code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any]=1_0 ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for _ in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCAmelCase__ ( a__: List[str] , a__: Any=1_0 ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = [] for step in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(a__ , 'schedule.bin' ) torch.save(scheduler.state_dict() , a__ ) _UpperCAmelCase = torch.load(a__ ) scheduler.load_state_dict(a__ ) return lrs @require_torch class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = Adafactor( params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=_SCREAMING_SNAKE_CASE , scale_parameter=_SCREAMING_SNAKE_CASE , warmup_init=_SCREAMING_SNAKE_CASE , ) for _ in range(1000 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __a ( unittest.TestCase ): _a : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None _a : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _a : List[Any] = 10 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE , msg=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _UpperCAmelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _UpperCAmelCase , _UpperCAmelCase = data _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _UpperCAmelCase = unwrap_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListAlmostEqual( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule _UpperCAmelCase = unwrap_and_save_reload_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , msg=f'''failed for {scheduler_func} in save and reload''' ) class __a : def __init__( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = fn def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @classmethod def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
329
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) @dataclass class _snake_case ( lowercase_ ): lowerCAmelCase_ : List[str] = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **a__ ) -> Tuple: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case_ = deprecated_arg[3:] snake_case_ = not kwargs.pop(a__ ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) snake_case_ = kwargs.pop("tpu_name" , self.tpu_name ) snake_case_ = kwargs.pop("device_idx" , self.device_idx ) snake_case_ = kwargs.pop("eager_mode" , self.eager_mode ) snake_case_ = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**a__ ) lowerCAmelCase_ : str = field( default=lowercase_ , metadata={"help": "Name of TPU"} , ) lowerCAmelCase_ : int = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCAmelCase_ : bool = field(default=lowercase_ , metadata={"help": "Benchmark models in eager model."} ) lowerCAmelCase_ : bool = field( default=lowercase_ , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def lowerCAmelCase__ ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["tf"] ) snake_case_ = None if self.tpu: try: if self.tpu_name: snake_case_ = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: snake_case_ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: snake_case_ = None return tpu @cached_property def lowerCAmelCase__ ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) snake_case_ = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) snake_case_ = tf.distribute.OneDeviceStrategy(device=F'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU snake_case_ = tf.distribute.OneDeviceStrategy(device=F'/cpu:{self.device_idx}' ) return strategy @property def lowerCAmelCase__ ( self ) -> bool: '''simple docstring''' requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def lowerCAmelCase__ ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["tf"] ) return self._setup_strategy @property def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCAmelCase__ ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
361
'''simple docstring''' import logging import os from .state import PartialState class _snake_case ( logging.LoggerAdapter ): @staticmethod def lowerCAmelCase__ ( a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowerCAmelCase__ ( self , a__ , a__ , *a__ , **a__ ) -> List[Any]: '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) snake_case_ = kwargs.pop("main_process_only" , a__ ) snake_case_ = kwargs.pop("in_order" , a__ ) if self.isEnabledFor(a__ ): if self._should_log(a__ ): snake_case_ , snake_case_ = self.process(a__ , a__ ) self.logger.log(a__ , a__ , *a__ , **a__ ) elif in_order: snake_case_ = PartialState() for i in range(state.num_processes ): if i == state.process_index: snake_case_ , snake_case_ = self.process(a__ , a__ ) self.logger.log(a__ , a__ , *a__ , **a__ ) state.wait_for_everyone() def UpperCamelCase_( snake_case : str , snake_case : str = None ): '''simple docstring''' if log_level is None: snake_case_ = os.environ.get("ACCELERATE_LOG_LEVEL" , snake_case ) snake_case_ = logging.getLogger(snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case , {} )
92
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : str,lowercase_ : NestedDataStructureLike[PathLike],lowercase_ : Optional[NamedSplit] = None,lowercase_ : Optional[Features] = None,lowercase_ : str = None,lowercase_ : bool = False,lowercase_ : bool = False,lowercase_ : Optional[str] = None,lowercase_ : Optional[int] = None,**lowercase_ : int,)-> Any: '''simple docstring''' super().__init__( lowercase_,split=lowercase_,features=lowercase_,cache_dir=lowercase_,keep_in_memory=lowercase_,streaming=lowercase_,num_proc=lowercase_,**lowercase_,) A__ = field A__ = path_or_paths if isinstance(lowercase_,lowercase_ ) else {self.split: path_or_paths} A__ = Json( cache_dir=lowercase_,data_files=lowercase_,features=lowercase_,field=lowercase_,**lowercase_,) def snake_case__ ( self : Any )-> str: '''simple docstring''' if self.streaming: A__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=lowercase_,download_mode=lowercase_,verification_mode=lowercase_,base_path=lowercase_,num_proc=self.num_proc,) A__ = self.builder.as_dataset( split=self.split,verification_mode=lowercase_,in_memory=self.keep_in_memory ) return dataset class A : """simple docstring""" def __init__( self : Tuple,lowercase_ : Dataset,lowercase_ : Union[PathLike, BinaryIO],lowercase_ : Optional[int] = None,lowercase_ : Optional[int] = None,**lowercase_ : Tuple,)-> Union[str, Any]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) A__ = dataset A__ = path_or_buf A__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A__ = num_proc A__ = 'utf-8' A__ = to_json_kwargs def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' A__ = self.to_json_kwargs.pop('path_or_buf',lowercase_ ) A__ = self.to_json_kwargs.pop('orient','records' ) A__ = self.to_json_kwargs.pop('lines',True if orient == 'records' else False ) A__ = self.to_json_kwargs.pop('index',False if orient in ['split', 'table'] else True ) A__ = self.to_json_kwargs.pop('compression',lowercase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf,(str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf,'wb',compression=lowercase_ ) as buffer: A__ = self._write(file_obj=lowercase_,orient=lowercase_,lines=lowercase_,index=lowercase_,**self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' ' was passed. Please provide a local path instead.' ) A__ = self._write( file_obj=self.path_or_buf,orient=lowercase_,lines=lowercase_,index=lowercase_,**self.to_json_kwargs ) return written def snake_case__ ( self : List[Any],lowercase_ : int )-> Dict: '''simple docstring''' A__ , A__ , A__ , A__ , A__ = args A__ = query_table( table=self.dataset.data,key=slice(lowercase_,offset + self.batch_size ),indices=self.dataset._indices,) A__ = batch.to_pandas().to_json( path_or_buf=lowercase_,orient=lowercase_,lines=lowercase_,index=lowercase_,**lowercase_ ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def snake_case__ ( self : Any,lowercase_ : BinaryIO,lowercase_ : Optional[Any],lowercase_ : Optional[int],lowercase_ : Optional[Any],**lowercase_ : Optional[Any],)-> int: '''simple docstring''' A__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0,len(self.dataset ),self.batch_size ),unit='ba',disable=not logging.is_progress_bar_enabled(),desc='Creating json from Arrow format',): A__ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowercase_ ) else: A__ , A__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json,[(offset, orient, lines, index, to_json_kwargs) for offset in range(0,lowercase_,lowercase_ )],),total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size,unit='ba',disable=not logging.is_progress_bar_enabled(),desc='Creating json from Arrow format',): written += file_obj.write(lowercase_ ) return written
7
