.pop() self.key_reference.remove(__magic_name__ ) else: self.dq_store.remove(__magic_name__ ) self.dq_store.appendleft(__magic_name__ ) self.key_reference.add(__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] ) -> None: """simple docstring""" for k in self.dq_store: print(__magic_name__ ) def __repr__( self : Dict ) -> str: """simple docstring""" return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
125
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration snake_case_ : Union[str, Any] = 50_00_00 snake_case_ ,snake_case_ : Optional[int] = os.path.split(__file__) snake_case_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : datasets.Dataset, **SCREAMING_SNAKE_CASE__ : Dict ) -> str: UpperCAmelCase_ : List[str] = dataset.map(**SCREAMING_SNAKE_CASE__ ) @get_duration def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : datasets.Dataset, **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: UpperCAmelCase_ : Optional[int] = dataset.filter(**SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> Any: UpperCAmelCase_ : List[str] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Optional[int] = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCAmelCase_ : Dict = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__, '''dataset.arrow''' ), SCREAMING_SNAKE_CASE__, num_examples=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=SCREAMING_SNAKE_CASE__ ) def tokenize(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return tokenizer(examples['''text'''] ) UpperCAmelCase_ : List[str] = map(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = map(SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''numpy''' ): UpperCAmelCase_ : Dict = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''pandas''' ): UpperCAmelCase_ : Union[str, Any] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): UpperCAmelCase_ : Optional[int] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): UpperCAmelCase_ : Optional[Any] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = map(SCREAMING_SNAKE_CASE__, function=SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Tuple = filter(SCREAMING_SNAKE_CASE__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE__, '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
125
1
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Dict ) -> Dict: '''simple docstring''' assert isinstance(__lowercase , __lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Optional[int] , __lowercase : List[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : int ) -> int: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = ParquetDatasetReader(__lowercase , features=__lowercase , cache_dir=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Optional[Any] , __lowercase : Optional[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase , split=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Optional[Any] , __lowercase : Tuple ) -> Tuple: '''simple docstring''' if issubclass(__lowercase , __lowercase ): _UpperCAmelCase = parquet_path elif issubclass(__lowercase , __lowercase ): _UpperCAmelCase = [parquet_path] _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) def UpperCAmelCase_ ( __lowercase : Tuple , __lowercase : Any , __lowercase : Union[str, Any]=("train",) ) -> List[str]: '''simple docstring''' assert isinstance(__lowercase , __lowercase ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : str , __lowercase : Dict ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = ParquetDatasetReader( {"train": parquet_path} , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : List[str] , __lowercase : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = ParquetDatasetReader({"train": parquet_path} , features=__lowercase , cache_dir=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : int ) -> List[Any]: '''simple docstring''' if split: _UpperCAmelCase = {split: parquet_path} else: _UpperCAmelCase = "train" _UpperCAmelCase = {"train": parquet_path, "test": parquet_path} _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = ParquetDatasetWriter(__lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 _UpperCAmelCase = pq.ParquetFile(tmp_path / "foo.parquet" ) _UpperCAmelCase = pf.read() assert dataset.data.table == output_table def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = str(shared_datadir / "test_image_rgb.jpg" ) _UpperCAmelCase = {"image": [image_path]} _UpperCAmelCase = Features({"image": Image()} ) _UpperCAmelCase = Dataset.from_dict(__lowercase , features=__lowercase ) _UpperCAmelCase = ParquetDatasetWriter(__lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 _UpperCAmelCase = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features _UpperCAmelCase = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Tuple ) -> Optional[int]: '''simple docstring''' assert get_writer_batch_size(__lowercase ) == expected
355
'''simple docstring''' from __future__ import annotations from typing import TypedDict class A_ ( lowerCAmelCase_ ): _lowerCamelCase : str _lowerCamelCase : int def UpperCAmelCase_ ( __lowercase : str ) -> list[str]: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(__lowercase ) )] def UpperCAmelCase_ ( __lowercase : str ) -> BWTTransformDict: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) _UpperCAmelCase = all_rotations(__lowercase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _UpperCAmelCase = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__lowercase ), } return response def UpperCAmelCase_ ( __lowercase : str , __lowercase : int ) -> str: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: _UpperCAmelCase = int(__lowercase ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(__lowercase ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) _UpperCAmelCase = [""] * len(__lowercase ) for _ in range(len(__lowercase ) ): for i in range(len(__lowercase ) ): _UpperCAmelCase = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Union[str, Any] = '''Provide a string that I will generate its BWT transform: ''' __SCREAMING_SNAKE_CASE :Dict = input(entry_msg).strip() __SCREAMING_SNAKE_CASE :Optional[int] = bwt_transform(s) print( F"Burrows Wheeler transform for string '{s}' results " F"in '{result['bwt_string']}'" ) __SCREAMING_SNAKE_CASE :Optional[int] = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( F"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' " F"we get original string '{original_string}'" )
156
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = False, False, False @dataclass class lowerCAmelCase_ : """simple docstring""" __UpperCamelCase : Optional[int] = None __UpperCamelCase : bool = True __UpperCamelCase : bool = True __UpperCamelCase : Optional[str] = None # Automatically constructed __UpperCamelCase : ClassVar[str] = "dict" __UpperCamelCase : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) __UpperCamelCase : str = field(default='''Audio''' , init=snake_case_ , repr=snake_case_ ) def __call__(self ) -> Optional[Any]: """simple docstring""" return self.pa_type def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> dict: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install \'soundfile\'.""" ) from err if isinstance(_A , _A ): return {"bytes": None, "path": value} elif isinstance(_A , _A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes SCREAMING_SNAKE_CASE__ : Tuple = BytesIO() sf.write(_A , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a \'sampling_rate\' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: SCREAMING_SNAKE_CASE__ : List[Any] = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 3_27_67 SCREAMING_SNAKE_CASE__ : List[str] = BytesIO(bytes() ) sf.write(_A , _A , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> dict: """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) SCREAMING_SNAKE_CASE__ : Any = (value['path'], BytesIO(value["""bytes"""] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install \'librosa\' and \'soundfile\'.""" ) from err SCREAMING_SNAKE_CASE__ : str = xsplitext(_A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: SCREAMING_SNAKE_CASE__ : str = token_per_repo_id or {} SCREAMING_SNAKE_CASE__ : str = path.split("""::""" )[-1] try: SCREAMING_SNAKE_CASE__ : Tuple = string_to_dict(_A , config.HUB_DATASETS_URL )['repo_id'] SCREAMING_SNAKE_CASE__ : Union[str, Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): SCREAMING_SNAKE_CASE__ : Any = None with xopen(_A , """rb""" , use_auth_token=_A ) as f: SCREAMING_SNAKE_CASE__ : Union[str, Any] = sf.read(_A ) else: SCREAMING_SNAKE_CASE__ : Tuple = sf.read(_A ) SCREAMING_SNAKE_CASE__ : Any = array.T if self.mono: SCREAMING_SNAKE_CASE__ : List[str] = librosa.to_mono(_A ) if self.sampling_rate and self.sampling_rate != sampling_rate: SCREAMING_SNAKE_CASE__ : Union[str, Any] = librosa.resample(_A , orig_sr=_A , target_sr=self.sampling_rate ) SCREAMING_SNAKE_CASE__ : str = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __magic_name__ (self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): SCREAMING_SNAKE_CASE__ : str = pa.array([None] * len(_A ) , type=pa.binary() ) SCREAMING_SNAKE_CASE__ : Optional[int] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.array([None] * len(_A ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : str = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): SCREAMING_SNAKE_CASE__ : int = pa.array([Audio().encode_example(_A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: SCREAMING_SNAKE_CASE__ : Dict = storage.field("""bytes""" ) else: SCREAMING_SNAKE_CASE__ : List[Any] = pa.array([None] * len(_A ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = storage.field("""path""" ) else: SCREAMING_SNAKE_CASE__ : str = pa.array([None] * len(_A ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(_A , self.pa_type ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(SCREAMING_SNAKE_CASE__ ): with xopen(_A , """rb""" ) as f: SCREAMING_SNAKE_CASE__ : List[Any] = f.read() return bytes_ SCREAMING_SNAKE_CASE__ : Tuple = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) SCREAMING_SNAKE_CASE__ : Dict = pa.array( [os.path.basename(_A ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_A , self.pa_type )
25
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): snake_case_ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 0: return False snake_case_ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
327
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class snake_case_: def __init__( self : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : int=False , UpperCamelCase_ : Dict=1_0 , UpperCamelCase_ : str=3 , UpperCamelCase_ : str=3_2 * 4 , UpperCamelCase_ : Dict=3_2 * 6 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : str=3_2 , ): lowerCAmelCase : Union[str, Any] = parent lowerCAmelCase : Dict = batch_size lowerCAmelCase : str = is_training lowerCAmelCase : Optional[int] = use_auxiliary_loss lowerCAmelCase : str = num_queries lowerCAmelCase : Union[str, Any] = num_channels lowerCAmelCase : Dict = min_size lowerCAmelCase : List[str] = max_size lowerCAmelCase : List[str] = num_labels lowerCAmelCase : Tuple = mask_feature_size def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCamelCase_ ) lowerCAmelCase : Tuple = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCamelCase_ ) > 0.5 ).float() lowerCAmelCase : int = (torch.rand((self.batch_size, self.num_labels) , device=UpperCamelCase_ ) > 0.5).long() lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCamelCase__ ( self : Tuple ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowerCamelCase__ ( self : int ): lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Any = self.prepare_config_and_inputs() lowerCAmelCase : Optional[int] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : str ): lowerCAmelCase : List[str] = output.encoder_hidden_states lowerCAmelCase : Union[str, Any] = output.pixel_decoder_hidden_states lowerCAmelCase : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCamelCase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase_ ) , config.decoder_config.decoder_layers ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=False ): with torch.no_grad(): lowerCAmelCase : List[str] = MaskFormerModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Any = model(pixel_values=UpperCamelCase_ , pixel_mask=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , output_hidden_states=UpperCamelCase_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Any = MaskFormerForInstanceSegmentation(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() def comm_check_on_output(UpperCamelCase_ : Optional[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(pixel_values=UpperCamelCase_ , pixel_mask=UpperCamelCase_ ) lowerCAmelCase : List[Any] = model(UpperCamelCase_ ) comm_check_on_output(UpperCamelCase_ ) lowerCAmelCase : Any = model( pixel_values=UpperCamelCase_ , pixel_mask=UpperCamelCase_ , mask_labels=UpperCamelCase_ , class_labels=UpperCamelCase_ ) comm_check_on_output(UpperCamelCase_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __UpperCamelCase = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Any = MaskFormerModelTester(self ) lowerCAmelCase : int = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase_ , **UpperCamelCase_ , output_hidden_states=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCamelCase_ ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def lowerCamelCase__ ( self : Tuple ): pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def lowerCamelCase__ ( self : Optional[Any] ): pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def lowerCamelCase__ ( self : str ): pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def lowerCamelCase__ ( self : str ): pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowerCamelCase__ ( self : Tuple ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCamelCase__ ( self : int ): pass def lowerCamelCase__ ( self : Dict ): lowerCAmelCase, lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = model_class(UpperCamelCase_ ) lowerCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : List[str] ): for model_name in ["facebook/maskformer-swin-small-coco"]: lowerCAmelCase : List[str] = MaskFormerModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[str] = (self.model_tester.min_size,) * 2 lowerCAmelCase : Union[str, Any] = { '''pixel_values''': torch.randn((2, 3, *size) , device=UpperCamelCase_ ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=UpperCamelCase_ ), '''class_labels''': torch.zeros(2 , 1_0 , device=UpperCamelCase_ ).long(), } lowerCAmelCase : Union[str, Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCamelCase_ ) lowerCAmelCase : str = model(**UpperCamelCase_ ) self.assertTrue(outputs.loss is not None ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase_ , **UpperCamelCase_ , output_hidden_states=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(UpperCamelCase_ ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = model(**UpperCamelCase_ , output_attentions=UpperCamelCase_ ) self.assertTrue(outputs.attentions is not None ) def lowerCamelCase__ ( self : List[Any] ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase : Tuple = self.all_model_classes[1] lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : Union[str, Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.train() lowerCAmelCase : Union[str, Any] = model(UpperCamelCase_ , mask_labels=UpperCamelCase_ , class_labels=UpperCamelCase_ ).loss loss.backward() def lowerCamelCase__ ( self : List[str] ): # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase : Tuple = self.all_model_classes[1] lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : str = True lowerCAmelCase : Tuple = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.train() lowerCAmelCase : List[Any] = model(UpperCamelCase_ , mask_labels=UpperCamelCase_ , class_labels=UpperCamelCase_ ) lowerCAmelCase : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowerCAmelCase : Optional[int] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCamelCase_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case__ : Union[str, Any] = 1e-4 def _snake_case ( ): lowerCAmelCase : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class snake_case_( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : int ): return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[int] = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(UpperCamelCase_ ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : int = prepare_img() lowerCAmelCase : Dict = image_processor(UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) lowerCAmelCase : Dict = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(UpperCamelCase_ , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**UpperCamelCase_ ) lowerCAmelCase : int = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(UpperCamelCase_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) lowerCAmelCase : Optional[Any] = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(UpperCamelCase_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) lowerCAmelCase : Union[str, Any] = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(UpperCamelCase_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(UpperCamelCase_ ) .eval() ) lowerCAmelCase : Union[str, Any] = self.default_image_processor lowerCAmelCase : Any = prepare_img() lowerCAmelCase : List[Any] = image_processor(UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(UpperCamelCase_ , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): lowerCAmelCase : str = model(**UpperCamelCase_ ) # masks_queries_logits lowerCAmelCase : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowerCAmelCase : List[Any] = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] lowerCAmelCase : Union[str, Any] = torch.tensor(UpperCamelCase_ ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) # class_queries_logits lowerCAmelCase : int = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase : Dict = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(UpperCamelCase_ ) .eval() ) lowerCAmelCase : Tuple = self.default_image_processor lowerCAmelCase : List[str] = prepare_img() lowerCAmelCase : int = image_processor(UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(UpperCamelCase_ , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): lowerCAmelCase : int = model(**UpperCamelCase_ ) # masks_queries_logits lowerCAmelCase : Any = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowerCAmelCase : Optional[Any] = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] lowerCAmelCase : Dict = torch.tensor(UpperCamelCase_ ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) # class_queries_logits lowerCAmelCase : Union[str, Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase : str = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Union[str, Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(UpperCamelCase_ ) .eval() ) lowerCAmelCase : Optional[int] = self.default_image_processor lowerCAmelCase : Union[str, Any] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , ) lowerCAmelCase : Union[str, Any] = inputs['''pixel_values'''].to(UpperCamelCase_ ) lowerCAmelCase : Any = [el.to(UpperCamelCase_ ) for el in inputs['''mask_labels''']] lowerCAmelCase : Union[str, Any] = [el.to(UpperCamelCase_ ) for el in inputs['''class_labels''']] with torch.no_grad(): lowerCAmelCase : Tuple = model(**UpperCamelCase_ ) self.assertTrue(outputs.loss is not None )
314
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
1
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowercase_ = datasets.logging.get_logger(__name__) lowercase_ = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowercase_ = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowercase_ = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : str=False , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Dict="dummy_doc" ) -> List[str]: __a = {doc: key_lines} __a = {doc: sys_lines} __a = {} __a = 0 __a = 0 __a = 0 __a = 0 __a = 0 __a = 0 __a , __a = reader.get_doc_mentions(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: __a = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) __a , __a = reader.get_doc_mentions(lowerCAmelCase__ , sys_doc_lines[doc] , lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: __a = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) if remove_nested: __a , __a = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters __a , __a = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters __a = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) __a = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) __a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( '''Number of resulting singleton clusters in the key ''' f'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( f'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' '''files, respectively''' ) return doc_coref_infos def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] ) -> List[str]: __a = get_coref_infos(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a = {} __a = 0 __a = 0 for name, metric in metrics: __a , __a , __a = evaluator.evaluate_documents(lowerCAmelCase__ , lowerCAmelCase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'''{name}/recall''': recall, f'''{name}/precision''': precision, f'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , f'''Recall: {recall * 100:.2f}''' , f''' Precision: {precision * 100:.2f}''' , f''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: __a = (conll / 3) * 100 logger.info(f'''CoNLL score: {conll:.2f}''' ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowercase ( lowerCAmelCase__ : List[Any] ) -> List[Any]: __a = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: __a = line.split()[5] if not parse_col == "-": __a = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def __UpperCAmelCase ( self , _a , _a , _a=True , _a=False , _a=False , _a=False ): __a = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: __a = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" __a = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
45
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCamelCase = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = 'sgugger/tiny-distilbert-classification' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , only_pretrain_model=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , torchscript=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , fpaa=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = AutoConfig.from_pretrained(A_ ) # set architectures equal to `None` UpperCamelCase = None UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A_ , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = AutoConfig.from_pretrained(A_ ) UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'sshleifer/tinier_bart' UpperCamelCase = AutoConfig.from_pretrained(A_ ) UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = AutoConfig.from_pretrained(A_ ) UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = 'sshleifer/tinier_bart' UpperCamelCase = AutoConfig.from_pretrained(A_ ) UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , save_to_csv=A_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A_ , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(A_ , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(A_ , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(A_ , 'train_time.csv' ) , env_info_csv_file=os.path.join(A_ , 'env.csv' ) , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) benchmark.run() self.assertTrue(Path(os.path.join(A_ , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , 'env.csv' ) ).exists() ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(A_ ): self.assertTrue(hasattr(A_ , 'sequential' ) ) self.assertTrue(hasattr(A_ , 'cumulative' ) ) self.assertTrue(hasattr(A_ , 'current' ) ) self.assertTrue(hasattr(A_ , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A_ , 'log.txt' ) , log_print=A_ , trace_memory_line_by_line=A_ , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A_ , 'log.txt' ) ).exists() )
222
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 1_6 lowerCAmelCase_ = 3_2 def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase = 16 ) -> Tuple: """simple docstring""" snake_case_ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case_ : Any = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) snake_case_ : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ : List[str] = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ : int = 16 elif accelerator.mixed_precision != "no": snake_case_ : Tuple = 8 else: snake_case_ : Optional[Any] = None return tokenizer.pad( _UpperCamelCase , padding='''longest''' , max_length=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. snake_case_ : Tuple = DataLoader( tokenized_datasets['''train'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) snake_case_ : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _UpperCamelCase ) == "1": snake_case_ : Tuple = 2 # New Code # snake_case_ : Tuple = int(args.gradient_accumulation_steps ) snake_case_ : Union[str, Any] = int(args.local_sgd_steps ) # Initialize accelerator snake_case_ : List[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ : Any = config['''lr'''] snake_case_ : Any = int(config['''num_epochs'''] ) snake_case_ : Tuple = int(config['''seed'''] ) snake_case_ : Dict = int(config['''batch_size'''] ) snake_case_ : List[str] = evaluate.load('''glue''' , '''mrpc''' ) set_seed(_UpperCamelCase ) snake_case_ , snake_case_ : int = get_dataloaders(_UpperCamelCase , _UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ : str = model.to(accelerator.device ) # Instantiate optimizer snake_case_ : Tuple = AdamW(params=model.parameters() , lr=_UpperCamelCase ) # Instantiate scheduler snake_case_ : str = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(_UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Dict = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() with LocalSGD( accelerator=_UpperCamelCase , model=_UpperCamelCase , local_sgd_steps=_UpperCamelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_UpperCamelCase ): snake_case_ : List[str] = model(**_UpperCamelCase ) snake_case_ : int = output.loss accelerator.backward(_UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : int = model(**_UpperCamelCase ) snake_case_ : str = outputs.logits.argmax(dim=-1 ) snake_case_ , snake_case_ : Tuple = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase , references=_UpperCamelCase , ) snake_case_ : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _UpperCamelCase ) def lowerCamelCase_ ( ) -> Tuple: """simple docstring""" snake_case_ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_UpperCamelCase , default=_UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=_UpperCamelCase , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=_UpperCamelCase , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : List[str] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
279
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=False ) -> int: """simple docstring""" try: snake_case_ : Optional[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case_ : Tuple = default else: # KEY is set, convert it to True or False. try: snake_case_ : Union[str, Any] = strtobool(_UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value lowerCAmelCase_ = parse_flag_from_env('''RUN_SLOW''', default=False) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" return unittest.skip('''Test was skipped''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Dict: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase=None , _UpperCamelCase=None ) -> Tuple: """simple docstring""" if test_case is None: return partial(_UpperCamelCase , version=_UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , _UpperCamelCase ) , f'''test requires torch version >= {version}''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(_UpperCamelCase ) lowerCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(_UpperCamelCase ) class __lowerCAmelCase ( unittest.TestCase ): lowerCamelCase_ : str = True @classmethod def lowerCamelCase (cls ) -> List[Any]: '''simple docstring''' snake_case_ : Any = tempfile.mkdtemp() @classmethod def lowerCamelCase (cls ) -> List[Any]: '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__magic_name__ ) class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> int: '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : str = mocks if isinstance(__magic_name__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = AcceleratorState() snake_case_ : List[str] = tensor[None].clone().to(state.device ) snake_case_ : Optional[Any] = gather(_UpperCamelCase ).cpu() snake_case_ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _UpperCamelCase ): return False return True class __lowerCAmelCase : def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = returncode snake_case_ : List[Any] = stdout snake_case_ : Tuple = stderr async def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" while True: snake_case_ : Tuple = await stream.readline() if line: callback(_UpperCamelCase ) else: break async def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(_UpperCamelCase ) ) snake_case_ : List[str] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case_ : List[Any] = [] snake_case_ : List[Any] = [] def tee(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="" ): snake_case_ : Union[str, Any] = line.decode('''utf-8''' ).rstrip() sink.append(_UpperCamelCase ) if not quiet: print(_UpperCamelCase , _UpperCamelCase , file=_UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=_UpperCamelCase , ) return _RunOutput(await p.wait() , _UpperCamelCase , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=180 , _UpperCamelCase=False , _UpperCamelCase=True ) -> _RunOutput: """simple docstring""" snake_case_ : List[str] = asyncio.get_event_loop() snake_case_ : List[Any] = loop.run_until_complete( _stream_subprocess(_UpperCamelCase , env=_UpperCamelCase , stdin=_UpperCamelCase , timeout=_UpperCamelCase , quiet=_UpperCamelCase , echo=_UpperCamelCase ) ) snake_case_ : Optional[int] = ''' '''.join(_UpperCamelCase ) if result.returncode > 0: snake_case_ : Union[str, Any] = '''\n'''.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class __lowerCAmelCase ( _a ): pass def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=False ) -> List[Any]: """simple docstring""" try: snake_case_ : List[str] = subprocess.check_output(_UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_UpperCamelCase , '''decode''' ): snake_case_ : Tuple = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
279
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase__ = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } UpperCAmelCase__ = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } UpperCAmelCase__ = '▁' class lowerCamelCase__ ( a__): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = BigBirdTokenizer SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ = [] def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<unk>" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<pad>" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[MASK]" , UpperCAmelCase="[CLS]" , **UpperCAmelCase , ) -> Any: _lowercase =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token _lowercase =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token _lowercase =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token _lowercase =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token _lowercase =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token _lowercase =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _lowercase =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) _lowercase =vocab_file _lowercase =False if not self.vocab_file else True def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: _lowercase =[self.sep_token_id] _lowercase =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: _lowercase =[self.sep_token_id] _lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowercase =os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
5
"""simple docstring""" import math import unittest def lowercase_ ( _snake_case ): assert isinstance(_snake_case ,_snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(_snake_case ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Dict: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
25
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case ): UpperCamelCase__ : Tuple =["pixel_values"] def __init__( self :List[str] , _lowercase :bool = True , _lowercase :Optional[Dict[str, int]] = None , _lowercase :PILImageResampling = PILImageResampling.BILINEAR , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = None , _lowercase :Optional[Union[float, List[float]]] = None , **_lowercase :Tuple , ) -> None: super().__init__(**_lowercase) UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase) UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ = get_size_dict(_lowercase , param_name='''crop_size''') UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self :Any , _lowercase :np.ndarray , _lowercase :Dict[str, int] , _lowercase :PILImageResampling = PILImageResampling.BICUBIC , _lowercase :Optional[Union[str, ChannelDimension]] = None , **_lowercase :Union[str, Any] , ) -> np.ndarray: UpperCAmelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") UpperCAmelCase_ = get_resize_output_image_size(_lowercase , size=size['''shortest_edge'''] , default_to_square=_lowercase) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase) def __a ( self :Optional[int] , _lowercase :np.ndarray , _lowercase :Dict[str, int] , _lowercase :Optional[Union[str, ChannelDimension]] = None , **_lowercase :Union[str, Any] , ) -> np.ndarray: UpperCAmelCase_ = get_size_dict(_lowercase) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(_lowercase , size=(size['''height'''], size['''width''']) , data_format=_lowercase , **_lowercase) def __a ( self :List[str] , _lowercase :np.ndarray , _lowercase :float , _lowercase :Optional[Union[str, ChannelDimension]] = None , **_lowercase :Optional[Any]) -> np.ndarray: return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase) def __a ( self :Union[str, Any] , _lowercase :np.ndarray , _lowercase :Union[float, List[float]] , _lowercase :Union[float, List[float]] , _lowercase :Optional[Union[str, ChannelDimension]] = None , **_lowercase :int , ) -> np.ndarray: return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase) def __a ( self :Optional[int] , _lowercase :ImageInput , _lowercase :Optional[bool] = None , _lowercase :Dict[str, int] = None , _lowercase :PILImageResampling = None , _lowercase :bool = None , _lowercase :Dict[str, int] = None , _lowercase :Optional[bool] = None , _lowercase :Optional[float] = None , _lowercase :Optional[bool] = None , _lowercase :Optional[Union[float, List[float]]] = None , _lowercase :Optional[Union[float, List[float]]] = None , _lowercase :Optional[Union[str, TensorType]] = None , _lowercase :Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase :Dict , ) -> int: UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase) UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_lowercase , param_name='''crop_size''') UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = make_list_of_images(_lowercase) if not valid_images(_lowercase): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_lowercase) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(image=_lowercase , size=_lowercase) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_lowercase , scale=_lowercase) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_lowercase , _lowercase) for image in images] UpperCAmelCase_ = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase) def __a ( self :Tuple , _lowercase :Optional[Any] , _lowercase :List[Tuple] = None) -> List[Any]: UpperCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase) != len(_lowercase): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''') if is_torch_tensor(_lowercase): UpperCAmelCase_ = target_sizes.numpy() UpperCAmelCase_ = [] for idx in range(len(_lowercase)): UpperCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_lowercase) UpperCAmelCase_ = resized_logits[0].argmax(dim=0) semantic_segmentation.append(_lowercase) else: UpperCAmelCase_ = logits.argmax(dim=1) UpperCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
359
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Optional[Any] = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
270
def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) __lowercase : List[str] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
156
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _SCREAMING_SNAKE_CASE : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _snake_case ( datasets.BuilderConfig ): lowerCAmelCase_ : Optional[datasets.Features] = None def UpperCamelCase_( snake_case : "pyspark.sql.DataFrame" , snake_case : List[int] , ): '''simple docstring''' import pyspark def generate_fn(): snake_case_ = df.select("*" , pyspark.sql.functions.spark_partition_id().alias("part_id" ) ) for partition_id in partition_order: snake_case_ = df_with_partition_id.select("*" ).where(f'part_id = {partition_id}' ).drop("part_id" ) snake_case_ = partition_df.collect() snake_case_ = 0 for row in rows: yield f'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class _snake_case ( _BaseExamplesIterable ): def __init__( self , a__ , a__=None , ) -> Optional[Any]: '''simple docstring''' snake_case_ = df snake_case_ = partition_order or range(self.df.rdd.getNumPartitions() ) snake_case_ = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> int: '''simple docstring''' yield from self.generate_examples_fn() def lowerCAmelCase__ ( self , a__ ) -> "SparkExamplesIterable": '''simple docstring''' snake_case_ = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(a__ ) return SparkExamplesIterable(self.df , partition_order=a__ ) def lowerCAmelCase__ ( self , a__ , a__ ) -> "SparkExamplesIterable": '''simple docstring''' snake_case_ = self.split_shard_indices_by_worker(a__ , a__ ) return SparkExamplesIterable(self.df , partition_order=a__ ) @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return len(self.partition_order ) class _snake_case ( datasets.DatasetBuilder ): lowerCAmelCase_ : Optional[Any] = SparkConfig def __init__( self , a__ , a__ = None , a__ = None , **a__ , ) -> Optional[Any]: '''simple docstring''' import pyspark snake_case_ = pyspark.sql.SparkSession.builder.getOrCreate() snake_case_ = df snake_case_ = working_dir super().__init__( cache_dir=a__ , config_name=str(self.df.semanticHash() ) , **a__ , ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' def create_cache_and_write_probe(a__ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=a__ ) snake_case_ = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(a__ , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: snake_case_ = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(a__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self , a__ ) -> Any: '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCAmelCase__ ( self , a__ ) -> Optional[Any]: '''simple docstring''' import pyspark def get_arrow_batch_size(a__ ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) snake_case_ = self.df.count() snake_case_ = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. snake_case_ = ( self.df.limit(a__ ) .repartition(1 ) .mapInArrow(a__ , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) snake_case_ = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. snake_case_ = min(a__ , int(approx_total_size / max_shard_size ) ) snake_case_ = self.df.repartition(a__ ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: '''simple docstring''' import pyspark snake_case_ = ParquetWriter if file_format == "parquet" else ArrowWriter snake_case_ = os.path.join(self._working_dir , os.path.basename(a__ ) ) if self._working_dir else fpath snake_case_ = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. snake_case_ = self.config.features snake_case_ = self._writer_batch_size snake_case_ = self._fs.storage_options def write_arrow(a__ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. snake_case_ = pyspark.TaskContext().taskAttemptId() snake_case_ = next(a__ , a__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) snake_case_ = 0 snake_case_ = writer_class( features=a__ , path=working_fpath.replace("SSSSS" , F'{shard_id:05d}' ).replace("TTTTT" , F'{task_id:05d}' ) , writer_batch_size=a__ , storage_options=a__ , embed_local_files=a__ , ) snake_case_ = pa.Table.from_batches([first_batch] ) writer.write_table(a__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: snake_case_ , snake_case_ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 snake_case_ = writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , F'{shard_id:05d}' ).replace("TTTTT" , F'{task_id:05d}' ) , writer_batch_size=a__ , storage_options=a__ , embed_local_files=a__ , ) snake_case_ = pa.Table.from_batches([batch] ) writer.write_table(a__ ) if writer._num_bytes > 0: snake_case_ , snake_case_ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(a__ ) ): snake_case_ = os.path.join(os.path.dirname(a__ ) , os.path.basename(a__ ) ) shutil.move(a__ , a__ ) snake_case_ = ( self.df.mapInArrow(a__ , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCAmelCase__ ( self , a__ , a__ = "arrow" , a__ = None , a__ = None , **a__ , ) -> Dict: '''simple docstring''' self._validate_cache_dir() snake_case_ = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(a__ ) snake_case_ = not is_remote_filesystem(self._fs ) snake_case_ = os.path.join if is_local else posixpath.join snake_case_ = "-TTTTT-SSSSS-of-NNNNN" snake_case_ = F'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' snake_case_ = path_join(self._output_dir , a__ ) snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = [] snake_case_ = [] for task_id, content in self._prepare_split_single(a__ , a__ , a__ ): ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(a__ ) snake_case_ = total_num_examples snake_case_ = total_num_bytes # should rename everything at the end logger.debug(F'Renaming {total_shards} shards.' ) if total_shards > 1: snake_case_ = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. snake_case_ = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( a__ , a__ , a__ , ): rename( a__ , fpath.replace("SSSSS" , F'{shard_id:05d}' ).replace("TTTTT" , F'{task_id:05d}' ) , fpath.replace("TTTTT-SSSSS" , F'{global_shard_id:05d}' ).replace("NNNNN" , F'{total_shards:05d}' ) , ) snake_case_ = [] snake_case_ = 0 for i in range(len(a__ ) ): snake_case_ , snake_case_ = task_id_and_num_shards[i] for shard_id in range(a__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(a__ , len(a__ ) ).map(lambda a__ : _rename_shard(*a__ ) ).collect() else: # don't use any pattern snake_case_ = 0 snake_case_ = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , F'{shard_id:05d}' ).replace("TTTTT" , F'{task_id:05d}' ) , fpath.replace(a__ , "" ) , ) def lowerCAmelCase__ ( self , a__ , ) -> SparkExamplesIterable: '''simple docstring''' return SparkExamplesIterable(self.df )
362
'''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[int] = "Alexander Joslin" import operator as op from .stack import Stack def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} snake_case_ = Stack() snake_case_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(snake_case ) ) elif i in operators: # RULE 2 operator_stack.push(snake_case ) elif i == ")": # RULE 4 snake_case_ = operator_stack.peek() operator_stack.pop() snake_case_ = operand_stack.peek() operand_stack.pop() snake_case_ = operand_stack.peek() operand_stack.pop() snake_case_ = operators[opr](snake_case , snake_case ) operand_stack.push(snake_case ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"{equation} = {dijkstras_two_stack_algorithm(equation)}")
92
0
import torch from diffusers import DiffusionPipeline class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ) -> List[str]: super().__init__() self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) def __call__( self : List[Any] ) -> str: SCREAMING_SNAKE_CASE__ = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = self.unet(__lowerCamelCase , __lowerCamelCase ).sample SCREAMING_SNAKE_CASE__ = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = scheduler_output - scheduler_output + torch.ones_like(__lowerCamelCase ) return result
314
from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "trajectory_transformer" a = ["past_key_values"] a = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , __lowerCamelCase : Any=100 , __lowerCamelCase : str=5 , __lowerCamelCase : int=1 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : List[Any]=249 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : Dict=17 , __lowerCamelCase : str=25 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Dict=128 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=0.0006 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Tuple=1e-12 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Tuple=5_0256 , __lowerCamelCase : Dict=5_0256 , **__lowerCamelCase : str , ) -> Dict: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = action_weight SCREAMING_SNAKE_CASE__ = reward_weight SCREAMING_SNAKE_CASE__ = value_weight SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = block_size SCREAMING_SNAKE_CASE__ = action_dim SCREAMING_SNAKE_CASE__ = observation_dim SCREAMING_SNAKE_CASE__ = transition_dim SCREAMING_SNAKE_CASE__ = learning_rate SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kaiming_initializer_range SCREAMING_SNAKE_CASE__ = use_cache super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
314
1
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
86
"""simple docstring""" class _UpperCAmelCase : def __init__( self : str , _lowercase : list ): __UpperCAmelCase = set_counts __UpperCAmelCase = max(_lowercase ) __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = [1] * num_sets __UpperCAmelCase = list(range(_lowercase ) ) def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): __UpperCAmelCase = self.get_parent(_lowercase ) __UpperCAmelCase = self.get_parent(_lowercase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase = 0 __UpperCAmelCase = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase = 0 __UpperCAmelCase = src_parent __UpperCAmelCase = self.set_counts[src_parent] __UpperCAmelCase = max(self.max_set , _lowercase ) return True def a ( self : Optional[Any] , _lowercase : int ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
86
1
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowerCAmelCase_ = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : str = list(s_dict.keys() ) for key in keys: snake_case_ : Optional[int] = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case_ : List[str] = new_key.replace(_UpperCamelCase , _UpperCamelCase ) print(f'''{key} -> {new_key}''' ) snake_case_ : Tuple = s_dict.pop(_UpperCamelCase ) return s_dict def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ , snake_case_ : Dict = emb.weight.shape snake_case_ : Tuple = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) snake_case_ : Any = emb.weight.data return lin_layer def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bytes: """simple docstring""" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : List[Any] = os.path.basename(_UpperCamelCase ) snake_case_ : Any = url.split('''/''' )[-2] snake_case_ : str = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ) and not os.path.isfile(_UpperCamelCase ): raise RuntimeError(f'''{download_target} exists and is not a regular file''' ) if os.path.isfile(_UpperCamelCase ): snake_case_ : Union[str, Any] = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(_UpperCamelCase ) as source, open(_UpperCamelCase , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=_UpperCamelCase , unit_divisor=1_024 ) as loop: while True: snake_case_ : Dict = source.read(8_192 ) if not buffer: break output.write(_UpperCamelCase ) loop.update(len(_UpperCamelCase ) ) snake_case_ : Any = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" if ".pt" not in checkpoint_path: snake_case_ : str = _download(_MODELS[checkpoint_path] ) else: snake_case_ : Union[str, Any] = torch.load(_UpperCamelCase , map_location='''cpu''' ) snake_case_ : int = original_checkpoint['''dims'''] snake_case_ : List[str] = original_checkpoint['''model_state_dict'''] snake_case_ : str = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(_UpperCamelCase ) rename_keys(_UpperCamelCase ) snake_case_ : Optional[int] = True snake_case_ : int = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] snake_case_ : List[str] = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_UpperCamelCase , decoder_ffn_dim=_UpperCamelCase , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) snake_case_ : Union[str, Any] = WhisperForConditionalGeneration(_UpperCamelCase ) snake_case_ , snake_case_ : List[Any] = model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) if len(_UpperCamelCase ) > 0 and not set(_UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f''' but all the following weights are missing {missing}''' ) if tie_embeds: snake_case_ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ : Any = proj_out_weights model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
279
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __lowerCAmelCase : def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' return None class __lowerCAmelCase : def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: '''simple docstring''' return None class __lowerCAmelCase ( unittest.TestCase ): lowerCamelCase_ : Dict = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__magic_name__ , '''tf''' , 12 , **__magic_name__ ) @require_torch @slow def lowerCamelCase (self ) -> int: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__magic_name__ , '''pt''' , 12 , **__magic_name__ ) @require_torch @slow def lowerCamelCase (self ) -> int: '''simple docstring''' from transformers import BertModel snake_case_ : str = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(__magic_name__ ) ) vocab_file.flush() snake_case_ : Optional[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: snake_case_ : str = BertModel(BertConfig(vocab_size=len(__magic_name__ ) ) ) model.save_pretrained(__magic_name__ ) self._test_export(__magic_name__ , '''pt''' , 12 , __magic_name__ ) @require_tf @slow def lowerCamelCase (self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: snake_case_ : Tuple = self._test_export(__magic_name__ , '''tf''' , 12 , **__magic_name__ ) snake_case_ : List[str] = quantize(Path(__magic_name__ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__magic_name__ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def lowerCamelCase (self ) -> Any: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: snake_case_ : Any = self._test_export(__magic_name__ , '''pt''' , 12 , **__magic_name__ ) snake_case_ : Any = quantize(__magic_name__ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__magic_name__ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Tuple: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: snake_case_ : List[str] = Path(__magic_name__ ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) return path except Exception as e: self.fail(__magic_name__ ) @require_torch @require_tokenizers @slow def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' from transformers import BertModel snake_case_ : Optional[Any] = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) snake_case_ : int = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__magic_name__ , __magic_name__ , '''pt''' ) @require_tf @require_tokenizers @slow def lowerCamelCase (self ) -> List[str]: '''simple docstring''' from transformers import TFBertModel snake_case_ : Any = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) snake_case_ : str = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__magic_name__ , __magic_name__ , '''tf''' ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' snake_case_ : Tuple = FeatureExtractionPipeline(__magic_name__ , __magic_name__ ) snake_case_ : Optional[int] = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[int] = infer_shapes(__magic_name__ , __magic_name__ ) # Assert all variables are present self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __magic_name__ ) self.assertSequenceEqual(variable_names[3:] , __magic_name__ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] snake_case_ : List[str] = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} snake_case_ , snake_case_ : Tuple = ensure_valid_input(FuncContiguousArgs() , __magic_name__ , __magic_name__ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__magic_name__ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__magic_name__ ) , set(__magic_name__ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__magic_name__ , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) snake_case_ , snake_case_ : Dict = ensure_valid_input(FuncNonContiguousArgs() , __magic_name__ , __magic_name__ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
279
1
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def SCREAMING_SNAKE_CASE_ ( snake_case : Dict )-> Any: # picklable for multiprocessing return x.sum() def SCREAMING_SNAKE_CASE_ ( snake_case : Dict )-> Dict: # picklable for multiprocessing return i + 1 @dataclass class __a : SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : str class __a ( lowerCAmelCase__ ): def snake_case_ ( self ): _lowerCamelCase = {} _lowerCamelCase = [] _lowerCamelCase = 1 _lowerCamelCase = [1, 2] _lowerCamelCase = {'a': 1, 'b': 2} _lowerCamelCase = {'a': [1, 2], 'b': [3, 4]} _lowerCamelCase = {'a': {'1': 1}, 'b': 2} _lowerCamelCase = {'a': 1, 'b': 2, 'c': 3, 'd': 4} _lowerCamelCase = {} _lowerCamelCase = [] _lowerCamelCase = 2 _lowerCamelCase = [2, 3] _lowerCamelCase = {'a': 2, 'b': 3} _lowerCamelCase = {'a': [2, 3], 'b': [4, 5]} _lowerCamelCase = {'a': {'1': 2}, 'b': 3} _lowerCamelCase = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(a__ , a__ ) , a__ ) self.assertEqual(map_nested(a__ , a__ ) , a__ ) self.assertEqual(map_nested(a__ , a__ ) , a__ ) self.assertEqual(map_nested(a__ , a__ ) , a__ ) self.assertEqual(map_nested(a__ , a__ ) , a__ ) self.assertEqual(map_nested(a__ , a__ ) , a__ ) self.assertEqual(map_nested(a__ , a__ ) , a__ ) self.assertEqual(map_nested(a__ , a__ ) , a__ ) _lowerCamelCase = 2 self.assertEqual(map_nested(a__ , a__ , num_proc=a__ ) , a__ ) self.assertEqual(map_nested(a__ , a__ , num_proc=a__ ) , a__ ) self.assertEqual(map_nested(a__ , a__ , num_proc=a__ ) , a__ ) self.assertEqual(map_nested(a__ , a__ , num_proc=a__ ) , a__ ) self.assertEqual(map_nested(a__ , a__ , num_proc=a__ ) , a__ ) self.assertEqual(map_nested(a__ , a__ , num_proc=a__ ) , a__ ) self.assertEqual(map_nested(a__ , a__ , num_proc=a__ ) , a__ ) self.assertEqual(map_nested(a__ , a__ , num_proc=a__ ) , a__ ) _lowerCamelCase = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} _lowerCamelCase = {'a': 2, 'b': 0, 'c': 2} _lowerCamelCase = { 'a': np.eye(2 ).astype(a__ ), 'b': np.zeros(3 ).astype(a__ ), 'c': np.ones(2 ).astype(a__ ), } self.assertEqual(map_nested(a__ , a__ , map_numpy=a__ ) , a__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(a__ , a__ , map_numpy=a__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(a__ , a__ , map_numpy=a__ , num_proc=a__ ) , a__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(a__ , a__ , map_numpy=a__ , num_proc=a__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(a__ ): # can't pickle a local lambda map_nested(lambda a__ : x + 1 , a__ , num_proc=a__ ) def snake_case_ ( self ): _lowerCamelCase = {'a': 1, 'b': 2} _lowerCamelCase = {'a': 3, 'b': 4} _lowerCamelCase = {'a': 5, 'b': 6} _lowerCamelCase = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(a__ , a__ , a__ ) ) , a__ ) def snake_case_ ( self ): class __a : SCREAMING_SNAKE_CASE__ : Dict = "bar" _lowerCamelCase = Foo() self.assertEqual(foo.my_attr , 'bar' ) with temporary_assignment(a__ , 'my_attr' , 'BAR' ): self.assertEqual(foo.my_attr , 'BAR' ) self.assertEqual(foo.my_attr , 'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def SCREAMING_SNAKE_CASE_ ( snake_case : Tuple , snake_case : Optional[Any] , snake_case : Optional[Any] )-> List[Any]: with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: _lowerCamelCase = {f'{i}': i for i in range(snake_case )} _lowerCamelCase = map_nested(lambda snake_case : x + 10 , snake_case , num_proc=snake_case , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __a ( lowerCAmelCase__ ): @require_tf def snake_case_ ( self ): import tensorflow as tf from tensorflow.keras import layers _lowerCamelCase = layers.Dense(2 ) def gen_random_output(): _lowerCamelCase = tf.random.uniform((1, 3) ) return model(a__ ).numpy() with temp_seed(42 , set_tensorflow=a__ ): _lowerCamelCase = gen_random_output() with temp_seed(42 , set_tensorflow=a__ ): _lowerCamelCase = gen_random_output() _lowerCamelCase = gen_random_output() np.testing.assert_equal(a__ , a__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def snake_case_ ( self ): import torch def gen_random_output(): _lowerCamelCase = torch.nn.Linear(3 , 2 ) _lowerCamelCase = torch.rand(1 , 3 ) return model(a__ ).detach().numpy() with temp_seed(42 , set_pytorch=a__ ): _lowerCamelCase = gen_random_output() with temp_seed(42 , set_pytorch=a__ ): _lowerCamelCase = gen_random_output() _lowerCamelCase = gen_random_output() np.testing.assert_equal(a__ , a__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def snake_case_ ( self ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): _lowerCamelCase = gen_random_output() with temp_seed(42 ): _lowerCamelCase = gen_random_output() _lowerCamelCase = gen_random_output() np.testing.assert_equal(a__ , a__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('input_data' , [{}] ) def SCREAMING_SNAKE_CASE_ ( snake_case : List[Any] )-> int: _lowerCamelCase = NestedDataStructure(snake_case ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[Any] , snake_case : Tuple )-> Optional[Any]: _lowerCamelCase = NestedDataStructure(snake_case ).flatten() assert output == expected_output def SCREAMING_SNAKE_CASE_ ( )-> Optional[Any]: _lowerCamelCase = A(x=1 , y='foobar' ) _lowerCamelCase = {'x': 1, 'y': 'foobar'} assert asdict(snake_case ) == expected_output _lowerCamelCase = {'a': {'b': A(x=10 , y='foo' )}, 'c': [A(x=20 , y='bar' )]} _lowerCamelCase = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]} assert asdict(snake_case ) == expected_output with pytest.raises(snake_case ): asdict([1, A(x=10 , y='foo' )] ) def SCREAMING_SNAKE_CASE_ ( snake_case : str )-> Any: return text.split() def SCREAMING_SNAKE_CASE_ ( snake_case : List[str] )-> int: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def SCREAMING_SNAKE_CASE_ ( )-> Any: with Pool(2 ) as pool: _lowerCamelCase = list(iflatmap_unordered(snake_case , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(snake_case ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _lowerCamelCase = list(iflatmap_unordered(snake_case , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(snake_case ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _lowerCamelCase = [] for yield_time, content in iflatmap_unordered( snake_case , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(snake_case ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(snake_case ) == 4
80
"""simple docstring""" from collections import defaultdict from math import gcd def SCREAMING_SNAKE_CASE_ ( snake_case : int = 1_500_000 )-> int: _lowerCamelCase = defaultdict(snake_case ) _lowerCamelCase = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , snake_case , 2 ): if gcd(snake_case , snake_case ) > 1: continue _lowerCamelCase = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(snake_case , limit + 1 , snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'{solution() = }')
80
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __UpperCAmelCase = '\\n Text data.\n Second line of data.' __UpperCAmelCase = 'file' @pytest.fixture(scope='session' ) def UpperCamelCase ( snake_case__ : List[Any] ) -> Optional[int]: UpperCamelCase : int = tmp_path_factory.mktemp('data' ) / (FILE_PATH + """.zstd""") UpperCamelCase : int = bytes(a_ , 'utf-8' ) with zstd.open(a_ , 'wb' ) as f: f.write(a_ ) return path @pytest.fixture def UpperCamelCase ( snake_case__ : Dict ) -> Optional[int]: with open(os.path.join(tmpfs.local_root_dir , a_ ) , 'w' ) as f: f.write(a_ ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def UpperCamelCase ( snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[int] ) -> Optional[int]: UpperCamelCase : List[str] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} UpperCamelCase : Any = input_paths[compression_format] UpperCamelCase : Tuple = tmp_path / """cache""" UpperCamelCase : Tuple = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_ ) UpperCamelCase : Dict = cached_path(a_ , download_config=a_ ) with open(a_ ) as f: UpperCamelCase : Optional[Any] = f.read() with open(a_ ) as f: UpperCamelCase : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Optional[int] ) -> str: UpperCamelCase : Union[str, Any] = """custom_cache""" UpperCamelCase : List[str] = """custom_extracted_dir""" UpperCamelCase : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: UpperCamelCase : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , a_ ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(a_ ) ) UpperCamelCase : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCamelCase : List[Any] = xz_file UpperCamelCase : Optional[int] = ( DownloadConfig(extract_compressed_file=a_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_ ) ) UpperCamelCase : Union[str, Any] = cached_path(a_ , download_config=a_ ) assert Path(a_ ).parent.parts[-2:] == expected def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Dict: UpperCamelCase : str = str(Path(a_ ).resolve() ) assert cached_path(a_ ) == text_file # relative path UpperCamelCase : List[str] = str(Path(a_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a_ ) == text_file def UpperCamelCase ( snake_case__ : Any ) -> int: UpperCamelCase : Optional[Any] = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(a_ ): cached_path(a_ ) # relative path UpperCamelCase : Tuple = """./__missing_file__.txt""" with pytest.raises(a_ ): cached_path(a_ ) def UpperCamelCase ( snake_case__ : List[Any] ) -> Tuple: UpperCamelCase : Any = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(a_ ) as f: UpperCamelCase : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , a_ ) def UpperCamelCase ( ) -> List[str]: with pytest.raises(a_ ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , a_ ) def UpperCamelCase ( snake_case__ : str ) -> Union[str, Any]: UpperCamelCase : List[str] = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(a_ ): http_get('https://huggingface.co' , temp_file=a_ ) with pytest.raises(a_ ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , a_ ) def UpperCamelCase ( snake_case__ : Any ) -> int: UpperCamelCase : List[Any] = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(a_ ): ftp_get('ftp://huggingface.co' , temp_file=a_ ) with pytest.raises(a_ ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , a_ ) def UpperCamelCase ( snake_case__ : List[Any] ) -> Optional[int]: UpperCamelCase : Optional[int] = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(a_ ): fsspec_get('s3://huggingface.co' , temp_file=a_ ) with pytest.raises(a_ ): fsspec_head('s3://huggingface.co' )
119
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ) -> Any: A_ : List[Any] = parent A_ : int = config_class A_ : int = has_text_modality A_ : str = kwargs A_ : int = common_properties def UpperCAmelCase_ ( self ) -> str: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : Optional[int] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: A_ : List[str] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = self.config_class(**self.inputs_dict ) A_ : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = os.path.join(_lowerCamelCase , """config.json""" ) config_first.to_json_file(_lowerCamelCase ) A_ : Dict = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Any = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : List[Any] = """test""" with tempfile.TemporaryDirectory() as tmpdirname: A_ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) A_ : Any = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) A_ : str = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_class.is_composition: return A_ : Dict = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Any = copy.deepcopy(_lowerCamelCase ) A_ : Tuple = self.config_class(**_lowerCamelCase ) A_ : Optional[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: A_ : List[Any] = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(F"The following keys were not properly set in the config:\n{errors}" ) def UpperCAmelCase_ ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
344
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class _UpperCamelCase ( _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ = """roberta""" def __init__( self : Dict , _lowerCAmelCase : Any=5_0_2_6_5 , _lowerCAmelCase : Optional[Any]=7_6_8 , _lowerCAmelCase : List[str]=1_2 , _lowerCAmelCase : Any=1_2 , _lowerCAmelCase : Optional[int]=3_0_7_2 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Optional[int]=5_1_2 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : Union[str, Any]=1e-12 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Optional[int]=0 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Any="absolute" , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_) __lowercase =vocab_size __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =hidden_act __lowercase =intermediate_size __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =max_position_embeddings __lowercase =type_vocab_size __lowercase =initializer_range __lowercase =layer_norm_eps __lowercase =position_embedding_type __lowercase =use_cache __lowercase =classifier_dropout class _UpperCamelCase ( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCamelCase ( self : List[str]): '''simple docstring''' if self.task == "multiple-choice": __lowercase ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowercase ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
371
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """codegen""" lowerCAmelCase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Union[str, Any] , _lowerCAmelCase : List[Any]=5_0_4_0_0 , _lowerCAmelCase : Tuple=2_0_4_8 , _lowerCAmelCase : Dict=2_0_4_8 , _lowerCAmelCase : Tuple=4_0_9_6 , _lowerCAmelCase : Any=2_8 , _lowerCAmelCase : Optional[int]=1_6 , _lowerCAmelCase : int=6_4 , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Optional[int]=1e-5 , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : int=True , _lowerCAmelCase : str=5_0_2_5_6 , _lowerCAmelCase : Any=5_0_2_5_6 , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Dict , ): '''simple docstring''' __lowercase =vocab_size __lowercase =n_ctx __lowercase =n_positions __lowercase =n_embd __lowercase =n_layer __lowercase =n_head __lowercase =n_inner __lowercase =rotary_dim __lowercase =activation_function __lowercase =resid_pdrop __lowercase =embd_pdrop __lowercase =attn_pdrop __lowercase =layer_norm_epsilon __lowercase =initializer_range __lowercase =use_cache __lowercase =bos_token_id __lowercase =eos_token_id super().__init__( bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , **_lowerCAmelCase) class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : PretrainedConfig , _lowerCAmelCase : str = "default" , _lowerCAmelCase : List[PatchingSpec] = None , _lowerCAmelCase : bool = False , ): '''simple docstring''' super().__init__(_lowerCAmelCase , task=_lowerCAmelCase , patching_specs=_lowerCAmelCase , use_past=_lowerCAmelCase) if not getattr(self._config , 'pad_token_id' , _lowerCAmelCase): # TODO: how to do that better? __lowercase =0 @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs') __lowercase ={0: 'batch', 1: 'past_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'sequence'} return common_inputs @property def __lowerCamelCase ( self : Dict): '''simple docstring''' return self._config.n_layer @property def __lowerCamelCase ( self : List[str]): '''simple docstring''' return self._config.n_head def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =super(_lowerCAmelCase , self).generate_dummy_inputs( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) # We need to order the input in the way they appears in the forward() __lowercase =OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase =seqlen + 2 __lowercase =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowercase =[ (torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase)) for _ in range(self.num_layers) ] __lowercase =common_inputs['attention_mask'] if self.use_past: __lowercase =ordered_inputs['attention_mask'].dtype __lowercase =torch.cat( [ordered_inputs['attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase)] , dim=1) return ordered_inputs @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return 1_3
48
0
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a_ ( __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" return EnvironmentCommand() class __UpperCamelCase ( snake_case__ ): @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =parser.add_parser('''env''' ) download_parser.set_defaults(func=_A ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =huggingface_hub.__version__ lowerCamelCase_ ='''not installed''' lowerCamelCase_ ='''NA''' if is_torch_available(): import torch lowerCamelCase_ =torch.__version__ lowerCamelCase_ =torch.cuda.is_available() lowerCamelCase_ ='''not installed''' if is_transformers_available(): import transformers lowerCamelCase_ =transformers.__version__ lowerCamelCase_ ='''not installed''' if is_accelerate_available(): import accelerate lowerCamelCase_ =accelerate.__version__ lowerCamelCase_ ='''not installed''' if is_xformers_available(): import xformers lowerCamelCase_ =xformers.__version__ lowerCamelCase_ ={ '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f'''{pt_version} ({pt_cuda_available})''', '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_A ) ) return info @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
75
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a__ ( snake_case__ ): def __init__( self , *_A , _A=None , _A=None , **_A ): """simple docstring""" super().__init__(*_A , **_A ) __lowerCAmelCase = eval_examples __lowerCAmelCase = post_process_function def __SCREAMING_SNAKE_CASE( self , _A = None , _A=None , _A = None , _A = "eval" , **_A , ): """simple docstring""" __lowerCAmelCase = gen_kwargs.copy() __lowerCAmelCase = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) __lowerCAmelCase = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) __lowerCAmelCase = gen_kwargs __lowerCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset __lowerCAmelCase = self.get_eval_dataloader(_A ) __lowerCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowerCAmelCase = self.compute_metrics __lowerCAmelCase = None __lowerCAmelCase = time.time() __lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowerCAmelCase = eval_loop( _A , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: __lowerCAmelCase = compute_metrics __lowerCAmelCase = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowerCAmelCase = self.post_process_function(_A , _A , _A ) __lowerCAmelCase = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __lowerCAmelCase = metrics.pop(_A ) metrics.update(output.metrics ) else: __lowerCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowerCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , _A ) return metrics def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=None , _A = "test" , **_A ): """simple docstring""" __lowerCAmelCase = gen_kwargs.copy() __lowerCAmelCase = self.get_test_dataloader(_A ) # Temporarily disable metric computation, we will do it in the loop here. __lowerCAmelCase = self.compute_metrics __lowerCAmelCase = None __lowerCAmelCase = time.time() __lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowerCAmelCase = eval_loop( _A , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: __lowerCAmelCase = compute_metrics __lowerCAmelCase = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __lowerCAmelCase = self.post_process_function(_A , _A , _A , "predict" ) __lowerCAmelCase = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __lowerCAmelCase = metrics.pop(_A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_A )
92
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """deit""" def __init__( self , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3072 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1e-12 , _snake_case=224 , _snake_case=16 , _snake_case=3 , _snake_case=True , _snake_case=16 , **_snake_case , ) -> Optional[Any]: """simple docstring""" super().__init__(**_snake_case ) UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = qkv_bias UpperCAmelCase = encoder_stride class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case_ ( self ) -> float: """simple docstring""" return 1e-4
152
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __magic_name__ = logging.get_logger(__name__) class lowercase ( A__ ): '''simple docstring''' def __init__( self , *_snake_case , **_snake_case ) -> None: """simple docstring""" warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
152
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A__ : @staticmethod def __lowerCamelCase ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): pass @is_pipeline_test @require_vision @require_timm @require_torch class A__ ( unittest.TestCase): A_ : Optional[Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) , 0 ) for detected_object in outputs: self.assertEqual( _SCREAMING_SNAKE_CASE , { 'score': ANY(_SCREAMING_SNAKE_CASE ), 'label': ANY(_SCREAMING_SNAKE_CASE ), 'box': {'xmin': ANY(_SCREAMING_SNAKE_CASE ), 'ymin': ANY(_SCREAMING_SNAKE_CASE ), 'xmax': ANY(_SCREAMING_SNAKE_CASE ), 'ymax': ANY(_SCREAMING_SNAKE_CASE )}, } , ) import datasets __lowerCAmelCase : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __lowerCAmelCase : int = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __lowerCAmelCase : Union[str, Any] = object_detector(_SCREAMING_SNAKE_CASE , threshold=0.0 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for outputs in batch_outputs: self.assertGreater(len(_SCREAMING_SNAKE_CASE ) , 0 ) for detected_object in outputs: self.assertEqual( _SCREAMING_SNAKE_CASE , { 'score': ANY(_SCREAMING_SNAKE_CASE ), 'label': ANY(_SCREAMING_SNAKE_CASE ), 'box': {'xmin': ANY(_SCREAMING_SNAKE_CASE ), 'ymin': ANY(_SCREAMING_SNAKE_CASE ), 'xmax': ANY(_SCREAMING_SNAKE_CASE ), 'ymax': ANY(_SCREAMING_SNAKE_CASE )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def __lowerCamelCase ( self ): pass @require_torch def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = 'hf-internal-testing/tiny-detr-mobilenetsv3' __lowerCAmelCase : List[str] = AutoModelForObjectDetection.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ] , ) __lowerCAmelCase : Dict = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ], [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Any = 'facebook/detr-resnet-50' __lowerCAmelCase : List[str] = AutoModelForObjectDetection.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) __lowerCAmelCase : Any = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = 'facebook/detr-resnet-50' __lowerCAmelCase : Any = pipeline('object-detection' , model=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) __lowerCAmelCase : List[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): __lowerCAmelCase : int = 0.9985 __lowerCAmelCase : List[str] = 'facebook/detr-resnet-50' __lowerCAmelCase : Tuple = pipeline('object-detection' , model=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=_SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) @require_torch @require_pytesseract @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = 'Narsil/layoutlmv3-finetuned-funsd' __lowerCAmelCase : Optional[Any] = 0.9993 __lowerCAmelCase : Tuple = pipeline('object-detection' , model=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}}, {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}}, ] , )
86
"""simple docstring""" from __future__ import annotations import bisect def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): if hi < 0: __lowerCAmelCase : Tuple = len(_UpperCamelCase ) while lo < hi: __lowerCAmelCase : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowerCAmelCase : int = mid + 1 else: __lowerCAmelCase : List[str] = mid return lo def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): if hi < 0: __lowerCAmelCase : List[Any] = len(_UpperCamelCase ) while lo < hi: __lowerCAmelCase : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowerCAmelCase : Dict = mid + 1 else: __lowerCAmelCase : str = mid return lo def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): sorted_collection.insert(bisect_left(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): sorted_collection.insert(bisect_right(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : int = len(_UpperCamelCase ) - 1 while left <= right: __lowerCAmelCase : List[Any] = left + (right - left) // 2 __lowerCAmelCase : Union[str, Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowerCAmelCase : Tuple = midpoint - 1 else: __lowerCAmelCase : str = midpoint + 1 return None def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = bisect.bisect_left(_UpperCamelCase , _UpperCamelCase ) if index != len(_UpperCamelCase ) and sorted_collection[index] == item: return index return None def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if right < left: return None __lowerCAmelCase : List[str] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , midpoint - 1 ) else: return binary_search_by_recursion(_UpperCamelCase , _UpperCamelCase , midpoint + 1 , _UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by comma:\n""").strip() lowerCamelCase__ = sorted(int(item) for item in user_input.split(""",""")) lowerCamelCase__ = int(input("""Enter a single number to be found in the list:\n""")) lowerCamelCase__ = binary_search(collection, target) if result is None: print(f'{target} was not found in {collection}.') else: print(f'{target} was found at position {result} in {collection}.')
86
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
'''simple docstring''' import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging _SCREAMING_SNAKE_CASE = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] _SCREAMING_SNAKE_CASE = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = ''' Hello world! cécé herlolip''' _SCREAMING_SNAKE_CASE = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] ): __lowercase = dct.pop(lowerCamelCase_ ) __lowercase = val def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def _lowerCAmelCase ( lowerCamelCase_ : List[str] ): __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) __lowercase = emb.weight.data return lin_layer @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any]=None ): if not os.path.exists(lowerCamelCase_ ): __lowercase = torch.hub.load('''pytorch/fairseq''' , lowerCamelCase_ ).eval() else: __lowercase = load_xsum_checkpoint(lowerCamelCase_ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: __lowercase = checkpoint_path.replace('''.''' , '''-''' ) __lowercase = BartConfig.from_pretrained(lowerCamelCase_ ) __lowercase = bart.encode(lowerCamelCase_ ).unsqueeze(0 ) __lowercase = BartTokenizer.from_pretrained(lowerCamelCase_ ).encode(lowerCamelCase_ , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(lowerCamelCase_ , lowerCamelCase_ ).all(): raise ValueError( f"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": __lowercase = bart.state_dict() remove_ignore_keys_(lowerCamelCase_ ) __lowercase = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase = BartForSequenceClassification(lowerCamelCase_ ).eval() model.load_state_dict(lowerCamelCase_ ) __lowercase = bart.predict('''mnli''' , lowerCamelCase_ , return_logits=lowerCamelCase_ ) __lowercase = model(lowerCamelCase_ )[0] # logits else: # no classification heads to worry about __lowercase = bart.model.state_dict() remove_ignore_keys_(lowerCamelCase_ ) __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = bart.extract_features(lowerCamelCase_ ) if hf_checkpoint_name == "facebook/bart-large": __lowercase = BartModel(lowerCamelCase_ ).eval() model.load_state_dict(lowerCamelCase_ ) __lowercase = model(lowerCamelCase_ ).model[0] else: __lowercase = BartForConditionalGeneration(lowerCamelCase_ ).eval() # an existing summarization ckpt model.model.load_state_dict(lowerCamelCase_ ) if hasattr(lowerCamelCase_ , '''lm_head''' ): __lowercase = make_linear_from_emb(model.model.shared ) __lowercase = model.model(lowerCamelCase_ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
217
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowercase_ ( a__ ): def __init__( self , a ): UpperCamelCase__ = data def __iter__( self ): for element in self.data: yield element def _UpperCamelCase ( __A=True ) -> int: '''simple docstring''' UpperCamelCase__ = Accelerator(even_batches=__A ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _UpperCamelCase ( __A , __A , __A , __A = False ) -> List[str]: '''simple docstring''' if iterable: UpperCamelCase__ = DummyIterableDataset(torch.as_tensor(range(__A ) ) ) else: UpperCamelCase__ = TensorDataset(torch.as_tensor(range(__A ) ) ) UpperCamelCase__ = DataLoader(__A , batch_size=__A ) UpperCamelCase__ = accelerator.prepare(__A ) return dl def _UpperCamelCase ( __A , __A , __A , __A , __A , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = create_dataloader(accelerator=__A , dataset_size=__A , batch_size=__A ) UpperCamelCase__ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _UpperCamelCase ( ) -> List[str]: '''simple docstring''' UpperCamelCase__ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __A , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __A , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _UpperCamelCase ( ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = create_accelerator(even_batches=__A ) verify_dataloader_batch_sizes( __A , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __A , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _UpperCamelCase ( ) -> int: '''simple docstring''' UpperCamelCase__ = create_accelerator(even_batches=__A ) UpperCamelCase__ = torch.nn.Linear(1 , 1 ) UpperCamelCase__ = accelerator.prepare(__A ) UpperCamelCase__ = create_dataloader(__A , dataset_size=3 , batch_size=1 ) UpperCamelCase__ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__A ): UpperCamelCase__ = ddp_model(batch[0].float() ) UpperCamelCase__ = output.sum() loss.backward() batch_idxs.append(__A ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _UpperCamelCase ( __A ) -> str: '''simple docstring''' with warnings.catch_warnings(record=__A ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __A ) assert "only supported for multi-GPU" in str(w[-1].message ) def _UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = create_accelerator(even_batches=__A ) UpperCamelCase__ = torch.nn.Linear(1 , 1 ) UpperCamelCase__ = accelerator.prepare(__A ) UpperCamelCase__ = create_dataloader(__A , dataset_size=3 , batch_size=1 ) UpperCamelCase__ = create_dataloader(__A , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__A ): UpperCamelCase__ = train_dl.batch_sampler.even_batches UpperCamelCase__ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _UpperCamelCase ( ) -> str: '''simple docstring''' UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = create_accelerator(even_batches=__A ) UpperCamelCase__ = torch.nn.Linear(1 , 1 ) UpperCamelCase__ = accelerator.prepare(__A ) create_dataloader(__A , dataset_size=3 , batch_size=1 , iterable=__A ) UpperCamelCase__ = create_dataloader(__A , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__A ): UpperCamelCase__ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = create_accelerator() UpperCamelCase__ = torch.nn.Linear(1 , 1 ) UpperCamelCase__ = accelerator.prepare(__A ) create_dataloader(__A , dataset_size=3 , batch_size=1 , iterable=__A ) with warnings.catch_warnings(record=__A ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__A ): pass assert issubclass(w[-1].category , __A ) assert "only supported for map-style datasets" in str(w[-1].message ) def _UpperCamelCase ( ) -> List[str]: '''simple docstring''' UpperCamelCase__ = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) UpperCamelCase__ = accelerator.state.distributed_type UpperCamelCase__ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__A ) UpperCamelCase__ = original_state if __name__ == "__main__": main()
80
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np a__ : Optional[int] = re.compile(R'\b(a|an|the)\b', re.UNICODE) a__ : int = None def _UpperCamelCase ( ) -> Dict: '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=__A , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=__A , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' UpperCamelCase__ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCamelCase__ = bool(qa["answers"]["text"] ) return qid_to_has_ans def _UpperCamelCase ( __A ) -> Optional[Any]: '''simple docstring''' def remove_articles(__A ): return ARTICLES_REGEX.sub(" " , __A ) def white_space_fix(__A ): return " ".join(text.split() ) def remove_punc(__A ): UpperCamelCase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__A ) ) ) ) def _UpperCamelCase ( __A ) -> int: '''simple docstring''' if not s: return [] return normalize_answer(__A ).split() def _UpperCamelCase ( __A , __A ) -> List[Any]: '''simple docstring''' return int(normalize_answer(__A ) == normalize_answer(__A ) ) def _UpperCamelCase ( __A , __A ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = get_tokens(__A ) UpperCamelCase__ = get_tokens(__A ) UpperCamelCase__ = collections.Counter(__A ) & collections.Counter(__A ) UpperCamelCase__ = sum(common.values() ) if len(__A ) == 0 or len(__A ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 UpperCamelCase__ = 1.0 * num_same / len(__A ) UpperCamelCase__ = 1.0 * num_same / len(__A ) UpperCamelCase__ = (2 * precision * recall) / (precision + recall) return fa def _UpperCamelCase ( __A , __A ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = {} UpperCamelCase__ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCamelCase__ = qa["id"] UpperCamelCase__ = [t for t in qa["answers"]["text"] if normalize_answer(__A )] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCamelCase__ = [""] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue UpperCamelCase__ = preds[qid] # Take max over all gold answers UpperCamelCase__ = max(compute_exact(__A , __A ) for a in gold_answers ) UpperCamelCase__ = max(compute_fa(__A , __A ) for a in gold_answers ) return exact_scores, fa_scores def _UpperCamelCase ( __A , __A , __A , __A ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = {} for qid, s in scores.items(): UpperCamelCase__ = na_probs[qid] > na_prob_thresh if pred_na: UpperCamelCase__ = float(not qid_to_has_ans[qid] ) else: UpperCamelCase__ = s return new_scores def _UpperCamelCase ( __A , __A , __A=None ) -> List[Any]: '''simple docstring''' if not qid_list: UpperCamelCase__ = len(__A ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: UpperCamelCase__ = len(__A ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def _UpperCamelCase ( __A , __A , __A ) -> Optional[int]: '''simple docstring''' for k in new_eval: UpperCamelCase__ = new_eval[k] def _UpperCamelCase ( __A , __A , __A , __A ) -> Optional[int]: '''simple docstring''' plt.step(__A , __A , color="b" , alpha=0.2 , where="post" ) plt.fill_between(__A , __A , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__A ) plt.savefig(__A ) plt.clf() def _UpperCamelCase ( __A , __A , __A , __A , __A=None , __A=None ) -> Any: '''simple docstring''' UpperCamelCase__ = sorted(__A , key=lambda __A : na_probs[k] ) UpperCamelCase__ = 0.0 UpperCamelCase__ = 1.0 UpperCamelCase__ = 0.0 UpperCamelCase__ = [1.0] UpperCamelCase__ = [0.0] UpperCamelCase__ = 0.0 for i, qid in enumerate(__A ): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCamelCase__ = true_pos / float(i + 1 ) UpperCamelCase__ = true_pos / float(__A ) if i == len(__A ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__A ) recalls.append(__A ) if out_image: plot_pr_curve(__A , __A , __A , __A ) return {"ap": 100.0 * avg_prec} def _UpperCamelCase ( __A , __A , __A , __A , __A , __A ) -> List[str]: '''simple docstring''' if out_image_dir and not os.path.exists(__A ): os.makedirs(__A ) UpperCamelCase__ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return UpperCamelCase__ = make_precision_recall_eval( __A , __A , __A , __A , out_image=os.path.join(__A , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) UpperCamelCase__ = make_precision_recall_eval( __A , __A , __A , __A , out_image=os.path.join(__A , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) UpperCamelCase__ = {k: float(__A ) for k, v in qid_to_has_ans.items()} UpperCamelCase__ = make_precision_recall_eval( __A , __A , __A , __A , out_image=os.path.join(__A , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(__A , __A , "pr_exact" ) merge_eval(__A , __A , "pr_f1" ) merge_eval(__A , __A , "pr_oracle" ) def _UpperCamelCase ( __A , __A , __A , __A ) -> List[str]: '''simple docstring''' if not qid_list: return UpperCamelCase__ = [na_probs[k] for k in qid_list] UpperCamelCase__ = np.ones_like(__A ) / float(len(__A ) ) plt.hist(__A , weights=__A , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__A , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def _UpperCamelCase ( __A , __A , __A , __A ) -> Tuple: '''simple docstring''' UpperCamelCase__ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) UpperCamelCase__ = num_no_ans UpperCamelCase__ = cur_score UpperCamelCase__ = 0.0 UpperCamelCase__ = sorted(__A , key=lambda __A : na_probs[k] ) for i, qid in enumerate(__A ): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCamelCase__ = scores[qid] else: if preds[qid]: UpperCamelCase__ = -1 else: UpperCamelCase__ = 0 cur_score += diff if cur_score > best_score: UpperCamelCase__ = cur_score UpperCamelCase__ = na_probs[qid] return 100.0 * best_score / len(__A ), best_thresh def _UpperCamelCase ( __A , __A , __A , __A , __A , __A ) -> Dict: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = find_best_thresh(__A , __A , __A , __A ) UpperCamelCase__ , UpperCamelCase__ = find_best_thresh(__A , __A , __A , __A ) UpperCamelCase__ = best_exact UpperCamelCase__ = exact_thresh UpperCamelCase__ = best_fa UpperCamelCase__ = fa_thresh def _UpperCamelCase ( ) -> Any: '''simple docstring''' with open(OPTS.data_file ) as f: UpperCamelCase__ = json.load(__A ) UpperCamelCase__ = dataset_json["data"] with open(OPTS.pred_file ) as f: UpperCamelCase__ = json.load(__A ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: UpperCamelCase__ = json.load(__A ) else: UpperCamelCase__ = {k: 0.0 for k in preds} UpperCamelCase__ = make_qid_to_has_ans(__A ) # maps qid to True/False UpperCamelCase__ = [k for k, v in qid_to_has_ans.items() if v] UpperCamelCase__ = [k for k, v in qid_to_has_ans.items() if not v] UpperCamelCase__ , UpperCamelCase__ = get_raw_scores(__A , __A ) UpperCamelCase__ = apply_no_ans_threshold(__A , __A , __A , OPTS.na_prob_thresh ) UpperCamelCase__ = apply_no_ans_threshold(__A , __A , __A , OPTS.na_prob_thresh ) UpperCamelCase__ = make_eval_dict(__A , __A ) if has_ans_qids: UpperCamelCase__ = make_eval_dict(__A , __A , qid_list=__A ) merge_eval(__A , __A , "HasAns" ) if no_ans_qids: UpperCamelCase__ = make_eval_dict(__A , __A , qid_list=__A ) merge_eval(__A , __A , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(__A , __A , __A , __A , __A , __A ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__A , __A , __A , __A , __A , OPTS.out_image_dir ) histogram_na_prob(__A , __A , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(__A , __A , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(__A , __A ) else: print(json.dumps(__A , indent=2 ) ) if __name__ == "__main__": a__ : Optional[int] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
80
1
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _UpperCamelCase ( unittest.TestCase ): @slow def lowercase ( self: List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) UpperCamelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCamelCase_ = tokenizer("Hello there" , return_tensors="np" ).input_ids UpperCamelCase_ = tokenizer("Hi I am" , return_tensors="np" ).input_ids UpperCamelCase_ = shift_tokens_right(lowercase_ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCamelCase_ = model(lowercase_ , decoder_input_ids=lowercase_ ).logits UpperCamelCase_ = optax.softmax_cross_entropy(lowercase_ , onehot(lowercase_ , logits.shape[-1] ) ).mean() UpperCamelCase_ = -(labels.shape[-1] * loss.item()) UpperCamelCase_ = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
369
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'philschmid/bart-large-cnn-samsum' lowerCAmelCase__ = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) lowerCAmelCase__ = 'summarizer' lowerCAmelCase__ = AutoTokenizer lowerCAmelCase__ = AutoModelForSeqaSeqLM lowerCAmelCase__ = ['text'] lowerCAmelCase__ = ['text'] def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Optional[int]: return self.pre_processor(lowercase , return_tensors="pt" , truncation=lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[Any]: return self.model.generate(**lowercase )[0] def SCREAMING_SNAKE_CASE_( self , lowercase ) -> str: return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ : List[Any] = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
0
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[Any] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : Optional[int] = """config.json""" lowerCamelCase_ : int = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : Tuple = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Optional[Any] = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : Optional[Any] = ["""fp16""", """non-ema"""] lowerCamelCase_ : Optional[int] = """.self_attn"""
197
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class a__ ( __snake_case ): A__ : torch.FloatTensor A__ : torch.FloatTensor A__ : Optional[torch.FloatTensor] = None class a__ ( __snake_case , __snake_case ): A__ : Optional[Any] = 2 @register_to_config def __init__( self , UpperCAmelCase = 0.02 , UpperCAmelCase = 1_0_0 , UpperCAmelCase = 1.007 , UpperCAmelCase = 8_0 , UpperCAmelCase = 0.05 , UpperCAmelCase = 5_0 , ) -> Optional[Any]: # standard deviation of the initial noise distribution __a = sigma_max # setable values __a = None __a = None __a = None # sigma(t_i) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> torch.FloatTensor: return sample def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> int: __a = num_inference_steps __a = np.arange(0 , self.num_inference_steps )[::-1].copy() __a = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) __a = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __a = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: __a = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: __a = 0 # sample eps ~ N(0, S_noise^2 * I) __a = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) __a = sigma + gamma * sigma __a = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[KarrasVeOutput, Tuple]: __a = sample_hat + sigma_hat * model_output __a = (sample_hat - pred_original_sample) / sigma_hat __a = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[KarrasVeOutput, Tuple]: __a = sample_prev + sigma_prev * model_output __a = (sample_prev - pred_original_sample) / sigma_prev __a = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: raise NotImplementedError()
197
1
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a( UpperCamelCase__ : str, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =0 if start < end: SCREAMING_SNAKE_CASE__ : Union[str, Any] =randint(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =a[end] SCREAMING_SNAKE_CASE__ : int =a[pivot] SCREAMING_SNAKE_CASE__ : int =temp SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =_in_place_partition(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) count += _in_place_quick_sort(UpperCamelCase__, UpperCamelCase__, p - 1 ) count += _in_place_quick_sort(UpperCamelCase__, p + 1, UpperCamelCase__ ) return count def _a( UpperCamelCase__ : Optional[int], UpperCamelCase__ : int, UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =0 SCREAMING_SNAKE_CASE__ : Optional[Any] =randint(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =a[end] SCREAMING_SNAKE_CASE__ : Union[str, Any] =a[pivot] SCREAMING_SNAKE_CASE__ : Any =temp SCREAMING_SNAKE_CASE__ : Union[str, Any] =start - 1 for index in range(UpperCamelCase__, UpperCamelCase__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value SCREAMING_SNAKE_CASE__ : Dict =new_pivot_index + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] =a[new_pivot_index] SCREAMING_SNAKE_CASE__ : Union[str, Any] =a[index] SCREAMING_SNAKE_CASE__ : Dict =temp SCREAMING_SNAKE_CASE__ : Union[str, Any] =a[new_pivot_index + 1] SCREAMING_SNAKE_CASE__ : Optional[int] =a[end] SCREAMING_SNAKE_CASE__ : Dict =temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 1_0_0 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
152
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _a( UpperCamelCase__ : str, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =AlbertConfig.from_json_file(UpperCamelCase__ ) print(f"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE__ : Any =AlbertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict(), UpperCamelCase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
152
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :Optional[int] , a :List[str] ) -> Optional[Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): __UpperCamelCase : Dict = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(a ) def _lowerCamelCase ( self :int ) -> Any: __UpperCamelCase : Optional[Any] = "sshleifer/tiny-gpt2" __UpperCamelCase : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) __UpperCamelCase : List[Any] = TensorFlowBenchmark(a ) __UpperCamelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self :List[Any] ) -> Union[str, Any]: __UpperCamelCase : Union[str, Any] = "sgugger/tiny-distilbert-classification" __UpperCamelCase : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , ) __UpperCamelCase : Optional[int] = TensorFlowBenchmark(a ) __UpperCamelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self :List[str] ) -> Dict: __UpperCamelCase : int = "sshleifer/tiny-gpt2" __UpperCamelCase : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) __UpperCamelCase : Dict = TensorFlowBenchmark(a ) __UpperCamelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self :Any ) -> Optional[int]: __UpperCamelCase : List[Any] = "sshleifer/tiny-gpt2" __UpperCamelCase : Tuple = AutoConfig.from_pretrained(a ) __UpperCamelCase : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) __UpperCamelCase : Optional[int] = TensorFlowBenchmark(a , [config] ) __UpperCamelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self :Optional[int] ) -> str: __UpperCamelCase : Union[str, Any] = "sshleifer/tiny-gpt2" __UpperCamelCase : List[str] = AutoConfig.from_pretrained(a ) __UpperCamelCase : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) __UpperCamelCase : Dict = TensorFlowBenchmark(a , [config] ) __UpperCamelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self :str ) -> List[str]: __UpperCamelCase : List[Any] = "sshleifer/tiny-gpt2" __UpperCamelCase : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) __UpperCamelCase : Dict = TensorFlowBenchmark(a ) __UpperCamelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCamelCase ( self :Optional[int] ) -> List[Any]: __UpperCamelCase : Union[str, Any] = "sshleifer/tiny-gpt2" __UpperCamelCase : Dict = AutoConfig.from_pretrained(a ) __UpperCamelCase : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) __UpperCamelCase : List[Any] = TensorFlowBenchmark(a , [config] ) __UpperCamelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCamelCase ( self :Any ) -> Optional[int]: __UpperCamelCase : Dict = "patrickvonplaten/t5-tiny-random" __UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained(a ) __UpperCamelCase : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) __UpperCamelCase : List[str] = TensorFlowBenchmark(a , configs=[config] ) __UpperCamelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def _lowerCamelCase ( self :Union[str, Any] ) -> int: __UpperCamelCase : Union[str, Any] = "sshleifer/tiny-gpt2" __UpperCamelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , ) __UpperCamelCase : List[Any] = TensorFlowBenchmark(a ) __UpperCamelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self :Tuple ) -> Dict: __UpperCamelCase : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(a , "inf_mem.csv" ) , env_info_csv_file=os.path.join(a , "env.csv" ) , multi_process=a , ) __UpperCamelCase : Optional[int] = TensorFlowBenchmark(a ) benchmark.run() self.assertTrue(Path(os.path.join(a , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(a , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(a , "env.csv" ) ).exists() ) def _lowerCamelCase ( self :Union[str, Any] ) -> Dict: __UpperCamelCase : int = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(a :Optional[Any] ): self.assertTrue(hasattr(a , "sequential" ) ) self.assertTrue(hasattr(a , "cumulative" ) ) self.assertTrue(hasattr(a , "current" ) ) self.assertTrue(hasattr(a , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , "log.txt" ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , ) __UpperCamelCase : Any = TensorFlowBenchmark(a ) __UpperCamelCase : List[str] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a , "log.txt" ) ).exists() )