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'open-llama' def __init__( self : Any,lowercase_ : Optional[int]=1_0_0_0_0_0,lowercase_ : Union[str, Any]=4_0_9_6,lowercase_ : Dict=1_1_0_0_8,lowercase_ : Dict=3_2,lowercase_ : Optional[int]=3_2,lowercase_ : Dict="silu",lowercase_ : Union[str, Any]=2_0_4_8,lowercase_ : Optional[int]=0.02,lowercase_ : Dict=1E-6,lowercase_ : Dict=True,lowercase_ : List[Any]=0,lowercase_ : Optional[int]=1,lowercase_ : str=2,lowercase_ : str=False,lowercase_ : str=True,lowercase_ : int=0.1,lowercase_ : List[Any]=0.1,lowercase_ : List[Any]=True,lowercase_ : Union[str, Any]=True,lowercase_ : Any=None,**lowercase_ : List[Any],)-> Tuple: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = initializer_range A__ = rms_norm_eps A__ = use_cache A__ = kwargs.pop( 'use_memorry_efficient_attention',lowercase_ ) A__ = hidden_dropout_prob A__ = attention_dropout_prob A__ = use_stable_embedding A__ = shared_input_output_embedding A__ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,tie_word_embeddings=lowercase_,**lowercase_,) def snake_case__ ( self : str )-> str: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling,lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'got {self.rope_scaling}' ) A__ = self.rope_scaling.get('type',lowercase_ ) A__ = self.rope_scaling.get('factor',lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(lowercase_,lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
7
1
import torch def lowerCamelCase__ ( ) -> Tuple: if torch.cuda.is_available(): _A: Optional[int] = torch.cuda.device_count() else: _A: int = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
301
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
301
1
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( __UpperCAmelCase ): def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] ): """simple docstring""" if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): """simple docstring""" if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase = [sequences] UpperCamelCase = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__UpperCAmelCase ) class SCREAMING_SNAKE_CASE_ ( __UpperCAmelCase ): def __init__( self : Optional[int] , lowerCamelCase_ : Any=ZeroShotClassificationArgumentHandler() , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : int=TruncationStrategy.ONLY_FIRST , **lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCamelCase = self.tokenizer.eos_token try: UpperCamelCase = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCamelCase = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCamelCase_ ( self : Any , **lowerCamelCase_ : Optional[Any] ): """simple docstring""" if kwargs.get("""multi_class""" , lowerCamelCase__ ) is not None: UpperCamelCase = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCamelCase = kwargs["""hypothesis_template"""] UpperCamelCase = {} if "multi_label" in kwargs: UpperCamelCase = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , lowerCamelCase_ : Optional[int] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Union[str, Any] , ): """simple docstring""" if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: UpperCamelCase = args[0] else: raise ValueError(f"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : List[str]="This example is {}." ): """simple docstring""" UpperCamelCase , UpperCamelCase = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): UpperCamelCase = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Dict ): """simple docstring""" UpperCamelCase = inputs["""candidate_label"""] UpperCamelCase = inputs["""sequence"""] UpperCamelCase = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCamelCase = self.model(**lowerCamelCase__ ) UpperCamelCase = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any]=False ): """simple docstring""" UpperCamelCase = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCamelCase = [outputs["""sequence"""] for outputs in model_outputs] UpperCamelCase = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCamelCase = logits.shape[0] UpperCamelCase = len(lowerCamelCase__ ) UpperCamelCase = N // n UpperCamelCase = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCamelCase = self.entailment_id UpperCamelCase = -1 if entailment_id == 0 else 0 UpperCamelCase = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCamelCase = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) UpperCamelCase = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCamelCase = reshaped_outputs[..., self.entailment_id] UpperCamelCase = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) UpperCamelCase = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
343
'''simple docstring''' def _A ( lowercase__ = 1000000 ): lowercase__ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , lowercase__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
164
0
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ = 16 snake_case__ = 32 def snake_case__ ( lowerCamelCase__ : Accelerator , lowerCamelCase__ : DatasetDict , lowerCamelCase__ : List[int] , lowerCamelCase__ : List[int] , lowerCamelCase__ : int = 1_6 ) -> Tuple: A_ : str = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A_ : Any = DatasetDict( { '''train''': dataset['''train'''].select(lowerCamelCase__ ), '''validation''': dataset['''train'''].select(lowerCamelCase__ ), '''test''': dataset['''validation'''], } ) def tokenize_function(lowerCamelCase__ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A_ : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A_ : Optional[Any] = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A_ : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCamelCase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A_ : Optional[Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A_ : int = 1_6 elif accelerator.mixed_precision != "no": A_ : str = 8 else: A_ : Tuple = None return tokenizer.pad( lowerCamelCase__ , padding='''longest''' , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. A_ : Union[str, Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) A_ : Optional[int] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) A_ : Dict = DataLoader( tokenized_datasets['''test'''] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : int ) -> Optional[int]: # New Code # A_ : List[Any] = [] # Download the dataset A_ : Tuple = load_dataset('''glue''' , '''mrpc''' ) # Create our splits A_ : Tuple = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator A_ : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A_ : Tuple = config['''lr'''] A_ : int = int(config['''num_epochs'''] ) A_ : Optional[int] = int(config['''seed'''] ) A_ : Tuple = int(config['''batch_size'''] ) A_ : Optional[int] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A_ : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A_ : int = batch_size // MAX_GPU_BATCH_SIZE A_ : Any = MAX_GPU_BATCH_SIZE set_seed(lowerCamelCase__ ) # New Code # # Create our folds: A_ : List[Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) A_ : List[str] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCamelCase__ ): A_ : str = get_fold_dataloaders( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A_ : int = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A_ : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer A_ : List[str] = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) # Instantiate scheduler A_ : Optional[int] = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A_ : Optional[int] = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A_ : Tuple = model(**lowerCamelCase__ ) A_ : Optional[Any] = outputs.loss A_ : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A_ : Optional[Any] = model(**lowerCamelCase__ ) A_ : List[Any] = outputs.logits.argmax(dim=-1 ) A_ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) A_ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowerCamelCase__ ) # New Code # # We also run predictions on the test set at the very end A_ : Union[str, Any] = [] for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A_ : List[str] = model(**lowerCamelCase__ ) A_ : Any = outputs.logits A_ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCamelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: A_ : Tuple = torch.cat(lowerCamelCase__ , dim=0 ) A_ : Dict = torch.stack(lowerCamelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) A_ : str = metric.compute(predictions=lowerCamelCase__ , references=lowerCamelCase__ ) accelerator.print('''Average test metrics from all folds:''' , lowerCamelCase__ ) def snake_case__ ( ) -> int: A_ : Union[str, Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=lowerCamelCase__ , default=3 , help='''The number of splits to perform across the dataset''' ) A_ : int = parser.parse_args() A_ : Dict = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
351
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
4
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Dict = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """mobilenet_v2""" def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : Dict=224 , UpperCAmelCase : str=1.0 , UpperCAmelCase : Union[str, Any]=8 , UpperCAmelCase : List[Any]=8 , UpperCAmelCase : Union[str, Any]=6 , UpperCAmelCase : str=32 , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]="relu6" , UpperCAmelCase : int=True , UpperCAmelCase : List[str]=0.8 , UpperCAmelCase : int=0.0_2 , UpperCAmelCase : Union[str, Any]=0.0_0_1 , UpperCAmelCase : Optional[int]=255 , **UpperCAmelCase : Optional[int] , ) -> Optional[int]: super().__init__(**UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : Union[str, Any] = image_size lowerCamelCase__ : int = depth_multiplier lowerCamelCase__ : Optional[int] = depth_divisible_by lowerCamelCase__ : str = min_depth lowerCamelCase__ : Optional[Any] = expand_ratio lowerCamelCase__ : str = output_stride lowerCamelCase__ : Optional[Any] = first_layer_is_expansion lowerCamelCase__ : Optional[Any] = finegrained_output lowerCamelCase__ : Optional[int] = hidden_act lowerCamelCase__ : Optional[int] = tf_padding lowerCamelCase__ : Dict = classifier_dropout_prob lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : Union[str, Any] = layer_norm_eps lowerCamelCase__ : Union[str, Any] = semantic_loss_ignore_index class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = version.parse("""1.11""" ) @property def A_ ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def A_ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def A_ ( self : str ) -> float: return 1e-4