151
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Union[str, Any] = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
151
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE ) -> int: __lowerCAmelCase: Optional[Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def a__ ( __SCREAMING_SNAKE_CASE ) -> int: __lowerCAmelCase: List[str] = 0 while number > 0: __lowerCAmelCase: Any = number % 1_0 sum_of_digits += last_digit __lowerCAmelCase: List[Any] = number // 1_0 # Removing the last_digit from the given number return sum_of_digits def a__ ( __SCREAMING_SNAKE_CASE = 1_0_0 ) -> int: __lowerCAmelCase: Tuple = factorial(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
217
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] UpperCAmelCase_ : Optional[List[bool]] UpperCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
280
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """perceiver""" def __init__( self : str , lowercase_ : List[str]=256 , lowercase_ : List[str]=1_280 , lowercase_ : str=768 , lowercase_ : Tuple=1 , lowercase_ : str=26 , lowercase_ : List[Any]=8 , lowercase_ : int=8 , lowercase_ : List[str]=None , lowercase_ : Dict=None , lowercase_ : int="kv" , lowercase_ : Union[str, Any]=1 , lowercase_ : List[str]=1 , lowercase_ : Any="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : str=0.02 , lowercase_ : Optional[Any]=1E-12 , lowercase_ : Any=True , lowercase_ : Union[str, Any]=262 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Optional[int]=56 , lowercase_ : int=[368, 496] , lowercase_ : str=16 , lowercase_ : Optional[int]=1_920 , lowercase_ : Tuple=16 , lowercase_ : int=[1, 16, 224, 224] , **lowercase_ : Union[str, Any] , ) -> List[str]: super().__init__(**lowercase_ ) UpperCAmelCase : Union[str, Any] = num_latents UpperCAmelCase : List[Any] = d_latents UpperCAmelCase : Dict = d_model UpperCAmelCase : Dict = num_blocks UpperCAmelCase : Optional[int] = num_self_attends_per_block UpperCAmelCase : Optional[Any] = num_self_attention_heads UpperCAmelCase : Optional[Any] = num_cross_attention_heads UpperCAmelCase : Tuple = qk_channels UpperCAmelCase : Optional[int] = v_channels UpperCAmelCase : str = cross_attention_shape_for_attention UpperCAmelCase : Union[str, Any] = self_attention_widening_factor UpperCAmelCase : List[Any] = cross_attention_widening_factor UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : Dict = layer_norm_eps UpperCAmelCase : Any = use_query_residual # masked language modeling attributes UpperCAmelCase : Any = vocab_size UpperCAmelCase : List[Any] = max_position_embeddings # image classification attributes UpperCAmelCase : str = image_size # flow attributes UpperCAmelCase : Any = train_size # multimodal autoencoding attributes UpperCAmelCase : Any = num_frames UpperCAmelCase : List[Any] = audio_samples_per_frame UpperCAmelCase : Tuple = samples_per_patch UpperCAmelCase : Union[str, Any] = output_shape class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase : Tuple = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCAmelCase_ ( self : str ) -> float: return 1E-4 def UpperCAmelCase_ ( self : str , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , lowercase_ : int = 3 , lowercase_ : int = 40 , lowercase_ : int = 40 , ) -> Mapping[str, Any]: # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(lowercase_ , lowercase_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase : Tuple = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase : int = preprocessor.num_special_tokens_to_add(lowercase_ ) UpperCAmelCase : Union[str, Any] = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase : List[Any] = [' '.join(['a'] ) * seq_length] * batch_size UpperCAmelCase : Union[str, Any] = dict(preprocessor(lowercase_ , return_tensors=lowercase_ ) ) UpperCAmelCase : Union[str, Any] = inputs.pop('input_ids' ) return inputs elif isinstance(lowercase_ , lowercase_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase : Tuple = compute_effective_axis_dimension(lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase : Any = self._generate_dummy_images(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = dict(preprocessor(images=lowercase_ , return_tensors=lowercase_ ) ) UpperCAmelCase : Dict = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
280
1
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ): lowerCamelCase_ = XCLIPTextConfig() # derive patch size from model name lowerCamelCase_ = model_name.find("patch" ) lowerCamelCase_ = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) lowerCamelCase_ = XCLIPVisionConfig(patch_size=UpperCAmelCase_ , num_frames=UpperCAmelCase_ ) if "large" in model_name: lowerCamelCase_ = 768 lowerCamelCase_ = 3072 lowerCamelCase_ = 12 lowerCamelCase_ = 1024 lowerCamelCase_ = 4096 lowerCamelCase_ = 16 lowerCamelCase_ = 24 lowerCamelCase_ = 768 lowerCamelCase_ = 3072 if model_name == "xclip-large-patch14-16-frames": lowerCamelCase_ = 336 lowerCamelCase_ = XCLIPConfig.from_text_vision_configs(UpperCAmelCase_ , UpperCAmelCase_ ) if "large" in model_name: lowerCamelCase_ = 768 return config def __snake_case ( UpperCAmelCase_ : str ): # text encoder if name == "token_embedding.weight": lowerCamelCase_ = name.replace("token_embedding.weight" , "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": lowerCamelCase_ = name.replace("positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: lowerCamelCase_ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCamelCase_ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCamelCase_ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCamelCase_ = name.replace("c_proj" , "fc2" ) if name.startswith("transformer.resblocks" ): lowerCamelCase_ = name.replace("transformer.resblocks" , "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: lowerCamelCase_ = name.replace("attn.out_proj" , "self_attn.out_proj" ) if "ln_final" in name: lowerCamelCase_ = name.replace("ln_final" , "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": lowerCamelCase_ = name.replace("visual.class_embedding" , "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": lowerCamelCase_ = name.replace("visual.positional_embedding" , "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): lowerCamelCase_ = name.replace("visual.transformer.resblocks" , "vision_model.encoder.layers" ) if "visual.conv1" in name: lowerCamelCase_ = name.replace("visual.conv1" , "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: lowerCamelCase_ = name.replace("visual.ln_pre" , "vision_model.pre_layernorm" ) if "visual.ln_post" in name: lowerCamelCase_ = name.replace("visual.ln_post" , "vision_model.post_layernorm" ) if "visual.proj" in name: lowerCamelCase_ = name.replace("visual.proj" , "visual_projection.weight" ) if "text_projection" in name: lowerCamelCase_ = name.replace("text_projection" , "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: lowerCamelCase_ = name.replace("prompts_visual_proj" , "prompts_visual_projection" ) if "prompts_visual_ln" in name: lowerCamelCase_ = name.replace("prompts_visual_ln" , "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": lowerCamelCase_ = name.replace("positional" , "position" ) if name.startswith("mit.resblocks" ): lowerCamelCase_ = name.replace("mit.resblocks" , "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): lowerCamelCase_ = name.replace("prompts_generator.norm" , "prompts_generator.layernorm" ) return name def __snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(UpperCAmelCase_ ) if "attn.in_proj" in key: lowerCamelCase_ = key.split("." ) if key.startswith("visual" ): lowerCamelCase_ = key_split[3] lowerCamelCase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCamelCase_ = val[ :dim, : ] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[ -dim:, : ] else: lowerCamelCase_ = val[ :dim ] lowerCamelCase_ = val[ dim : dim * 2 ] lowerCamelCase_ = val[ -dim: ] else: if "weight" in key: lowerCamelCase_ = val[ :dim, : ] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[ -dim:, : ] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[ dim : dim * 2 ] lowerCamelCase_ = val[-dim:] elif key.startswith("mit" ): lowerCamelCase_ = key_split[2] lowerCamelCase_ = config.vision_config.mit_hidden_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = key_split[2] lowerCamelCase_ = config.text_config.hidden_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[ dim : dim * 2 ] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = rename_key(UpperCAmelCase_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCamelCase_ = val.T lowerCamelCase_ = val return orig_state_dict def __snake_case ( UpperCAmelCase_ : List[str] ): if num_frames == 8: lowerCamelCase_ = "eating_spaghetti_8_frames.npy" elif num_frames == 16: lowerCamelCase_ = "eating_spaghetti.npy" elif num_frames == 32: lowerCamelCase_ = "eating_spaghetti_32_frames.npy" lowerCamelCase_ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename=UpperCAmelCase_ , repo_type="dataset" , ) lowerCamelCase_ = np.load(UpperCAmelCase_ ) return list(UpperCAmelCase_ ) def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]=False ): lowerCamelCase_ = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } lowerCamelCase_ = model_to_url[model_name] lowerCamelCase_ = 8 if "16-frames" in model_name: lowerCamelCase_ = 16 elif "shot" in model_name: lowerCamelCase_ = 32 lowerCamelCase_ = get_xclip_config(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ = XCLIPModel(UpperCAmelCase_ ) model.eval() if "drive" in checkpoint_url: lowerCamelCase_ = "pytorch_model.bin" gdown.cached_download(UpperCAmelCase_ , UpperCAmelCase_ , quiet=UpperCAmelCase_ ) lowerCamelCase_ = torch.load(UpperCAmelCase_ , map_location="cpu" )["model"] else: lowerCamelCase_ = torch.hub.load_state_dict_from_url(UpperCAmelCase_ )["model"] lowerCamelCase_ = convert_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ = XCLIPModel(UpperCAmelCase_ ) lowerCamelCase_ ,lowerCamelCase_ = model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCamelCase_ = 336 if model_name == "xclip-large-patch14-16-frames" else 224 lowerCamelCase_ = VideoMAEImageProcessor(size=UpperCAmelCase_ ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) lowerCamelCase_ = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) lowerCamelCase_ = XCLIPProcessor(image_processor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) lowerCamelCase_ = prepare_video(UpperCAmelCase_ ) lowerCamelCase_ = processor( text=["playing sports", "eating spaghetti", "go shopping"] , videos=UpperCAmelCase_ , return_tensors="pt" , padding=UpperCAmelCase_ ) print("Shape of pixel values:" , inputs.pixel_values.shape ) with torch.no_grad(): lowerCamelCase_ = model(**UpperCAmelCase_ ) # Verify outputs lowerCamelCase_ = outputs.logits_per_video lowerCamelCase_ = logits_per_video.softmax(dim=1 ) print("Probs:" , UpperCAmelCase_ ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCamelCase_ = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCamelCase_ = torch.tensor([[7.0_9_9_9E-0_4, 9.9_8_8_3E-0_1, 4.5_5_8_0E-0_4]] ) elif model_name == "xclip-base-patch16": lowerCamelCase_ = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCamelCase_ = torch.tensor([[7.6_9_3_7E-0_4, 9.9_7_2_8E-0_1, 1.9_4_7_3E-0_3]] ) elif model_name == "xclip-large-patch14": lowerCamelCase_ = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCamelCase_ = torch.tensor([[3.3_8_7_7E-0_4, 9.9_9_3_7E-0_1, 2.8_8_8_8E-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCamelCase_ = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCamelCase_ = torch.tensor([[3.8_5_5_4E-0_4, 9.9_9_2_9E-0_1, 3.2_7_5_4E-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCamelCase_ = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCamelCase_ = torch.tensor([[7.1_8_9_0E-0_6, 9.9_9_9_4E-0_1, 5.6_5_5_9E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCamelCase_ = torch.tensor([[1.0_3_2_0E-0_5, 9.9_9_9_3E-0_1, 6.2_4_3_5E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCamelCase_ = torch.tensor([[4.1_3_7_7E-0_6, 9.9_9_9_0E-0_1, 9.8_3_8_6E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCamelCase_ = torch.tensor([[4.1_3_4_7E-0_5, 9.9_9_6_2E-0_1, 3.3_4_1_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCamelCase_ = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCamelCase_ = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCamelCase_ = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCamelCase_ = torch.tensor([[9.8_2_1_9E-0_4, 9.9_5_9_3E-0_1, 3.0_8_6_3E-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCamelCase_ = torch.tensor([[3.5_0_8_2E-0_4, 9.9_7_8_5E-0_1, 1.7_9_6_6E-0_3]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase_ ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(UpperCAmelCase_ , organization="nielsr" ) processor.push_to_hub(UpperCAmelCase_ , organization="nielsr" ) slow_tokenizer.push_to_hub(UpperCAmelCase_ , organization="nielsr" ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a_ : Optional[Any] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
55
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowercase__ : Any = getLogger(__name__) lowercase__ : List[str] = "cuda" if torch.cuda.is_available() else "cpu" def A_ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : List[str]=False , snake_case : Union[str, Any]="summarization" , snake_case : str=None , **snake_case : List[Any] , ) -> Dict: '''simple docstring''' __UpperCamelCase = Path(snake_case ).open('''w''' , encoding='''utf-8''' ) __UpperCamelCase = str(snake_case ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).to(snake_case ) if fpaa: __UpperCamelCase = model.half() __UpperCamelCase = AutoTokenizer.from_pretrained(snake_case ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __UpperCamelCase = time.time() # update config with task specific params use_task_specific_params(snake_case , snake_case ) if prefix is None: __UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(snake_case , snake_case ) ) ): __UpperCamelCase = [prefix + text for text in examples_chunk] __UpperCamelCase = tokenizer(snake_case , return_tensors='''pt''' , truncation=snake_case , padding='''longest''' ).to(snake_case ) __UpperCamelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case , ) __UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __UpperCamelCase = int(time.time() - start_time ) # seconds __UpperCamelCase = len(snake_case ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def A_ ( ) -> Tuple: '''simple docstring''' return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def A_ ( snake_case : str=True ) -> int: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=snake_case , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=snake_case , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=snake_case , required=snake_case , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=snake_case , required=snake_case , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=snake_case , required=snake_case , default=snake_case , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=snake_case , default=-1 , required=snake_case , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=snake_case , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __UpperCamelCase , __UpperCamelCase = parser.parse_known_args() __UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case ) if parsed_args and verbose: print(f"parsed the following generate kwargs: {parsed_args}" ) __UpperCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __UpperCamelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __UpperCamelCase = generate_summaries_or_translations( snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case , ) if args.reference_path is None: return {} # Compute scores __UpperCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge __UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case )] __UpperCamelCase = score_fn(snake_case , snake_case ) scores.update(snake_case ) if args.dump_args: scores.update(snake_case ) if args.info: __UpperCamelCase = args.info if verbose: print(snake_case ) if args.score_path is not None: json.dump(snake_case , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
328
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): def __lowerCamelCase ( self ): return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=SCREAMING_SNAKE_CASE__ , ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): def __lowerCamelCase ( self ): return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=SCREAMING_SNAKE_CASE__ , ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE__ ) def __lowercase ( ) ->Optional[int]: """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def __lowercase ( ) ->List[Any]: """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class __SCREAMING_SNAKE_CASE ( A__ ): @require_beam def __lowerCamelCase ( self ): lowercase : List[Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase : Union[str, Any] = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE__ , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE__ , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) lowercase : Tuple = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , SCREAMING_SNAKE_CASE__ ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def __lowerCamelCase ( self ): import apache_beam as beam lowercase : List[Any] = beam.io.parquetio.WriteToParquet lowercase : Dict = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase : int = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE__ , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: lowercase : int = partial(SCREAMING_SNAKE_CASE__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE__ , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE__ , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) lowercase : Optional[int] = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , SCREAMING_SNAKE_CASE__ ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , SCREAMING_SNAKE_CASE__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase : Optional[Any] = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __lowerCamelCase ( self ): lowercase : Optional[int] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase : List[Any] = NestedBeamDataset(cache_dir=SCREAMING_SNAKE_CASE__ , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE__ , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) lowercase : List[str] = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , SCREAMING_SNAKE_CASE__ ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
173
# flake8: noqa # Lint as: python3 __a = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
173
1
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> List[str]: '''simple docstring''' lowercase = [] lowercase = set({"""(""", """[""", """{"""} ) lowercase = set({""")""", """]""", """}"""} ) lowercase = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(lowerCAmelCase__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCAmelCase__ ) == 0 or (len(lowerCAmelCase__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCAmelCase__ ) == 0 def UpperCAmelCase__ ( ) -> str: '''simple docstring''' lowercase = input("""Enter sequence of brackets: """ ) if is_balanced(lowerCAmelCase__ ): print(lowerCAmelCase__ , """is balanced""" ) else: print(lowerCAmelCase__ , """is not balanced""" ) if __name__ == "__main__": main()
197
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> str: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowercase = precision lowercase = ceil(precision / 1_4 ) lowercase = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() lowercase = 1 lowercase = 1_3_5_9_1_4_0_9 lowercase = Decimal(lowerCAmelCase__ ) for k in range(1 , lowerCAmelCase__ ): lowercase = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCAmelCase__ ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __lowerCAmelCase : List[Any] =5_0 print(F"""The first {n} digits of pi is: {pi(n)}""")
197
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class lowercase__ ( _UpperCAmelCase ): def __init__( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = params SCREAMING_SNAKE_CASE__ = np.array(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = np.array([len(UpperCAmelCase_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : List[Any] , UpperCAmelCase_ : Optional[Any] ): return (self.token_ids[index], self.lengths[index]) def __len__( self : Optional[int] ): return len(self.lengths ) def A_ ( self : Optional[int] ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = self.params.max_model_input_size SCREAMING_SNAKE_CASE__ = self.lengths > max_len logger.info(F'Splitting {sum(UpperCAmelCase_ )} too long sequences.' ) def divide_chunks(UpperCAmelCase_ : Dict , UpperCAmelCase_ : int ): return [l[i : i + n] for i in range(0 , len(UpperCAmelCase_ ) , UpperCAmelCase_ )] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] if self.params.mlm: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: SCREAMING_SNAKE_CASE__ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: SCREAMING_SNAKE_CASE__ = np.insert(UpperCAmelCase_ , 0 , UpperCAmelCase_ ) if sub_s[-1] != sep_id: SCREAMING_SNAKE_CASE__ = np.insert(UpperCAmelCase_ , len(UpperCAmelCase_ ) , UpperCAmelCase_ ) assert len(UpperCAmelCase_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(UpperCAmelCase_ ) new_tok_ids.extend(UpperCAmelCase_ ) new_lengths.extend([len(UpperCAmelCase_ ) for l in sub_seqs] ) SCREAMING_SNAKE_CASE__ = np.array(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = np.array(UpperCAmelCase_ ) def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = len(self ) SCREAMING_SNAKE_CASE__ = self.lengths > 11 SCREAMING_SNAKE_CASE__ = self.token_ids[indices] SCREAMING_SNAKE_CASE__ = self.lengths[indices] SCREAMING_SNAKE_CASE__ = len(self ) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def A_ ( self : Optional[int] ): if "unk_token" not in self.params.special_tok_ids: return else: SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids['unk_token'] SCREAMING_SNAKE_CASE__ = len(self ) SCREAMING_SNAKE_CASE__ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) SCREAMING_SNAKE_CASE__ = (unk_occs / self.lengths) < 0.5 SCREAMING_SNAKE_CASE__ = self.token_ids[indices] SCREAMING_SNAKE_CASE__ = self.lengths[indices] SCREAMING_SNAKE_CASE__ = len(self ) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def A_ ( self : List[str] ): if not self.params.is_master: return logger.info(F'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def A_ ( self : Dict , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE__ = [t[0] for t in batch] SCREAMING_SNAKE_CASE__ = [t[1] for t in batch] assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) # Max for paddings SCREAMING_SNAKE_CASE__ = max(UpperCAmelCase_ ) # Pad token ids if self.params.mlm: SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids['pad_token'] else: SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids['unk_token'] SCREAMING_SNAKE_CASE__ = [list(t.astype(UpperCAmelCase_ ) ) + [pad_idx] * (max_seq_len_ - len(UpperCAmelCase_ )) for t in token_ids] assert len(tk_ ) == len(UpperCAmelCase_ ) assert all(len(UpperCAmelCase_ ) == max_seq_len_ for t in tk_ ) SCREAMING_SNAKE_CASE__ = torch.tensor(tk_ ) # (bs, max_seq_len_) SCREAMING_SNAKE_CASE__ = torch.tensor(UpperCAmelCase_ ) # (bs) return tk_t, lg_t
169
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _lowercase ( UpperCamelCase_ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ = int(number**0.5 ) return number == sq * sq def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> tuple[int, int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE__ = x_den * y_den * z_den SCREAMING_SNAKE_CASE__ = gcd(UpperCamelCase_ , UpperCamelCase_ ) top //= hcf bottom //= hcf return top, bottom def _lowercase ( UpperCamelCase_ = 35 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = set() SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = Fraction(0 ) SCREAMING_SNAKE_CASE__ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 SCREAMING_SNAKE_CASE__ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE__ = x_den * y_den SCREAMING_SNAKE_CASE__ = gcd(UpperCamelCase_ , UpperCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE__ = add_three( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) unique_s.add(UpperCamelCase_ ) # n=2 SCREAMING_SNAKE_CASE__ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE__ = x_den * x_den * y_den * y_den if is_sq(UpperCamelCase_ ) and is_sq(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = int(sqrt(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = int(sqrt(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = gcd(UpperCamelCase_ , UpperCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE__ = add_three( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) unique_s.add(UpperCamelCase_ ) # n=-1 SCREAMING_SNAKE_CASE__ = x_num * y_num SCREAMING_SNAKE_CASE__ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE__ = gcd(UpperCamelCase_ , UpperCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE__ = add_three( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) unique_s.add(UpperCamelCase_ ) # n=2 SCREAMING_SNAKE_CASE__ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE__ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(UpperCamelCase_ ) and is_sq(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = int(sqrt(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = int(sqrt(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = gcd(UpperCamelCase_ , UpperCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE__ = add_three( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) unique_s.add(UpperCamelCase_ ) for num, den in unique_s: total += Fraction(UpperCamelCase_ , UpperCamelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
169
1
'''simple docstring''' from functools import reduce lowercase__ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def UpperCamelCase( UpperCAmelCase_ = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda UpperCAmelCase_ , UpperCAmelCase_ : str(int(UpperCAmelCase_ ) * int(UpperCAmelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(UpperCAmelCase_ ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
151
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if len(UpperCAmelCase_ ) < k or k < 0: raise ValueError('Invalid Input' ) UpperCAmelCase : Tuple = sum(array[:k] ) for i in range(len(UpperCAmelCase_ ) - k ): UpperCAmelCase : Optional[Any] = current_sum - array[i] + array[i + k] UpperCAmelCase : List[Any] = max(UpperCAmelCase_ , UpperCAmelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowercase__ = [randint(-1000, 1000) for i in range(100)] lowercase__ = randint(0, 110) print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
151
1
"""simple docstring""" def _snake_case ( lowercase__ : List[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :Optional[int] = 0 lowerCAmelCase_ :int = len(lowercase__ ) for i in range(n - 1 ): for j in range(i + 1 , lowercase__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _snake_case ( lowercase__ : List[str] ) -> Optional[Any]: '''simple docstring''' if len(lowercase__ ) <= 1: return arr, 0 lowerCAmelCase_ :Dict = len(lowercase__ ) // 2 lowerCAmelCase_ :List[str] = arr[0:mid] lowerCAmelCase_ :Dict = arr[mid:] lowerCAmelCase_ :str = count_inversions_recursive(lowercase__ ) lowerCAmelCase_ :Union[str, Any] = count_inversions_recursive(lowercase__ ) lowerCAmelCase_ :Any = _count_cross_inversions(lowercase__ , lowercase__ ) lowerCAmelCase_ :str = inversion_p + inversions_q + cross_inversions return c, num_inversions def _snake_case ( lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :List[str] = [] lowerCAmelCase_ :str = 0 while i < len(lowercase__ ) and j < len(lowercase__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowercase__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowercase__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _snake_case ( ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ :int = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowerCAmelCase_ :List[Any] = count_inversions_bf(lowercase__ ) lowerCAmelCase_ :Optional[int] = count_inversions_recursive(lowercase__ ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , lowercase__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowerCAmelCase_ :List[Any] = count_inversions_bf(lowercase__ ) lowerCAmelCase_ :str = count_inversions_recursive(lowercase__ ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , lowercase__ ) # an empty list should also have zero inversions lowerCAmelCase_ :Union[str, Any] = [] lowerCAmelCase_ :str = count_inversions_bf(lowercase__ ) lowerCAmelCase_ :List[Any] = count_inversions_recursive(lowercase__ ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , lowercase__ ) if __name__ == "__main__": main()
352
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Dict = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCAmelCase_ :List[str] = "CIDAS/clipseg-rd64-refined" UpperCAmelCase_ :List[Any] = "image_segmenter" UpperCAmelCase_ :Optional[int] = CLIPSegForImageSegmentation UpperCAmelCase_ :Tuple = ["image", "text"] UpperCAmelCase_ :Dict = ["image"] def __init__( self , *__A , **__A ) -> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__A , **__A ) def __lowerCAmelCase ( self , __A , __A ) -> Any: return self.pre_processor(text=[label] , images=[image] , padding=__A , return_tensors="""pt""" ) def __lowerCAmelCase ( self , __A ) -> Tuple: with torch.no_grad(): lowerCAmelCase_ :Dict = self.model(**__A ).logits return logits def __lowerCAmelCase ( self , __A ) -> Tuple: lowerCAmelCase_ :Optional[int] = outputs.cpu().detach().numpy() lowerCAmelCase_ :List[str] = 0 lowerCAmelCase_ :str = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
1
0
from argparse import ArgumentParser from .env import EnvironmentCommand def _SCREAMING_SNAKE_CASE ( ) -> str: __A : List[str] = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __A : Optional[Any] = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(a ) # Let's go __A : List[str] = parser.parse_args() if not hasattr(a , 'func' ): parser.print_help() exit(1 ) # Run __A : Optional[int] = args.func(a ) service.run() if __name__ == "__main__": main()
280
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _A: """simple docstring""" def __init__( self , _A = None ): if components is None: __A : int = [] __A : Tuple = list(_A ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(_A , self.__components ) ) + ")" def __add__( self , _A ): __A : Optional[int] = len(self ) if size == len(_A ): __A : Any = [self.__components[i] + other.component(_A ) for i in range(_A )] return Vector(_A ) else: raise Exception('must have the same size' ) def __sub__( self , _A ): __A : Tuple = len(self ) if size == len(_A ): __A : Union[str, Any] = [self.__components[i] - other.component(_A ) for i in range(_A )] return Vector(_A ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , _A ): ... @overload def __mul__( self , _A ): ... def __mul__( self , _A ): if isinstance(_A , (float, int) ): __A : str = [c * other for c in self.__components] return Vector(_A ) elif isinstance(_A , _A ) and len(self ) == len(_A ): __A : Union[str, Any] = len(self ) __A : Dict = [self.__components[i] * other.component(_A ) for i in range(_A )] return sum(_A ) else: # error case raise Exception('invalid operand!' ) def UpperCAmelCase_ ( self ): return Vector(self.__components ) def UpperCAmelCase_ ( self , _A ): if isinstance(_A , _A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCAmelCase_ ( self , _A , _A ): assert -len(self.__components ) <= pos < len(self.__components ) __A : Optional[int] = value def UpperCAmelCase_ ( self ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) __A : Optional[Any] = [c**2 for c in self.__components] return math.sqrt(sum(_A ) ) def UpperCAmelCase_ ( self , _A , _A = False ): __A : Optional[Any] = self * other __A : Optional[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _SCREAMING_SNAKE_CASE ( a ) -> Vector: assert isinstance(a , a ) return Vector([0] * dimension ) def _SCREAMING_SNAKE_CASE ( a , a ) -> Vector: assert isinstance(a , a ) and (isinstance(a , a )) __A : Optional[Any] = [0] * dimension __A : Tuple = 1 return Vector(a ) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Vector: assert ( isinstance(a , a ) and isinstance(a , a ) and (isinstance(a , (int, float) )) ) return x * scalar + y def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Vector: random.seed(a ) __A : str = [random.randint(a , a ) for _ in range(a )] return Vector(a ) class _A: """simple docstring""" def __init__( self , _A , _A , _A ): __A : Optional[Any] = matrix __A : Dict = w __A : Optional[int] = h def __str__( self ): __A : Tuple = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , _A ): if self.__width == other.width() and self.__height == other.height(): __A : Optional[Any] = [] for i in range(self.__height ): __A : Optional[Any] = [ self.__matrix[i][j] + other.component(_A , _A ) for j in range(self.__width ) ] matrix.append(_A ) return Matrix(_A , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , _A ): if self.__width == other.width() and self.__height == other.height(): __A : Tuple = [] for i in range(self.__height ): __A : str = [ self.__matrix[i][j] - other.component(_A , _A ) for j in range(self.__width ) ] matrix.append(_A ) return Matrix(_A , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , _A ): ... @overload def __mul__( self , _A ): ... def __mul__( self , _A ): if isinstance(_A , _A ): # matrix-vector if len(_A ) == self.__width: __A : List[Any] = zero_vector(self.__height ) for i in range(self.__height ): __A : List[str] = [ self.__matrix[i][j] * other.component(_A ) for j in range(self.__width ) ] ans.change_component(_A , sum(_A ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(_A , (int, float) ): # matrix-scalar __A : List[str] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_A , self.__width , self.__height ) return None def UpperCAmelCase_ ( self ): return self.__height def UpperCAmelCase_ ( self ): return self.__width def UpperCAmelCase_ ( self , _A , _A ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCAmelCase_ ( self , _A , _A , _A ): if 0 <= x < self.__height and 0 <= y < self.__width: __A : int = value else: raise Exception('change_component: indices out of bounds' ) def UpperCAmelCase_ ( self , _A , _A ): if self.__height != self.__width: raise Exception('Matrix is not square' ) __A : List[str] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_A ) ): __A : Optional[int] = minor[i][:y] + minor[i][y + 1 :] return Matrix(_A , self.__width - 1 , self.__height - 1 ).determinant() def UpperCAmelCase_ ( self , _A , _A ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_A , _A ) else: raise Exception('Indices out of bounds' ) def UpperCAmelCase_ ( self ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __A : List[str] = [ self.__matrix[0][y] * self.cofactor(0 , _A ) for y in range(self.__width ) ] return sum(_A ) def _SCREAMING_SNAKE_CASE ( a ) -> Matrix: __A : list[list[float]] = [[0] * n for _ in range(a )] return Matrix(a , a , a ) def _SCREAMING_SNAKE_CASE ( a , a , a , a ) -> Matrix: random.seed(a ) __A : list[list[float]] = [ [random.randint(a , a ) for _ in range(a )] for _ in range(a ) ] return Matrix(a , a , a )
280
1
__lowercase = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } __lowercase = {value: key for key, value in encode_dict.items()} def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if set(SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) __UpperCamelCase :Optional[Any] = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] __UpperCamelCase :Optional[int] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
370
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : List[Any] = PhobertTokenizer a__ : Union[str, Any] = False def UpperCamelCase__ ( self) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase :Union[str, Any] = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] __UpperCamelCase :int = dict(zip(__lowercase , range(len(__lowercase)))) __UpperCamelCase :Dict = ['''#version: 0.2''', '''l à</w>'''] __UpperCamelCase :Any = {'''unk_token''': '''<unk>'''} __UpperCamelCase :int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""") with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(__lowercase)) def UpperCamelCase__ ( self , **__lowercase) -> Optional[Any]: kwargs.update(self.special_tokens_map) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self , __lowercase) -> int: __UpperCamelCase :List[Any] = '''Tôi là VinAI Research''' __UpperCamelCase :List[str] = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Dict = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) __UpperCamelCase :List[Any] = '''Tôi là VinAI Research''' __UpperCamelCase :List[str] = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() __UpperCamelCase :int = tokenizer.tokenize(__lowercase) print(__lowercase) self.assertListEqual(__lowercase , __lowercase) __UpperCamelCase :Dict = tokens + [tokenizer.unk_token] __UpperCamelCase :Any = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase) , __lowercase)
105
0
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports _UpperCAmelCase = """ import os """ _UpperCAmelCase = """ def foo(): import os return False """ _UpperCAmelCase = """ def foo(): def bar(): if True: import os return False return bar() """ _UpperCAmelCase = """ import os try: import bar except ImportError: raise ValueError() """ _UpperCAmelCase = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _UpperCAmelCase = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _UpperCAmelCase = """ import os try: import bar except ImportError as e: raise ValueError() """ _UpperCAmelCase = """ import os try: import bar except: raise ValueError() """ _UpperCAmelCase = """ import os try: import bar import baz except ImportError: raise ValueError() """ _UpperCAmelCase = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _UpperCAmelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , lowercase ) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: str =os.path.join(lowercase , """test_file.py""" ) with open(lowercase , """w""" ) as _tmp_file: _tmp_file.write(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =get_imports(lowercase ) assert parsed_imports == ["os"]
173
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __magic_name__ ( lowercase=None ): if subparsers is not None: SCREAMING_SNAKE_CASE_: Dict =subparsers.add_parser("""test""" ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=lowercase , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowercase ) return parser def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: SCREAMING_SNAKE_CASE_: Any =script_name else: SCREAMING_SNAKE_CASE_: int =f'''--config_file={args.config_file} {script_name}''' SCREAMING_SNAKE_CASE_: Any =["""accelerate-launch"""] + test_args.split() SCREAMING_SNAKE_CASE_: Dict =execute_subprocess_async(lowercase , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =test_command_parser() SCREAMING_SNAKE_CASE_: List[str] =parser.parse_args() test_command(lowercase ) if __name__ == "__main__": main()
173
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = GPTSanJapaneseTokenizer lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Union[str, Any] = {"""do_clean_text""": False, """add_prefix_space""": False} def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" super().setUp() # fmt: off UpperCAmelCase__ = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on UpperCAmelCase__ = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 UpperCAmelCase__ = {"""unk_token""": """<unk>"""} UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , **_UpperCAmelCase : Optional[int] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Any ): """simple docstring""" UpperCAmelCase__ = """こんにちは、世界。 \nこんばんは、㔺界。😀""" UpperCAmelCase__ = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。 こんばんは、㔺界。""" UpperCAmelCase__ = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids without special tokens UpperCAmelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids with special tokens UpperCAmelCase__ = tokens + [tokenizer.unk_token] UpperCAmelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" UpperCAmelCase__ = """こんにちは、、、、世界。こんばんは、、、、世界。""" UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。""" UpperCAmelCase__ = """こんばんは、㔺界。😀""" UpperCAmelCase__ = """こんにちは、世界。こんばんは、世界。😀""" UpperCAmelCase__ = tokenizer.encode(prefix_text + input_text ) UpperCAmelCase__ = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , prefix_text=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。""" UpperCAmelCase__ = """こんばんは、㔺界。😀""" UpperCAmelCase__ = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 UpperCAmelCase__ = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 UpperCAmelCase__ = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase__ = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase__ = tokenizer(prefix_text + input_text ).token_type_ids UpperCAmelCase__ = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids UpperCAmelCase__ = tokenizer(_UpperCAmelCase , prefix_text=_UpperCAmelCase ).token_type_ids self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) UpperCAmelCase__ = tokenizer.encode("""あンいワ""" ) UpperCAmelCase__ = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) UpperCAmelCase__ = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) UpperCAmelCase__ = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] UpperCAmelCase__ = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.batch_encode_plus(_UpperCAmelCase , padding=_UpperCAmelCase ) # fmt: off UpperCAmelCase__ = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] UpperCAmelCase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token.attention_mask , _UpperCAmelCase ) self.assertListEqual(x_token_a.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.attention_mask , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass
61
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 def __init__( self :int , lowerCamelCase :UNetaDModel , lowerCamelCase :ScoreSdeVeScheduler ) -> Any: super().__init__() self.register_modules(unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self :Optional[Any] , lowerCamelCase :int = 1 , lowerCamelCase :int = 2000 , lowerCamelCase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase :Optional[str] = "pil" , lowerCamelCase :bool = True , **lowerCamelCase :Any , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase__ = self.unet.config.sample_size UpperCAmelCase__ = (batch_size, 3, img_size, img_size) UpperCAmelCase__ = self.unet UpperCAmelCase__ = randn_tensor(lowerCamelCase , generator=lowerCamelCase ) * self.scheduler.init_noise_sigma UpperCAmelCase__ = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase ) self.scheduler.set_sigmas(lowerCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase__ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase__ = self.unet(lowerCamelCase , lowerCamelCase ).sample UpperCAmelCase__ = self.scheduler.step_correct(lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ).prev_sample # prediction step UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ).sample UpperCAmelCase__ = self.scheduler.step_pred(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = output.prev_sample, output.prev_sample_mean UpperCAmelCase__ = sample_mean.clamp(0 , 1 ) UpperCAmelCase__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase )
169
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """markuplm""" def __init__( self :Dict , lowerCamelCase :List[Any]=3_0522 , lowerCamelCase :List[Any]=768 , lowerCamelCase :Union[str, Any]=12 , lowerCamelCase :Optional[int]=12 , lowerCamelCase :List[str]=3072 , lowerCamelCase :Dict="gelu" , lowerCamelCase :List[str]=0.1 , lowerCamelCase :Union[str, Any]=0.1 , lowerCamelCase :int=512 , lowerCamelCase :Union[str, Any]=2 , lowerCamelCase :int=0.02 , lowerCamelCase :int=1e-12 , lowerCamelCase :Tuple=0 , lowerCamelCase :List[str]=0 , lowerCamelCase :int=2 , lowerCamelCase :Optional[int]=256 , lowerCamelCase :List[str]=1024 , lowerCamelCase :Optional[Any]=216 , lowerCamelCase :str=1001 , lowerCamelCase :List[str]=32 , lowerCamelCase :Dict=50 , lowerCamelCase :int="absolute" , lowerCamelCase :Union[str, Any]=True , lowerCamelCase :Dict=None , **lowerCamelCase :List[Any] , ) -> int: super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase , ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache UpperCAmelCase__ = classifier_dropout # additional properties UpperCAmelCase__ = max_depth UpperCAmelCase__ = max_xpath_tag_unit_embeddings UpperCAmelCase__ = max_xpath_subs_unit_embeddings UpperCAmelCase__ = tag_pad_id UpperCAmelCase__ = subs_pad_id UpperCAmelCase__ = xpath_unit_hidden_size
169
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ = ['''pixel_values'''] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = True , lowercase = None , lowercase = True , lowercase = 1 / 2_5_5 , lowercase = True , lowercase = None , lowercase = None , **lowercase , ): """simple docstring""" super().__init__(**__snake_case ) A_ : Tuple = size if size is not None else {'shortest_edge': 2_5_6} A_ : Dict = get_size_dict(__snake_case , default_to_square=__snake_case ) A_ : Optional[Any] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} A_ : Union[str, Any] = get_size_dict(__snake_case , param_name='crop_size' ) A_ : Union[str, Any] = do_resize A_ : Tuple = size A_ : Tuple = resample A_ : Union[str, Any] = do_center_crop A_ : Dict = crop_size A_ : Optional[int] = do_rescale A_ : Union[str, Any] = rescale_factor A_ : Tuple = do_normalize A_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A_ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ): """simple docstring""" A_ : Any = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) A_ : Optional[Any] = get_resize_output_image_size(__snake_case , size=size['shortest_edge'] , default_to_square=__snake_case ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase = None , **lowercase , ): """simple docstring""" A_ : Dict = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(__snake_case , size=(size['height'], size['width']) , data_format=__snake_case , **__snake_case ) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): """simple docstring""" return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ): """simple docstring""" return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): """simple docstring""" A_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize A_ : Dict = size if size is not None else self.size A_ : Optional[int] = get_size_dict(__snake_case , default_to_square=__snake_case ) A_ : Any = resample if resample is not None else self.resample A_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : Tuple = crop_size if crop_size is not None else self.crop_size A_ : List[Any] = get_size_dict(__snake_case , param_name='crop_size' ) A_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale A_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : Any = do_normalize if do_normalize is not None else self.do_normalize A_ : Tuple = image_mean if image_mean is not None else self.image_mean A_ : Any = image_std if image_std is not None else self.image_std A_ : Tuple = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A_ : List[str] = [to_numpy_array(__snake_case ) for image in images] if do_resize: A_ : int = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: A_ : Optional[Any] = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: A_ : str = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: A_ : str = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] A_ : int = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] A_ : Tuple = {'pixel_values': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case ) def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__snake_case ) != len(__snake_case ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(__snake_case ): A_ : Tuple = target_sizes.numpy() A_ : Dict = [] for idx in range(len(__snake_case ) ): A_ : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=__snake_case ) A_ : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__snake_case ) else: A_ : List[Any] = logits.argmax(dim=1 ) A_ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
371
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''lilt''' def __init__( self , lowercase=3_0_5_2_2 , lowercase=7_6_8 , lowercase=1_2 , lowercase=1_2 , lowercase=3_0_7_2 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase="absolute" , lowercase=None , lowercase=4 , lowercase=1_0_2_4 , **lowercase , ): """simple docstring""" super().__init__(pad_token_id=lowercase , **lowercase ) A_ : str = vocab_size A_ : Tuple = hidden_size A_ : List[Any] = num_hidden_layers A_ : Any = num_attention_heads A_ : Union[str, Any] = hidden_act A_ : int = intermediate_size A_ : int = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : List[str] = max_position_embeddings A_ : List[str] = type_vocab_size A_ : Any = initializer_range A_ : str = layer_norm_eps A_ : Optional[int] = position_embedding_type A_ : Union[str, Any] = classifier_dropout A_ : Optional[Any] = channel_shrink_ratio A_ : int = max_ad_position_embeddings
192
0
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def lowerCamelCase ( UpperCAmelCase__ : str = "isbn/0140328726" ) -> dict: lowercase_ : List[Any] = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: lowercase_ : Union[str, Any] = F'''{olid} is not a valid Open Library olid''' raise ValueError(snake_case_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def lowerCamelCase ( UpperCAmelCase__ : dict ) -> dict: lowercase_ : Optional[Any] = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } lowercase_ : List[Any] = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowercase_ : Any = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] lowercase_ : Dict = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(snake_case_ , snake_case_ ): lowercase_ : Dict = """, """.join(snake_case_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowercase : Tuple = input("\nEnter the ISBN code to search (or \'quit\' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(f"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowercase : Union[str, Any] = summarize_book(get_openlibrary_data(f"""isbn/{isbn}""")) print("\n".join(f"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f"""Sorry, there are no results for ISBN: {isbn}.""")
239
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = checkpoint UpperCAmelCase_ = {} UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(snake_case_ ) } for i in range(snake_case_ ): UpperCAmelCase_ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) for i in range(snake_case_ ): UpperCAmelCase_ = num_up_blocks - 1 - i UpperCAmelCase_ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) return new_checkpoint def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ = io.BytesIO(r.content ) UpperCAmelCase_ = OmegaConf.load(snake_case_ ) UpperCAmelCase_ = 5_12 UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ = {} with safe_open(snake_case_ , framework="pt" , device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ = f.get_tensor(snake_case_ ) else: UpperCAmelCase_ = torch.load(snake_case_ , map_location=snake_case_ )["state_dict"] # Convert the VAE model. UpperCAmelCase_ = create_vae_diffusers_config(snake_case_ , image_size=snake_case_ ) UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(snake_case_ , snake_case_ ) UpperCAmelCase_ = AutoencoderKL(**snake_case_ ) vae.load_state_dict(snake_case_ ) vae.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') SCREAMING_SNAKE_CASE_: str =parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
1
0
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : int = XLMTokenizer lowercase : Tuple = False def a__ ( self :List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] snake_case_ : str = dict(zip(_UpperCamelCase ,range(len(_UpperCamelCase ) ) ) ) snake_case_ : Optional[int] = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] snake_case_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) with open(self.merges_file ,"""w""" ) as fp: fp.write("""\n""".join(_UpperCamelCase ) ) def a__ ( self :Tuple ,_UpperCamelCase :List[str] ): snake_case_ : Union[str, Any] = """lower newer""" snake_case_ : int = """lower newer""" return input_text, output_text def a__ ( self :str ): snake_case_ : Tuple = XLMTokenizer(self.vocab_file ,self.merges_file ) snake_case_ : str = """lower""" snake_case_ : Union[str, Any] = ["""low""", """er</w>"""] snake_case_ : str = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Union[str, Any] = tokens + ["""<unk>"""] snake_case_ : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) ,_UpperCamelCase ) @slow def a__ ( self :Optional[int] ): snake_case_ : str = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) snake_case_ : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=_UpperCamelCase ) snake_case_ : List[Any] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=_UpperCamelCase ) snake_case_ : int = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) snake_case_ : Tuple = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ,_UpperCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
353
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A : Tuple = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): lowercase : str = ['input_values', 'padding_mask'] def __init__( self :Optional[int] ,_UpperCamelCase :int = 1 ,_UpperCamelCase :int = 2_4_0_0_0 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :float = None ,_UpperCamelCase :float = None ,**_UpperCamelCase :List[Any] ,): super().__init__(feature_size=_UpperCamelCase ,sampling_rate=_UpperCamelCase ,padding_value=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Dict = chunk_length_s snake_case_ : str = overlap @property def a__ ( self :Any ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__ ( self :List[str] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self :Optional[Any] ,_UpperCamelCase :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_UpperCamelCase :Optional[Union[bool, str, PaddingStrategy]] = None ,_UpperCamelCase :Optional[bool] = False ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :Optional[Union[str, TensorType]] = None ,_UpperCamelCase :Optional[int] = None ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs snake_case_ : Tuple = True snake_case_ : str = bool( isinstance(_UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : Any = [np.asarray(_UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_UpperCamelCase ,np.ndarray ): snake_case_ : Optional[int] = np.asarray(_UpperCamelCase ,dtype=np.floataa ) elif isinstance(_UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): snake_case_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Optional[Any] = [np.asarray(_UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(_UpperCamelCase ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) snake_case_ : Tuple = None snake_case_ : Optional[Any] = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: snake_case_ : Union[str, Any] = min(array.shape[0] for array in raw_audio ) snake_case_ : Dict = int(np.floor(max_length / self.chunk_stride ) ) snake_case_ : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: snake_case_ : Any = max(array.shape[0] for array in raw_audio ) snake_case_ : List[Any] = int(np.ceil(max_length / self.chunk_stride ) ) snake_case_ : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length snake_case_ : Union[str, Any] = """max_length""" else: snake_case_ : int = input_values # normal padding on batch if padded_inputs is None: snake_case_ : Optional[int] = self.pad( _UpperCamelCase ,max_length=_UpperCamelCase ,truncation=_UpperCamelCase ,padding=_UpperCamelCase ,return_attention_mask=_UpperCamelCase ,) if padding: snake_case_ : Tuple = padded_inputs.pop("""attention_mask""" ) snake_case_ : Optional[int] = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: snake_case_ : Dict = example[..., None] input_values.append(example.T ) snake_case_ : List[Any] = input_values if return_tensors is not None: snake_case_ : Tuple = padded_inputs.convert_to_tensors(_UpperCamelCase ) return padded_inputs
8
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __lowerCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase_ : List[Any] = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=_lowercase , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=_lowercase , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=_lowercase ) return parser.parse_args() def __lowerCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase_ : Optional[int] = parse_args() # Import training_script as a module. lowerCAmelCase_ : Dict = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase_ : List[str] = script_fpath.stem lowerCAmelCase_ : Optional[Any] = importlib.import_module(_lowercase ) # Patch sys.argv lowerCAmelCase_ : Optional[int] = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
241
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( _lowercase : list[int] , _lowercase : int ) ->int: '''simple docstring''' if len(_lowercase ) < k or k < 0: raise ValueError("Invalid Input" ) a : Optional[Any] = sum(array[:k] ) for i in range(len(_lowercase ) - k ): a : Optional[Any] = current_sum - array[i] + array[i + k] a : Union[str, Any] = max(_lowercase , _lowercase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() a : Any = [randint(-1000, 1000) for i in range(100)] a : List[str] = randint(0, 110) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
105
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class a__ ( a__ ): '''simple docstring''' lowercase__ : Tuple = ["input_values", "padding_mask"] def __init__( self , lowerCamelCase_ = 1 , lowerCamelCase_ = 2_40_00 , lowerCamelCase_ = 0.0 , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> Any: super().__init__(feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = chunk_length_s lowerCAmelCase__ = overlap @property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs lowerCAmelCase__ = True lowerCAmelCase__ = bool( isinstance(lowerCamelCase_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase__ = [np.asarray(lowerCamelCase_ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray ): lowerCAmelCase__ = np.asarray(lowerCamelCase_ , dtype=np.floataa ) elif isinstance(lowerCamelCase_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowerCAmelCase__ = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase__ = [np.asarray(lowerCamelCase_ ).T] # verify inputs are valid for idx, example in enumerate(lowerCamelCase_ ): if example.ndim > 2: raise ValueError(F"""Expected input shape (channels, length) but got shape {example.shape}""" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F"""Expected mono audio but example has {example.shape[-1]} channels""" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F"""Expected stereo audio but example has {example.shape[-1]} channels""" ) lowerCAmelCase__ = None lowerCAmelCase__ = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowerCAmelCase__ = min(array.shape[0] for array in raw_audio ) lowerCAmelCase__ = int(np.floor(max_length / self.chunk_stride ) ) lowerCAmelCase__ = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowerCAmelCase__ = max(array.shape[0] for array in raw_audio ) lowerCAmelCase__ = int(np.ceil(max_length / self.chunk_stride ) ) lowerCAmelCase__ = (nb_step - 1) * self.chunk_stride + self.chunk_length lowerCAmelCase__ = '''max_length''' else: lowerCAmelCase__ = input_values # normal padding on batch if padded_inputs is None: lowerCAmelCase__ = self.pad( lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ , padding=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) if padding: lowerCAmelCase__ = padded_inputs.pop('''attention_mask''' ) lowerCAmelCase__ = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: lowerCAmelCase__ = example[..., None] input_values.append(example.T ) lowerCAmelCase__ = input_values if return_tensors is not None: lowerCAmelCase__ = padded_inputs.convert_to_tensors(lowerCamelCase_ ) return padded_inputs
352
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class a__ ( a__ ): '''simple docstring''' lowercase__ : Dict = "" lowercase__ : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowercase__ : str = None # compression type in fsspec. ex: "gzip" lowercase__ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , lowerCamelCase_ = "" , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ ) -> Any: super().__init__(self , **lowerCamelCase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCAmelCase__ = fsspec.open( lowerCamelCase_ , mode='''rb''' , protocol=lowerCamelCase_ , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCAmelCase__ = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCAmelCase__ = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCAmelCase__ = None @classmethod def __SCREAMING_SNAKE_CASE ( cls , lowerCamelCase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowerCamelCase_ ).lstrip('''/''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if self.dir_cache is None: lowerCAmelCase__ = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCAmelCase__ = {f['''name''']: f} def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[Any]: return self.file.open().read() def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = "rb" , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> List[str]: lowerCAmelCase__ = self._strip_protocol(lowerCamelCase_ ) if mode != "rb": raise ValueError(F"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class a__ ( a__ ): '''simple docstring''' lowercase__ : Optional[Any] = "bz2" lowercase__ : str = "bz2" lowercase__ : Optional[int] = ".bz2" class a__ ( a__ ): '''simple docstring''' lowercase__ : Any = "gzip" lowercase__ : int = "gzip" lowercase__ : int = ".gz" class a__ ( a__ ): '''simple docstring''' lowercase__ : Tuple = "lz4" lowercase__ : Optional[Any] = "lz4" lowercase__ : int = ".lz4" class a__ ( a__ ): '''simple docstring''' lowercase__ : Optional[int] = "xz" lowercase__ : str = "xz" lowercase__ : List[Any] = ".xz" class a__ ( a__ ): '''simple docstring''' lowercase__ : Union[str, Any] = "zstd" lowercase__ : Union[str, Any] = "zstd" lowercase__ : Dict = ".zst" def __init__( self , lowerCamelCase_ , lowerCamelCase_ = "rb" , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = DEFAULT_BLOCK_SIZE , **lowerCamelCase_ , ) -> List[Any]: super().__init__( fo=lowerCamelCase_ , mode=lowerCamelCase_ , target_protocol=lowerCamelCase_ , target_options=lowerCamelCase_ , block_size=lowerCamelCase_ , **lowerCamelCase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCAmelCase__ = self.file.__enter__ class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = file_ def __enter__( self ) -> Tuple: self._file.__enter__() return self def __exit__( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> str: self._file.__exit__(*lowerCamelCase_ , **lowerCamelCase_ ) def __iter__( self ) -> Any: return iter(self._file ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return next(self._file ) def __getattr__( self , lowerCamelCase_ ) -> str: return getattr(self._file , lowerCamelCase_ ) def fixed_enter(*lowerCamelCase_ , **lowerCamelCase_ ): return WrappedFile(_enter(*lowerCamelCase_ , **lowerCamelCase_ ) ) lowerCAmelCase__ = fixed_enter
228
0
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) _a = logging.getLogger(__name__) _a = tf.data.AUTOTUNE def __a ( ): UpperCAmelCase_ : Any = argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config", type=__lowerCamelCase, default="roberta-base", help="The model config to use. Note that we don't copy the model's weights, only the config!", ) parser.add_argument( "--tokenizer", type=__lowerCamelCase, default="unigram-tokenizer-wikitext", help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.", ) parser.add_argument( "--per_replica_batch_size", type=__lowerCamelCase, default=8, help="Batch size per TPU core.", ) parser.add_argument( "--no_tpu", action="store_true", help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.", ) parser.add_argument( "--tpu_name", type=__lowerCamelCase, help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.", default="local", ) parser.add_argument( "--tpu_zone", type=__lowerCamelCase, help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.", ) parser.add_argument( "--gcp_project", type=__lowerCamelCase, help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16", action="store_true", help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.", ) parser.add_argument( "--train_dataset", type=__lowerCamelCase, help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket.", ) parser.add_argument( "--shuffle_buffer_size", type=__lowerCamelCase, default=2**18, help="Size of the shuffle buffer (in samples)", ) parser.add_argument( "--eval_dataset", type=__lowerCamelCase, help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket.", ) parser.add_argument( "--num_epochs", type=__lowerCamelCase, default=1, help="Number of epochs to train for.", ) parser.add_argument( "--learning_rate", type=__lowerCamelCase, default=1E-4, help="Learning rate to use for training.", ) parser.add_argument( "--weight_decay_rate", type=__lowerCamelCase, default=1E-3, help="Weight decay rate to use for training.", ) parser.add_argument( "--max_length", type=__lowerCamelCase, default=512, help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py", ) parser.add_argument( "--mlm_probability", type=__lowerCamelCase, default=0.15, help="Fraction of tokens to mask during training.", ) parser.add_argument("--output_dir", type=__lowerCamelCase, required=__lowerCamelCase, help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id", type=__lowerCamelCase, help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ : Dict = parser.parse_args() return args def __a ( __lowerCamelCase ): try: if args.tpu_name: UpperCAmelCase_ : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: UpperCAmelCase_ : Dict = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(__lowerCamelCase ) tf.tpu.experimental.initialize_tpu_system(__lowerCamelCase ) return tpu def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 for file in file_list: UpperCAmelCase_ : Union[str, Any] = file.split("/" )[-1] UpperCAmelCase_ : Union[str, Any] = re.search(r"-\d+-(\d+)\.tfrecord", __lowerCamelCase ).group(1 ) UpperCAmelCase_ : List[Any] = int(__lowerCamelCase ) num_samples += sample_count return num_samples def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None ): UpperCAmelCase_ : Optional[int] = count_samples(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = tf.data.Dataset.from_tensor_slices(__lowerCamelCase ) if shuffle: UpperCAmelCase_ : Dict = dataset.shuffle(len(__lowerCamelCase ) ) UpperCAmelCase_ : Any = tf.data.TFRecordDataset(__lowerCamelCase, num_parallel_reads=__lowerCamelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ : str = dataset.apply(tf.data.experimental.assert_cardinality(__lowerCamelCase ) ) UpperCAmelCase_ : Any = dataset.map(__lowerCamelCase, num_parallel_calls=__lowerCamelCase ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ : Optional[int] = dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ : Tuple = dataset.batch(__lowerCamelCase, drop_remainder=__lowerCamelCase ) UpperCAmelCase_ : Tuple = dataset.map(__lowerCamelCase, num_parallel_calls=__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = dataset.prefetch(__lowerCamelCase ) return dataset def __a ( __lowerCamelCase ): if not args.no_tpu: UpperCAmelCase_ : List[str] = initialize_tpu(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = tf.distribute.TPUStrategy(__lowerCamelCase ) else: UpperCAmelCase_ : Dict = tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ : Optional[Any] = AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ : Any = tokenizer.vocab_size UpperCAmelCase_ : Dict = tf.io.gfile.glob(os.path.join(args.train_dataset, "*.tfrecord" ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) UpperCAmelCase_ : Union[str, Any] = tf.io.gfile.glob(os.path.join(args.eval_dataset, "*.tfrecord" ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) UpperCAmelCase_ : Union[str, Any] = count_samples(__lowerCamelCase ) UpperCAmelCase_ : Any = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ : Any = steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ : Dict = TFAutoModelForMaskedLM.from_config(__lowerCamelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ : int = create_optimizer( num_train_steps=__lowerCamelCase, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__lowerCamelCase, metrics=["accuracy"] ) def decode_fn(__lowerCamelCase ): UpperCAmelCase_ : Dict = { "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__lowerCamelCase, __lowerCamelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ : Optional[int] = DataCollatorForLanguageModeling( tokenizer=__lowerCamelCase, mlm_probability=args.mlm_probability, mlm=__lowerCamelCase, return_tensors="tf" ) def mask_with_collator(__lowerCamelCase ): # TF really needs an isin() function UpperCAmelCase_ : List[Any] = ( ~tf.cast(batch["attention_mask"], tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = data_collator.tf_mask_tokens( batch["input_ids"], vocab_size=len(__lowerCamelCase ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__lowerCamelCase, ) return batch UpperCAmelCase_ : List[str] = args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ : List[str] = prepare_dataset( __lowerCamelCase, decode_fn=__lowerCamelCase, mask_fn=__lowerCamelCase, batch_size=__lowerCamelCase, shuffle=__lowerCamelCase, shuffle_buffer_size=args.shuffle_buffer_size, ) UpperCAmelCase_ : int = prepare_dataset( __lowerCamelCase, decode_fn=__lowerCamelCase, mask_fn=__lowerCamelCase, batch_size=__lowerCamelCase, shuffle=__lowerCamelCase, ) UpperCAmelCase_ : str = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__lowerCamelCase ) ) model.fit( __lowerCamelCase, validation_data=__lowerCamelCase, epochs=args.num_epochs, callbacks=__lowerCamelCase, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": _a = parse_args() main(args)
61
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : str = checkpoint UpperCAmelCase_ : int = {} UpperCAmelCase_ : Optional[int] = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ : List[str] = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ : Optional[Any] = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ : Optional[int] = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ : List[Any] = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ : Union[str, Any] = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ : Any = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ : int = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ : Any = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ : Tuple = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ : List[Any] = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ : Tuple = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ : str = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ : Optional[Any] = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ : List[str] = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ : List[Any] = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ : Optional[Any] = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ : Optional[Any] = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(__lowerCamelCase ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ : Dict = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ : Optional[int] = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(__lowerCamelCase ) } for i in range(__lowerCamelCase ): UpperCAmelCase_ : Any = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ : Dict = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ : Dict = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ : List[str] = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : List[Any] = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ : Tuple = 2 for i in range(1, num_mid_res_blocks + 1 ): UpperCAmelCase_ : str = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ : List[Any] = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ : Union[str, Any] = renew_vae_attention_paths(__lowerCamelCase ) UpperCAmelCase_ : int = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) conv_attn_to_linear(__lowerCamelCase ) for i in range(__lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = num_up_blocks - 1 - i UpperCAmelCase_ : Any = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ : str = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ : Optional[Any] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ : Dict = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : List[str] = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ : List[Any] = 2 for i in range(1, num_mid_res_blocks + 1 ): UpperCAmelCase_ : str = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ : Tuple = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : Tuple = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ : Any = renew_vae_attention_paths(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) conv_attn_to_linear(__lowerCamelCase ) return new_checkpoint def __a ( __lowerCamelCase, __lowerCamelCase, ): # Only support V1 UpperCAmelCase_ : List[str] = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ : List[Any] = io.BytesIO(r.content ) UpperCAmelCase_ : Any = OmegaConf.load(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = 512 UpperCAmelCase_ : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ : int = {} with safe_open(__lowerCamelCase, framework="pt", device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ : Tuple = f.get_tensor(__lowerCamelCase ) else: UpperCAmelCase_ : Any = torch.load(__lowerCamelCase, map_location=__lowerCamelCase )["state_dict"] # Convert the VAE model. UpperCAmelCase_ : Dict = create_vae_diffusers_config(__lowerCamelCase, image_size=__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = custom_convert_ldm_vae_checkpoint(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : int = AutoencoderKL(**__lowerCamelCase ) vae.load_state_dict(__lowerCamelCase ) vae.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') _a = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
61
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class _a (unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ("""foo.json""",)] ) def __A ( self , A__ ): A__ : Optional[int] = GenerationConfig( do_sample=A__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A__ , config_name=A__ ) A__ : str = GenerationConfig.from_pretrained(A__ , config_name=A__ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A__ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , A__ ) def __A ( self ): A__ : List[str] = AutoConfig.from_pretrained("""gpt2""" ) A__ : Optional[int] = GenerationConfig.from_model_config(A__ ) A__ : List[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A__ , A__ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __A ( self ): A__ : Union[str, Any] = GenerationConfig() A__ : Any = { """max_new_tokens""": 1024, """foo""": """bar""", } A__ : Optional[Any] = copy.deepcopy(A__ ) A__ : Union[str, Any] = generation_config.update(**A__ ) # update_kwargs was not modified (no side effects) self.assertEqual(A__ , A__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A__ , {"""foo""": """bar"""} ) def __A ( self ): A__ : Optional[int] = GenerationConfig() A__ : Any = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(A__ ) A__ : List[Any] = GenerationConfig.from_pretrained(A__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) A__ : str = GenerationConfig.from_model_config(A__ ) assert not hasattr(A__ , """foo""" ) # no new kwargs should be initialized if from config def __A ( self ): A__ : List[str] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A__ ) self.assertEqual(default_config.num_beams , 1 ) A__ : List[str] = GenerationConfig( do_sample=A__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A__ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A__ ) A__ : Optional[Any] = GenerationConfig.from_pretrained(A__ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A__ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class _a (unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ): A__ : Optional[Any] = TOKEN HfFolder.save_token(A__ ) @classmethod def __A ( cls ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def __A ( self ): A__ : Optional[int] = GenerationConfig( do_sample=A__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) A__ : List[str] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A__ , getattr(A__ , A__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A__ , repo_id="""test-generation-config""" , push_to_hub=A__ , use_auth_token=self._token ) A__ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A__ , getattr(A__ , A__ ) ) def __A ( self ): A__ : str = GenerationConfig( do_sample=A__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) A__ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A__ , getattr(A__ , A__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A__ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=A__ , use_auth_token=self._token ) A__ : str = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A__ , getattr(A__ , A__ ) )
141
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ : Optional[Any] = 16 A_ : Optional[int] = 32 def UpperCamelCase (lowercase_: Accelerator , lowercase_: int = 16 , lowercase_: str = "bert-base-cased" ) -> List[str]: A__ : int = AutoTokenizer.from_pretrained(lowercase_ ) A__ : Union[str, Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase_: Tuple ): # max_length=None => use the model max length (it's actually the default) A__ : Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A__ : int = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase_: Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase_ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. A__ : int = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) A__ : Optional[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader def UpperCamelCase (lowercase_: Dict , lowercase_: Dict , lowercase_: Tuple , lowercase_: Optional[int] ) -> int: model.eval() A__ : str = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Any = model(**lowercase_ ) A__ : List[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A__ , A__ : str = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase_ ) - 1: A__ : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : Dict = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) A__ : int = metric.compute() return eval_metric["accuracy"] def UpperCamelCase (lowercase_: List[Any] , lowercase_: str ) -> List[str]: # Initialize accelerator A__ : str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : List[Any] = config["""lr"""] A__ : Union[str, Any] = int(config["""num_epochs"""] ) A__ : List[Any] = int(config["""seed"""] ) A__ : Optional[Any] = int(config["""batch_size"""] ) A__ : Tuple = args.model_name_or_path set_seed(lowercase_ ) A__ , A__ : Optional[Any] = get_dataloaders(lowercase_ , lowercase_ , lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Tuple = AutoModelForSequenceClassification.from_pretrained(lowercase_ , return_dict=lowercase_ ) # Instantiate optimizer A__ : Dict = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A__ : Union[str, Any] = optimizer_cls(params=model.parameters() , lr=lowercase_ ) if accelerator.state.deepspeed_plugin is not None: A__ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: A__ : Optional[int] = 1 A__ : Optional[int] = (len(lowercase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=0 , num_training_steps=lowercase_ , ) else: A__ : int = DummyScheduler(lowercase_ , total_num_steps=lowercase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : str = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # We need to keep track of how many total steps we have iterated over A__ : Dict = 0 # We also need to keep track of the stating epoch so files are named properly A__ : Any = 0 A__ : Optional[Any] = evaluate.load("""glue""" , """mrpc""" ) A__ : Optional[Any] = num_epochs if args.partial_train_epoch is not None: A__ : Tuple = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) A__ : Dict = args.resume_from_checkpoint.split("""epoch_""" )[1] A__ : int = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break A__ : Any = int(lowercase_ ) + 1 A__ : Any = evaluation_loop(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) accelerator.print("""resumed checkpoint performance:""" , lowercase_ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , """r""" ) as f: A__ : int = json.load(lowercase_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model A__ : Optional[Any] = {} for epoch in range(lowercase_ , lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): A__ : int = model(**lowercase_ ) A__ : int = outputs.loss A__ : int = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 A__ : Any = f"""epoch_{epoch}""" A__ : int = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) A__ : List[Any] = evaluation_loop(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) A__ : Tuple = accuracy A__ : Optional[Any] = lr_scheduler.get_lr()[0] A__ : Tuple = optimizer.param_groups[0]["""lr"""] A__ : int = epoch A__ : int = overall_step accelerator.print(f"""epoch {epoch}:""" , lowercase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) def UpperCamelCase () -> int: A__ : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase_ , ) parser.add_argument( """--output_dir""" , type=lowercase_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowercase_ , default=lowercase_ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=lowercase_ , default=lowercase_ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase_ , default=2 , help="""Number of train epochs.""" , ) A__ : List[str] = parser.parse_args() A__ : List[str] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
141
1
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand a : Optional[int] = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) a : Tuple = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) a : Union[str, Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) a : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) a : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) a : Optional[int] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) a : str = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def _SCREAMING_SNAKE_CASE ( ) ->Tuple: '''simple docstring''' a, a : List[Any] = randrange(len(_lowercase ) ), randrange(len(_lowercase ) ) a : Dict = ["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] a, a : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE ( _lowercase : int = 100 ) ->Tuple: '''simple docstring''' return (generate_random_hand() for _ in range(_lowercase )) @pytest.mark.parametrize("hand, expected" , _lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple , _lowercase : Tuple ) ->List[Any]: '''simple docstring''' assert PokerHand(_lowercase )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , _lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] , _lowercase : Any ) ->Union[str, Any]: '''simple docstring''' assert PokerHand(_lowercase )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , _lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : Optional[int] , _lowercase : Tuple ) ->int: '''simple docstring''' a : str = PokerHand(_lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , _lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] , _lowercase : int ) ->str: '''simple docstring''' assert PokerHand(_lowercase )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , _lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : Optional[int] ) ->Optional[Any]: '''simple docstring''' assert PokerHand(_lowercase )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , _lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : str , _lowercase : Optional[int] ) ->Union[str, Any]: '''simple docstring''' assert PokerHand(_lowercase ).compare_with(PokerHand(_lowercase ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : List[Any] , _lowercase : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' assert PokerHand(_lowercase ).compare_with(PokerHand(_lowercase ) ) == expected def _SCREAMING_SNAKE_CASE ( ) ->Optional[int]: '''simple docstring''' a : Union[str, Any] = [PokerHand(_lowercase ) for hand in SORTED_HANDS] a : Union[str, Any] = poker_hands.copy() shuffle(_lowercase ) a : Tuple = chain(sorted(_lowercase ) ) for index, hand in enumerate(_lowercase ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE ( ) ->Optional[int]: '''simple docstring''' a : int = [PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=_lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE ( ) ->List[str]: '''simple docstring''' a : List[Any] = PokerHand("2C 4S AS 3D 5C" ) a : Optional[Any] = True a : Optional[Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE ( ) ->Union[str, Any]: '''simple docstring''' a : Tuple = 0 a : Union[str, Any] = os.path.abspath(os.path.dirname(_lowercase ) ) a : Optional[Any] = os.path.join(_lowercase , "poker_hands.txt" ) with open(_lowercase ) as file_hand: for line in file_hand: a : Tuple = line[:14].strip() a : List[Any] = line[15:].strip() a, a : Optional[int] = PokerHand(_lowercase ), PokerHand(_lowercase ) a : str = player.compare_with(_lowercase ) if output == "Win": answer += 1 assert answer == 376
105
def UpperCamelCase (lowercase_: int = 10 ) -> str: if not isinstance(lowercase_ , lowercase_ ) or n < 0: raise ValueError("""Invalid input""" ) A__ : List[str] = 10**n A__ : Any = 28433 * (pow(2 , 7830457 , lowercase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(10) = }''')
192
0
def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = [] lowercase__ : Tuple = [] lowercase__ : Any = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator lowercase__ : Any = len(lowerCamelCase__ ) if (len(lowerCamelCase__ ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) , "Stack".center(lowerCamelCase__ ) , "Postfix".center(lowerCamelCase__ ) , sep=" | " , ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowerCamelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowerCamelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowerCamelCase__ ) == 0: stack.append(lowerCamelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowerCamelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowerCamelCase__ ) # push x to stack print( x.center(8 ) , ("".join(lowerCamelCase__ )).ljust(lowerCamelCase__ ) , ("".join(lowerCamelCase__ )).ljust(lowerCamelCase__ ) , sep=" | " , ) # Output in tabular format while len(lowerCamelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) , ("".join(lowerCamelCase__ )).ljust(lowerCamelCase__ ) , ("".join(lowerCamelCase__ )).ljust(lowerCamelCase__ ) , sep=" | " , ) # Output in tabular format return "".join(lowerCamelCase__ ) # return Postfix as str def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowerCamelCase__ ) ): if infix[i] == "(": lowercase__ : Tuple = ")" # change "(" to ")" elif infix[i] == ")": lowercase__ : Optional[Any] = "(" # change ")" to "(" return (infix_2_postfix("".join(lowerCamelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": lowerCAmelCase__ = input('''\nEnter an Infix Equation = ''') # Input an Infix equation lowerCAmelCase__ = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
121
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase__ = 1.054571817e-34 # unit of ℏ : J * s lowerCAmelCase__ = 3e8 # unit of c : m * s^-1 def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: lowercase__ : Optional[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowercase__ : str = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowercase__ : Tuple = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
121
1
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = tmp_path / """file.csv""" _UpperCAmelCase : Dict = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = tmp_path / """malformed_file.csv""" _UpperCAmelCase : int = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = tmp_path / """csv_with_image.csv""" _UpperCAmelCase : List[Any] = textwrap.dedent( F'''\ image {image_file} ''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = tmp_path / """csv_with_label.csv""" _UpperCAmelCase : List[str] = textwrap.dedent( """\ label good bad good """ ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = tmp_path / """csv_with_int_list.csv""" _UpperCAmelCase : int = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = Csv() _UpperCAmelCase : List[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(SCREAMING_SNAKE_CASE__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(SCREAMING_SNAKE_CASE__ ) in record.message for record in caplog.records ) @require_pil def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as f: _UpperCAmelCase : int = f.read().splitlines()[1] _UpperCAmelCase : Optional[int] = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) _UpperCAmelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _UpperCAmelCase : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() _UpperCAmelCase : Dict = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as f: _UpperCAmelCase : List[str] = f.read().splitlines()[1:] _UpperCAmelCase : str = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) _UpperCAmelCase : Any = csv._generate_tables([[csv_file_with_label]] ) _UpperCAmelCase : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() _UpperCAmelCase : Any = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(SCREAMING_SNAKE_CASE__ ) for label in labels] def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCAmelCase_ : [int(SCREAMING_SNAKE_CASE__ ) for i in x.split()]} ) _UpperCAmelCase : str = csv._generate_tables([[csv_file_with_int_list]] ) _UpperCAmelCase : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) _UpperCAmelCase : Optional[Any] = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
215
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': 5_12, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = LxmertTokenizer def __init__( self : Union[str, Any] , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Dict=True , _UpperCamelCase : Any="[UNK]" , _UpperCamelCase : Tuple="[SEP]" , _UpperCamelCase : List[Any]="[PAD]" , _UpperCamelCase : Union[str, Any]="[CLS]" , _UpperCamelCase : str="[MASK]" , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : List[str] , ) ->Any: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**_UpperCamelCase ) snake_case_ = do_lower_case def snake_case__( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=None ) ->List[Any]: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__( self : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: snake_case_ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
8
0
def _lowerCAmelCase ( A__: dict ): '''simple docstring''' UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack UpperCAmelCase = set() return any( node not in visited and depth_first_search(A__ , A__ , A__ , A__ ) for node in graph ) def _lowerCAmelCase ( A__: dict , A__: int , A__: set , A__: set ): '''simple docstring''' visited.add(A__ ) rec_stk.add(A__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(A__ , A__ , A__ , A__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(A__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
351
def _lowerCAmelCase ( A__: list[int] , A__: list[int] ): '''simple docstring''' UpperCAmelCase = len(A__ ) print('''The following activities are selected:''' ) # The first activity is always selected UpperCAmelCase = 0 print(A__ , end=''',''' ) # Consider rest of the activities for j in range(A__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(A__ , end=''',''' ) UpperCAmelCase = j if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = [1, 3, 0, 5, 8, 5] __magic_name__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
152
0
def __magic_name__ ( A : Optional[Any] ): '''simple docstring''' a = 0 a = len(A ) for i in range(n - 1 ): for j in range(i + 1, A ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __magic_name__ ( A : Any ): '''simple docstring''' if len(A ) <= 1: return arr, 0 a = len(A ) // 2 a = arr[0:mid] a = arr[mid:] a , a = count_inversions_recursive(A ) a , a = count_inversions_recursive(A ) a , a = _count_cross_inversions(A, A ) a = inversion_p + inversions_q + cross_inversions return c, num_inversions def __magic_name__ ( A : Union[str, Any], A : Any ): '''simple docstring''' a = [] a = a = a = 0 while i < len(A ) and j < len(A ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(A ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(A ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __magic_name__ ( ): '''simple docstring''' a = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) a = count_inversions_bf(A ) a , a = count_inversions_recursive(A ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = ", A ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() a = count_inversions_bf(A ) a , a = count_inversions_recursive(A ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = ", A ) # an empty list should also have zero inversions a = [] a = count_inversions_bf(A ) a , a = count_inversions_recursive(A ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = ", A ) if __name__ == "__main__": main()
107
import math from datetime import datetime, timedelta def __A ( __lowerCamelCase ) -> datetime: a = year % 19 a = year % 4 a = year % 7 a = math.floor(year / 100 ) a = math.floor((13 + 8 * leap_day_inhibits) / 25 ) a = leap_day_inhibits / 4 a = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 a = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 a = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon a = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowerCamelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowerCamelCase , 4 , 18 ) else: return datetime(__lowerCamelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): __UpperCamelCase : Tuple = "will be" if year > datetime.now().year else "was" print(F'Easter in {year} {tense} {gauss_easter(year)}')
228
0
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = CLIPTokenizer __snake_case = CLIPTokenizerFast __snake_case = True __snake_case = {} __snake_case = False def lowercase__ ( self : Dict ) -> str: '''simple docstring''' super().setUp() # fmt: off A__ : List[Any] =["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A__ : Union[str, Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : str =["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] A__ : int ={"""unk_token""": """<unk>"""} A__ : Union[str, Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase_ ) ) def lowercase__ ( self : int , **lowerCAmelCase_ : List[Any] ) -> List[str]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , **lowerCAmelCase_ : Optional[int] ) -> List[str]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str ) -> str: '''simple docstring''' A__ : Any ="""lower newer""" A__ : List[Any] ="""lower newer""" return input_text, output_text def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' A__ : Dict =CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A__ : List[Any] ="""lower newer""" A__ : Optional[Any] =["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] A__ : Optional[int] =tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Optional[Any] =tokens + [tokenizer.unk_token] A__ : Union[str, Any] =[10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) @require_ftfy def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : Optional[int] =self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Union[str, Any] =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : str ="""A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" A__ : Optional[int] =tokenizer_s.tokenize(lowerCAmelCase_ ) A__ : str =tokenizer_r.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways A__ : Optional[Any] ="""xa\u0303y""" + """ """ + """x\xe3y""" A__ : List[Any] =tokenizer_s.tokenize(lowerCAmelCase_ ) A__ : List[Any] =tokenizer_r.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Test that the tokenization is identical on unicode of space type A__ : int =[ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: A__ : Tuple =tokenizer_s.tokenize(lowerCAmelCase_ ) A__ : str =tokenizer_r.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Test that the tokenization is identical on unicode of line break type A__ : int =[ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: A__ : List[Any] =tokenizer_s.tokenize(lowerCAmelCase_ ) A__ : Tuple =tokenizer_r.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : Dict ="""hello""" # `hello` is a token in the vocabulary of `pretrained_name` A__ : Tuple =f"{text_of_1_token} {text_of_1_token}" A__ : Optional[Any] =self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , ) A__ : Optional[int] =tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase_ ) + 1, len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) A__ : Tuple =f" {text}" A__ : str =self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , ) A__ : List[Any] =tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase_ ) + 1, 1 + len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) def lowercase__ ( self : str ) -> Any: '''simple docstring''' # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCAmelCase_ ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def lowercase__ ( self : Any ) -> Any: '''simple docstring''' super().test_tokenization_python_rust_equals() def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' # CLIP always lower cases letters pass
136