50
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 def __init__( self : int , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[str]=False , UpperCAmelCase : bool = False , ) -> List[str]: lowerCamelCase__ : int = hans_processors[task]() lowerCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) lowerCamelCase__ : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = label_list[2], label_list[1] lowerCamelCase__ : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : str = cached_features_file + '.lock' with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowerCamelCase__ : int = torch.load(UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowerCamelCase__ : str = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info('Training examples: %s' , len(UpperCAmelCase ) ) lowerCamelCase__ : Dict = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info('Saving features into cached file %s' , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase : Dict ) -> InputFeatures: return self.features[i] def A_ ( self : int ) -> int: return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase : UpperCAmelCase__ = 42 def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 128 , UpperCAmelCase : Any=False , UpperCAmelCase : bool = False , ) -> Union[str, Any]: lowerCamelCase__ : Any = hans_processors[task]() lowerCamelCase__ : Optional[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : str = label_list[2], label_list[1] lowerCamelCase__ : Optional[int] = label_list lowerCamelCase__ : int = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase__ : Optional[int] = tf.data.Dataset.from_generator( UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A_ ( self : Any ) -> Any: return self.dataset def __len__( self : Tuple ) -> int: return len(self.features ) def __getitem__( self : List[str] , UpperCAmelCase : Any ) -> InputFeatures: return self.features[i] def A_ ( self : Dict ) -> str: return self.label_list class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : int , UpperCAmelCase : List[Any] ) -> int: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def A_ ( self : Any , UpperCAmelCase : int ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def A_ ( self : Any ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> List[str]: lowerCamelCase__ : List[str] = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue lowerCamelCase__ : Tuple = '%s-%s' % (set_type, line[0]) lowerCamelCase__ : str = line[5] lowerCamelCase__ : Dict = line[6] lowerCamelCase__ : int = line[7][2:] if line[7].startswith('ex' ) else line[7] lowerCamelCase__ : Dict = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[int]: lowerCamelCase__ : int = {label: i for i, label in enumerate(_UpperCAmelCase )} lowerCamelCase__ : List[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc='convert examples to features' ): if ex_index % 1_0000 == 0: logger.info('Writing example %d' % (ex_index) ) lowerCamelCase__ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) lowerCamelCase__ : List[str] = label_map[example.label] if example.label in label_map else 0 lowerCamelCase__ : Optional[int] = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features _UpperCAmelCase : str = { """hans""": 3, } _UpperCAmelCase : List[Any] = { """hans""": HansProcessor, }
50
1
'''simple docstring''' import random class __UpperCamelCase : @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[ord(lowerCAmelCase ) for i in text] lowerCamelCase_ =[] lowerCamelCase_ =[] for i in plain: lowerCamelCase_ =random.randint(1, 300 ) lowerCamelCase_ =(i + k) * k cipher.append(lowerCAmelCase ) key.append(lowerCAmelCase ) return cipher, key @staticmethod def lowercase__ ( lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for i in range(len(lowerCAmelCase ) ): lowerCamelCase_ =int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCAmelCase ) ) return "".join(lowerCAmelCase ) if __name__ == "__main__": a_ : Tuple = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
371
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =VQModel lowercase : Union[str, Any] ='sample' @property def lowercase__ ( self, lowerCAmelCase=(32, 32) ): """simple docstring""" lowerCamelCase_ =4 lowerCamelCase_ =3 lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCamelCase_ =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase ) lowerCamelCase_ =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowerCamelCase_ =image.to(lowerCAmelCase ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).sample lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
6
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : Optional[int] = logging.get_logger(__name__) a : Any = torch.device('cpu') def __magic_name__ ( ) -> Tuple: '''simple docstring''' snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE_, stream=SCREAMING_SNAKE_CASE_ ).raw ) return im def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = dct.pop(SCREAMING_SNAKE_CASE_ ) snake_case_ = val def __magic_name__ ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' snake_case_ = [] for k in state_dict.keys(): snake_case_ = k if ".pwconv" in k: snake_case_ = k_new.replace('''.pwconv''', '''.point_wise_conv''' ) if ".dwconv" in k: snake_case_ = k_new.replace('''.dwconv''', '''.depth_wise_conv''' ) if ".Proj." in k: snake_case_ = k_new.replace('''.Proj.''', '''.proj.''' ) if "patch_embed" in k_new: snake_case_ = k_new.replace('''patch_embed''', '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: snake_case_ = k_new.split('''.''' ) if ls[2].isdigit(): snake_case_ = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: snake_case_ = k_new.replace('''network''', '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Dict: '''simple docstring''' snake_case_ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size snake_case_ = 1000 snake_case_ = '''huggingface/label-files''' snake_case_ = '''imagenet-1k-id2label.json''' snake_case_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, repo_type='''dataset''' ), '''r''' ) ) snake_case_ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": snake_case_ = [3, 3, 6, 4] snake_case_ = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": snake_case_ = [3, 3, 9, 6] snake_case_ = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": snake_case_ = [4, 3, 10, 5] snake_case_ = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": snake_case_ = [4, 4, 12, 6] snake_case_ = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): snake_case_ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_, map_location='''cpu''', check_hash=SCREAMING_SNAKE_CASE_ ) else: snake_case_ = torch.load(SCREAMING_SNAKE_CASE_, map_location='''cpu''' ) snake_case_ = checkpoint snake_case_ = create_rename_keys(SCREAMING_SNAKE_CASE_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # load HuggingFace model snake_case_ = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # prepare test inputs snake_case_ = prepare_img() snake_case_ = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) snake_case_ = processor(images=SCREAMING_SNAKE_CASE_, return_tensors='''pt''' ) # compare outputs from both models snake_case_ = get_expected_output(SCREAMING_SNAKE_CASE_ ) snake_case_ = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5], SCREAMING_SNAKE_CASE_, atol=1e-3 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') a : Any = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
56