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: A__ : List[Any] ={} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) A__ : str =truncation A__ : Optional[int] =tokenize_kwargs A__ : List[Any] ={} if return_tensors is not None: A__ : Any =return_tensors return preprocess_params, {}, postprocess_params def lowercase__ ( self : int , lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Dict ) -> Dict[str, GenericTensor]: '''simple docstring''' A__ : List[str] =self.framework A__ : Union[str, Any] =self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) return model_inputs def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.model(**lowerCAmelCase_ ) return model_outputs def lowercase__ ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False ) -> List[Any]: '''simple docstring''' # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : int , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' return super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ )
136
1
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' UpperCAmelCase = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' UpperCAmelCase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def snake_case ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def snake_case ( self : Tuple , __lowercase : Dict , __lowercase : Optional[int] , __lowercase : Any=None ): """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__lowercase , __lowercase , sample_weight=__lowercase ) ), }
141
'''simple docstring''' from collections.abc import Sequence def __UpperCamelCase ( lowercase__ : Sequence[float], lowercase__ : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : Sequence[float], lowercase__ : float ): '''simple docstring''' __lowercase =0.0 for coeff in reversed(lowercase__ ): __lowercase =result * x + coeff return result if __name__ == "__main__": UpperCAmelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
141
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __lowercase : """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any]=13 , lowerCAmelCase__ : List[Any]=7 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Any=99 , lowerCAmelCase__ : Dict=32 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Optional[Any]=37 , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Union[str, Any]=512 , lowerCAmelCase__ : List[str]=16 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Optional[int]="None" , lowerCAmelCase__ : str=3 , lowerCAmelCase__ : Optional[int]=4 , lowerCAmelCase__ : Optional[int]=None , ): SCREAMING_SNAKE_CASE_: Optional[int] = parent SCREAMING_SNAKE_CASE_: List[Any] = batch_size SCREAMING_SNAKE_CASE_: List[Any] = seq_length SCREAMING_SNAKE_CASE_: List[Any] = is_training SCREAMING_SNAKE_CASE_: List[str] = use_input_mask SCREAMING_SNAKE_CASE_: int = use_token_type_ids SCREAMING_SNAKE_CASE_: List[Any] = use_labels SCREAMING_SNAKE_CASE_: int = vocab_size SCREAMING_SNAKE_CASE_: Any = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Dict = num_attention_heads SCREAMING_SNAKE_CASE_: Dict = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_: Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = max_position_embeddings SCREAMING_SNAKE_CASE_: Tuple = type_vocab_size SCREAMING_SNAKE_CASE_: Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: List[Any] = num_labels SCREAMING_SNAKE_CASE_: str = num_choices SCREAMING_SNAKE_CASE_: str = relative_attention SCREAMING_SNAKE_CASE_: int = position_biased_input SCREAMING_SNAKE_CASE_: Optional[int] = pos_att_type SCREAMING_SNAKE_CASE_: List[Any] = scope def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_: Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_: Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_: Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) SCREAMING_SNAKE_CASE_: Optional[Any] = None SCREAMING_SNAKE_CASE_: str = None SCREAMING_SNAKE_CASE_: Any = None if self.use_labels: SCREAMING_SNAKE_CASE_: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_: str = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCAmelCase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = TFDebertaVaModel(config=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_: Union[str, Any] = [input_ids, input_mask] SCREAMING_SNAKE_CASE_: List[str] = model(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = TFDebertaVaForMaskedLM(config=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_: List[str] = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[int] = self.num_labels SCREAMING_SNAKE_CASE_: List[Any] = TFDebertaVaForSequenceClassification(config=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_: Tuple = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: str = self.num_labels SCREAMING_SNAKE_CASE_: str = TFDebertaVaForTokenClassification(config=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_: List[str] = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: List[str] = TFDebertaVaForQuestionAnswering(config=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE_ ): List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_: Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[int] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _UpperCAmelCase : Any = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Tuple = TFDebertaVaModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge") self.assertIsNotNone(lowerCAmelCase__) @require_tf class __lowercase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="Model not available yet") def _SCREAMING_SNAKE_CASE ( self : List[Any]): pass @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge") SCREAMING_SNAKE_CASE_: Dict = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]]) SCREAMING_SNAKE_CASE_: List[Any] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) SCREAMING_SNAKE_CASE_: List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__)[0] SCREAMING_SNAKE_CASE_: Optional[Any] = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]]) tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4)
369
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Dict = {"""vocab_file""": """vocab.txt"""} lowerCAmelCase : List[str] = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } lowerCAmelCase : List[Any] = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } lowerCAmelCase : Tuple = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = VOCAB_FILES_NAMES _UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Dict = ConvBertTokenizer def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Any="[UNK]" , lowerCAmelCase__ : Optional[Any]="[SEP]" , lowerCAmelCase__ : Any="[PAD]" , lowerCAmelCase__ : Dict="[CLS]" , lowerCAmelCase__ : Dict="[MASK]" , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Dict , ): super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , lowerCAmelCase__) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase__) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase__) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_: Optional[int] = getattr(lowerCAmelCase__ , normalizer_state.pop("type")) SCREAMING_SNAKE_CASE_: Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE_: List[str] = strip_accents SCREAMING_SNAKE_CASE_: Optional[Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE_: Optional[int] = normalizer_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = do_lower_case def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any]=None): SCREAMING_SNAKE_CASE_: List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): SCREAMING_SNAKE_CASE_: Any = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__) return tuple(lowerCAmelCase__)
127
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase__ : Any = logging.get_logger(__name__) def lowerCamelCase__ ( a , a , a , a ) -> Tuple[int, int]: def constraint_to_multiple_of(a , a , a=0 , a=None ): _A: List[Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _A: int = math.floor(val / multiple ) * multiple if x < min_val: _A: Tuple = math.ceil(val / multiple ) * multiple return x _A: str = (output_size, output_size) if isinstance(a , a ) else output_size _A , _A: List[str] = get_image_size(a ) _A , _A: List[str] = output_size # determine new height and width _A: List[Any] = output_height / input_height _A: Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _A: str = scale_width else: # fit height _A: List[str] = scale_height _A: Union[str, Any] = constraint_to_multiple_of(scale_height * input_height , multiple=a ) _A: Optional[int] = constraint_to_multiple_of(scale_width * input_width , multiple=a ) return (new_height, new_width) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Tuple = ['''pixel_values'''] def __init__( self : List[str] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : Dict , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _A: Tuple = size if size is not None else {'''height''': 3_8_4, '''width''': 3_8_4} _A: Dict = get_size_dict(lowerCAmelCase_ ) _A: Dict = do_resize _A: Dict = size _A: Union[str, Any] = keep_aspect_ratio _A: int = ensure_multiple_of _A: Union[str, Any] = resample _A: Dict = do_rescale _A: Optional[int] = rescale_factor _A: List[str] = do_normalize _A: List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A: str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __magic_name__ ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ): """simple docstring""" _A: Dict = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _A: List[str] = get_resize_output_image_size( lowerCAmelCase_ , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=lowerCAmelCase_ , multiple=lowerCAmelCase_ , ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ): """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : float = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : int , ): """simple docstring""" _A: Optional[int] = do_resize if do_resize is not None else self.do_resize _A: Dict = size if size is not None else self.size _A: Optional[int] = get_size_dict(lowerCAmelCase_ ) _A: List[str] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _A: Any = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _A: Optional[Any] = resample if resample is not None else self.resample _A: Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _A: Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _A: Dict = do_normalize if do_normalize is not None else self.do_normalize _A: List[str] = image_mean if image_mean is not None else self.image_mean _A: Optional[int] = image_std if image_std is not None else self.image_std _A: Any = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _A: List[str] = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _A: List[Any] = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_rescale: _A: Any = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _A: Dict = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _A: List[str] = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _A: List[Any] = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) def __magic_name__ ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Tuple] = None ): """simple docstring""" _A: Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowerCAmelCase_ ): _A: Union[str, Any] = target_sizes.numpy() _A: List[Any] = [] for idx in range(len(lowerCAmelCase_ ) ): _A: str = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase_ ) _A: List[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase_ ) else: _A: List[Any] = logits.argmax(dim=1 ) _A: List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
121
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase__ ( a ) -> int: _A: int = filter(lambda a : p.requires_grad , model.parameters() ) _A: Dict = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ : str = logging.getLogger(__name__) def lowerCamelCase__ ( a , a ) -> Dict: if metric == "rouge2": _A: Tuple = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _A: List[str] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _A: str = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) _A: List[str] = ModelCheckpoint( dirpath=a , filename=a , monitor=f"""val_{metric}""" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase__ ( a , a ) -> Optional[Any]: return EarlyStopping( monitor=f"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=a , verbose=a , ) class UpperCAmelCase ( pl.Callback ): '''simple docstring''' def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Union[str, Any] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase_ ) @rank_zero_only def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule , lowerCAmelCase_ : str , lowerCAmelCase_ : Any=True ): """simple docstring""" logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _A: Tuple = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _A: Tuple = Path(pl_module.hparams.output_dir ) if type_path == "test": _A: List[str] = od / '''test_results.txt''' _A: Optional[int] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A: Any = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _A: Dict = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) with open(lowerCAmelCase_ , '''a+''' ) as writer: for key in sorted(lowerCAmelCase_ ): if key in ["log", "progress_bar", "preds"]: continue _A: Optional[int] = metrics[key] if isinstance(lowerCAmelCase_ , torch.Tensor ): _A: List[str] = val.item() _A: List[Any] = F"""{key}: {val:.6f}\n""" writer.write(lowerCAmelCase_ ) if not save_generations: return if "preds" in metrics: _A: Optional[int] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(lowerCAmelCase_ ) @rank_zero_only def __magic_name__ ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" try: _A: Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: _A: Any = pl_module.model.num_parameters() _A: Optional[int] = count_trainable_parameters(lowerCAmelCase_ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __magic_name__ ( self : List[str] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase_ , lowerCAmelCase_ , '''test''' ) @rank_zero_only def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
121
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class _lowerCamelCase ( a_ ): _lowerCamelCase :int = "luke" def __init__( self : Dict , UpperCamelCase : Optional[int]=5_02_67 , UpperCamelCase : List[Any]=50_00_00 , UpperCamelCase : str=7_68 , UpperCamelCase : List[str]=2_56 , UpperCamelCase : Tuple=12 , UpperCamelCase : int=12 , UpperCamelCase : Optional[Any]=30_72 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : str=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Dict=5_12 , UpperCamelCase : Tuple=2 , UpperCamelCase : int=0.02 , UpperCamelCase : Dict=1E-1_2 , UpperCamelCase : List[str]=True , UpperCamelCase : Optional[int]=None , UpperCamelCase : Tuple=1 , UpperCamelCase : str=0 , UpperCamelCase : int=2 , **UpperCamelCase : List[Any] , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = vocab_size lowerCAmelCase__ : Any = entity_vocab_size lowerCAmelCase__ : str = hidden_size lowerCAmelCase__ : Optional[Any] = entity_emb_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : Optional[int] = intermediate_size lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase__ : str = max_position_embeddings lowerCAmelCase__ : Tuple = type_vocab_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : List[str] = use_entity_aware_attention lowerCAmelCase__ : List[str] = classifier_dropout
353
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _A = logging.getLogger(__name__) class _lowerCamelCase ( a_ ): def __init__( self : List[Any] , UpperCamelCase : Dict=-1 ) -> List[Any]: """simple docstring""" # in NER datasets, the last column is usually reserved for NER label lowerCAmelCase__ : Optional[int] = label_idx def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[Split, str] ) -> List[InputExample]: """simple docstring""" if isinstance(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : int = mode.value lowerCAmelCase__ : Dict = os.path.join(UpperCamelCase , f"""{mode}.txt""" ) lowerCAmelCase__ : str = 1 lowerCAmelCase__ : List[Any] = [] with open(UpperCamelCase , encoding="""utf-8""" ) as f: lowerCAmelCase__ : str = [] lowerCAmelCase__ : Any = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Tuple = [] else: lowerCAmelCase__ : Optional[int] = line.split(""" """ ) words.append(splits[0] ) if len(UpperCamelCase ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCamelCase , labels=UpperCamelCase ) ) return examples def _lowerCAmelCase ( self : Any , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Dict = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(UpperCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCAmelCase__ : Union[str, Any] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(UpperCamelCase ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def _lowerCAmelCase ( self : str , UpperCamelCase : str ) -> List[str]: """simple docstring""" if path: with open(UpperCamelCase , """r""" ) as f: lowerCAmelCase__ : Any = f.read().splitlines() if "O" not in labels: lowerCAmelCase__ : List[str] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class _lowerCamelCase ( a_ ): def __init__( self : Union[str, Any] ) -> Any: """simple docstring""" # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : str ) -> List[str]: """simple docstring""" if path: with open(UpperCamelCase , """r""" ) as f: lowerCAmelCase__ : Any = f.read().splitlines() if "O" not in labels: lowerCAmelCase__ : str = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class _lowerCamelCase ( a_ ): def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Union[Split, str] ) -> List[InputExample]: """simple docstring""" if isinstance(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : Optional[Any] = mode.value lowerCAmelCase__ : int = os.path.join(UpperCamelCase , f"""{mode}.txt""" ) lowerCAmelCase__ : Optional[int] = 1 lowerCAmelCase__ : List[Any] = [] with open(UpperCamelCase , encoding="""utf-8""" ) as f: for sentence in parse_incr(UpperCamelCase ): lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : List[Any] = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(UpperCamelCase ) == len(UpperCamelCase ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 return examples def _lowerCAmelCase ( self : List[str] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = 0 for sentence in parse_incr(UpperCamelCase ): lowerCAmelCase__ : Union[str, Any] = preds_list[example_id] lowerCAmelCase__ : List[Any] = """""" for token in sentence: out += f"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(UpperCamelCase ) example_id += 1 def _lowerCAmelCase ( self : Dict , UpperCamelCase : str ) -> List[str]: """simple docstring""" if path: with open(UpperCamelCase , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
212
0
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _lowerCAmelCase :List[str] = random.Random() def lowerCamelCase_ (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any]=1.0 , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : List[str]=None ): if rng is None: _UpperCAmelCase : Tuple = global_rng _UpperCAmelCase : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A , A=7 , A=4_0_0 , A=2_0_0_0 , A=1_0 , A=1_6_0 , A=8 , A=0.0 , A=4_0_0_0 , A=False , A=True , ) -> List[Any]: _UpperCAmelCase : List[str] = parent _UpperCAmelCase : List[str] = batch_size _UpperCAmelCase : int = min_seq_length _UpperCAmelCase : str = max_seq_length _UpperCAmelCase : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase : int = padding_value _UpperCAmelCase : Optional[int] = sampling_rate _UpperCAmelCase : List[str] = return_attention_mask _UpperCAmelCase : List[str] = do_normalize _UpperCAmelCase : Union[str, Any] = feature_size _UpperCAmelCase : Tuple = chunk_length _UpperCAmelCase : str = hop_length def __lowerCAmelCase ( self ) -> Optional[Any]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __lowerCAmelCase ( self , A=False , A=False ) -> str: def _flatten(A ): return list(itertools.chain(*__lowercase ) ) if equal_length: _UpperCAmelCase : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase : Dict = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase : str = [np.asarray(__lowercase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' a__ =WhisperFeatureExtractor if is_speech_available() else None def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : List[str] = WhisperFeatureExtractionTester(self ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : str = feat_extract_first.save_pretrained(__lowercase )[0] check_json_file_has_correct_format(__lowercase ) _UpperCAmelCase : Optional[Any] = self.feature_extraction_class.from_pretrained(__lowercase ) _UpperCAmelCase : int = feat_extract_first.to_dict() _UpperCAmelCase : Optional[int] = feat_extract_second.to_dict() _UpperCAmelCase : int = feat_extract_first.mel_filters _UpperCAmelCase : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(__lowercase , __lowercase ) ) self.assertEqual(__lowercase , __lowercase ) def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Tuple = os.path.join(__lowercase , '''feat_extract.json''' ) feat_extract_first.to_json_file(__lowercase ) _UpperCAmelCase : Union[str, Any] = self.feature_extraction_class.from_json_file(__lowercase ) _UpperCAmelCase : Tuple = feat_extract_first.to_dict() _UpperCAmelCase : str = feat_extract_second.to_dict() _UpperCAmelCase : List[Any] = feat_extract_first.mel_filters _UpperCAmelCase : Optional[int] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__lowercase , __lowercase ) ) self.assertEqual(__lowercase , __lowercase ) def __lowerCAmelCase ( self ) -> List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _UpperCAmelCase : Dict = [np.asarray(__lowercase ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase : Dict = feature_extractor(__lowercase , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase : Union[str, Any] = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features _UpperCAmelCase : Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3 ) ) # Test batched _UpperCAmelCase : str = feature_extractor(__lowercase , return_tensors='''np''' ).input_features _UpperCAmelCase : Union[str, Any] = feature_extractor(__lowercase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _UpperCAmelCase : Optional[int] = np.asarray(__lowercase ) _UpperCAmelCase : Optional[Any] = feature_extractor(__lowercase , return_tensors='''np''' ).input_features _UpperCAmelCase : Dict = feature_extractor(__lowercase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3 ) ) # Test truncation required _UpperCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] _UpperCAmelCase : Any = [np.asarray(__lowercase ) for speech_input in speech_inputs] _UpperCAmelCase : str = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase : Union[str, Any] = [np.asarray(__lowercase ) for speech_input in speech_inputs_truncated] _UpperCAmelCase : Optional[int] = feature_extractor(__lowercase , return_tensors='''np''' ).input_features _UpperCAmelCase : List[str] = feature_extractor(__lowercase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3 ) ) def __lowerCAmelCase ( self ) -> List[Any]: import torch _UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : List[str] = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) _UpperCAmelCase : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase : Any = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase : int = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __lowerCAmelCase ( self , A ) -> Union[str, Any]: _UpperCAmelCase : Tuple = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _UpperCAmelCase : Dict = ds.sort('''id''' ).select(range(__lowercase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowerCAmelCase ( self ) -> Union[str, Any]: # fmt: off _UpperCAmelCase : Any = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on _UpperCAmelCase : Any = self._load_datasamples(1 ) _UpperCAmelCase : Union[str, Any] = WhisperFeatureExtractor() _UpperCAmelCase : List[str] = feature_extractor(__lowercase , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , __lowercase , atol=1E-4 ) ) def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : Tuple = self._load_datasamples(1 )[0] _UpperCAmelCase : List[Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue _UpperCAmelCase : List[str] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__lowercase )[0] self.assertTrue(np.all(np.mean(__lowercase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowercase ) - 1 ) < 1E-3 ) )
263
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""image_processor""", """tokenizer"""] snake_case_ = """CLIPImageProcessor""" snake_case_ = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[Any] , __lowercase : Union[str, Any]=None , __lowercase : int=None , **__lowercase : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ : str =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowercase , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =kwargs.pop('''feature_extractor''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowercase , __lowercase ) def __call__( self : Union[str, Any] , __lowercase : Optional[Any]=None , __lowercase : Union[str, Any]=None , __lowercase : List[str]=None , **__lowercase : str ) -> Tuple: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.tokenizer(__lowercase , return_tensors=__lowercase , **__lowercase ) if images is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] =self.image_processor(__lowercase , return_tensors=__lowercase , **__lowercase ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ : int =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowercase ) , tensor_type=__lowercase ) def __magic_name__ ( self : int , *__lowercase : Optional[Any] , **__lowercase : Tuple ) -> Dict: return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def __magic_name__ ( self : List[Any] , *__lowercase : Optional[Any] , **__lowercase : Union[str, Any] ) -> Union[str, Any]: return self.tokenizer.decode(*__lowercase , **__lowercase ) @property def __magic_name__ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : str =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
152
0
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class UpperCAmelCase_ ( a): def __init__( self, __a=None, __a=None, *__a, **__a): '''simple docstring''' super().__init__(*__a, **__a) if config is None: assert isinstance(self.model, __a), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f" {self.model.__class__}" ) _lowerCAmelCase : Tuple = self.model.config else: _lowerCAmelCase : List[Any] = config _lowerCAmelCase : Dict = data_args _lowerCAmelCase : List[str] = self.config.tgt_vocab_size if isinstance(self.config, __a) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" " padding..") if self.args.label_smoothing == 0: _lowerCAmelCase : int = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _lowerCAmelCase : str = label_smoothed_nll_loss def snake_case__ ( self, __a): '''simple docstring''' if self.optimizer is None: _lowerCAmelCase : Optional[Any] = ["bias", "LayerNorm.weight"] _lowerCAmelCase : int = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] _lowerCAmelCase : Optional[int] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _lowerCAmelCase : List[Any] = Adafactor _lowerCAmelCase : List[str] = {"scale_parameter": False, "relative_step": False} else: _lowerCAmelCase : str = AdamW _lowerCAmelCase : int = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } _lowerCAmelCase : Any = self.args.learning_rate if self.sharded_ddp: _lowerCAmelCase : Dict = OSS( params=__a, optim=__a, **__a, ) else: _lowerCAmelCase : Union[str, Any] = optimizer_cls(__a, **__a) if self.lr_scheduler is None: _lowerCAmelCase : Dict = self._get_lr_scheduler(__a) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.") def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _lowerCAmelCase : List[Any] = schedule_func(self.optimizer) elif self.args.lr_scheduler == "constant_w_warmup": _lowerCAmelCase : List[Any] = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps) else: _lowerCAmelCase : Any = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=__a) return scheduler def snake_case__ ( self): '''simple docstring''' if isinstance(self.train_dataset, torch.utils.data.IterableDataset): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset) ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _lowerCAmelCase : List[Any] = model(**__a, use_cache=__a)[0] _lowerCAmelCase : Tuple = self.loss_fn(logits.view(-1, logits.shape[-1]), labels.view(-1)) else: # compute usual loss via models _lowerCAmelCase : Optional[Any] = model(**__a, labels=__a, use_cache=__a)[:2] else: # compute label smoothed loss _lowerCAmelCase : str = model(**__a, use_cache=__a)[0] _lowerCAmelCase : Any = torch.nn.functional.log_softmax(__a, dim=-1) _lowerCAmelCase : Union[str, Any] = self.loss_fn(__a, __a, self.args.label_smoothing, ignore_index=self.config.pad_token_id) return loss, logits def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : str = inputs.pop("labels") _lowerCAmelCase : Optional[Any] = self._compute_loss(__a, __a, __a) return loss def snake_case__ ( self, __a, __a, __a, __a = None, ): '''simple docstring''' _lowerCAmelCase : Any = self._prepare_inputs(__a) _lowerCAmelCase : str = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _lowerCAmelCase : Any = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **__a, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _lowerCAmelCase : Dict = self._pad_tensors_to_max_len(__a, gen_kwargs["max_length"]) _lowerCAmelCase : Union[str, Any] = inputs.pop("labels") with torch.no_grad(): # compute loss on predict data _lowerCAmelCase : Any = self._compute_loss(__a, __a, __a) _lowerCAmelCase : str = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _lowerCAmelCase : Tuple = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _lowerCAmelCase : Union[str, Any] = self._pad_tensors_to_max_len(__a, gen_kwargs["max_length"]) return (loss, logits, labels) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f" padded to `max_length`={max_length}") _lowerCAmelCase : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device) _lowerCAmelCase : int = tensor return padded_tensor
354
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
0
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient UpperCAmelCase : str = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = test_results.split(""" """ ) lowercase_ = 0 lowercase_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowercase_ = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCAmelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = {} lowercase_ = None lowercase_ = False for line in failures_short_lines.split("""\n""" ): if re.search(R"""_ \[doctest\]""" , __lowerCAmelCase ): lowercase_ = True lowercase_ = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): lowercase_ = line lowercase_ = False return failures class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = title lowercase_ = doc_test_results["""time_spent"""].split(""",""")[0] lowercase_ = doc_test_results["""success"""] lowercase_ = doc_test_results["""failures"""] lowercase_ = self.n_success + self.n_failures # Failures and success of the modeling tests lowercase_ = doc_test_results @property def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = [self._time_spent] lowercase_ = 0 for time in time_spent: lowercase_ = time.split(""":""") # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowerCAmelCase_) == 1: lowercase_ = [0, 0, time_parts[0]] lowercase_ , lowercase_ , lowercase_ = int(time_parts[0]), int(time_parts[1]), float(time_parts[2]) total_secs += hours * 3_6_0_0 + minutes * 6_0 + seconds lowercase_ , lowercase_ , lowercase_ = total_secs // 3_6_0_0, (total_secs % 3_6_0_0) // 6_0, total_secs % 6_0 return F'''{int(lowerCAmelCase_)}h{int(lowerCAmelCase_)}m{int(lowerCAmelCase_)}s''' @property def _UpperCAmelCase ( self : int): """simple docstring""" return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCAmelCase ( self : Any): """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = 4_0 lowercase_ = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(lowerCAmelCase_ , lowerCAmelCase_)} lowercase_ = """""" for category, failures in category_failures.items(): if len(lowerCAmelCase_) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2).rjust(line_length // 2) + "\n" report += "`" report += "`\n`".join(lowerCAmelCase_) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = [self.header] if self.n_failures > 0: blocks.append(self.failures) if self.n_failures > 0: blocks.extend([self.category_failures]) if self.n_failures == 0: blocks.append(self.no_failures) return json.dumps(lowerCAmelCase_) @staticmethod def _UpperCAmelCase ( ): """simple docstring""" lowercase_ = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print("""Sending the following payload""") print(json.dumps({"""blocks""": json.loads(lowerCAmelCase_)})) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=lowerCAmelCase_ , ) def _UpperCAmelCase ( self : int): """simple docstring""" print("""Sending the following payload""") print(json.dumps({"""blocks""": json.loads(self.payload)})) lowercase_ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else """All tests passed.""" lowercase_ = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=lowerCAmelCase_ , ) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = """""" for key, value in failures.items(): lowercase_ = value[:2_0_0] + """ [Truncated]""" if len(lowerCAmelCase_) > 2_5_0 else value failures_text += F'''*{key}*\n_{value}_\n\n''' lowercase_ = job_name lowercase_ = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: lowercase_ = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase ( self : Tuple): """simple docstring""" if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""") lowercase_ = self.doc_test_results.pop("""job_link""") self.doc_test_results.pop("""failures""") self.doc_test_results.pop("""success""") self.doc_test_results.pop("""time_spent""") lowercase_ = sorted(self.doc_test_results.items() , key=lambda lowerCAmelCase_: t[0]) for job, job_result in sorted_dict: if len(job_result["""failures"""]): lowercase_ = F'''*Num failures* :{len(job_result["failed"])} \n''' lowercase_ = job_result["""failures"""] lowercase_ = self.get_reply_blocks(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , text=lowerCAmelCase_) print("""Sending the following reply""") print(json.dumps({"""blocks""": blocks})) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=F'''Results for {job}''' , blocks=lowerCAmelCase_ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1) def _SCREAMING_SNAKE_CASE () -> Optional[Any]: '''simple docstring''' lowercase_ = os.environ["""GITHUB_RUN_ID"""] lowercase_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' lowercase_ = requests.get(__lowerCAmelCase ).json() lowercase_ = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowercase_ = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__lowerCAmelCase ): lowercase_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , __lowerCAmelCase ) return {} def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = {} if os.path.exists(__lowerCAmelCase ): lowercase_ = os.listdir(__lowerCAmelCase ) for file in files: try: with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , encoding="""utf-8""" ) as f: lowercase_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCAmelCase , __lowerCAmelCase )}.''' ) from e return _artifact def _SCREAMING_SNAKE_CASE () -> Optional[int]: '''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Union[str, Any] , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = name lowercase_ = [] def __str__( self : int): """simple docstring""" return self.name def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str): """simple docstring""" self.paths.append({"""name""": self.name, """path""": path}) lowercase_ = {} lowercase_ = filter(os.path.isdir , os.listdir() ) for directory in directories: lowercase_ = directory if artifact_name not in _available_artifacts: lowercase_ = Artifact(__lowerCAmelCase ) _available_artifacts[artifact_name].add_path(__lowerCAmelCase ) return _available_artifacts if __name__ == "__main__": UpperCAmelCase : Optional[Any] = get_job_links() UpperCAmelCase : Union[str, Any] = retrieve_available_artifacts() UpperCAmelCase : Any = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' UpperCAmelCase : List[Any] = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job UpperCAmelCase : Any = github_actions_job_links.get("run_doctests") UpperCAmelCase : Tuple = available_artifacts["doc_tests_gpu_test_reports"].paths[0] UpperCAmelCase : Optional[Any] = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = handle_test_results(artifact["stats"]) UpperCAmelCase : str = failed UpperCAmelCase : List[str] = success UpperCAmelCase : List[str] = time_spent[1:-1] + ", " UpperCAmelCase : Dict = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): UpperCAmelCase : Optional[int] = line.replace("FAILED ", "") UpperCAmelCase : str = line.split()[0].replace("\n", "") if "::" in line: UpperCAmelCase , UpperCAmelCase : int = line.split("::") else: UpperCAmelCase , UpperCAmelCase : List[Any] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): UpperCAmelCase : str = docs[file_regex] doc_test_results[category]["failed"].append(test) UpperCAmelCase : Tuple = all_failures[test] if test in all_failures else "N/A" UpperCAmelCase : List[Any] = failure break UpperCAmelCase : List[str] = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
136
"""simple docstring""" UpperCAmelCase : Optional[Any] = tuple[float, float, float] UpperCAmelCase : Optional[Any] = tuple[float, float, float] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Vectorad: '''simple docstring''' lowercase_ = end_pointa[0] - end_pointa[0] lowercase_ = end_pointa[1] - end_pointa[1] lowercase_ = end_pointa[2] - end_pointa[2] return (x, y, z) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Vectorad: '''simple docstring''' lowercase_ = ab[1] * ac[2] - ab[2] * ac[1] # *i lowercase_ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowercase_ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> bool: '''simple docstring''' return tuple(round(__lowerCAmelCase , __lowerCAmelCase ) for x in vector ) == (0, 0, 0) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 10 ) -> bool: '''simple docstring''' lowercase_ = create_vector(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = create_vector(__lowerCAmelCase , __lowerCAmelCase ) return is_zero_vector(get_ad_vectors_cross(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase )
136
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Any = CLIPTokenizer UpperCAmelCase__ : Optional[int] = CLIPTokenizerFast UpperCAmelCase__ : Dict = True UpperCAmelCase__ : str = {} UpperCAmelCase__ : List[str] = False def lowerCAmelCase__ ( self: Union[str, Any] ): super().setUp() # fmt: off __lowerCamelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] __lowerCamelCase = {"""unk_token""": """<unk>"""} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: List[Any] , **UpperCamelCase_: Dict ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: Dict ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: int ): __lowerCamelCase = """lower newer""" __lowerCamelCase = """lower newer""" return input_text, output_text def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase = """lower newer""" __lowerCamelCase = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] __lowerCamelCase = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) @require_ftfy def lowerCAmelCase__ ( self: Tuple ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" __lowerCamelCase = tokenizer_s.tokenize(UpperCamelCase_ ) __lowerCamelCase = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __lowerCamelCase = """xa\u0303y""" + """ """ + """x\xe3y""" __lowerCamelCase = tokenizer_s.tokenize(UpperCamelCase_ ) __lowerCamelCase = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Test that the tokenization is identical on unicode of space type __lowerCamelCase = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __lowerCamelCase = tokenizer_s.tokenize(UpperCamelCase_ ) __lowerCamelCase = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Test that the tokenization is identical on unicode of line break type __lowerCamelCase = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __lowerCamelCase = tokenizer_s.tokenize(UpperCamelCase_ ) __lowerCamelCase = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowerCamelCase = F'{text_of_1_token} {text_of_1_token}' __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , ) __lowerCamelCase = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ) + 1, len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) __lowerCamelCase = F' {text}' __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , ) __lowerCamelCase = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ) + 1, 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) def lowerCAmelCase__ ( self: str ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(UpperCamelCase_ ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def lowerCAmelCase__ ( self: Union[str, Any] ): super().test_tokenization_python_rust_equals() def lowerCAmelCase__ ( self: Any ): # CLIP always lower cases letters pass
352
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: Dict ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: List[Any] ): __lowerCamelCase, __lowerCamelCase = {}, {} if padding is not None: __lowerCamelCase = padding if truncation is not None: __lowerCamelCase = truncation if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Optional[Any] , UpperCamelCase_: Union["Image.Image", str] , UpperCamelCase_: str = None , **UpperCamelCase_: List[str] ): if isinstance(UpperCamelCase_ , (Image.Image, str) ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = {"""image""": image, """question""": question} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[int]=False ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) __lowerCamelCase = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) return model_inputs def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.sigmoid()[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
0
class __lowerCAmelCase : def __init__(self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = name snake_case_ : int = val def __str__(self ) -> Any: '''simple docstring''' return F'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__(self , __magic_name__ ) -> Tuple: '''simple docstring''' return self.val < other.val class __lowerCAmelCase : def __init__(self , __magic_name__ ) -> str: '''simple docstring''' snake_case_ : Optional[int] = {} snake_case_ : int = {} snake_case_ : Optional[int] = self.build_heap(__snake_case ) def __getitem__(self , __magic_name__ ) -> List[Any]: '''simple docstring''' return self.get_value(__snake_case ) def lowerCamelCase (self , __magic_name__ ) -> Any: '''simple docstring''' return (idx - 1) // 2 def lowerCamelCase (self , __magic_name__ ) -> Tuple: '''simple docstring''' return idx * 2 + 1 def lowerCamelCase (self , __magic_name__ ) -> Any: '''simple docstring''' return idx * 2 + 2 def lowerCamelCase (self , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' return self.heap_dict[key] def lowerCamelCase (self , __magic_name__ ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = len(__snake_case ) - 1 snake_case_ : Tuple = self.get_parent_idx(__snake_case ) for idx, i in enumerate(__snake_case ): snake_case_ : str = idx snake_case_ : Optional[int] = i.val for i in range(__snake_case , -1 , -1 ): self.sift_down(__snake_case , __snake_case ) return array def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' while True: snake_case_ : Dict = self.get_left_child_idx(__snake_case ) # noqa: E741 snake_case_ : Tuple = self.get_right_child_idx(__snake_case ) snake_case_ : str = idx if l < len(__snake_case ) and array[l] < array[idx]: snake_case_ : Optional[int] = l if r < len(__snake_case ) and array[r] < array[smallest]: snake_case_ : int = r if smallest != idx: snake_case_ , snake_case_ : str = array[smallest], array[idx] ( ( snake_case_ ) , ( snake_case_ ) , ) : Tuple = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) snake_case_ : int = smallest else: break def lowerCamelCase (self , __magic_name__ ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_parent_idx(__snake_case ) while p >= 0 and self.heap[p] > self.heap[idx]: snake_case_ , snake_case_ : Optional[int] = self.heap[idx], self.heap[p] snake_case_ , snake_case_ : str = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) snake_case_ : Optional[Any] = p snake_case_ : str = self.get_parent_idx(__snake_case ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' return self.heap[0] def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ , snake_case_ : Tuple = self.heap[-1], self.heap[0] snake_case_ , snake_case_ : List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) snake_case_ : List[Any] = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' self.heap.append(__snake_case ) snake_case_ : Optional[int] = len(self.heap ) - 1 snake_case_ : Optional[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def lowerCamelCase (self ) -> str: '''simple docstring''' return len(self.heap ) == 0 def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" snake_case_ : Optional[Any] = new_value snake_case_ : Optional[int] = new_value self.sift_up(self.idx_of_element[node] ) lowerCAmelCase_ = Node('''R''', -1) lowerCAmelCase_ = Node('''B''', 6) lowerCAmelCase_ = Node('''A''', 3) lowerCAmelCase_ = Node('''X''', 1) lowerCAmelCase_ = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase_ = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -1_7) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
279
import random def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = a[left_index] snake_case = left_index + 1 for j in range(left_index + 1 ,UpperCamelCase_ ): if a[j] < pivot: snake_case , snake_case = a[i], a[j] i += 1 snake_case , snake_case = a[i - 1], a[left_index] return i - 1 def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" if left < right: snake_case = random.randint(UpperCamelCase_ ,right - 1 ) snake_case , snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound snake_case = partition(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) quick_sort_random( UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( UpperCamelCase_ ,pivot_index + 1 ,UpperCamelCase_ ) # recursive quicksort to the right of the pivot point def UpperCAmelCase__ (): """simple docstring""" snake_case = input('''Enter numbers separated by a comma:\n''' ).strip() snake_case = [int(UpperCamelCase_ ) for item in user_input.split(''',''' )] quick_sort_random(UpperCamelCase_ ,0 ,len(UpperCamelCase_ ) ) print(UpperCamelCase_ ) if __name__ == "__main__": main()
127
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = int(SCREAMING_SNAKE_CASE__ ) if n_element < 1: UpperCAmelCase : List[Any] = ValueError('a should be a positive number' ) raise my_error UpperCAmelCase : Tuple = [1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = (0, 0, 0) UpperCAmelCase : Optional[Any] = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowercase__ = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") lowercase__ = hamming(int(n)) print("-----------------------------------------------------") print(f'''The list with nth numbers is: {hamming_numbers}''') print("-----------------------------------------------------")
367