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCamelCase__ = get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=0 ): os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCAmelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCAmelCase = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if accelerator.process_index == 0: logger.info(F"""Saving model to {output_model_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCAmelCase = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving model to {output_model_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{MODEL_NAME}_{model_index}""" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving model to {ckpt_dir}""" ) __lowerCAmelCase = {"model": state_dict} dist_cp.save_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F"""Model saved to {ckpt_dir}""" ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(SCREAMING_SNAKE_CASE_ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __lowerCAmelCase = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading model from {input_model_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCAmelCase = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading model from {input_model_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCAmelCase = ( os.path.join(SCREAMING_SNAKE_CASE_ , F"""{MODEL_NAME}_{model_index}""" ) if F"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading model from {ckpt_dir}""" ) __lowerCAmelCase = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , planner=DefaultLoadPlanner() , ) __lowerCAmelCase = state_dict["model"] logger.info(F"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str=0 ): os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCAmelCase = FSDP.optim_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowerCAmelCase = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Optimizer state saved in {output_optimizer_file}""" ) else: __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F"""Optimizer state saved in {ckpt_dir}""" ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCAmelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowerCAmelCase = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading Optimizer state from {input_optimizer_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Optimizer state loaded from {input_optimizer_file}""" ) else: __lowerCAmelCase = ( os.path.join(SCREAMING_SNAKE_CASE_ , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if F"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading Optimizer from {ckpt_dir}""" ) __lowerCAmelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , ) __lowerCAmelCase = optim_state["optimizer"] logger.info(F"""Optimizer loaded from {ckpt_dir}""" ) __lowerCAmelCase = FSDP.optim_state_dict_to_load(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) optimizer.load_state_dict(SCREAMING_SNAKE_CASE_ )
92
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def __A ( a_ :list[list[float]]) -> list[list[float]]: __a : List[Any] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(a_) == 2 and len(matrix[0]) == 2 and len(matrix[1]) == 2: # Calculate the determinant of the matrix __a : Union[str, Any] = float( d(matrix[0][0]) * d(matrix[1][1]) - d(matrix[1][0]) * d(matrix[0][1])) if determinant == 0: raise ValueError('''This matrix has no inverse.''') # Creates a copy of the matrix with swapped positions of the elements __a : Optional[int] = [[0.0, 0.0], [0.0, 0.0]] __a , __a : str = matrix[1][1], matrix[0][0] __a , __a : Dict = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(a_)) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(a_) == 3 and len(matrix[0]) == 3 and len(matrix[1]) == 3 and len(matrix[2]) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __a : Optional[int] = float( ( (d(matrix[0][0]) * d(matrix[1][1]) * d(matrix[2][2])) + (d(matrix[0][1]) * d(matrix[1][2]) * d(matrix[2][0])) + (d(matrix[0][2]) * d(matrix[1][0]) * d(matrix[2][1])) ) - ( (d(matrix[0][2]) * d(matrix[1][1]) * d(matrix[2][0])) + (d(matrix[0][1]) * d(matrix[1][0]) * d(matrix[2][2])) + (d(matrix[0][0]) * d(matrix[1][2]) * d(matrix[2][1])) )) if determinant == 0: raise ValueError('''This matrix has no inverse.''') # Creating cofactor matrix __a : Tuple = [ [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], ] __a : Dict = (d(matrix[1][1]) * d(matrix[2][2])) - ( d(matrix[1][2]) * d(matrix[2][1]) ) __a : str = -( (d(matrix[1][0]) * d(matrix[2][2])) - (d(matrix[1][2]) * d(matrix[2][0])) ) __a : int = (d(matrix[1][0]) * d(matrix[2][1])) - ( d(matrix[1][1]) * d(matrix[2][0]) ) __a : str = -( (d(matrix[0][1]) * d(matrix[2][2])) - (d(matrix[0][2]) * d(matrix[2][1])) ) __a : int = (d(matrix[0][0]) * d(matrix[2][2])) - ( d(matrix[0][2]) * d(matrix[2][0]) ) __a : Tuple = -( (d(matrix[0][0]) * d(matrix[2][1])) - (d(matrix[0][1]) * d(matrix[2][0])) ) __a : Tuple = (d(matrix[0][1]) * d(matrix[1][2])) - ( d(matrix[0][2]) * d(matrix[1][1]) ) __a : Union[str, Any] = -( (d(matrix[0][0]) * d(matrix[1][2])) - (d(matrix[0][2]) * d(matrix[1][0])) ) __a : List[str] = (d(matrix[0][0]) * d(matrix[1][1])) - ( d(matrix[0][1]) * d(matrix[1][0]) ) # Transpose the cofactor matrix (Adjoint matrix) __a : Any = array(a_) for i in range(3): for j in range(3): __a : Tuple = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __a : Optional[int] = array(a_) for i in range(3): for j in range(3): inverse_matrix[i][j] /= d(a_) # Calculate the inverse of the matrix return [[float(d(a_)) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''')
188
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ['''image_processor''', '''tokenizer'''] __lowerCAmelCase = '''CLIPImageProcessor''' __lowerCAmelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): __a : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _UpperCAmelCase , ) __a : Any = kwargs.pop('''feature_extractor''' ) __a : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a : Any = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: __a : List[str] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: __a : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def _lowerCamelCase ( self ): __a : Union[str, Any] = self.tokenizer.model_input_names __a : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
188
1
"""simple docstring""" from __future__ import annotations class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ ) -> None: __lowerCAmelCase = order # a_{0} ... a_{k} __lowerCAmelCase = [1.0] + [0.0] * order # b_{0} ... b_{k} __lowerCAmelCase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] __lowerCAmelCase = [0.0] * self.order # y[n-1] ... y[n-k] __lowerCAmelCase = [0.0] * self.order def A__ ( self , snake_case_ , snake_case_ ) -> None: if len(snake_case_ ) < self.order: __lowerCAmelCase = [1.0, *a_coeffs] if len(snake_case_ ) != self.order + 1: __lowerCAmelCase = ( f"""Expected a_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(snake_case_ )}""" ) raise ValueError(snake_case_ ) if len(snake_case_ ) != self.order + 1: __lowerCAmelCase = ( f"""Expected b_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(snake_case_ )}""" ) raise ValueError(snake_case_ ) __lowerCAmelCase = a_coeffs __lowerCAmelCase = b_coeffs def A__ ( self , snake_case_ ) -> float: __lowerCAmelCase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) __lowerCAmelCase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] __lowerCAmelCase = self.input_history[:-1] __lowerCAmelCase = self.output_history[:-1] __lowerCAmelCase = sample __lowerCAmelCase = result return result
301
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = {1: 1} for inputa in range(2 , _lowerCAmelCase ): __lowerCAmelCase = 0 __lowerCAmelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __lowerCAmelCase = (3 * number) + 1 counter += 1 if inputa not in counters: __lowerCAmelCase = counter if counter > pre_counter: __lowerCAmelCase = inputa __lowerCAmelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
301
1
"""simple docstring""" import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase__ = { """gwf-440k""": { """url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""", """sample_rate""": 48_000, """sample_size""": 65_536, }, """jmann-small-190k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""", """sample_rate""": 48_000, """sample_size""": 65_536, }, """jmann-large-580k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""", """sample_rate""": 48_000, """sample_size""": 131_072, }, """maestro-uncond-150k""": { """url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""", """sample_rate""": 16_000, """sample_size""": 65_536, }, """unlocked-uncond-250k""": { """url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""", """sample_rate""": 16_000, """sample_size""": 65_536, }, """honk-140k""": { """url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""", """sample_rate""": 16_000, """sample_size""": 65_536, }, } def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): return torch.atana(_UpperCamelCase , _UpperCamelCase ) / math.pi * 2 def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : List[str] = torch.sin(t * math.pi / 2 ) ** 2 __lowerCAmelCase : Optional[int] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_UpperCamelCase , _UpperCamelCase ) class A__ ( _lowerCamelCase): pass class A__ ( nn.Module): def __init__( self , _SCREAMING_SNAKE_CASE ): super().