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase__ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def UpperCamelCase( UpperCAmelCase_ ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCAmelCase : List[Any] = list(s_dict.keys() ) for key in keys: UpperCAmelCase : Union[str, Any] = R'.*/layers_(\d+)' UpperCAmelCase : List[str] = key if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , UpperCAmelCase_ ) UpperCAmelCase : str = R'(encoder|decoder)\/' if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = re.match(UpperCAmelCase_ , UpperCAmelCase_ ).groups() if groups[0] == "encoder": UpperCAmelCase : Union[str, Any] = re.sub(R'/mlp/' , R'/1/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : List[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , UpperCAmelCase_ ) elif groups[0] == "decoder": UpperCAmelCase : Tuple = re.sub(R'/mlp/' , R'/2/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , UpperCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase : List[str] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""{key} -> {new_key}""" ) UpperCAmelCase : List[Any] = s_dict.pop(UpperCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : Optional[int] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : Optional[int] = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase : List[str] = s_dict[key].shape[0] UpperCAmelCase : List[Any] = s_dict[key] for idx in range(UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(UpperCAmelCase_ ) return s_dict lowercase__ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : Union[str, Any] = f.read() UpperCAmelCase : Union[str, Any] = re.findall(R'(.*) = ([0-9.]*)' , UpperCAmelCase_ ) UpperCAmelCase : str = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase : Dict = float(UpperCAmelCase_ ) if '.' in value else int(UpperCAmelCase_ ) UpperCAmelCase : str = re.findall(R'(.*activations) = \(\'(.*)\',\)' , UpperCAmelCase_ )[0] UpperCAmelCase : Union[str, Any] = str(activation[1] ) UpperCAmelCase : Optional[int] = num_experts UpperCAmelCase : List[str] = SwitchTransformersConfig(**UpperCAmelCase_ ) return config def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_="./" , UpperCAmelCase_=8 ): # Initialise PyTorch model print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCAmelCase : List[Any] = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) if gin_file is not None: UpperCAmelCase : List[Any] = convert_gin_to_config(UpperCAmelCase_ , UpperCAmelCase_ ) else: UpperCAmelCase : str = SwitchTransformersConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : str = SwitchTransformersForConditionalGeneration(UpperCAmelCase_ ) UpperCAmelCase : str = flax_params['target'] UpperCAmelCase : Union[str, Any] = flatten_dict(UpperCAmelCase_ , sep='/' ) UpperCAmelCase : Tuple = rename_keys(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = unflatten_dict(UpperCAmelCase_ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
280
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __A = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Any: """simple docstring""" if rng is None: lowerCAmelCase__ :Tuple = random.Random() lowerCAmelCase__ :Optional[int] = 1 for dim in shape: total_dims *= dim lowerCAmelCase__ :Union[str, Any] = [] for _ in range(SCREAMING_SNAKE_CASE_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowerCAmelCase__ :str = np.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa ).reshape(SCREAMING_SNAKE_CASE_ ) return output def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ :Dict = ids_tensor(SCREAMING_SNAKE_CASE_ , vocab_size=2 , rng=SCREAMING_SNAKE_CASE_ ) # make sure that at least one token is attended to for each batch lowerCAmelCase__ :Dict = 1 return attn_mask @require_flax class _lowerCAmelCase : """simple docstring""" __magic_name__ :Dict = None __magic_name__ :Optional[int] = () def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowerCAmelCase__ :Tuple = 2 lowerCAmelCase__ :List[str] = inputs['input_ids'].shape[-1] // 2 lowerCAmelCase__ :Tuple = inputs['input_ids'][:max_batch_size, :sequence_length] lowerCAmelCase__ :Optional[Any] = jnp.ones_like(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowerCAmelCase__ :Any = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowerCAmelCase__ :List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self._get_input_ids_and_config() lowerCAmelCase__ :Optional[int] = False lowerCAmelCase__ :Union[str, Any] = max_length lowerCAmelCase__ :Tuple = 0 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Tuple = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase__ :List[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = pt_model_class(__UpperCAmelCase ).eval() lowerCAmelCase__ :Tuple = load_flax_weights_in_pytorch_model(__UpperCAmelCase , flax_model.params ) lowerCAmelCase__ :Dict = flax_model.generate(__UpperCAmelCase ).sequences lowerCAmelCase__ :Dict = pt_model.generate(torch.tensor(__UpperCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowerCAmelCase__ :Optional[int] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self._get_input_ids_and_config() lowerCAmelCase__ :Any = False lowerCAmelCase__ :int = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Union[str, Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Any = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = jit(model.generate ) lowerCAmelCase__ :Any = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self._get_input_ids_and_config() lowerCAmelCase__ :List[str] = True lowerCAmelCase__ :str = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :int = jit(model.generate ) lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self._get_input_ids_and_config() lowerCAmelCase__ :List[Any] = False lowerCAmelCase__ :List[str] = max_length lowerCAmelCase__ :str = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Tuple = model_class(__UpperCAmelCase ) lowerCAmelCase__ :int = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :str = jit(model.generate ) lowerCAmelCase__ :Tuple = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = self._get_input_ids_and_config() lowerCAmelCase__ :Union[str, Any] = False lowerCAmelCase__ :Optional[Any] = max_length lowerCAmelCase__ :List[str] = 2 lowerCAmelCase__ :List[Any] = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Union[str, Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Any = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self._get_input_ids_and_config() lowerCAmelCase__ :List[Any] = True lowerCAmelCase__ :Optional[Any] = max_length lowerCAmelCase__ :int = 0.8 lowerCAmelCase__ :Optional[Any] = 1_0 lowerCAmelCase__ :Optional[Any] = 0.3 lowerCAmelCase__ :Optional[Any] = 1 lowerCAmelCase__ :Union[str, Any] = 8 lowerCAmelCase__ :Any = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[str] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :int = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = jit(model.generate ) lowerCAmelCase__ :str = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = self._get_input_ids_and_config() lowerCAmelCase__ :Dict = max_length lowerCAmelCase__ :int = 1 lowerCAmelCase__ :int = 8 lowerCAmelCase__ :List[str] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Optional[Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = jit(model.generate ) lowerCAmelCase__ :Tuple = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self._get_input_ids_and_config() lowerCAmelCase__ :Union[str, Any] = max_length lowerCAmelCase__ :int = 2 lowerCAmelCase__ :Tuple = 1 lowerCAmelCase__ :Optional[int] = 8 lowerCAmelCase__ :Optional[int] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) lowerCAmelCase__ :int = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = jit(model.generate ) lowerCAmelCase__ :Optional[Any] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :str = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :str = False lowerCAmelCase__ :Union[str, Any] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :int = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Dict = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = jit(model.generate ) lowerCAmelCase__ :List[Any] = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :List[Any] = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :str = True lowerCAmelCase__ :Tuple = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Tuple = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :int = jit(model.generate ) lowerCAmelCase__ :str = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :Union[str, Any] = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :str = 2 lowerCAmelCase__ :List[str] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Tuple = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :int = jit(model.generate ) lowerCAmelCase__ :List[Any] = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) lowerCAmelCase__ :Optional[int] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) lowerCAmelCase__ :List[Any] = 'Hello world' lowerCAmelCase__ :Any = tokenizer(__UpperCAmelCase , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__UpperCAmelCase , 'do_samples' ): model.generate(__UpperCAmelCase , do_samples=__UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__UpperCAmelCase , 'foo' ): lowerCAmelCase__ :Optional[int] = {'foo': 'bar'} model.generate(__UpperCAmelCase , **__UpperCAmelCase )
293
import argparse import hashlib # hashlib is only used inside the Test class import struct class A__ : def __init__( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = data lowerCAmelCase__ : List[Any] = [0X67_452_301, 0Xef_cda_b89, 0X98_bad_cfe, 0X10_325_476, 0Xc3_d2e_1f0] @staticmethod def _lowerCamelCase ( a : int , a : List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_fff_fff def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = b'\x80' + b'\x00' * (63 - (len(self.data ) + 8) % 64) lowerCAmelCase__ : List[str] = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Tuple , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = list(struct.unpack('>16L' , a ) ) + [0] * 64 for i in range(16 , 80 ): lowerCAmelCase__ : int = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.padding() lowerCAmelCase__ : List[Any] = self.split_blocks() for block in self.blocks: lowerCAmelCase__ : str = self.expand_block(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = self.h for i in range(0 , 80 ): if 0 <= i < 20: lowerCAmelCase__ : Tuple = (b & c) | ((~b) & d) lowerCAmelCase__ : int = 0X5a_827_999 elif 20 <= i < 40: lowerCAmelCase__ : List[str] = b ^ c ^ d lowerCAmelCase__ : Any = 0X6e_d9e_ba1 elif 40 <= i < 60: lowerCAmelCase__ : Tuple = (b & c) | (b & d) | (c & d) lowerCAmelCase__ : Tuple = 0X8f_1bb_cdc elif 60 <= i < 80: lowerCAmelCase__ : List[Any] = b ^ c ^ d lowerCAmelCase__ : int = 0Xca_62c_1d6 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = ( self.rotate(a , 5 ) + f + e + k + expanded_block[i] & 0Xff_fff_fff, a, self.rotate(a , 30 ), c, d, ) lowerCAmelCase__ : Optional[Any] = ( self.h[0] + a & 0Xff_fff_fff, self.h[1] + b & 0Xff_fff_fff, self.h[2] + c & 0Xff_fff_fff, self.h[3] + d & 0Xff_fff_fff, self.h[4] + e & 0Xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Optional[int] = b'Test String' assert SHAaHash(SCREAMING_SNAKE_CASE_ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE_ ).hexdigest() # noqa: S324 def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : str = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowerCAmelCase__ : Dict = parser.parse_args() lowerCAmelCase__ : Tuple = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowerCAmelCase__ : List[Any] = f.read() else: lowerCAmelCase__ : Tuple = bytes(SCREAMING_SNAKE_CASE_ , 'utf-8' ) print(SHAaHash(SCREAMING_SNAKE_CASE_ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
212
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : Union[str, Any] =AlbertTokenizer A__ : List[str] =AlbertTokenizerFast A__ : Optional[Any] =True A__ : Optional[Any] =True A__ : Any =True def A_ ( self : Optional[Any] ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = AlbertTokenizer(UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = 'this is a test' SCREAMING_SNAKE_CASE__ = 'this is a test' return input_text, output_text def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = '<pad>' SCREAMING_SNAKE_CASE__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(UpperCAmelCase_ ) , 30000 ) def A_ ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def A_ ( self : Tuple ): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = AlbertTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [48, 25, 21, 1289] ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_ , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = AlbertTokenizer(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('sequence builders' ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('multi-sequence build' ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def A_ ( self : List[str] ): # fmt: off SCREAMING_SNAKE_CASE__ = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
169
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
169
1
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE ) ->int: assert column_title.isupper() a__: Tuple = 0 a__: Optional[Any] = len(_lowerCAmelCase ) - 1 a__: List[str] = 0 while index >= 0: a__: int = (ord(column_title[index] ) - 64) * pow(26 , _lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
290
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , snake_case :AutoencoderKL , snake_case :CLIPTextModel , snake_case :CLIPTokenizer , snake_case :UNetaDConditionModel , snake_case :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , snake_case :StableDiffusionSafetyChecker , snake_case :CLIPImageProcessor , ): '''simple docstring''' super().__init__() self.register_modules( vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self.enable_attention_slicing(snake_case ) @torch.no_grad() def __call__( self :Any , snake_case :Union[str, List[str]] , snake_case :int = 512 , snake_case :int = 512 , snake_case :int = 50 , snake_case :float = 7.5 , snake_case :Optional[Union[str, List[str]]] = None , snake_case :Optional[int] = 1 , snake_case :float = 0.0 , snake_case :Optional[torch.Generator] = None , snake_case :Optional[torch.FloatTensor] = None , snake_case :Optional[str] = "pil" , snake_case :bool = True , snake_case :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case :int = 1 , snake_case :Optional[torch.FloatTensor] = None , **snake_case :Optional[Any] , ): '''simple docstring''' if isinstance(snake_case , snake_case ): A_ : Dict = 1 elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = len(snake_case ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case )}." ) # get prompt text embeddings A_ : int = self.tokenizer( snake_case , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A_ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A_ : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_ , A_ , A_ : int = text_embeddings.shape A_ : List[str] = text_embeddings.repeat(1 , snake_case , 1 ) A_ : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : List[str] if negative_prompt is None: A_ : List[str] = [""] elif type(snake_case ) is not type(snake_case ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case )} !=" f" {type(snake_case )}." ) elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = [negative_prompt] elif batch_size != len(snake_case ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: A_ : Any = negative_prompt A_ : Optional[int] = text_input_ids.shape[-1] A_ : Dict = self.tokenizer( snake_case , padding="max_length" , max_length=snake_case , truncation=snake_case , return_tensors="pt" , ) A_ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : Tuple = uncond_embeddings.shape[1] A_ : Dict = uncond_embeddings.repeat(snake_case , snake_case , 1 ) A_ : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : Tuple = torch.randn( snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to(self.device ) A_ : Optional[Any] = torch.randn(snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to( self.device ) else: A_ : int = torch.randn( snake_case , generator=snake_case , device=self.device , dtype=snake_case ) A_ : Optional[int] = torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A_ : Tuple = latents_reference.to(self.device ) A_ : Any = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : List[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : Optional[int] = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : Dict = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Optional[Any] = 0 if dx < 0 else dx A_ : Optional[Any] = 0 if dy < 0 else dy A_ : List[str] = max(-dx , 0 ) A_ : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ : Any = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : List[str] = {} if accepts_eta: A_ : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance A_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = self.scheduler.scale_model_input(snake_case , snake_case ) # predict the noise residual A_ : List[str] = self.unet(snake_case , snake_case , encoder_hidden_states=snake_case ).sample # perform guidance if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.chunk(2 ) A_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case ) A_ : List[str] = 1 / 0.18215 * latents A_ : Tuple = self.vae.decode(snake_case ).sample A_ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ : int = self.feature_extractor(self.numpy_to_pil(snake_case ) , return_tensors="pt" ).to( self.device ) A_ , A_ : List[str] = self.safety_checker( images=snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : List[str] = None if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case )
300
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class UpperCamelCase ( lowercase_ ): lowercase = 'perceiver' def __init__( self ,__UpperCamelCase=256 ,__UpperCamelCase=1280 ,__UpperCamelCase=768 ,__UpperCamelCase=1 ,__UpperCamelCase=26 ,__UpperCamelCase=8 ,__UpperCamelCase=8 ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="kv" ,__UpperCamelCase=1 ,__UpperCamelCase=1 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=True ,__UpperCamelCase=262 ,__UpperCamelCase=2048 ,__UpperCamelCase=56 ,__UpperCamelCase=[368, 496] ,__UpperCamelCase=16 ,__UpperCamelCase=1920 ,__UpperCamelCase=16 ,__UpperCamelCase=[1, 16, 224, 224] ,**__UpperCamelCase ,) -> List[Any]: '''simple docstring''' super().__init__(**__UpperCamelCase ) lowercase_ : Dict = num_latents lowercase_ : List[str] = d_latents lowercase_ : Tuple = d_model lowercase_ : Optional[Any] = num_blocks lowercase_ : Dict = num_self_attends_per_block lowercase_ : Tuple = num_self_attention_heads lowercase_ : Optional[Any] = num_cross_attention_heads lowercase_ : Tuple = qk_channels lowercase_ : Tuple = v_channels lowercase_ : Any = cross_attention_shape_for_attention lowercase_ : Any = self_attention_widening_factor lowercase_ : str = cross_attention_widening_factor lowercase_ : Optional[Any] = hidden_act lowercase_ : Dict = attention_probs_dropout_prob lowercase_ : Any = initializer_range lowercase_ : Dict = layer_norm_eps lowercase_ : int = use_query_residual # masked language modeling attributes lowercase_ : Tuple = vocab_size lowercase_ : Union[str, Any] = max_position_embeddings # image classification attributes lowercase_ : Union[str, Any] = image_size # flow attributes lowercase_ : Dict = train_size # multimodal autoencoding attributes lowercase_ : Optional[int] = num_frames lowercase_ : List[Any] = audio_samples_per_frame lowercase_ : str = samples_per_patch lowercase_ : Dict = output_shape class UpperCamelCase ( lowercase_ ): @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowercase_ : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase_ : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def _UpperCAmelCase ( self ) -> float: '''simple docstring''' return 1e-4 def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = -1 ,__UpperCamelCase = -1 ,__UpperCamelCase = -1 ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = 3 ,__UpperCamelCase = 40 ,__UpperCamelCase = 40 ,) -> Mapping[str, Any]: '''simple docstring''' if isinstance(__UpperCamelCase ,__UpperCamelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ : List[Any] = compute_effective_axis_dimension( __UpperCamelCase ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ : Optional[Any] = preprocessor.num_special_tokens_to_add(__UpperCamelCase ) lowercase_ : int = compute_effective_axis_dimension( __UpperCamelCase ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence lowercase_ : Dict = [' '.join(['a'] ) * seq_length] * batch_size lowercase_ : int = dict(preprocessor(__UpperCamelCase ,return_tensors=__UpperCamelCase ) ) lowercase_ : Union[str, Any] = inputs.pop('input_ids' ) return inputs elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ : Union[str, Any] = compute_effective_axis_dimension(__UpperCamelCase ,fixed_dimension=OnnxConfig.default_fixed_batch ) lowercase_ : Dict = self._generate_dummy_images(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Union[str, Any] = dict(preprocessor(images=__UpperCamelCase ,return_tensors=__UpperCamelCase ) ) lowercase_ : List[Any] = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
369
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore __SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered") def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ): lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
321
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() _UpperCAmelCase : Union[str, Any] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) _UpperCAmelCase : Optional[Any] = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } _UpperCAmelCase : str = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6_0_0_0, 'return_attention_mask': False, 'do_normalize': True, } _UpperCAmelCase : List[str] = tempfile.mkdtemp() _UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : int = os.path.join(self.tmpdirname , _UpperCamelCase ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCamelCase ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCamelCase ) + "\n" ) # load decoder from hub _UpperCAmelCase : List[Any] = 'hf-internal-testing/ngram-beam-search-decoder' def _lowerCAmelCase ( self : int , **lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.add_kwargs_tokens_map.copy() kwargs.update(_UpperCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def _lowerCAmelCase ( self : Tuple , **lowerCAmelCase__ : int ) -> List[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def _lowerCAmelCase ( self : Any , **lowerCAmelCase__ : List[str] ) -> int: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_UpperCamelCase ) def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : List[str] = self.get_feature_extractor() _UpperCAmelCase : Optional[Any] = self.get_decoder() _UpperCAmelCase : List[str] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Any = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _UpperCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _UpperCAmelCase : Dict = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(_UpperCamelCase , "include" ): WavaVecaProcessorWithLM( tokenizer=_UpperCamelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.get_feature_extractor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : Optional[Any] = self.get_decoder() _UpperCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) _UpperCAmelCase : Tuple = floats_list((3, 1_0_0_0) ) _UpperCAmelCase : List[str] = feature_extractor(_UpperCamelCase , return_tensors="np" ) _UpperCAmelCase : Any = processor(_UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = self.get_feature_extractor() _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : List[Any] = self.get_decoder() _UpperCAmelCase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) _UpperCAmelCase : List[Any] = 'This is a test string' _UpperCAmelCase : str = processor(text=_UpperCamelCase ) _UpperCAmelCase : List[str] = tokenizer(_UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Any=(2, 1_0, 1_6) , lowerCAmelCase__ : int=7_7 ) -> Optional[Any]: """simple docstring""" np.random.seed(_UpperCamelCase ) return np.random.rand(*_UpperCamelCase ) def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_decoder() _UpperCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) _UpperCAmelCase : int = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) _UpperCAmelCase : Union[str, Any] = processor.decode(_UpperCamelCase ) _UpperCAmelCase : List[Any] = decoder.decode_beams(_UpperCamelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Dict ) -> str: """simple docstring""" _UpperCAmelCase : List[Any] = self.get_feature_extractor() _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : Tuple = self.get_decoder() _UpperCAmelCase : Dict = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) _UpperCAmelCase : int = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _UpperCAmelCase : Union[str, Any] = processor.batch_decode(_UpperCamelCase ) else: with get_context(_UpperCamelCase ).Pool() as pool: _UpperCAmelCase : Union[str, Any] = processor.batch_decode(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase : List[Any] = list(_UpperCamelCase ) with get_context("fork" ).Pool() as p: _UpperCAmelCase : Dict = decoder.decode_beams_batch(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase : int = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_UpperCamelCase , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(_UpperCamelCase , decoded_processor.logit_score ) self.assertListEqual(_UpperCamelCase , decoded_processor.lm_score ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _UpperCAmelCase : Optional[int] = self.get_feature_extractor() _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : Any = self.get_decoder() _UpperCAmelCase : int = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) _UpperCAmelCase : Any = self._get_dummy_logits() _UpperCAmelCase : List[str] = 1_5 _UpperCAmelCase : str = -20.0 _UpperCAmelCase : List[Any] = -4.0 _UpperCAmelCase : Dict = processor.batch_decode( _UpperCamelCase , beam_width=_UpperCamelCase , beam_prune_logp=_UpperCamelCase , token_min_logp=_UpperCamelCase , ) _UpperCAmelCase : List[str] = decoded_processor_out.text _UpperCAmelCase : Dict = list(_UpperCamelCase ) with get_context("fork" ).Pool() as pool: _UpperCAmelCase : Optional[int] = decoder.decode_beams_batch( _UpperCamelCase , _UpperCamelCase , beam_width=_UpperCamelCase , beam_prune_logp=_UpperCamelCase , token_min_logp=_UpperCamelCase , ) _UpperCAmelCase : Dict = [d[0][0] for d in decoded_decoder_out] _UpperCAmelCase : Union[str, Any] = [d[0][2] for d in decoded_decoder_out] _UpperCAmelCase : str = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , _UpperCamelCase ) self.assertTrue(np.array_equal(_UpperCamelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _UpperCamelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(_UpperCamelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _UpperCamelCase , atol=1e-3 ) ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = self.get_feature_extractor() _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : List[str] = self.get_decoder() _UpperCAmelCase : Tuple = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) _UpperCAmelCase : Optional[Any] = self._get_dummy_logits() _UpperCAmelCase : List[Any] = 2.0 _UpperCAmelCase : List[str] = 5.0 _UpperCAmelCase : Optional[Any] = -20.0 _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Any = processor.batch_decode( _UpperCamelCase , alpha=_UpperCamelCase , beta=_UpperCamelCase , unk_score_offset=_UpperCamelCase , lm_score_boundary=_UpperCamelCase , ) _UpperCAmelCase : Dict = decoded_processor_out.text _UpperCAmelCase : Any = list(_UpperCamelCase ) decoder.reset_params( alpha=_UpperCamelCase , beta=_UpperCamelCase , unk_score_offset=_UpperCamelCase , lm_score_boundary=_UpperCamelCase , ) with get_context("fork" ).Pool() as pool: _UpperCAmelCase : Tuple = decoder.decode_beams_batch( _UpperCamelCase , _UpperCamelCase , ) _UpperCAmelCase : List[Any] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , _UpperCamelCase ) _UpperCAmelCase : int = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _UpperCamelCase ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) _UpperCAmelCase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase : Union[str, Any] = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() _UpperCAmelCase : List[Any] = os.listdir(_UpperCamelCase ) _UpperCAmelCase : List[str] = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = snapshot_download("hf-internal-testing/processor_with_lm" ) _UpperCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(_UpperCamelCase ) _UpperCAmelCase : Any = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase : Dict = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() _UpperCAmelCase : int = os.listdir(_UpperCamelCase ) _UpperCAmelCase : Dict = os.listdir(_UpperCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Any = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) _UpperCAmelCase : Any = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) _UpperCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _UpperCAmelCase : Tuple = processor_wavaveca(_UpperCamelCase , return_tensors="np" ) _UpperCAmelCase : List[str] = processor_auto(_UpperCamelCase , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) _UpperCAmelCase : Optional[Any] = self._get_dummy_logits() _UpperCAmelCase : List[Any] = processor_wavaveca.batch_decode(_UpperCamelCase ) _UpperCAmelCase : List[str] = processor_auto.batch_decode(_UpperCamelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" _UpperCAmelCase : str = self.get_feature_extractor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : List[str] = self.get_decoder() _UpperCAmelCase : Dict = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase , decoder=_UpperCamelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = [d[key] for d in offsets] return retrieved_list def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) _UpperCAmelCase : Tuple = self._get_dummy_logits()[0] _UpperCAmelCase : Union[str, Any] = processor.decode(_UpperCamelCase , output_word_offsets=_UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) _UpperCAmelCase : List[Any] = self._get_dummy_logits() _UpperCAmelCase : Any = processor.batch_decode(_UpperCamelCase , output_word_offsets=_UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(_UpperCamelCase , _UpperCamelCase ) ) self.assertListEqual( [" ".join(self.get_from_offsets(_UpperCamelCase , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" import torch _UpperCAmelCase : Optional[Any] = load_dataset("common_voice" , "en" , split="train" , streaming=_UpperCamelCase ) _UpperCAmelCase : Dict = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) _UpperCAmelCase : Any = iter(_UpperCamelCase ) _UpperCAmelCase : int = next(_UpperCamelCase ) _UpperCAmelCase : List[str] = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) _UpperCAmelCase : List[Any] = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _UpperCAmelCase : Dict = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): _UpperCAmelCase : Optional[int] = model(_UpperCamelCase ).logits.cpu().numpy() _UpperCAmelCase : List[Any] = processor.decode(logits[0] , output_word_offsets=_UpperCamelCase ) _UpperCAmelCase : List[str] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _UpperCAmelCase : Tuple = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] _UpperCAmelCase : List[str] = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(" ".join(self.get_from_offsets(_UpperCamelCase , "word" ) ) , _UpperCamelCase ) self.assertEqual(" ".join(self.get_from_offsets(_UpperCamelCase , "word" ) ) , output.text ) # output times _UpperCAmelCase : Tuple = torch.tensor(self.get_from_offsets(_UpperCamelCase , "start_time" ) ) _UpperCAmelCase : List[Any] = torch.tensor(self.get_from_offsets(_UpperCamelCase , "end_time" ) ) # fmt: off _UpperCAmelCase : Tuple = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _UpperCAmelCase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=0.01 ) )
145
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase__ ( __snake_case : List[Any] , __snake_case : List[str]=False ): '''simple docstring''' try: UpperCAmelCase_ : int = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase_ : Optional[int] = default else: # KEY is set, convert it to True or False. try: UpperCAmelCase_ : List[Any] = strtobool(__snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value __UpperCAmelCase = parse_flag_from_env('RUN_SLOW', default=False) def lowercase__ ( __snake_case : int ): '''simple docstring''' return unittest.skip('Test was skipped' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , 'test is slow' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(__snake_case ) def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(__snake_case ) def lowercase__ ( __snake_case : int ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(__snake_case ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(__snake_case ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(__snake_case ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(__snake_case ) def lowercase__ ( __snake_case : Dict=None , __snake_case : Dict=None ): '''simple docstring''' if test_case is None: return partial(__snake_case , version=__snake_case ) return unittest.skipUnless(is_torch_version('>=' , __snake_case ) , F"test requires torch version >= {version}" )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(__snake_case ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(__snake_case ) def lowercase__ ( __snake_case : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(__snake_case ) __UpperCAmelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(__snake_case ) class lowerCamelCase (unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = True @classmethod def __UpperCAmelCase ( cls ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = tempfile.mkdtemp() @classmethod def __UpperCAmelCase ( cls ) -> List[str]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCAmelCase ( self ) -> str: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_UpperCamelCase ) class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Optional[int]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any: UpperCAmelCase_ : List[Any] = mocks if isinstance(_UpperCamelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = AcceleratorState() UpperCAmelCase_ : str = tensor[None].clone().to(state.device ) UpperCAmelCase_ : List[str] = gather(__snake_case ).cpu() UpperCAmelCase_ : List[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __snake_case ): return False return True class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : str = returncode UpperCAmelCase_ : Optional[Any] = stdout UpperCAmelCase_ : Optional[Any] = stderr async def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Optional[int] ): '''simple docstring''' while True: UpperCAmelCase_ : Dict = await stream.readline() if line: callback(__snake_case ) else: break async def lowercase__ ( __snake_case : Optional[int] , __snake_case : Dict=None , __snake_case : str=None , __snake_case : Dict=None , __snake_case : List[str]=False , __snake_case : Optional[int]=False ): '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : str = [] def tee(__snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[int]="" ): UpperCAmelCase_ : List[str] = line.decode('utf-8' ).rstrip() sink.append(__snake_case ) if not quiet: print(__snake_case , __snake_case , file=__snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __snake_case : tee(__snake_case , __snake_case , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __snake_case : tee(__snake_case , __snake_case , sys.stderr , label='stderr:' ) ) ), ] , timeout=__snake_case , ) return _RunOutput(await p.wait() , __snake_case , __snake_case ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[Any]=None , __snake_case : str=None , __snake_case : Tuple=180 , __snake_case : Dict=False , __snake_case : Optional[Any]=True ): '''simple docstring''' UpperCAmelCase_ : str = asyncio.get_event_loop() UpperCAmelCase_ : int = loop.run_until_complete( _stream_subprocess(__snake_case , env=__snake_case , stdin=__snake_case , timeout=__snake_case , quiet=__snake_case , echo=__snake_case ) ) UpperCAmelCase_ : int = ' '.join(__snake_case ) if result.returncode > 0: UpperCAmelCase_ : int = '\n'.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class lowerCamelCase (_snake_case ): '''simple docstring''' pass def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any]=False ): '''simple docstring''' try: UpperCAmelCase_ : List[Any] = subprocess.check_output(__snake_case , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__snake_case , 'decode' ): UpperCAmelCase_ : str = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__snake_case )}` failed with the following error:\n\n{e.output.decode()}" ) from e
29
0
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A : Any = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __A : lowerCAmelCase_ : List[Any] = PegasusConfig lowerCAmelCase_ : Optional[int] = {} lowerCAmelCase_ : int = "gelu" def __init__( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Tuple=99 , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : List[Any]=5 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Tuple=20 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : Tuple=0 , ): lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : Tuple = is_training lowerCAmelCase : Dict = use_labels lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : Optional[Any] = eos_token_id lowerCAmelCase : List[str] = pad_token_id lowerCAmelCase : Optional[int] = bos_token_id def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowerCAmelCase : int = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase : int = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase : Tuple = prepare_pegasus_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, inputs_dict def lowercase__ ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Union[str, Any] = 20 lowerCAmelCase : Tuple = model_class_name(UpperCAmelCase_ ) lowerCAmelCase : Tuple = model.encode(inputs_dict['input_ids'] ) lowerCAmelCase , lowerCAmelCase : Dict = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowerCAmelCase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) lowerCAmelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : int = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCAmelCase : List[str] = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCAmelCase : List[Any] = model.decode(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def lowercase__ ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = 20 lowerCAmelCase : Tuple = model_class_name(UpperCAmelCase_ ) lowerCAmelCase : Any = model.encode(inputs_dict['input_ids'] ) lowerCAmelCase , lowerCAmelCase : List[str] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowerCAmelCase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase : str = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCAmelCase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCAmelCase : Dict = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCAmelCase : int = model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ ) lowerCAmelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=None, ) -> List[Any]: '''simple docstring''' if attention_mask is None: lowerCAmelCase : Dict = np.not_equal(_UpperCAmelCase, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowerCAmelCase : str = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCAmelCase_ : Dict = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : Union[str, Any] = False def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = FlaxPegasusModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Any = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : int = model_class(UpperCAmelCase_ ) @jax.jit def encode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Any ): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) with self.subTest('JIT Enabled' ): lowerCAmelCase : Optional[Any] = encode_jitted(**UpperCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase : Tuple = encode_jitted(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( self : List[str] ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Dict = model_class(UpperCAmelCase_ ) lowerCAmelCase : Tuple = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) lowerCAmelCase : Union[str, Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest('JIT Enabled' ): lowerCAmelCase : Optional[int] = decode_jitted(**UpperCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase : Optional[Any] = decode_jitted(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase__ ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase : Any = model_class_name.from_pretrained('google/pegasus-large' , from_pt=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = np.ones((1, 1) ) lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @slow def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : str = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) lowerCAmelCase : int = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) lowerCAmelCase : Optional[int] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] lowerCAmelCase : List[str] = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] lowerCAmelCase : List[Any] = tokenizer(UpperCAmelCase_ , return_tensors='np' , truncation=UpperCAmelCase_ , max_length=512 , padding=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = model.generate(**UpperCAmelCase_ , num_beams=2 ).sequences lowerCAmelCase : List[str] = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) assert tgt_text == decoded
323
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') a__ : Tuple = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : """simple docstring""" snake_case__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case__ : bool = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) snake_case__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case__ : bool = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class UpperCamelCase_ : """simple docstring""" snake_case__ : Optional[str] = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) snake_case__ : bool = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) snake_case__ : Optional[int] = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) snake_case__ : Optional[int] = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ : bool = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) snake_case__ : Optional[int] = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case__ : Optional[int] = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: if self.train_file is not None: __SCREAMING_SNAKE_CASE = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __SCREAMING_SNAKE_CASE = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class UpperCamelCase_ : """simple docstring""" snake_case__ : PreTrainedTokenizerBase snake_case__ : Union[bool, str, PaddingStrategy] = True snake_case__ : Optional[int] = None snake_case__ : Optional[int] = None def __call__( self : int , UpperCAmelCase__ : Any ) -> str: __SCREAMING_SNAKE_CASE = "label" if "label" in features[0].keys() else "labels" __SCREAMING_SNAKE_CASE = [feature.pop(UpperCAmelCase__ ) for feature in features] __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = len(features[0]["input_ids"] ) __SCREAMING_SNAKE_CASE = [ [{k: v[i] for k, v in feature.items()} for i in range(UpperCAmelCase__ )] for feature in features ] __SCREAMING_SNAKE_CASE = list(chain(*UpperCAmelCase__ ) ) __SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten __SCREAMING_SNAKE_CASE = {k: v.view(UpperCAmelCase__ , UpperCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels __SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase__ , dtype=torch.intaa ) return batch def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) datasets.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __SCREAMING_SNAKE_CASE = {} if data_args.train_file is not None: __SCREAMING_SNAKE_CASE = data_args.train_file if data_args.validation_file is not None: __SCREAMING_SNAKE_CASE = data_args.validation_file __SCREAMING_SNAKE_CASE = data_args.train_file.split("." )[-1] __SCREAMING_SNAKE_CASE = load_dataset( lowerCAmelCase_ , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __SCREAMING_SNAKE_CASE = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __SCREAMING_SNAKE_CASE = [f"""ending{i}""" for i in range(4 )] __SCREAMING_SNAKE_CASE = "sent1" __SCREAMING_SNAKE_CASE = "sent2" if data_args.max_seq_length is None: __SCREAMING_SNAKE_CASE = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) __SCREAMING_SNAKE_CASE = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = [[context] * 4 for context in examples[context_name]] __SCREAMING_SNAKE_CASE = examples[question_header_name] __SCREAMING_SNAKE_CASE = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(lowerCAmelCase_ ) ] # Flatten out __SCREAMING_SNAKE_CASE = list(chain(*lowerCAmelCase_ ) ) __SCREAMING_SNAKE_CASE = list(chain(*lowerCAmelCase_ ) ) # Tokenize __SCREAMING_SNAKE_CASE = tokenizer( lowerCAmelCase_ , lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) __SCREAMING_SNAKE_CASE = raw_datasets["train"] if data_args.max_train_samples is not None: __SCREAMING_SNAKE_CASE = min(len(lowerCAmelCase_ ) , data_args.max_train_samples ) __SCREAMING_SNAKE_CASE = train_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): __SCREAMING_SNAKE_CASE = train_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) __SCREAMING_SNAKE_CASE = raw_datasets["validation"] if data_args.max_eval_samples is not None: __SCREAMING_SNAKE_CASE = min(len(lowerCAmelCase_ ) , data_args.max_eval_samples ) __SCREAMING_SNAKE_CASE = eval_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): __SCREAMING_SNAKE_CASE = eval_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __SCREAMING_SNAKE_CASE = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = eval_predictions __SCREAMING_SNAKE_CASE = np.argmax(lowerCAmelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __SCREAMING_SNAKE_CASE = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , ) # Training if training_args.do_train: __SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: __SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: __SCREAMING_SNAKE_CASE = last_checkpoint __SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __SCREAMING_SNAKE_CASE = train_result.metrics __SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __SCREAMING_SNAKE_CASE = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("train" , lowerCAmelCase_ ) trainer.save_metrics("train" , lowerCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) __SCREAMING_SNAKE_CASE = trainer.evaluate() __SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("eval" , lowerCAmelCase_ ) trainer.save_metrics("eval" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' main() if __name__ == "__main__": main()
54