__init__() __lowerCAmelCase : Union[str, Any] = DiffusionAttnUnetaD(_SCREAMING_SNAKE_CASE , n_attn_layers=4 ) __lowerCAmelCase : Dict = deepcopy(self.diffusion ) __lowerCAmelCase : Union[str, Any] = torch.quasirandom.SobolEngine(1 , scramble=_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Tuple = MODELS_MAP[model_name]['url'] os.system(F"wget {url} ./" ) return F"./{model_name}.ckpt" lowerCamelCase__ = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", } lowerCamelCase__ = { """8""": """resnets.0""", """9""": """attentions.0""", """10""": """resnets.1""", """11""": """attentions.1""", """12""": """resnets.2""", """13""": """attentions.2""", } lowerCamelCase__ = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", """8""": """resnets.3""", """9""": """attentions.3""", """10""": """resnets.4""", """11""": """attentions.4""", """12""": """resnets.5""", """13""": """attentions.5""", } lowerCamelCase__ = { """0""": """resnets.0""", """1""": """resnets.1""", """2""": """resnets.2""", """4""": """resnets.0""", """5""": """resnets.1""", """6""": """resnets.2""", } lowerCamelCase__ = { """skip""": """conv_skip""", """main.0""": """conv_1""", """main.1""": """group_norm_1""", """main.3""": """conv_2""", """main.4""": """group_norm_2""", } lowerCamelCase__ = { """norm""": """group_norm""", """qkv_proj""": ["""query""", """key""", """value"""], """out_proj""": ["""proj_attn"""], } def __lowerCAmelCase (_UpperCamelCase ): if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(F"ResConvBlock error with {name}" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __lowerCAmelCase (_UpperCamelCase ): for key, value in ATTN_MAP.items(): if name.startswith(_UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ): return name.replace(_UpperCamelCase , _UpperCamelCase ) elif name.startswith(_UpperCamelCase ): return [name.replace(_UpperCamelCase , _UpperCamelCase ) for v in value] raise ValueError(F"Attn error with {name}" ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=13 ): __lowerCAmelCase : Any = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) __lowerCAmelCase : Tuple = 0 if string.startswith('net.3.' ): depth += 1 __lowerCAmelCase : Union[str, Any] = string[6:] elif string.startswith('net.' ): __lowerCAmelCase : Dict = string[4:] while string.startswith('main.7.' ): depth += 1 __lowerCAmelCase : List[Any] = string[7:] if string.startswith('main.' ): __lowerCAmelCase : Optional[Any] = string[5:] # mid block if string[:2].isdigit(): __lowerCAmelCase : Union[str, Any] = string[:2] __lowerCAmelCase : Union[str, Any] = string[2:] else: __lowerCAmelCase : Dict = string[0] __lowerCAmelCase : List[str] = string[1:] if depth == max_depth: __lowerCAmelCase : int = MID_NUM_TO_LAYER[layer_num] __lowerCAmelCase : List[Any] = 'mid_block' elif depth > 0 and int(_UpperCamelCase ) < 7: __lowerCAmelCase : Tuple = DOWN_NUM_TO_LAYER[layer_num] __lowerCAmelCase : List[Any] = F"down_blocks.{depth}" elif depth > 0 and int(_UpperCamelCase ) > 7: __lowerCAmelCase : str = UP_NUM_TO_LAYER[layer_num] __lowerCAmelCase : Optional[int] = F"up_blocks.{max_depth - depth - 1}" elif depth == 0: __lowerCAmelCase : List[Any] = DEPTH_0_TO_LAYER[layer_num] __lowerCAmelCase : Tuple = F"up_blocks.{max_depth - 1}" if int(_UpperCamelCase ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(F"Naming error with {input_string} and string_left: {string_left}." ) __lowerCAmelCase : List[str] = string_left[1:] if "resnets" in new_layer: __lowerCAmelCase : int = convert_resconv_naming(_UpperCamelCase ) elif "attentions" in new_layer: __lowerCAmelCase : Tuple = convert_attn_naming(_UpperCamelCase ) __lowerCAmelCase : Optional[int] = new_string_left if not isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Any = prefix + '.' + new_layer + '.' + string_left else: __lowerCAmelCase : int = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue __lowerCAmelCase : Optional[Any] = rename(_UpperCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = transform_conv_attns(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: __lowerCAmelCase : List[Any] = v return new_state_dict def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if len(_UpperCamelCase ) == 1: if len(v.shape ) == 3: # weight __lowerCAmelCase : List[Any] = v[:, :, 0] else: # bias __lowerCAmelCase : str = v else: # qkv matrices __lowerCAmelCase : Union[str, Any] = v.shape[0] __lowerCAmelCase : List[Any] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: __lowerCAmelCase : Union[str, Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: __lowerCAmelCase : Optional[Any] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __lowerCAmelCase : Any = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"Make sure to provide one of the official model names {MODELS_MAP.keys()}" __lowerCAmelCase : int = download(_UpperCamelCase ) __lowerCAmelCase : Dict = MODELS_MAP[model_name]['sample_rate'] __lowerCAmelCase : Tuple = MODELS_MAP[model_name]['sample_size'] __lowerCAmelCase : List[str] = Object() __lowerCAmelCase : Optional[Any] = sample_size __lowerCAmelCase : str = sample_rate __lowerCAmelCase : str = 0 __lowerCAmelCase : Optional[Any] = UNetaDModel(sample_size=_UpperCamelCase , sample_rate=_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = diffusers_model.state_dict() __lowerCAmelCase : str = DiffusionUncond(_UpperCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=_UpperCamelCase )['state_dict'] ) __lowerCAmelCase : Any = orig_model.diffusion_ema.eval() __lowerCAmelCase : Dict = orig_model.state_dict() __lowerCAmelCase : Optional[int] = rename_orig_weights(_UpperCamelCase ) __lowerCAmelCase : str = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) __lowerCAmelCase : Optional[int] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(_UpperCamelCase ) == 0, F"Problem with {renamed_minus_diffusers}" assert all(k.endswith('kernel' ) for k in list(_UpperCamelCase ) ), F"Problem with {diffusers_minus_renamed}" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}" if key == "time_proj.weight": __lowerCAmelCase : Optional[int] = value.squeeze() __lowerCAmelCase : Dict = value diffusers_model.load_state_dict(_UpperCamelCase ) __lowerCAmelCase : Tuple = 100 __lowerCAmelCase : Tuple = 33 __lowerCAmelCase : List[str] = IPNDMScheduler(num_train_timesteps=_UpperCamelCase ) __lowerCAmelCase : int = torch.manual_seed(_UpperCamelCase ) __lowerCAmelCase : Optional[int] = torch.randn([1, 2, config.sample_size] , generator=_UpperCamelCase ).to(_UpperCamelCase ) __lowerCAmelCase : Tuple = torch.linspace(1 , 0 , steps + 1 , device=_UpperCamelCase )[:-1] __lowerCAmelCase : Dict = get_crash_schedule(_UpperCamelCase ) __lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) __lowerCAmelCase : Any = torch.manual_seed(33 ) __lowerCAmelCase : List[Any] = pipe(num_inference_steps=_UpperCamelCase , generator=_UpperCamelCase ).audios __lowerCAmelCase : Any = sampling.iplms_sample(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , {} ) __lowerCAmelCase : List[str] = generated.clamp(-1 , 1 ) __lowerCAmelCase : Tuple = (generated - audio).abs().sum() __lowerCAmelCase : List[str] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , _UpperCamelCase ) print('Diff max' , _UpperCamelCase ) assert diff_max < 1e-3, F"Diff max: {diff_max} is too much :-/" print(F"Conversion for {model_name} successful!" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowerCamelCase__ = parser.parse_args() main(args)
182
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCamelCase__ = getLogger(__name__) lowerCamelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 8 , _UpperCamelCase = DEFAULT_DEVICE , _UpperCamelCase=False , _UpperCamelCase="summarization" , _UpperCamelCase=None , **_UpperCamelCase , ): __lowerCAmelCase : str = Path(_UpperCamelCase ).open('w' , encoding='utf-8' ) __lowerCAmelCase : Union[str, Any] = str(_UpperCamelCase ) __lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ).to(_UpperCamelCase ) if fpaa: __lowerCAmelCase : Optional[Any] = model.half() __lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_UpperCamelCase ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowerCAmelCase : List[Any] = time.time() # update config with task specific params use_task_specific_params(_UpperCamelCase , _UpperCamelCase ) if prefix is None: __lowerCAmelCase : Optional[int] = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(_UpperCamelCase , _UpperCamelCase ) ) ): __lowerCAmelCase : List[str] = [prefix + text for text in examples_chunk] __lowerCAmelCase : List[str] = tokenizer(_UpperCamelCase , return_tensors='pt' , truncation=_UpperCamelCase , padding='longest' ).to(_UpperCamelCase ) __lowerCAmelCase : str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_UpperCamelCase , ) __lowerCAmelCase : str = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() __lowerCAmelCase : Optional[int] = int(time.time() - start_time ) # seconds __lowerCAmelCase : List[Any] = len(_UpperCamelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def __lowerCAmelCase (): return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def __lowerCAmelCase (_UpperCamelCase=True ): __lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('model_name' , type=_UpperCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=_UpperCamelCase , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=_UpperCamelCase , help='where to save summaries' ) parser.add_argument('--reference_path' , type=_UpperCamelCase , required=_UpperCamelCase , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=_UpperCamelCase , required=_UpperCamelCase , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=_UpperCamelCase , required=_UpperCamelCase , default=_UpperCamelCase , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=_UpperCamelCase , required=_UpperCamelCase , default=_UpperCamelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=_UpperCamelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=_UpperCamelCase , default=8 , required=_UpperCamelCase , help='batch size' ) parser.add_argument( '--n_obs' , type=_UpperCamelCase , default=-1 , required=_UpperCamelCase , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=_UpperCamelCase , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase : Optional[int] = parser.parse_known_args() __lowerCAmelCase : Optional[int] = parse_numeric_n_bool_cl_kwargs(_UpperCamelCase ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowerCAmelCase : Dict = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase : int = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_UpperCamelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) __lowerCAmelCase : Optional[Any] = generate_summaries_or_translations( _UpperCamelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_UpperCamelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase : str = calculate_bleu if 'translation' in args.task else calculate_rouge __lowerCAmelCase : Dict = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase : Dict = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_UpperCamelCase )] __lowerCAmelCase : dict = score_fn(_UpperCamelCase , _UpperCamelCase ) scores.update(_UpperCamelCase ) if args.dump_args: scores.update(_UpperCamelCase ) if args.info: __lowerCAmelCase : Optional[Any] = args.info if verbose: print(_UpperCamelCase ) if args.score_path is not None: json.dump(_UpperCamelCase , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