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class _A: """simple docstring""" @staticmethod def UpperCAmelCase_ ( *_A , **_A ): pass def _SCREAMING_SNAKE_CASE ( a ) -> str: __A : str = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _SCREAMING_SNAKE_CASE ( a ) -> Dict: __A : Dict = np.array(a ) __A : List[Any] = npimg.shape return {"hash": hashimage(a ), "shape": shape} @is_pipeline_test @require_vision @require_torch class _A( unittest.TestCase ): """simple docstring""" UpperCamelCase : str = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCamelCase : int = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCAmelCase_ ( self , _A , _A , _A ): __A : Dict = MaskGenerationPipeline(model=_A , image_processor=_A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase_ ( self , _A , _A ): pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def UpperCAmelCase_ ( self ): pass @slow @require_torch def UpperCAmelCase_ ( self ): __A : Union[str, Any] = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) __A : List[str] = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256 ) # Shortening by hashing __A : List[Any] = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(_A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9_9_6_7}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.9_9_3}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9_9_0_9}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9_8_7_9}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9_8_3_4}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9_7_1_6}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9_6_1_2}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9_5_9_9}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9_5_5_2}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9_5_3_2}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9_5_1_6}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9_4_9_9}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9_4_8_3}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9_4_6_4}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9_4_0_8}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9_3_3_5}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9_3_2_6}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9_2_6_2}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8_9_9_9}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8_9_8_6}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8_9_8_4}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8_8_7_3}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def UpperCAmelCase_ ( self ): __A : Optional[Any] = 'facebook/sam-vit-huge' __A : List[str] = pipeline('mask-generation' , model=_A ) __A : Tuple = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __A : List[str] = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(_A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1_0}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, ] , )
280
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(snake_case_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
106
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def _lowercase (self : Dict , __a : Any ): if isinstance(__a , __a ): UpperCAmelCase_ = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__(self : Union[str, Any] , __a : Optional[int] , __a : Optional[int] , __a : int ): if len(__a ) == 0 or len(__a ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(__a ) ) if isinstance(__a , __a ): UpperCAmelCase_ = [sequences] UpperCAmelCase_ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__a )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCamelCase__ ) class __A ( UpperCamelCase__ ): def __init__(self : Optional[Any] , __a : Union[str, Any]=ZeroShotClassificationArgumentHandler() , *__a : Optional[int] , **__a : List[str] ): UpperCAmelCase_ = args_parser super().__init__(*__a , **__a ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def _lowercase (self : str ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def _lowercase (self : Any , __a : Any , __a : int=True , __a : Dict=True , __a : Any=TruncationStrategy.ONLY_FIRST , **__a : Tuple ): UpperCAmelCase_ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) UpperCAmelCase_ = self.tokenizer.eos_token try: UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , ) except Exception as e: if "too short" in str(__a ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase (self : List[str] , **__a : Tuple ): if kwargs.get("multi_class" , __a ) is not None: UpperCAmelCase_ = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) UpperCAmelCase_ = {} if "candidate_labels" in kwargs: UpperCAmelCase_ = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: UpperCAmelCase_ = kwargs["hypothesis_template"] UpperCAmelCase_ = {} if "multi_label" in kwargs: UpperCAmelCase_ = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__(self : Tuple , __a : Union[str, List[str]] , *__a : Optional[Any] , **__a : Tuple , ): if len(__a ) == 0: pass elif len(__a ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase_ = args[0] else: raise ValueError(f"""Unable to understand extra arguments {args}""" ) return super().__call__(__a , **__a ) def _lowercase (self : Optional[int] , __a : Optional[Any] , __a : List[str]=None , __a : Any="This example is {}." ): UpperCAmelCase_ , UpperCAmelCase_ = self._args_parser(__a , __a , __a ) for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a ) ): UpperCAmelCase_ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__a ) - 1, **model_input, } def _lowercase (self : List[str] , __a : Any ): UpperCAmelCase_ = inputs["candidate_label"] UpperCAmelCase_ = inputs["sequence"] UpperCAmelCase_ = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase_ = self.model(**__a ) UpperCAmelCase_ = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def _lowercase (self : Optional[Any] , __a : List[str] , __a : Tuple=False ): UpperCAmelCase_ = [outputs["candidate_label"] for outputs in model_outputs] UpperCAmelCase_ = [outputs["sequence"] for outputs in model_outputs] UpperCAmelCase_ = np.concatenate([output["logits"].numpy() for output in model_outputs] ) UpperCAmelCase_ = logits.shape[0] UpperCAmelCase_ = len(__a ) UpperCAmelCase_ = N // n UpperCAmelCase_ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__a ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase_ = self.entailment_id UpperCAmelCase_ = -1 if entailment_id == 0 else 0 UpperCAmelCase_ = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase_ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) UpperCAmelCase_ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase_ = reshaped_outputs[..., self.entailment_id] UpperCAmelCase_ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) UpperCAmelCase_ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
106
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Any = logging.get_logger(__name__) def lowerCAmelCase ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" UpperCAmelCase__ = "backbone." if is_semantic else "" UpperCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', "beit.embeddings.cls_token"), (F'''{prefix}patch_embed.proj.weight''', "beit.embeddings.patch_embeddings.projection.weight"), (F'''{prefix}patch_embed.proj.bias''', "beit.embeddings.patch_embeddings.projection.bias"), (F'''{prefix}pos_embed''', "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCAmelCase ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Dict=False ): """simple docstring""" for i in range(config.num_hidden_layers ): UpperCAmelCase__ = "backbone." if is_semantic else "" # queries, keys and values UpperCAmelCase__ = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase__ = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase__ = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase__ = q_bias UpperCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase__ = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase__ = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase__ = gamma_a UpperCAmelCase__ = gamma_a def lowerCAmelCase ( _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): """simple docstring""" UpperCAmelCase__ = dct.pop(_lowerCAmelCase ) UpperCAmelCase__ = val def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase__ = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" UpperCAmelCase__ = False if "rvlcdip" in checkpoint_url else True UpperCAmelCase__ = BeitConfig(use_absolute_position_embeddings=_lowerCAmelCase , use_mask_token=_lowerCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase__ = 1024 UpperCAmelCase__ = 4096 UpperCAmelCase__ = 24 UpperCAmelCase__ = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase__ = 16 UpperCAmelCase__ = "huggingface/label-files" UpperCAmelCase__ = "rvlcdip-id2label.json" UpperCAmelCase__ = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) UpperCAmelCase__ = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase__ = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" )["model"] UpperCAmelCase__ = create_rename_keys(_lowerCAmelCase , has_lm_head=_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , has_lm_head=_lowerCAmelCase ) # load HuggingFace model UpperCAmelCase__ = BeitForMaskedImageModeling(_lowerCAmelCase ) if has_lm_head else BeitForImageClassification(_lowerCAmelCase ) model.eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image UpperCAmelCase__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_lowerCAmelCase ) UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=_lowerCAmelCase , return_tensors="pt" ) UpperCAmelCase__ = encoding["pixel_values"] UpperCAmelCase__ = model(_lowerCAmelCase ) UpperCAmelCase__ = outputs.logits # verify logits UpperCAmelCase__ = [1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(_lowerCAmelCase ), "Shape of logits not as expected" Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: if has_lm_head: UpperCAmelCase__ = "dit-base" if "base" in checkpoint_url else "dit-large" else: UpperCAmelCase__ = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCAmelCase , ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) _lowerCAmelCase : Tuple = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
169
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Optional[int] , **lowerCamelCase :Dict ) -> int: super().__init__(**lowerCamelCase ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(lowerCamelCase ) def UpperCAmelCase_ ( self :Any , **lowerCamelCase :int ) -> int: UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs["points_per_batch"] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self :Union[str, Any] , lowerCamelCase :Union[str, Any] , *lowerCamelCase :str , lowerCamelCase :Optional[Any]=None , lowerCamelCase :int=None , **lowerCamelCase :Optional[Any] ) -> str: return super().__call__(lowerCamelCase , *lowerCamelCase , num_workers=lowerCamelCase , batch_size=lowerCamelCase , **lowerCamelCase ) def UpperCAmelCase_ ( self :Any , lowerCamelCase :str , lowerCamelCase :Optional[Any]=64 , lowerCamelCase :int = 0 , lowerCamelCase :float = 512 / 1500 , lowerCamelCase :Optional[int] = 32 , lowerCamelCase :Optional[int] = 1 , ) -> Any: UpperCAmelCase__ = load_image(lowerCamelCase ) UpperCAmelCase__ = self.image_processor.size["longest_edge"] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = self.image_processor(images=lowerCamelCase , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(lowerCamelCase , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :List[str] , lowerCamelCase :Union[str, Any]=0.88 , lowerCamelCase :Optional[Any]=0.95 , lowerCamelCase :Tuple=0 , lowerCamelCase :Union[str, Any]=1 , ) -> Dict: UpperCAmelCase__ = model_inputs.pop("input_boxes" ) UpperCAmelCase__ = model_inputs.pop("is_last" ) UpperCAmelCase__ = model_inputs.pop("original_sizes" ).tolist() UpperCAmelCase__ = model_inputs.pop("reshaped_input_sizes" ).tolist() UpperCAmelCase__ = self.model(**lowerCamelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs["pred_masks"] UpperCAmelCase__ = self.image_processor.post_process_masks( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , binarize=lowerCamelCase ) UpperCAmelCase__ = model_outputs["iou_scores"] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCAmelCase_ ( self :int , lowerCamelCase :str , lowerCamelCase :Union[str, Any]=False , lowerCamelCase :Union[str, Any]=False , lowerCamelCase :int=0.7 , ) -> Union[str, Any]: UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) UpperCAmelCase__ = torch.cat(lowerCamelCase ) UpperCAmelCase__ = torch.cat(lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = defaultdict(lowerCamelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCamelCase ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
169
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
293
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __UpperCAmelCase : Tuple = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def A__ ( SCREAMING_SNAKE_CASE__) -> Union[str, Any]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> str: if args.student_type == "roberta": __snake_case: Optional[Any] = False elif args.student_type == "gpt2": __snake_case: str = False def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[str]: if args.student_type == "roberta": __snake_case: Optional[int] = False def A__ ( ) -> Tuple: __snake_case: Optional[int] = argparse.ArgumentParser(description="""Training""") parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""") parser.add_argument( """--dump_path""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""The output directory (log, checkpoints, parameters, etc.)""") parser.add_argument( """--data_file""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=SCREAMING_SNAKE_CASE__ , choices=["""distilbert""", """roberta""", """gpt2"""] , required=SCREAMING_SNAKE_CASE__ , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""Path to the student configuration.""") parser.add_argument( """--student_pretrained_weights""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Load student initialization checkpoint.""") parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=SCREAMING_SNAKE_CASE__ , help="""Teacher type (BERT, RoBERTa).""") parser.add_argument("""--teacher_name""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""The teacher model.""") parser.add_argument("""--temperature""" , default=2.0 , type=SCREAMING_SNAKE_CASE__ , help="""Temperature for the softmax temperature.""") parser.add_argument( """--alpha_ce""" , default=0.5 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight for the distillation loss. Must be >=0.""") parser.add_argument( """--alpha_mlm""" , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight for the CLM loss. Must be >=0.""") parser.add_argument("""--alpha_mse""" , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight of the MSE loss. Must be >=0.""") parser.add_argument( """--alpha_cos""" , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help="""Linear weight of the cosine embedding loss. Must be >=0.""") parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""") parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=SCREAMING_SNAKE_CASE__ , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=SCREAMING_SNAKE_CASE__ , help="""Proportion of tokens to mask out.""") parser.add_argument("""--word_keep""" , default=0.1 , type=SCREAMING_SNAKE_CASE__ , help="""Proportion of tokens to keep.""") parser.add_argument("""--word_rand""" , default=0.1 , type=SCREAMING_SNAKE_CASE__ , help="""Proportion of tokens to randomly replace.""") parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=SCREAMING_SNAKE_CASE__ , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=SCREAMING_SNAKE_CASE__ , help="""The token counts in the data_file for MLM.""") parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=SCREAMING_SNAKE_CASE__ , default=3 , help="""Number of pass on the whole dataset.""") parser.add_argument("""--batch_size""" , type=SCREAMING_SNAKE_CASE__ , default=5 , help="""Batch size (for each process).""") parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=SCREAMING_SNAKE_CASE__ , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=SCREAMING_SNAKE_CASE__ , help="""Linear warmup proportion.""") parser.add_argument("""--weight_decay""" , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help="""Weight decay if we apply some.""") parser.add_argument("""--learning_rate""" , default=5e-4 , type=SCREAMING_SNAKE_CASE__ , help="""The initial learning rate for Adam.""") parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=SCREAMING_SNAKE_CASE__ , help="""Epsilon for Adam optimizer.""") parser.add_argument("""--max_grad_norm""" , default=5.0 , type=SCREAMING_SNAKE_CASE__ , help="""Max gradient norm.""") parser.add_argument("""--initializer_range""" , default=0.02 , type=SCREAMING_SNAKE_CASE__ , help="""Random initialization range.""") parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=SCREAMING_SNAKE_CASE__ , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=SCREAMING_SNAKE_CASE__ , default=1 , help="""Number of GPUs in the node.""") parser.add_argument("""--local_rank""" , type=SCREAMING_SNAKE_CASE__ , default=-1 , help="""Distributed training - Local rank""") parser.add_argument("""--seed""" , type=SCREAMING_SNAKE_CASE__ , default=56 , help="""Random seed""") parser.add_argument("""--log_interval""" , type=SCREAMING_SNAKE_CASE__ , default=500 , help="""Tensorboard logging interval.""") parser.add_argument("""--checkpoint_interval""" , type=SCREAMING_SNAKE_CASE__ , default=4000 , help="""Checkpoint interval.""") __snake_case: List[Any] = parser.parse_args() sanity_checks(SCREAMING_SNAKE_CASE__) # ARGS # init_gpu_params(SCREAMING_SNAKE_CASE__) set_seed(SCREAMING_SNAKE_CASE__) if args.is_master: if os.path.exists(args.dump_path): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""") else: shutil.rmtree(args.dump_path) if not os.path.exists(args.dump_path): os.makedirs(args.dump_path) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''') # SAVE PARAMS # logger.info(F'''Param: {args}''') with open(os.path.join(args.dump_path , """parameters.json""") , """w""") as f: json.dump(vars(SCREAMING_SNAKE_CASE__) , SCREAMING_SNAKE_CASE__ , indent=4) git_log(args.dump_path) __snake_case , __snake_case , __snake_case: str = MODEL_CLASSES[args.student_type] __snake_case , __snake_case , __snake_case: Union[str, Any] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __snake_case: Tuple = teacher_tokenizer_class.from_pretrained(args.teacher_name) __snake_case: str = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __snake_case: List[str] = tokenizer.all_special_tokens.index(SCREAMING_SNAKE_CASE__) __snake_case: Optional[Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''') __snake_case: Optional[Any] = special_tok_ids __snake_case: List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file , """rb""") as fp: __snake_case: int = pickle.load(SCREAMING_SNAKE_CASE__) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''') with open(args.token_counts , """rb""") as fp: __snake_case: List[str] = pickle.load(SCREAMING_SNAKE_CASE__) __snake_case: Dict = np.maximum(SCREAMING_SNAKE_CASE__ , 1) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __snake_case: Union[str, Any] = 0.0 # do not predict special tokens __snake_case: Any = torch.from_numpy(SCREAMING_SNAKE_CASE__) else: __snake_case: Any = None __snake_case: Union[str, Any] = LmSeqsDataset(params=SCREAMING_SNAKE_CASE__ , data=SCREAMING_SNAKE_CASE__) logger.info("""Data loader created.""") # STUDENT # logger.info(F'''Loading student config from {args.student_config}''') __snake_case: Tuple = student_config_class.from_pretrained(args.student_config) __snake_case: List[str] = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''') __snake_case: Optional[int] = student_model_class.from_pretrained(args.student_pretrained_weights , config=SCREAMING_SNAKE_CASE__) else: __snake_case: Union[str, Any] = student_model_class(SCREAMING_SNAKE_CASE__) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''') logger.info("""Student loaded.""") # TEACHER # __snake_case: Optional[int] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=SCREAMING_SNAKE_CASE__) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''') logger.info(F'''Teacher loaded from {args.teacher_name}.''') # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) if args.freeze_token_type_embds: freeze_token_type_embeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __snake_case: List[str] = Distiller( params=SCREAMING_SNAKE_CASE__ , dataset=SCREAMING_SNAKE_CASE__ , token_probs=SCREAMING_SNAKE_CASE__ , student=SCREAMING_SNAKE_CASE__ , teacher=SCREAMING_SNAKE_CASE__) distiller.train() logger.info("""Let's go get some drinks.""") if __name__ == "__main__": main()
293
1
"""simple docstring""" from sklearn.metrics import fa_score import datasets lowerCAmelCase_ = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' lowerCAmelCase_ = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' lowerCAmelCase_ = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) ,reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ,_snake_case : str ,_snake_case : List[str]=None ,_snake_case : Optional[Any]=1 ,_snake_case : List[str]="binary" ,_snake_case : List[str]=None ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = fa_score( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,labels=_SCREAMING_SNAKE_CASE ,pos_label=_SCREAMING_SNAKE_CASE ,average=_SCREAMING_SNAKE_CASE ,sample_weight=_SCREAMING_SNAKE_CASE ) return {"f1": float(_SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
16
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class a_ ( lowerCamelCase ): lowercase = (DDPMParallelScheduler,) def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def A__ ( self ) -> List[str]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def A__ ( self ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = self.dummy_sample_deter + 0.1 UpperCamelCase = self.dummy_sample_deter - 0.1 UpperCamelCase = samplea.shape[0] UpperCamelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase = torch.arange(_SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 , _SCREAMING_SNAKE_CASE ) UpperCamelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase = scheduler.batch_step_no_noise(_SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3 def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ): if i == len(_SCREAMING_SNAKE_CASE ) - 1: UpperCamelCase = -1 else: UpperCamelCase = timesteps[i + 1] UpperCamelCase = scheduler.previous_timestep(_SCREAMING_SNAKE_CASE ) UpperCamelCase = prev_t.item() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 51, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 1, 0] UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
321
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Any = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
354
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
0
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __A ( lowerCamelCase_ ): """simple docstring""" return x + 2 class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = """x = 3""" SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : Any = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) assert result == 3 self.assertDictEqual(lowerCamelCase_ , {"""x""": 3} ) SCREAMING_SNAKE_CASE : Union[str, Any] = """x = y""" SCREAMING_SNAKE_CASE : List[str] = {"""y""": 5} SCREAMING_SNAKE_CASE : Any = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase_ , {"""x""": 5, """y""": 5} ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = """y = add_two(x)""" SCREAMING_SNAKE_CASE : Optional[int] = {"""x""": 3} SCREAMING_SNAKE_CASE : str = evaluate(lowerCamelCase_ , {"""add_two""": add_two} , state=lowerCamelCase_ ) assert result == 5 self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE : Optional[Any] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = """x = 3""" SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : Optional[Any] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) assert result == 3 self.assertDictEqual(lowerCamelCase_ , {"""x""": 3} ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = """test_dict = {'x': x, 'y': add_two(x)}""" SCREAMING_SNAKE_CASE : Any = {"""x""": 3} SCREAMING_SNAKE_CASE : Any = evaluate(lowerCamelCase_ , {"""add_two""": add_two} , state=lowerCamelCase_ ) self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """y""": 5} ) self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = """x = 3\ny = 5""" SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : Dict = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """y""": 5} ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = """text = f'This is x: {x}.'""" SCREAMING_SNAKE_CASE : Dict = {"""x""": 3} SCREAMING_SNAKE_CASE : List[Any] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = """if x <= 3:\n y = 2\nelse:\n y = 5""" SCREAMING_SNAKE_CASE : Any = {"""x""": 3} SCREAMING_SNAKE_CASE : List[Any] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """y""": 2} ) SCREAMING_SNAKE_CASE : Optional[int] = {"""x""": 8} SCREAMING_SNAKE_CASE : Optional[int] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase_ , {"""x""": 8, """y""": 5} ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = """test_list = [x, add_two(x)]""" SCREAMING_SNAKE_CASE : List[str] = {"""x""": 3} SCREAMING_SNAKE_CASE : Any = evaluate(lowerCamelCase_ , {"""add_two""": add_two} , state=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , [3, 5] ) self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = """y = x""" SCREAMING_SNAKE_CASE : Any = {"""x""": 3} SCREAMING_SNAKE_CASE : Dict = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) assert result == 3 self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """y""": 3} ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = """test_list = [x, add_two(x)]\ntest_list[1]""" SCREAMING_SNAKE_CASE : int = {"""x""": 3} SCREAMING_SNAKE_CASE : Tuple = evaluate(lowerCamelCase_ , {"""add_two""": add_two} , state=lowerCamelCase_ ) assert result == 5 self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """test_list""": [3, 5]} ) SCREAMING_SNAKE_CASE : List[str] = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" SCREAMING_SNAKE_CASE : str = {"""x""": 3} SCREAMING_SNAKE_CASE : Dict = evaluate(lowerCamelCase_ , {"""add_two""": add_two} , state=lowerCamelCase_ ) assert result == 5 self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = """x = 0\nfor i in range(3):\n x = i""" SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : Tuple = evaluate(lowerCamelCase_ , {"""range""": range} , state=lowerCamelCase_ ) assert result == 2 self.assertDictEqual(lowerCamelCase_ , {"""x""": 2, """i""": 2} )
323
'''simple docstring''' def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number | (1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number & ~(1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number ^ (1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return ((number >> position) & 1) == 1 def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
323
1
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE_: Optional[int] =1.6_0_2_1E-1_9 # units = C def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ) -> tuple[str, float]: '''simple docstring''' if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif conductivity < 0: raise ValueError("Conductivity cannot be negative" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative" ) elif mobility < 0: raise ValueError("mobility cannot be negative" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
106
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( UpperCamelCase__ ): def __init__(self : Union[str, Any] , __a : VQModel , __a : UNetaDModel , __a : DDIMScheduler ): super().__init__() self.register_modules(vqvae=__a , unet=__a , scheduler=__a ) @torch.no_grad() def __call__(self : str , __a : int = 1 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : float = 0.0 , __a : int = 50 , __a : Optional[str] = "pil" , __a : bool = True , **__a : Optional[int] , ): UpperCAmelCase_ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__a , ) UpperCAmelCase_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__a ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCAmelCase_ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase_ = {} if accepts_eta: UpperCAmelCase_ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCAmelCase_ = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual UpperCAmelCase_ = self.unet(__a , __a ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step(__a , __a , __a , **__a ).prev_sample # decode the image latents with the VAE UpperCAmelCase_ = self.vqvae.decode(__a ).sample UpperCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
106
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[str] = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE ( a_ , a_ ): """simple docstring""" lowercase__ = "resnet" lowercase__ = ["basic", "bottleneck"] def __init__( self : str ,lowercase_ : Optional[Any]=3 ,lowercase_ : List[Any]=6_4 ,lowercase_ : Optional[int]=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] ,lowercase_ : str=[3, 4, 6, 3] ,lowercase_ : str="bottleneck" ,lowercase_ : List[Any]="relu" ,lowercase_ : Dict=False ,lowercase_ : List[str]=None ,lowercase_ : Tuple=None ,**lowercase_ : List[str] ,): super().__init__(**lowercase_ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) lowerCAmelCase__ : Tuple = num_channels lowerCAmelCase__ : str = embedding_size lowerCAmelCase__ : str = hidden_sizes lowerCAmelCase__ : Dict = depths lowerCAmelCase__ : Optional[Any] = layer_type lowerCAmelCase__ : Optional[int] = hidden_act lowerCAmelCase__ : Union[str, Any] = downsample_in_first_stage lowerCAmelCase__ : str = ['''stem'''] + [F'stage{idx}' for idx in range(1 ,len(lowercase_ ) + 1 )] lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = get_aligned_output_features_output_indices( out_features=lowercase_ ,out_indices=lowercase_ ,stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = version.parse("1.11" ) @property def __lowerCAmelCase ( self : int ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self : Dict ): return 1E-3
106
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __UpperCamelCase : str = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
1
'''simple docstring''' from math import pow, sqrt def UpperCamelCase( *UpperCAmelCase_ ): UpperCAmelCase : List[Any] = len(UpperCAmelCase_ ) > 0 and all(value > 0.0 for value in values ) return result def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCAmelCase_ , UpperCAmelCase_ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
358
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase_ , int(b / 2 ) ) * actual_power(UpperCAmelCase_ , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase_ , int(b / 2 ) ) * actual_power(UpperCAmelCase_ , int(b / 2 ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if b < 0: return 1 / actual_power(UpperCAmelCase_ , UpperCAmelCase_ ) return actual_power(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": print(power(-2, -3))
280
0
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __A = """tiny-wmt19-en-ru""" # Build # borrowed from a test __A = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __A = dict(zip(vocab, range(len(vocab)))) __A = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: __A = Path(tmpdirname) __A = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] __A = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] __A = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) __A = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __A = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __A = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test __A = tokenizer(["""Making tiny model"""], return_tensors="""pt""") __A = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
293
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
293
1
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a : Optional[int] = '''true''' def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] , _lowercase : List[str]=82 , _lowercase : str=16 ) ->Optional[Any]: '''simple docstring''' set_seed(42 ) a : List[str] = RegressionModel() a : List[str] = deepcopy(SCREAMING_SNAKE_CASE_ ) a : int = RegressionDataset(length=SCREAMING_SNAKE_CASE_ ) a : Tuple = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) model.to(accelerator.device ) a, a : Any = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return model, ddp_model, dataloader def _SCREAMING_SNAKE_CASE ( _lowercase : Accelerator , _lowercase : Optional[int]=False ) ->Tuple: '''simple docstring''' a : int = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) a : Optional[Any] = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(_lowercase : List[Any] ): a : str = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs with accelerator.main_process_first(): a : List[str] = dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , ) a : Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowercase : Union[str, Any] ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="longest" , return_tensors="pt" ) return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=16 ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] , _lowercase : int ) ->str: '''simple docstring''' a : str = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) a : Optional[Any] = get_dataloader(SCREAMING_SNAKE_CASE_ , not dispatch_batches ) a : int = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE_ ) a, a : Tuple = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : List[str] , _lowercase : Optional[int] ) ->Dict: '''simple docstring''' a : Any = [] for batch in dataloader: a, a : Any = batch.values() with torch.no_grad(): a : List[str] = model(SCREAMING_SNAKE_CASE_ ) a, a : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) a, a : Optional[Any] = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE_ ) targs.append(SCREAMING_SNAKE_CASE_ ) a, a : Dict = torch.cat(SCREAMING_SNAKE_CASE_ ), torch.cat(SCREAMING_SNAKE_CASE_ ) return logits, targs def _SCREAMING_SNAKE_CASE ( _lowercase : Accelerator , _lowercase : Union[str, Any]=82 , _lowercase : Union[str, Any]=False , _lowercase : Any=False , _lowercase : Optional[int]=16 ) ->Optional[int]: '''simple docstring''' a, a, a : Optional[Any] = get_basic_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) a, a : Any = generate_predictions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert ( len(SCREAMING_SNAKE_CASE_ ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE_ )}""" def _SCREAMING_SNAKE_CASE ( _lowercase : bool = False , _lowercase : bool = False ) ->Any: '''simple docstring''' a : Union[str, Any] = evaluate.load("glue" , "mrpc" ) a, a : str = get_mrpc_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # First do baseline a, a, a : Any = setup["no"] model.to(SCREAMING_SNAKE_CASE_ ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE_ ) with torch.inference_mode(): a : Optional[Any] = model(**SCREAMING_SNAKE_CASE_ ) a : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=batch["labels"] ) a : Optional[Any] = metric.compute() # Then do distributed a, a, a : List[Any] = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): a : Optional[Any] = model(**SCREAMING_SNAKE_CASE_ ) a : Optional[int] = outputs.logits.argmax(dim=-1 ) a : Union[str, Any] = batch["labels"] a, a : Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ ) a : List[str] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def _SCREAMING_SNAKE_CASE ( ) ->Optional[Any]: '''simple docstring''' a : Optional[Any] = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: a : Optional[Any] = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(SCREAMING_SNAKE_CASE_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) a : Dict = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE_ , 512 ) accelerator.state._reset_state() def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
363
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig a : Optional[int] = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class __UpperCamelCase ( a__ ): lowerCamelCase : Union[str, Any] ="""albert""" def __init__( self , lowerCAmelCase__=3_0000 , lowerCAmelCase__=128 , lowerCAmelCase__=4096 , lowerCAmelCase__=12 , lowerCAmelCase__=1 , lowerCAmelCase__=64 , lowerCAmelCase__=1_6384 , lowerCAmelCase__=1 , lowerCAmelCase__="gelu_new" , lowerCAmelCase__=0 , lowerCAmelCase__=0 , lowerCAmelCase__=512 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0.1 , lowerCAmelCase__="absolute" , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , **lowerCAmelCase__ , ) -> List[str]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) a : str = vocab_size a : Optional[Any] = embedding_size a : List[str] = hidden_size a : Optional[int] = num_hidden_layers a : Optional[Any] = num_hidden_groups a : str = num_attention_heads a : Optional[int] = inner_group_num a : List[Any] = hidden_act a : str = intermediate_size a : List[Any] = hidden_dropout_prob a : int = attention_probs_dropout_prob a : Tuple = max_position_embeddings a : Optional[int] = type_vocab_size a : str = initializer_range a : int = layer_norm_eps a : List[str] = classifier_dropout_prob a : int = position_embedding_type class __UpperCamelCase ( a__ ): @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a : str = {0: "batch", 1: "choice", 2: "sequence"} else: a : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
79
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = '▁' __lowerCAmelCase = {'vocab_file': 'spiece.model'} __lowerCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } __lowerCAmelCase = { 'google/pegasus-xsum': 512, } __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( A__ ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__(self , UpperCAmelCase , UpperCAmelCase="<pad>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<mask_2>" , UpperCAmelCase="<mask_1>" , UpperCAmelCase=None , UpperCAmelCase=103 , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: _snake_case = offset if additional_special_tokens is not None: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError( f"""additional_special_tokens should be of type {type(lowerCAmelCase__ )}, but is""" f""" {type(lowerCAmelCase__ )}""" ) _snake_case = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(lowerCAmelCase__ ) , self.offset - 1 ) ] if len(set(lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) _snake_case = additional_special_tokens_extended else: _snake_case = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token_sent=lowerCAmelCase__ , offset=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) _snake_case = mask_token_sent _snake_case = vocab_file _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) # add special tokens to encoder dict _snake_case = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) _snake_case = {v: k for k, v in self.encoder.items()} @property def lowercase (self ) -> int: return len(self.sp_model ) + self.offset def lowercase (self ) -> Dict[str, int]: _snake_case = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Dict: _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__(self , UpperCAmelCase ) -> Tuple: _snake_case = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _snake_case = {} _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase (self , UpperCAmelCase ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def lowercase (self , UpperCAmelCase ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _snake_case = self.sp_model.piece_to_id(lowerCAmelCase__ ) return sp_id + self.offset def lowercase (self , UpperCAmelCase ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _snake_case = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase (self , UpperCAmelCase ) -> List[Any]: _snake_case = [] _snake_case = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase__ ) + token _snake_case = [] else: current_sub_tokens.append(lowerCAmelCase__ ) out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def lowercase (self , UpperCAmelCase=False ) -> Dict: return 1 def lowercase (self , UpperCAmelCase ) -> str: _snake_case = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowerCAmelCase__ ) elif token_ids_a is None: return self._special_token_mask(lowerCAmelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase (self , UpperCAmelCase , UpperCAmelCase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,)
341
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __lowerCAmelCase : Optional[int] ='\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' __lowerCAmelCase : Optional[Any] ='\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' __lowerCAmelCase : Dict ='\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _UpperCamelCase ( lowercase__ , lowercase__ ): return float((preds == labels).mean() ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = simple_accuracy(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = en_sentvecs.shape[0] # mean centering __SCREAMING_SNAKE_CASE : Tuple = en_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : Optional[int] = in_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : str = cdist(lowercase__ , lowercase__ , '''cosine''' ) __SCREAMING_SNAKE_CASE : int = np.array(range(lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = sim.argsort(axis=1 )[:, :10] __SCREAMING_SNAKE_CASE : str = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Tuple: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def __magic_name__( self :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple ) -> str: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowerCAmelCase__ , lowerCAmelCase__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
9
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowercase__ = TypeVar("""T""") class lowerCAmelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : List[str] = data _lowerCamelCase : Node[T] | None = None def __str__( self ): return F'''{self.data}''' class lowerCAmelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self ): _lowerCamelCase : Node[T] | None = None def __iter__( self ): _lowerCamelCase : List[Any] = self.top while node: yield node.data _lowerCamelCase : int = node.next def __str__( self ): return "->".join([str(lowercase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def A_ ( self ): return self.top is None def A_ ( self , lowercase ): _lowerCamelCase : Optional[int] = Node(lowercase ) if not self.is_empty(): _lowerCamelCase : Dict = self.top _lowerCamelCase : Optional[Any] = node def A_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , lowercase ) _lowerCamelCase : Dict = self.top _lowerCamelCase : int = self.top.next return pop_node.data def A_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def A_ ( self ): _lowerCamelCase : Dict = None if __name__ == "__main__": from doctest import testmod testmod()
12
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __UpperCamelCase : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Any ,*lowercase_ : Dict ,**lowercase_ : Tuple ): warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' ,lowercase_ ,) super().__init__(*lowercase_ ,**lowercase_ )
106
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : Any = logging.getLogger(__name__) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_0_5_2_2, type=int) __UpperCamelCase : Any = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: __UpperCamelCase : List[Any] = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') __UpperCamelCase : Dict = Counter() for tk_ids in data: counter.update(tk_ids) __UpperCamelCase : Optional[Any] = [0] * args.vocab_size for k, v in counter.items(): __UpperCamelCase : Dict = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
106
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _UpperCAmelCase = re.compile(r"""\s+""") def UpperCamelCase ( __lowercase : Tuple ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(__lowercase ,'' ,example['content'] ).encode('utf-8' ) ).hexdigest()} def UpperCamelCase ( __lowercase : Optional[Any] ): '''simple docstring''' A_ : str = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def UpperCamelCase ( __lowercase : Any ): '''simple docstring''' A_ : Tuple = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def UpperCamelCase ( __lowercase : Optional[int] ,__lowercase : List[str] ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def UpperCamelCase ( __lowercase : Union[str, Any] ,__lowercase : List[str]=5 ): '''simple docstring''' A_ : int = ['auto-generated', 'autogenerated', 'automatically generated'] A_ : Dict = example['content'].splitlines() for _, line in zip(range(__lowercase ) ,__lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def UpperCamelCase ( __lowercase : List[str] ,__lowercase : int=5 ,__lowercase : int=0.05 ): '''simple docstring''' A_ : List[Any] = ['unit tests', 'test file', 'configuration file'] A_ : List[Any] = example['content'].splitlines() A_ : Any = 0 A_ : Optional[Any] = 0 # first test for _, line in zip(range(__lowercase ) ,__lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test A_ : Tuple = example['content'].count('\n' ) A_ : List[Any] = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def UpperCamelCase ( __lowercase : Tuple ): '''simple docstring''' A_ : Optional[int] = ['def ', 'class ', 'for ', 'while '] A_ : Dict = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def UpperCamelCase ( __lowercase : Optional[int] ,__lowercase : List[str]=4 ): '''simple docstring''' A_ : int = example['content'].splitlines() A_ : str = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def UpperCamelCase ( __lowercase : Union[str, Any] ): '''simple docstring''' A_ : Union[str, Any] = tokenizer(example['content'] ,truncation=__lowercase )['input_ids'] A_ : Optional[int] = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def UpperCamelCase ( __lowercase : Union[str, Any] ): '''simple docstring''' A_ : int = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def UpperCamelCase ( __lowercase : Tuple ,__lowercase : str ,__lowercase : List[Any] ): '''simple docstring''' if not check_uniques(__lowercase ,__lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def UpperCamelCase ( __lowercase : str ): '''simple docstring''' with open(__lowercase ,'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' ,'wb' ,compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase ,__lowercase ) os.unlink(__lowercase ) # Settings _UpperCAmelCase = HfArgumentParser(PreprocessingArguments) _UpperCAmelCase = parser.parse_args() if args.num_workers is None: _UpperCAmelCase = multiprocessing.cpu_count() _UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _UpperCAmelCase = time.time() _UpperCAmelCase = load_dataset(args.dataset_name, split="""train""") print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing _UpperCAmelCase = time.time() _UpperCAmelCase = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes _UpperCAmelCase = set(ds.unique("""hash""")) _UpperCAmelCase = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics _UpperCAmelCase = time.time() _UpperCAmelCase = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _UpperCAmelCase = time.time() _UpperCAmelCase ,_UpperCAmelCase = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file _UpperCAmelCase = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) _UpperCAmelCase = output_dir / """data""" data_dir.mkdir(exist_ok=True) _UpperCAmelCase = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _UpperCAmelCase = str(data_dir / F"""file-{file_number+1:012}.json""") _UpperCAmelCase = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
360
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
192
0
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCamelCase__: List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case_ ( _lowerCAmelCase : Union[List, PIL.Image.Image, torch.Tensor] ) -> List[str]: warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _lowerCAmelCase , ) if isinstance(_lowerCAmelCase , torch.Tensor ): return image elif isinstance(_lowerCAmelCase , PIL.Image.Image ): UpperCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase , UpperCAmelCase : int = image[0].size UpperCAmelCase , UpperCAmelCase : Any = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCAmelCase : Optional[int] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCAmelCase : Union[str, Any] = np.concatenate(_lowerCAmelCase , axis=0 ) UpperCAmelCase : str = np.array(_lowerCAmelCase ).astype(np.floataa ) / 2_5_5.0 UpperCAmelCase : Dict = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase : Union[str, Any] = 2.0 * image - 1.0 UpperCAmelCase : Any = torch.from_numpy(_lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase : List[Any] = torch.cat(_lowerCAmelCase , dim=0 ) return image def snake_case_ ( _lowerCAmelCase : Union[List, PIL.Image.Image, torch.Tensor] ) -> Tuple: if isinstance(_lowerCAmelCase , torch.Tensor ): return mask elif isinstance(_lowerCAmelCase , PIL.Image.Image ): UpperCAmelCase : Optional[Any] = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = mask[0].size UpperCAmelCase , UpperCAmelCase : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase : Any = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] UpperCAmelCase : Union[str, Any] = np.concatenate(_lowerCAmelCase , axis=0 ) UpperCAmelCase : List[Any] = mask.astype(np.floataa ) / 2_5_5.0 UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Any = 1 UpperCAmelCase : List[Any] = torch.from_numpy(_lowerCAmelCase ) elif isinstance(mask[0] , torch.Tensor ): UpperCAmelCase : Dict = torch.cat(_lowerCAmelCase , dim=0 ) return mask class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : Tuple , __snake_case : Optional[Any] , __snake_case : str ) -> Union[str, Any]: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Union[str, Any] , __snake_case : Union[torch.Tensor, PIL.Image.Image] , __snake_case : Union[torch.Tensor, PIL.Image.Image] , __snake_case : int = 250 , __snake_case : float = 0.0 , __snake_case : int = 10 , __snake_case : int = 10 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : int = image UpperCAmelCase : int = _preprocess_image(__snake_case ) UpperCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase : Tuple = _preprocess_mask(__snake_case ) UpperCAmelCase : List[Any] = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase : Dict = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase : Union[str, Any] = original_image.shape UpperCAmelCase : Optional[Any] = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__snake_case , __snake_case , __snake_case , self.device ) UpperCAmelCase : Any = eta UpperCAmelCase : Optional[int] = self.scheduler.timesteps[0] + 1 UpperCAmelCase : Any = generator[0] if isinstance(__snake_case , __snake_case ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCAmelCase : Optional[int] = self.unet(__snake_case , __snake_case ).sample # compute previous image: x_t -> x_t-1 UpperCAmelCase : Union[str, Any] = self.scheduler.step(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCAmelCase : Tuple = self.scheduler.undo_step(__snake_case , __snake_case , __snake_case ) UpperCAmelCase : int = t UpperCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Union[str, Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
23
from heapq import heappop, heappush import numpy as np def _SCREAMING_SNAKE_CASE ( a , a , a , a , ) -> tuple[float | int, list[tuple[int, int]]]: __A , __A : int = grid.shape __A : Any = [-1, 1, 0, 0] __A : Optional[Any] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __A , __A : Optional[int] = [(0, source)], set() __A : Any = np.full((rows, cols) , np.inf ) __A : Any = 0 __A : Any = np.empty((rows, cols) , dtype=a ) __A : Optional[Any] = None while queue: ((__A) , (__A)) : List[str] = heappop(a ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __A : int = [] while (x, y) != source: path.append((x, y) ) __A , __A : Optional[int] = predecessors[x, y] path.append(a ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(a ) ): __A , __A : Union[str, Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __A : Optional[int] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(a , (dist + 1, (nx, ny)) ) __A : List[Any] = dist + 1 __A : Union[str, Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
280
0
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : str = DebertaTokenizer a_ : int = True a_ : Tuple = DebertaTokenizerFast def lowerCamelCase ( self : Optional[int] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] lowerCAmelCase_ : Any = dict(zip(a_ , range(len(a_ ) ) ) ) lowerCAmelCase_ : Tuple = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : int = {"unk_token": "[UNK]"} lowerCAmelCase_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowerCamelCase ( self : int , **a_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) def lowerCamelCase ( self : Dict , a_ : Tuple ): lowerCAmelCase_ : List[str] = "lower newer" lowerCAmelCase_ : Optional[int] = "lower newer" return input_text, output_text def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = self.get_tokenizer() lowerCAmelCase_ : Union[str, Any] = "lower newer" lowerCAmelCase_ : List[str] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : str = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) lowerCAmelCase_ : int = tokens + [tokenizer.unk_token] lowerCAmelCase_ : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Optional[int] = self.get_tokenizer() lowerCAmelCase_ : str = tokenizer("Hello" , "World" ) lowerCAmelCase_ : Dict = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , a_ ) @slow def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowerCAmelCase_ : List[str] = tokenizer.encode("sequence builders" , add_special_tokens=a_ ) lowerCAmelCase_ : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=a_ ) lowerCAmelCase_ : Optional[Any] = tokenizer.encode( "sequence builders" , add_special_tokens=a_ , add_prefix_space=a_ ) lowerCAmelCase_ : Optional[Any] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=a_ , add_prefix_space=a_ ) lowerCAmelCase_ : Tuple = tokenizer.build_inputs_with_special_tokens(a_ ) lowerCAmelCase_ : Tuple = tokenizer.build_inputs_with_special_tokens(a_ , a_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCAmelCase_ : Optional[int] = tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowerCAmelCase_ : Optional[int] = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] lowerCAmelCase_ : int = tokenizer(a_ , padding=a_ ) lowerCAmelCase_ : Optional[int] = [tokenizer.decode(a_ , skip_special_tokens=a_ ) for seq in encoding["input_ids"]] # fmt: off lowerCAmelCase_ : str = { "input_ids": [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCAmelCase_ : Union[str, Any] = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , a_ ) for expected, decoded in zip(a_ , a_ ): self.assertEqual(a_ , a_ )
161
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") lowercase__ = int(input("""Enter number: """).strip()) print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
161
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
100
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets lowerCamelCase_ = datasets.logging.get_logger(__name__) lowerCamelCase_ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' lowerCamelCase_ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' lowerCamelCase_ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase ( self : int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "sources": datasets.Value("string" , id="sequence" ), "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] , ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : str ): '''simple docstring''' if self.config_name == "default": _A = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da" ) ) else: _A = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCAmelCase ( self : str , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : int=False ): '''simple docstring''' if gpus is None: _A = 1 if torch.cuda.is_available() else 0 _A = {"src": sources, "mt": predictions, "ref": references} _A = [dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) for t in zip(*data.values() )] _A , _A = self.scorer.predict(__UpperCAmelCase , gpus=__UpperCAmelCase , progress_bar=__UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
79
0
'''simple docstring''' def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _UpperCAmelCase : Optional[int] = str(bin(lowerCAmelCase_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Tuple = str(bin(lowerCAmelCase_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Optional[int] = max(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase_ ) , b_binary.zfill(lowerCAmelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
170
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __A ( lowerCAmelCase_ ): return EnvironmentCommand() def __A ( lowerCAmelCase_ ): return EnvironmentCommand(args.accelerate_config_file ) class __lowerCAmelCase ( __a ): @staticmethod def snake_case_ (lowerCAmelCase__ ): _UpperCAmelCase : Tuple = parser.add_parser("""env""" ) download_parser.set_defaults(func=lowerCAmelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=lowerCAmelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=lowerCAmelCase__ ) def __init__(self , lowerCAmelCase__ , *lowerCAmelCase__ ): _UpperCAmelCase : str = accelerate_config_file def snake_case_ (self ): _UpperCAmelCase : Dict = """not installed""" if is_safetensors_available(): import safetensors _UpperCAmelCase : Any = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors _UpperCAmelCase : Optional[Any] = F"{safetensors.__version__} but is ignored because of PyTorch version too old." _UpperCAmelCase : str = """not installed""" _UpperCAmelCase : List[Any] = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _UpperCAmelCase : List[str] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = load_config_from_file(self._accelerate_config_file ).to_dict() _UpperCAmelCase : Optional[Any] = ( """\n""".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else F"\t{accelerate_config}" ) _UpperCAmelCase : Dict = """not installed""" _UpperCAmelCase : int = """NA""" if is_torch_available(): import torch _UpperCAmelCase : int = torch.__version__ _UpperCAmelCase : Optional[Any] = torch.cuda.is_available() _UpperCAmelCase : Optional[Any] = """not installed""" _UpperCAmelCase : Tuple = """NA""" if is_tf_available(): import tensorflow as tf _UpperCAmelCase : Dict = tf.__version__ try: # deprecated in v2.1 _UpperCAmelCase : List[str] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _UpperCAmelCase : Any = bool(tf.config.list_physical_devices("""GPU""" ) ) _UpperCAmelCase : Dict = """not installed""" _UpperCAmelCase : Optional[Any] = """not installed""" _UpperCAmelCase : Dict = """not installed""" _UpperCAmelCase : Tuple = """NA""" if is_flax_available(): import flax import jax import jaxlib _UpperCAmelCase : str = flax.__version__ _UpperCAmelCase : Optional[Any] = jax.__version__ _UpperCAmelCase : Optional[int] = jaxlib.__version__ _UpperCAmelCase : Tuple = jax.lib.xla_bridge.get_backend().platform _UpperCAmelCase : str = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F"{safetensors_version}", """Accelerate version""": F"{accelerate_version}", """Accelerate config""": F"{accelerate_config_str}", """PyTorch version (GPU?)""": F"{pt_version} ({pt_cuda_available})", """Tensorflow version (GPU?)""": F"{tf_version} ({tf_cuda_available})", """Flax version (CPU?/GPU?/TPU?)""": F"{flax_version} ({jax_backend})", """Jax version""": F"{jax_version}", """JaxLib version""": F"{jaxlib_version}", """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(lowerCAmelCase__ ) ) return info @staticmethod def snake_case_ (lowerCAmelCase__ ): return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
170
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar('T') class lowerCamelCase__( Generic[T]): def __init__( self: List[str] , UpperCamelCase_: T ): __lowerCamelCase = data __lowerCamelCase = None def __str__( self: Optional[Any] ): return F'{self.data}' class lowerCamelCase__( Generic[T]): def __init__( self: List[str] ): __lowerCamelCase = None def __iter__( self: Tuple ): __lowerCamelCase = self.top while node: yield node.data __lowerCamelCase = node.next def __str__( self: Any ): return "->".join([str(UpperCamelCase_ ) for item in self] ) def __len__( self: List[Any] ): return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self: Union[str, Any] ): return self.top is None def lowerCAmelCase__ ( self: str , UpperCamelCase_: T ): __lowerCamelCase = Node(UpperCamelCase_ ) if not self.is_empty(): __lowerCamelCase = self.top __lowerCamelCase = node def lowerCAmelCase__ ( self: int ): if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , UpperCamelCase_ ) __lowerCamelCase = self.top __lowerCamelCase = self.top.next return pop_node.data def lowerCAmelCase__ ( self: str ): if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = None if __name__ == "__main__": from doctest import testmod testmod()
12
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : Optional[int]=8 ): '''simple docstring''' __lowerCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ): super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) __lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: int ): if latents is None: __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __lowerCamelCase = latents.to(UpperCamelCase_ ) __lowerCamelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) __lowerCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. __lowerCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self: int ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ): __lowerCamelCase = self._execution_device __lowerCamelCase = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) __lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = hint.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) __lowerCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) __lowerCamelCase = self.scheduler.timesteps __lowerCamelCase = self.movq.config.latent_channels __lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent __lowerCamelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = {"""image_embeds""": image_embeds, """hint""": hint} __lowerCamelCase = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing __lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __lowerCamelCase = image * 0.5 + 0.5 __lowerCamelCase = image.clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
12
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : int , *a__ : List[Any] , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[Any] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : List[str] ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : int , **a__ : int ): """simple docstring""" return {}, {}, {} def a (self : Optional[int] , a__ : Optional[int] ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : List[Any] , a__ : Union[str, Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
238
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case : Any = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case : Union[str, Any] = ''' Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") >>> pipe.to("cuda") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save("cat.png") ``` ''' def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str]=8 ): """simple docstring""" a :List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a :int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _snake_case ( _snake_case ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): super().__init__() self.register_modules( unet=_lowerCamelCase , scheduler=_lowerCamelCase , movq=_lowerCamelCase , ) a :Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if latents is None: a :str = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) a :Any = latents.to(_lowerCamelCase ) a :Dict = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a :int = torch.device(F'''cuda:{gpu_id}''' ) a :int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) a :Any = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a :Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: a , a :List[str] = cpu_offload_with_hook(_lowerCamelCase , _lowerCamelCase , prev_module_hook=_lowerCamelCase ) # We'll offload the last model manually. a :str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE__ ( self ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 100 , _lowerCamelCase = 4.0 , _lowerCamelCase = 1 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , ): a :int = self._execution_device a :Optional[Any] = guidance_scale > 1.0 if isinstance(_lowerCamelCase , _lowerCamelCase ): a :Union[str, Any] = torch.cat(_lowerCamelCase , dim=0 ) a :Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(_lowerCamelCase , _lowerCamelCase ): a :List[str] = torch.cat(_lowerCamelCase , dim=0 ) if do_classifier_free_guidance: a :Union[str, Any] = image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) a :Optional[int] = negative_image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) a :Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCamelCase ) self.scheduler.set_timesteps(_lowerCamelCase , device=_lowerCamelCase ) a :Optional[Any] = self.scheduler.timesteps a :List[str] = self.unet.config.in_channels a , a :str = downscale_height_and_width(_lowerCamelCase , _lowerCamelCase , self.movq_scale_factor ) # create initial latent a :int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance a :Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a :Union[str, Any] = {'''image_embeds''': image_embeds} a :Optional[Any] = self.unet( sample=_lowerCamelCase , timestep=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , added_cond_kwargs=_lowerCamelCase , return_dict=_lowerCamelCase , )[0] if do_classifier_free_guidance: a , a :Any = noise_pred.split(latents.shape[1] , dim=1 ) a , a :List[str] = noise_pred.chunk(2 ) a , a :int = variance_pred.chunk(2 ) a :List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a :Optional[int] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a , a :Tuple = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a :int = self.scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase , )[0] # post-processing a :int = self.movq.decode(_lowerCamelCase , force_not_quantize=_lowerCamelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: a :str = image * 0.5 + 0.5 a :List[Any] = image.clamp(0 , 1 ) a :str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a :str = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
94
from math import factorial def UpperCamelCase (lowercase_: int = 20 ) -> int: A__ : Union[str, Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... A__ : Tuple = n // 2 return int(factorial(lowercase_ ) / (factorial(lowercase_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: A_ : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
192
0
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> None: '''simple docstring''' __UpperCamelCase =Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __UpperCamelCase =Vector() def UpperCAmelCase_ ( self : List[str] ) -> None: '''simple docstring''' __UpperCamelCase =Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCamelCase__ ) , '''(0,0,0,0,0,1)''' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> None: '''simple docstring''' __UpperCamelCase =Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCamelCase__ ) , 4 ) def UpperCAmelCase_ ( self : Optional[int] ) -> None: '''simple docstring''' __UpperCamelCase =Vector([1, 2] ) __UpperCamelCase =Vector([1, 2, 3, 4, 5] ) __UpperCamelCase =Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __UpperCamelCase =Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3 ) def UpperCAmelCase_ ( self : str ) -> None: '''simple docstring''' __UpperCamelCase =Vector([1, 2, 3] ) __UpperCamelCase =Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def UpperCAmelCase_ ( self : int ) -> None: '''simple docstring''' __UpperCamelCase =Vector([1, 2, 3] ) __UpperCamelCase =Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def UpperCAmelCase_ ( self : Tuple ) -> None: '''simple docstring''' __UpperCamelCase =Vector([1, 2, 3] ) __UpperCamelCase =Vector([2, -1, 4] ) # for test of dot product __UpperCamelCase =Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def UpperCAmelCase_ ( self : List[Any] ) -> None: '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def UpperCAmelCase_ ( self : str ) -> None: '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def UpperCAmelCase_ ( self : Any ) -> None: '''simple docstring''' __UpperCamelCase =Vector([1, 2, 3] ) __UpperCamelCase =Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCamelCase__ , UpperCamelCase__ ) ) , '''(3,4,7)''' ) def UpperCAmelCase_ ( self : List[Any] ) -> None: '''simple docstring''' __UpperCamelCase =Vector([1, 0, 0, 0, 0, 0] ) __UpperCamelCase =x.copy() self.assertEqual(str(UpperCamelCase__ ) , str(UpperCamelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> None: '''simple docstring''' __UpperCamelCase =Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCamelCase__ ) , '''(0,1,0)''' ) def UpperCAmelCase_ ( self : Dict ) -> None: '''simple docstring''' __UpperCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(UpperCamelCase__ ) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> None: '''simple docstring''' __UpperCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __UpperCamelCase =[[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCamelCase__ , UpperCamelCase__ ) ) def UpperCAmelCase_ ( self : Dict ) -> None: '''simple docstring''' __UpperCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __UpperCamelCase =[[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCamelCase__ , UpperCamelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> None: '''simple docstring''' __UpperCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def UpperCAmelCase_ ( self : int ) -> None: '''simple docstring''' __UpperCamelCase =Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __UpperCamelCase =Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> None: '''simple docstring''' __UpperCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(UpperCamelCase__ ) ) def UpperCAmelCase_ ( self : List[Any] ) -> None: '''simple docstring''' __UpperCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def UpperCAmelCase_ ( self : Dict ) -> None: '''simple docstring''' __UpperCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __UpperCamelCase =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def UpperCAmelCase_ ( self : Dict ) -> None: '''simple docstring''' __UpperCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __UpperCamelCase =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def UpperCAmelCase_ ( self : Dict ) -> None: '''simple docstring''' self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
365
"""simple docstring""" import os from pathlib import Path def lowerCAmelCase (): """simple docstring""" from torch.utils.cpp_extension import load __UpperCamelCase =Path(__UpperCamelCase ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' __UpperCamelCase =[ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , __UpperCamelCase , with_cuda=__UpperCamelCase , extra_include_paths=[str(__UpperCamelCase )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
85
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING a__ : Any = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Tuple , *_A :int , **_A :Dict ) -> Tuple: '''simple docstring''' super().__init__(*_A , **_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowercase_ ( self :List[Any] , _A :Tuple=None , _A :Dict=None , _A :List[Any]=None ) -> int: '''simple docstring''' __A = {} __A = {} if prompt is not None: __A = prompt if generate_kwargs is not None: __A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self :Union[str, Any] , _A :Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A :Optional[Any] ) -> Any: '''simple docstring''' return super().__call__(_A , **_A ) def lowercase_ ( self :Optional[Any] , _A :Optional[Any] , _A :Dict=None ) -> List[Any]: '''simple docstring''' __A = load_image(_A ) if prompt is not None: if not isinstance(_A , _A ): raise ValueError( F'Received an invalid text input, got - {type(_A )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __A = self.model.config.model_type if model_type == "git": __A = self.image_processor(images=_A , return_tensors=self.framework ) __A = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids __A = [self.tokenizer.cls_token_id] + input_ids __A = torch.tensor(_A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __A = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __A = self.image_processor(images=_A , return_tensors=self.framework ) __A = self.tokenizer(_A , return_tensors=self.framework ) model_inputs.update(_A ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __A = self.image_processor(images=_A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __A = None return model_inputs def lowercase_ ( self :int , _A :Dict , _A :Any=None ) -> str: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _A ) and all(x is None for x in model_inputs['input_ids'] ) ): __A = None if generate_kwargs is None: __A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __A = model_inputs.pop(self.model.main_input_name ) __A = self.model.generate(_A , **_A , **_A ) return model_outputs def lowercase_ ( self :Union[str, Any] , _A :Dict ) -> Tuple: '''simple docstring''' __A = [] for output_ids in model_outputs: __A = { 'generated_text': self.tokenizer.decode( _A , skip_special_tokens=_A , ) } records.append(_A ) return records
161
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> np.ndarray: """simple docstring""" __A = cva.getAffineTransform(UpperCAmelCase , UpperCAmelCase ) return cva.warpAffine(UpperCAmelCase , UpperCAmelCase , (rows, cols) ) if __name__ == "__main__": # read original image a__ : str = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value a__ : str = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape a__ , a__ : Optional[int] = gray_img.shape # set different points to rotate image a__ : List[str] = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) a__ : Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) a__ : int = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) a__ : str = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list a__ : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations a__ : List[str] = plt.figure(1) a__ : Optional[Any] = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
161
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class a_ ( __UpperCamelCase ): '''simple docstring''' __a: Optional[Any] = """big_bird""" def __init__( self , lowercase_=5_0_3_5_8 , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=4_0_9_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=6_6 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=6_4 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> List[str]: '''simple docstring''' super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = use_cache lowerCAmelCase_ = rescale_embeddings lowerCAmelCase_ = attention_type lowerCAmelCase_ = use_bias lowerCAmelCase_ = block_size lowerCAmelCase_ = num_random_blocks lowerCAmelCase_ = classifier_dropout class a_ ( __UpperCamelCase ): '''simple docstring''' @property def _lowercase ( self ) -> Optional[int]: '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
355
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' __a: Tuple = OPTConfig __a: Optional[Any] = {} __a: Tuple = '''gelu''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = TFOPTModel(config=lowercase_ ) lowerCAmelCase_ = inputs_dict['input_ids'] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a: Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a: int = False __a: List[Any] = False __a: Dict = False __a: List[Any] = 1_0 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = TFOPTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) def lowerCamelCase ( a_ ) -> Any: return tf.constant(a_ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' __a: Optional[int] = 9_9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase_ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 'facebook/opt-350m' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase_ = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-125m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = 'left' # use different length sentences to test batching lowerCAmelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ ) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
14
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case__ (A__ ): """simple docstring""" def __init__( self , __lowercase , __lowercase ) -> Any: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM a__ : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowercase , scheduler=__lowercase ) @torch.no_grad() def __call__( self , __lowercase = 1 , __lowercase = None , __lowercase = 0.0 , __lowercase = 5_0 , __lowercase = None , __lowercase = "pil" , __lowercase = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size , __lowercase ): a__ : int = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: a__ : Any = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__lowercase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) a__ : str = randn_tensor(__lowercase , generator=__lowercase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output a__ : int = self.unet(__lowercase , __lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 a__ : List[str] = self.scheduler.step( __lowercase , __lowercase , __lowercase , eta=__lowercase , use_clipped_model_output=__lowercase , generator=__lowercase ).prev_sample a__ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) a__ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : List[str] = self.numpy_to_pil(__lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowercase )
170
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase : Union[str, Any] =logging.get_logger(__name__) def lowerCAmelCase_ ( _lowercase : List[Any]) -> Optional[int]: """simple docstring""" a__ : int = DPTConfig(embedding_type="""hybrid""") if "large" in checkpoint_url: a__ : Tuple = 1024 a__ : int = 4096 a__ : str = 24 a__ : List[str] = 16 a__ : Optional[Any] = [5, 11, 17, 23] a__ : Union[str, Any] = [256, 512, 1024, 1024] a__ : str = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: a__ : Dict = 768 a__ : Dict = [1, 1, 1, 0.5] a__ : Dict = [256, 512, 768, 768] a__ : Union[str, Any] = 150 a__ : List[Any] = 16 a__ : List[Any] = (1, 384, 384) a__ : Optional[Any] = False a__ : Tuple = """project""" if "ade" in checkpoint_url: a__ : int = True a__ : Any = 768 a__ : Tuple = [1, 1, 1, 0.5] a__ : str = 150 a__ : Optional[int] = 16 a__ : Optional[Any] = """huggingface/label-files""" a__ : Any = """ade20k-id2label.json""" a__ : List[Any] = json.load(open(cached_download(hf_hub_url(_lowercase , _lowercase , repo_type="""dataset""")) , """r""")) a__ : Union[str, Any] = {int(_lowercase): v for k, v in idalabel.items()} a__ : List[Any] = idalabel a__ : List[Any] = {v: k for k, v in idalabel.items()} a__ : List[str] = [1, 150, 480, 480] return config, expected_shape def lowerCAmelCase_ ( _lowercase : Optional[int]) -> List[str]: """simple docstring""" a__ : List[str] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase) def lowerCAmelCase_ ( _lowercase : Dict) -> Optional[int]: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): a__ : int = name.replace("""pretrained.model""" , """dpt.encoder""") if "pretrained.model" in name: a__ : Optional[Any] = name.replace("""pretrained.model""" , """dpt.embeddings""") if "patch_embed" in name: a__ : Any = name.replace("""patch_embed""" , """""") if "pos_embed" in name: a__ : Optional[Any] = name.replace("""pos_embed""" , """position_embeddings""") if "attn.proj" in name: a__ : Union[str, Any] = name.replace("""attn.proj""" , """attention.output.dense""") if "proj" in name and "project" not in name: a__ : List[Any] = name.replace("""proj""" , """projection""") if "blocks" in name: a__ : int = name.replace("""blocks""" , """layer""") if "mlp.fc1" in name: a__ : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""") if "mlp.fc2" in name: a__ : Tuple = name.replace("""mlp.fc2""" , """output.dense""") if "norm1" in name and "backbone" not in name: a__ : List[str] = name.replace("""norm1""" , """layernorm_before""") if "norm2" in name and "backbone" not in name: a__ : List[str] = name.replace("""norm2""" , """layernorm_after""") if "scratch.output_conv" in name: a__ : int = name.replace("""scratch.output_conv""" , """head""") if "scratch" in name: a__ : List[Any] = name.replace("""scratch""" , """neck""") if "layer1_rn" in name: a__ : Optional[Any] = name.replace("""layer1_rn""" , """convs.0""") if "layer2_rn" in name: a__ : List[Any] = name.replace("""layer2_rn""" , """convs.1""") if "layer3_rn" in name: a__ : Dict = name.replace("""layer3_rn""" , """convs.2""") if "layer4_rn" in name: a__ : Optional[int] = name.replace("""layer4_rn""" , """convs.3""") if "refinenet" in name: a__ : int = int(name[len("""neck.refinenet""") : len("""neck.refinenet""") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 a__ : int = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: a__ : Optional[Any] = name.replace("""out_conv""" , """projection""") if "resConfUnit1" in name: a__ : int = name.replace("""resConfUnit1""" , """residual_layer1""") if "resConfUnit2" in name: a__ : Union[str, Any] = name.replace("""resConfUnit2""" , """residual_layer2""") if "conv1" in name: a__ : Dict = name.replace("""conv1""" , """convolution1""") if "conv2" in name: a__ : Any = name.replace("""conv2""" , """convolution2""") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: a__ : List[str] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""") if "pretrained.act_postprocess2.0.project.0" in name: a__ : Optional[int] = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""") if "pretrained.act_postprocess3.0.project.0" in name: a__ : Any = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""") if "pretrained.act_postprocess4.0.project.0" in name: a__ : Optional[int] = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""") # resize blocks if "pretrained.act_postprocess1.3" in name: a__ : int = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""") if "pretrained.act_postprocess1.4" in name: a__ : Optional[int] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""") if "pretrained.act_postprocess2.3" in name: a__ : List[Any] = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""") if "pretrained.act_postprocess2.4" in name: a__ : Dict = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""") if "pretrained.act_postprocess3.3" in name: a__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""") if "pretrained.act_postprocess4.3" in name: a__ : int = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""") if "pretrained.act_postprocess4.4" in name: a__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""") if "pretrained" in name: a__ : List[str] = name.replace("""pretrained""" , """dpt""") if "bn" in name: a__ : int = name.replace("""bn""" , """batch_norm""") if "head" in name: a__ : Optional[Any] = name.replace("""head""" , """head.head""") if "encoder.norm" in name: a__ : Optional[int] = name.replace("""encoder.norm""" , """layernorm""") if "auxlayer" in name: a__ : Optional[Any] = name.replace("""auxlayer""" , """auxiliary_head.head""") if "backbone" in name: a__ : int = name.replace("""backbone""" , """backbone.bit.encoder""") if ".." in name: a__ : str = name.replace("""..""" , """.""") if "stem.conv" in name: a__ : Optional[int] = name.replace("""stem.conv""" , """bit.embedder.convolution""") if "blocks" in name: a__ : Optional[int] = name.replace("""blocks""" , """layers""") if "convolution" in name and "backbone" in name: a__ : Dict = name.replace("""convolution""" , """conv""") if "layer" in name and "backbone" in name: a__ : Tuple = name.replace("""layer""" , """layers""") if "backbone.bit.encoder.bit" in name: a__ : Optional[Any] = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""") if "embedder.conv" in name: a__ : int = name.replace("""embedder.conv""" , """embedder.convolution""") if "backbone.bit.encoder.stem.norm" in name: a__ : Union[str, Any] = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""") return name def lowerCAmelCase_ ( _lowercase : Optional[int] , _lowercase : Union[str, Any]) -> int: """simple docstring""" for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ : Any = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''') a__ : int = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict a__ : Any = in_proj_weight[: config.hidden_size, :] a__ : Dict = in_proj_bias[: config.hidden_size] a__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] a__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" a__ : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" a__ : Union[str, Any] = Image.open(requests.get(_lowercase , stream=_lowercase).raw) return im @torch.no_grad() def lowerCAmelCase_ ( _lowercase : List[str] , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : Dict , _lowercase : Optional[Any]) -> int: """simple docstring""" a__ , a__ : int = get_dpt_config(_lowercase) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") a__ : Union[str, Any] = torch.load(_lowercase , map_location="""cpu""") # remove certain keys remove_ignore_keys_(_lowercase) # rename keys for key in state_dict.copy().keys(): a__ : int = state_dict.pop(_lowercase) a__ : str = val # read in qkv matrices read_in_q_k_v(_lowercase , _lowercase) # load HuggingFace model a__ : List[Any] = DPTForSemanticSegmentation(_lowercase) if """ade""" in checkpoint_url else DPTForDepthEstimation(_lowercase) model.load_state_dict(_lowercase) model.eval() # Check outputs on an image a__ : List[Any] = 480 if """ade""" in checkpoint_url else 384 a__ : str = DPTImageProcessor(size=_lowercase) a__ : Tuple = prepare_img() a__ : List[str] = image_processor(_lowercase , return_tensors="""pt""") # forward pass a__ : Any = model(**_lowercase).logits if """ade""" in checkpoint_url else model(**_lowercase).predicted_depth if show_prediction: a__ : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=_lowercase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255).show() if pytorch_dump_folder_path is not None: Path(_lowercase).mkdir(exist_ok=_lowercase) print(F'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowercase) print(F'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowercase) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""") image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""") if __name__ == "__main__": _lowercase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) _lowercase : str =parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
170
1
'''simple docstring''' import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ) -> Dict: '''simple docstring''' if name is None: snake_case : Union[str, Any] = None else: snake_case : Union[str, Any] = '''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(50 - spaces ) + '''s}''' snake_case : int = fmt.format(A__ ) # Print and recurse (if needed). if isinstance(A__ , A__ ): if msg is not None: print(A__ ) for k in val.keys(): recursive_print(A__ , val[k] , spaces + 2 ) elif isinstance(A__ , torch.Tensor ): print(A__ , ''':''' , val.size() ) else: print(A__ , ''':''' , A__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: '''simple docstring''' snake_case : Tuple = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case : str = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case : Union[str, Any] = param.view(*A__ ) snake_case : Optional[Any] = param.transpose(0 , 2 ) snake_case : Optional[Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case : int = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case : Optional[Any] = param.view(*A__ ) snake_case : List[str] = param.transpose(0 , 1 ).contiguous() snake_case : str = param.view(*A__ ) return param def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = {} # old versions did not store training args snake_case : Dict = input_state_dict.get('''args''' , A__ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case : Optional[int] = ds_args.padded_vocab_size snake_case : Dict = ds_args.max_position_embeddings snake_case : List[Any] = ds_args.hidden_size snake_case : Optional[Any] = ds_args.num_layers snake_case : List[Any] = ds_args.num_attention_heads snake_case : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case : List[Any] = config.n_head # The hidden_size per head. snake_case : List[str] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case : Optional[int] = input_state_dict['''checkpoint_version'''] else: snake_case : Optional[Any] = 0.0 # The model. snake_case : Dict = input_state_dict['''model'''] # The language model. snake_case : int = model['''language_model'''] # The embeddings. snake_case : List[Any] = lm['''embedding'''] # The word embeddings. snake_case : Optional[Any] = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. snake_case : List[str] = word_embeddings[: config.vocab_size, :] snake_case : str = word_embeddings # The position embeddings. snake_case : Any = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case : Optional[Any] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case : Dict = pos_embeddings # The transformer. snake_case : Union[str, Any] = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. snake_case : Dict = re.compile(R'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. snake_case : int = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case : Union[str, Any] = layer_re.match(A__ ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case : int = int(m.group(1 ) ) # The name of the operation. snake_case : Union[str, Any] = m.group(2 ) # Is it a weight or a bias? snake_case : Optional[Any] = m.group(3 ) # The name of the layer. snake_case : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): snake_case : int = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' snake_case : str = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case : Any = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , A__ , A__ ) snake_case : Optional[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case : Dict = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case : Tuple = masked_bias snake_case : int = fix_query_key_value_ordering(A__ , A__ , 3 , A__ , A__ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case : Tuple = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case : List[Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case : Tuple = fix_query_key_value_ordering(A__ , A__ , 3 , A__ , A__ ) # Store. No change of shape. snake_case : Optional[int] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case : Tuple = megatron_to_transformers[op_name] snake_case : int = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case : Optional[Any] = megatron_to_transformers[op_name] snake_case : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case : Any = transformer['''final_layernorm.weight'''] snake_case : List[Any] = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. snake_case : Optional[int] = word_embeddings # It should be done! return output_state_dict def _UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' snake_case : Dict = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''' , type=A__ , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , ) parser.add_argument( '''--config_file''' , default='''''' , type=A__ , help='''An optional config json file describing the pre-trained model.''' , ) snake_case : Optional[Any] = parser.parse_args() # Extract the basename. snake_case : Tuple = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: snake_case : Optional[int] = torch.load(A__ , map_location='''cpu''' ) else: snake_case : str = torch.load(args.path_to_checkpoint , map_location='''cpu''' ) snake_case : str = input_state_dict.get('''args''' , A__ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case : Dict = '''gelu_fast''' elif ds_args.openai_gelu: snake_case : Tuple = '''gelu_new''' else: snake_case : Any = '''gelu''' else: # in the very early days this used to be "gelu_new" snake_case : int = '''gelu_new''' # Spell out all parameters in case the defaults change. snake_case : Dict = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=A__ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='''cls_index''' , summary_use_proj=A__ , summary_activation=A__ , summary_proj_to_labels=A__ , summary_first_dropout=0.1 , scale_attn_weights=A__ , use_cache=A__ , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: snake_case : Optional[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case : List[Any] = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) snake_case : str = convert_megatron_checkpoint(A__ , A__ , A__ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(A__ , A__ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case : Any = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case : Tuple = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": snake_case : Optional[int] = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case : Optional[int] = '''gpt2''' snake_case : Optional[int] = AutoTokenizer.from_pretrained(A__ ) snake_case : Any = type(A__ ).__name__ snake_case : Optional[Any] = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(A__ ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(A__ ) # Store the state_dict to file. snake_case : Optional[int] = os.path.join(A__ , '''pytorch_model.bin''' ) print(F'Saving checkpoint to \"{output_checkpoint_file}\"' ) torch.save(A__ , A__ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
358
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = """efficientnet""" def __init__( self : str , UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 600 , UpperCamelCase__ : float = 2.0 , UpperCamelCase__ : float = 3.1 , UpperCamelCase__ : int = 8 , UpperCamelCase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCamelCase__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCamelCase__ : List[int] = [] , UpperCamelCase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase__ : float = 0.25 , UpperCamelCase__ : str = "swish" , UpperCamelCase__ : int = 2560 , UpperCamelCase__ : str = "mean" , UpperCamelCase__ : float = 0.02 , UpperCamelCase__ : float = 0.001 , UpperCamelCase__ : float = 0.99 , UpperCamelCase__ : float = 0.5 , UpperCamelCase__ : float = 0.2 , **UpperCamelCase__ : Any , ) -> Any: """simple docstring""" super().__init__(**UpperCamelCase__ ) snake_case : Dict = num_channels snake_case : List[Any] = image_size snake_case : Any = width_coefficient snake_case : int = depth_coefficient snake_case : List[str] = depth_divisor snake_case : Tuple = kernel_sizes snake_case : Optional[Any] = in_channels snake_case : Optional[Any] = out_channels snake_case : Dict = depthwise_padding snake_case : Optional[Any] = strides snake_case : List[str] = num_block_repeats snake_case : Any = expand_ratios snake_case : Any = squeeze_expansion_ratio snake_case : Optional[Any] = hidden_act snake_case : Optional[int] = hidden_dim snake_case : Dict = pooling_type snake_case : Any = initializer_range snake_case : Optional[Any] = batch_norm_eps snake_case : Tuple = batch_norm_momentum snake_case : Any = dropout_rate snake_case : str = drop_connect_rate snake_case : Dict = sum(UpperCamelCase__ ) * 4 class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = version.parse("""1.11""" ) @property def lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCAmelCase ( self : Tuple ) -> float: """simple docstring""" return 1e-5
83
0