182
1
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __lowerCAmelCase : Tuple = logging.getLogger(__name__) class UpperCAmelCase_ ( __lowercase ): '''simple docstring''' def _lowercase ( self : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Optional[Any]=None ) -> str: """simple docstring""" __magic_name__ = self.layer[current_layer](UpperCAmelCase__ , UpperCAmelCase__ , head_mask[current_layer] ) __magic_name__ = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , __lowercase , ) class UpperCAmelCase_ ( __lowercase ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Tuple ) -> Dict: """simple docstring""" super().__init__(UpperCAmelCase__ ) __magic_name__ = BertEncoderWithPabee(UpperCAmelCase__ ) self.init_weights() __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = 0 def _lowercase ( self : Tuple , UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = threshold def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Dict ) -> Dict: """simple docstring""" __magic_name__ = patience def _lowercase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __magic_name__ = 0 __magic_name__ = 0 def _lowercase ( self : int ) -> str: """simple docstring""" __magic_name__ = self.inference_layers_num / self.inference_instances_num __magic_name__ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(UpperCAmelCase__ ) @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict=False , ) -> List[Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: __magic_name__ = input_ids.size() elif inputs_embeds is not None: __magic_name__ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) __magic_name__ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __magic_name__ = torch.ones(UpperCAmelCase__ , device=UpperCAmelCase__ ) if token_type_ids is None: __magic_name__ = torch.zeros(UpperCAmelCase__ , dtype=torch.long , device=UpperCAmelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __magic_name__ = self.get_extended_attention_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __magic_name__ , __magic_name__ , __magic_name__ = encoder_hidden_states.size() __magic_name__ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __magic_name__ = torch.ones(UpperCAmelCase__ , device=UpperCAmelCase__ ) __magic_name__ = self.invert_attention_mask(UpperCAmelCase__ ) else: __magic_name__ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __magic_name__ = self.get_head_mask(UpperCAmelCase__ , self.config.num_hidden_layers ) __magic_name__ = self.embeddings( input_ids=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , inputs_embeds=UpperCAmelCase__ ) __magic_name__ = embedding_output if self.training: __magic_name__ = [] for i in range(self.config.num_hidden_layers ): __magic_name__ = self.encoder.adaptive_forward( UpperCAmelCase__ , current_layer=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , head_mask=UpperCAmelCase__ ) __magic_name__ = self.pooler(UpperCAmelCase__ ) __magic_name__ = output_layers[i](output_dropout(UpperCAmelCase__ ) ) res.append(UpperCAmelCase__ ) elif self.patience == 0: # Use all layers for inference __magic_name__ = self.encoder( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) __magic_name__ = self.pooler(encoder_outputs[0] ) __magic_name__ = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase__ )] else: __magic_name__ = 0 __magic_name__ = None __magic_name__ = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __magic_name__ = self.encoder.adaptive_forward( UpperCAmelCase__ , current_layer=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , head_mask=UpperCAmelCase__ ) __magic_name__ = self.pooler(UpperCAmelCase__ ) __magic_name__ = output_layers[i](UpperCAmelCase__ ) if regression: __magic_name__ = logits.detach() if patient_result is not None: __magic_name__ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __magic_name__ = 0 else: __magic_name__ = logits.detach().argmax(dim=1 ) if patient_result is not None: __magic_name__ = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase__ ) ): patient_counter += 1 else: __magic_name__ = 0 __magic_name__ = logits if patient_counter == self.patience: break __magic_name__ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , __lowercase , ) class UpperCAmelCase_ ( __lowercase ): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : List[Any] ) -> List[str]: """simple docstring""" super().__init__(UpperCAmelCase__ ) __magic_name__ = config.num_labels __magic_name__ = BertModelWithPabee(UpperCAmelCase__ ) __magic_name__ = nn.Dropout(config.hidden_dropout_prob ) __magic_name__ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) def _lowercase ( self : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Any=None , ) -> Any: """simple docstring""" __magic_name__ = self.bert( input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , inputs_embeds=UpperCAmelCase__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __magic_name__ = (logits[-1],) if labels is not None: __magic_name__ = None __magic_name__ = 0 for ix, logits_item in enumerate(UpperCAmelCase__ ): if self.num_labels == 1: # We are doing regression __magic_name__ = MSELoss() __magic_name__ = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __magic_name__ = CrossEntropyLoss() __magic_name__ = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __magic_name__ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __magic_name__ = (total_loss / total_weights,) + outputs return outputs
88
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( __lowercase ): def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]: return self[-1] < other[-1] def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple: return self[-1] == other[-1] def a_ ( lowerCamelCase : list ): lowerCAmelCase = [] # sort into stacks for element in collection: lowerCAmelCase = Stack([element] ) lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase ) if i != len(lowerCamelCase ): stacks[i].append(lowerCamelCase ) else: stacks.append(lowerCamelCase ) # use a heap-based merge to merge stack efficiently lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
4
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( a ): lowercase__ : int = (PNDMScheduler,) lowercase__ : int = (("""num_inference_steps""", 50),) def __snake_case( self : List[Any] , **_UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**_UpperCamelCase ) return config def __snake_case( self : Optional[int] , _UpperCamelCase : str=0 , **_UpperCamelCase : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_UpperCamelCase ) new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[:] SCREAMING_SNAKE_CASE = scheduler.step_prk(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step_prk(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE = scheduler.step_plms(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step_plms(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : str ) -> str: '''simple docstring''' pass def __snake_case( self : Any , _UpperCamelCase : Tuple=0 , **_UpperCamelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[:] SCREAMING_SNAKE_CASE = scheduler.step_prk(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step_prk(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE = scheduler.step_plms(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step_plms(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : List[str] , **_UpperCamelCase : str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.prk_timesteps ): SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step_prk(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step_plms(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample return sample def __snake_case( self : str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(_UpperCamelCase ) elif num_inference_steps is not None and not hasattr(_UpperCamelCase , "set_timesteps" ): SCREAMING_SNAKE_CASE = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] SCREAMING_SNAKE_CASE = dummy_past_residuals[:] SCREAMING_SNAKE_CASE = scheduler.step_prk(_UpperCamelCase , 0 , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = scheduler.step_prk(_UpperCamelCase , 1 , _UpperCamelCase , **_UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) SCREAMING_SNAKE_CASE = scheduler.step_plms(_UpperCamelCase , 0 , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = scheduler.step_plms(_UpperCamelCase , 1 , _UpperCamelCase , **_UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case( self : Optional[Any] ) -> Dict: '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def __snake_case( self : Any ) -> List[str]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def __snake_case( self : int ) -> Tuple: '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase ) def __snake_case( self : str ) -> Dict: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCamelCase ) def __snake_case( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def __snake_case( self : Dict ) -> Optional[Any]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=_UpperCamelCase ) def __snake_case( self : List[str] ) -> str: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = 27 for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): SCREAMING_SNAKE_CASE = scheduler.step_prk(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample def __snake_case( self : Dict ) -> Dict: '''simple docstring''' with self.assertRaises(_UpperCamelCase ): SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __snake_case( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop() SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def __snake_case( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def __snake_case( self : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop(set_alpha_to_one=_UpperCamelCase , beta_start=0.0_1 ) SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def __snake_case( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop(set_alpha_to_one=_UpperCamelCase , beta_start=0.0_1 ) SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
206
def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : str = " " ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 for index, char in enumerate(UpperCAmelCase__ ): if char == separator: split_words.append(string[last_index:index] ) SCREAMING_SNAKE_CASE = index + 1 elif index + 1 == len(UpperCAmelCase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
206
1
from __future__ import annotations def lowerCAmelCase_ ( A_ ,A_): UpperCamelCase__: str = [] create_all_state(1 ,a__ ,a__ ,[] ,a__) return result def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_ ,A_ ,): if level == 0: total_list.append(current_list[:]) return for i in range(a__ ,total_number - level + 2): current_list.append(a__) create_all_state(i + 1 ,a__ ,level - 1 ,a__ ,a__) current_list.pop() def lowerCAmelCase_ ( A_): for i in total_list: print(*a__) if __name__ == "__main__": A__: Union[str, Any] = 4 A__: Optional[int] = 2 A__: Dict = generate_all_combinations(n, k) print_all_state(total_list)
149
def __lowerCAmelCase ( a__ , a__ ) -> float: def get_matched_characters(a__ , a__ ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) __a = F"""{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}""" return "".join(a__ ) # matching characters __a = get_matched_characters(a__ , a__ ) __a = get_matched_characters(a__ , a__ ) __a = len(a__ ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(a__ , a__ ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
6
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __UpperCAmelCase = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __UpperCAmelCase = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def __lowerCamelCase ( __magic_name__ : Any ): a__: int =numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__magic_name__ )[0] @deprecated(__magic_name__ , "Please use tf.data to implement this functionality." ) def __lowerCamelCase ( __magic_name__ : str ): print("Extracting" , f.name ) with gzip.GzipFile(fileobj=__magic_name__ ) as bytestream: a__: Any =_readaa(__magic_name__ ) if magic != 2_051: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) a__: str =_readaa(__magic_name__ ) a__: Union[str, Any] =_readaa(__magic_name__ ) a__: str =_readaa(__magic_name__ ) a__: List[str] =bytestream.read(rows * cols * num_images ) a__: Tuple =numpy.frombuffer(__magic_name__ , dtype=numpy.uinta ) a__: List[str] =data.reshape(__magic_name__ , __magic_name__ , __magic_name__ , 1 ) return data @deprecated(__magic_name__ , "Please use tf.one_hot on tensors." ) def __lowerCamelCase ( __magic_name__ : int , __magic_name__ : Tuple ): a__: List[Any] =labels_dense.shape[0] a__: Optional[int] =numpy.arange(__magic_name__ ) * num_classes a__: Tuple =numpy.zeros((num_labels, num_classes) ) a__: List[Any] =1 return labels_one_hot @deprecated(__magic_name__ , "Please use tf.data to implement this functionality." ) def __lowerCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[int]=False , __magic_name__ : Tuple=10 ): print("Extracting" , f.name ) with gzip.GzipFile(fileobj=__magic_name__ ) as bytestream: a__: Optional[Any] =_readaa(__magic_name__ ) if magic != 2_049: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) a__: int =_readaa(__magic_name__ ) a__: Optional[int] =bytestream.read(__magic_name__ ) a__: Optional[Any] =numpy.frombuffer(__magic_name__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__magic_name__ , __magic_name__ ) return labels class lowerCamelCase__ : @deprecated( _a , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self : Optional[int] , _a : List[Any] , _a : Tuple , _a : str=False , _a : Union[str, Any]=False , _a : Optional[int]=dtypes.floataa , _a : Optional[Any]=True , _a : str=None , ): a__: int =random_seed.get_seed(_a ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) a__: Dict =dtypes.as_dtype(_a ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: a__: List[Any] =1_0_0_0_0 a__: Any =one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"images.shape: {images.shape} labels.shape: {labels.shape}" a__: Dict =images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 a__: List[str] =images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. a__: Tuple =images.astype(numpy.floataa ) a__: List[Any] =numpy.multiply(_a , 1.0 / 2_5_5.0 ) a__: str =images a__: Dict =labels a__: List[str] =0 a__: Optional[Any] =0 @property def _lowerCamelCase ( self : List[str] ): return self._images @property def _lowerCamelCase ( self : List[Any] ): return self._labels @property def _lowerCamelCase ( self : str ): return self._num_examples @property def _lowerCamelCase ( self : Dict ): return self._epochs_completed def _lowerCamelCase ( self : Tuple , _a : List[str] , _a : List[str]=False , _a : Optional[int]=True ): if fake_data: a__: str =[1] * 7_8_4 a__: Optional[int] =[1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_a )], [fake_label for _ in range(_a )], ) a__: List[Any] =self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: a__: Dict =numpy.arange(self._num_examples ) numpy.random.shuffle(_a ) a__: int =self.images[perma] a__: Dict =self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch a__: Tuple =self._num_examples - start a__: str =self._images[start : self._num_examples] a__: Optional[Any] =self._labels[start : self._num_examples] # Shuffle the data if shuffle: a__: List[Any] =numpy.arange(self._num_examples ) numpy.random.shuffle(_a ) a__: Any =self.images[perm] a__: Optional[int] =self.labels[perm] # Start next epoch a__: Tuple =0 a__: List[Any] =batch_size - rest_num_examples a__: Any =self._index_in_epoch a__: List[str] =self._images[start:end] a__: Tuple =self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size a__: Dict =self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__magic_name__ , "Please write your own downloading logic." ) def __lowerCamelCase ( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ): if not gfile.Exists(__magic_name__ ): gfile.MakeDirs(__magic_name__ ) a__: int =os.path.join(__magic_name__ , __magic_name__ ) if not gfile.Exists(__magic_name__ ): urllib.request.urlretrieve(__magic_name__ , __magic_name__ ) # noqa: S310 with gfile.GFile(__magic_name__ ) as f: a__: Optional[int] =f.size() print("Successfully downloaded" , __magic_name__ , __magic_name__ , "bytes." ) return filepath @deprecated( __magic_name__ , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def __lowerCamelCase ( __magic_name__ : Dict , __magic_name__ : Union[str, Any]=False , __magic_name__ : Union[str, Any]=False , __magic_name__ : Optional[int]=dtypes.floataa , __magic_name__ : Union[str, Any]=True , __magic_name__ : Optional[int]=5_000 , __magic_name__ : List[Any]=None , __magic_name__ : Union[str, Any]=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__magic_name__ , one_hot=__magic_name__ , dtype=__magic_name__ , seed=__magic_name__ ) a__: Any =fake() a__: Optional[Any] =fake() a__: str =fake() return _Datasets(train=__magic_name__ , validation=__magic_name__ , test=__magic_name__ ) if not source_url: # empty string check a__: int =DEFAULT_SOURCE_URL a__: str ="train-images-idx3-ubyte.gz" a__: int ="train-labels-idx1-ubyte.gz" a__: List[str] ="t10k-images-idx3-ubyte.gz" a__: Tuple ="t10k-labels-idx1-ubyte.gz" a__: Union[str, Any] =_maybe_download( __magic_name__ , __magic_name__ , source_url + train_images_file ) with gfile.Open(__magic_name__ , "rb" ) as f: a__: int =_extract_images(__magic_name__ ) a__: str =_maybe_download( __magic_name__ , __magic_name__ , source_url + train_labels_file ) with gfile.Open(__magic_name__ , "rb" ) as f: a__: int =_extract_labels(__magic_name__ , one_hot=__magic_name__ ) a__: Any =_maybe_download( __magic_name__ , __magic_name__ , source_url + test_images_file ) with gfile.Open(__magic_name__ , "rb" ) as f: a__: int =_extract_images(__magic_name__ ) a__: Optional[int] =_maybe_download( __magic_name__ , __magic_name__ , source_url + test_labels_file ) with gfile.Open(__magic_name__ , "rb" ) as f: a__: Optional[Any] =_extract_labels(__magic_name__ , one_hot=__magic_name__ ) if not 0 <= validation_size <= len(__magic_name__ ): a__: List[Any] =( "Validation size should be between 0 and " F"{len(__magic_name__ )}. Received: {validation_size}." ) raise ValueError(__magic_name__ ) a__: Any =train_images[:validation_size] a__: Optional[int] =train_labels[:validation_size] a__: Dict =train_images[validation_size:] a__: Optional[int] =train_labels[validation_size:] a__: List[str] ={"dtype": dtype, "reshape": reshape, "seed": seed} a__: Tuple =_DataSet(__magic_name__ , __magic_name__ , **__magic_name__ ) a__: Any =_DataSet(__magic_name__ , __magic_name__ , **__magic_name__ ) a__: Any =_DataSet(__magic_name__ , __magic_name__ , **__magic_name__ ) return _Datasets(train=__magic_name__ , validation=__magic_name__ , test=__magic_name__ )
355
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowerCamelCase__ ( _a ): _lowerCAmelCase = '''mobilenet_v1''' def __init__( self : int , _a : Tuple=3 , _a : str=2_2_4 , _a : Dict=1.0 , _a : List[Any]=8 , _a : Tuple="relu6" , _a : Dict=True , _a : Optional[int]=0.9_9_9 , _a : List[Any]=0.0_2 , _a : Optional[Any]=0.0_0_1 , **_a : Optional[int] , ): super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) a__: str =num_channels a__: Union[str, Any] =image_size a__: Dict =depth_multiplier a__: Union[str, Any] =min_depth a__: Any =hidden_act a__: int =tf_padding a__: Dict =classifier_dropout_prob a__: Any =initializer_range a__: List[str] =layer_norm_eps class lowerCamelCase__ ( _a ): _lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self : int ): return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _lowerCamelCase ( self : Tuple ): if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _lowerCamelCase ( self : Dict ): return 1e-4
42
0
def UpperCAmelCase__ ( _A : Dict ): '''simple docstring''' a__, a__ =[], [] while len(_A ) > 1: a__, a__ =min(_A ), max(_A ) start.append(_A ) end.append(_A ) collection.remove(_A ) collection.remove(_A ) end.reverse() return start + collection + end if __name__ == "__main__": lowerCamelCase = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
188
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __magic_name__ : '''simple docstring''' def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=False, lowercase_=True, lowercase_=99, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=16, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_=None, ) -> List[Any]: """simple docstring""" a__ =parent a__ =batch_size a__ =seq_length a__ =is_training a__ =use_input_mask a__ =use_token_type_ids a__ =use_labels a__ =vocab_size a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =type_sequence_label_size a__ =initializer_range a__ =num_labels a__ =num_choices a__ =scope def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" a__ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) a__ =None if self.use_input_mask: a__ =random_attention_mask([self.batch_size, self.seq_length] ) a__ =None if self.use_token_type_ids: a__ =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) a__ =None a__ =None a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) a__ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) a__ =ids_tensor([self.batch_size], self.num_choices ) a__ =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowercase_, initializer_range=self.initializer_range, use_stable_embedding=lowercase_, ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> List[str]: """simple docstring""" a__ =OpenLlamaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_ ) a__ =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Any: """simple docstring""" a__ =True a__ =OpenLlamaModel(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, ) a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, ) a__ =model(lowercase_, attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> List[str]: """simple docstring""" a__ =OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> List[Any]: """simple docstring""" a__ =True a__ =True a__ =OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, use_cache=lowercase_, ) a__ =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a__ =ids_tensor((self.batch_size, 3), config.vocab_size ) a__ =ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and a__ =torch.cat([input_ids, next_tokens], dim=-1 ) a__ =torch.cat([input_mask, next_mask], dim=-1 ) a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, output_hidden_states=lowercase_, )['''hidden_states'''][0] a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, past_key_values=lowercase_, output_hidden_states=lowercase_, )['''hidden_states'''][0] # select random slice a__ =ids_tensor((1,), output_from_past.shape[-1] ).item() a__ =output_from_no_past[:, -3:, random_slice_idx].detach() a__ =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_, lowercase_, atol=1E-3 ) ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ) =config_and_inputs a__ ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCamelCase__ : List[str] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = False lowerCamelCase__ : Any = False def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" a__ =OpenLlamaModelTester(self ) a__ =ConfigTester(self, config_class=lowercase_, hidden_size=37 ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ =type self.model_tester.create_and_check_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ ='''single_label_classification''' a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ ='''multi_label_classification''' a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _UpperCAmelCase ( self, lowercase_ ) -> Optional[Any]: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =ids_tensor([1, 10], config.vocab_size ) a__ =ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a__ =OpenLlamaModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() a__ =original_model(lowercase_ ).last_hidden_state a__ =original_model(lowercase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a__ ={'''type''': scaling_type, '''factor''': 10.0} a__ =OpenLlamaModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() a__ =scaled_model(lowercase_ ).last_hidden_state a__ =scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) )
188
1
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): SCREAMING_SNAKE_CASE : Tuple = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: SCREAMING_SNAKE_CASE : List[Any] = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def UpperCamelCase ( _a ) -> List[str]: '''simple docstring''' lowercase_ :int = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ :Tuple = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ :Any = numpy_to_pil(lowerCAmelCase__ ) return images def UpperCamelCase ( _a ) -> Union[str, Any]: '''simple docstring''' if images.ndim == 3: lowercase_ :Any = images[None, ...] lowercase_ :Optional[int] = (images * 2_5_5).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ :Tuple = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: lowercase_ :Optional[int] = [Image.fromarray(lowerCAmelCase__ ) for image in images] return pil_images
352
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : List[Any] ="""gpt_bigcode""" lowercase : Dict =["""past_key_values"""] lowercase : List[Any] ={ """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase_=5_0257 , UpperCamelCase_=1024 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=None , UpperCamelCase_="gelu_pytorch_tanh" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.02 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=5_0256 , UpperCamelCase_=5_0256 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , **UpperCamelCase_ , ): lowercase_ :Any = vocab_size lowercase_ :List[str] = n_positions lowercase_ :Union[str, Any] = n_embd lowercase_ :Dict = n_layer lowercase_ :Optional[int] = n_head lowercase_ :List[str] = n_inner lowercase_ :List[str] = activation_function lowercase_ :Optional[int] = resid_pdrop lowercase_ :Union[str, Any] = embd_pdrop lowercase_ :Any = attn_pdrop lowercase_ :Optional[Any] = layer_norm_epsilon lowercase_ :str = initializer_range lowercase_ :Optional[Any] = scale_attn_weights lowercase_ :Any = use_cache lowercase_ :Union[str, Any] = attention_softmax_in_fpaa lowercase_ :int = scale_attention_softmax_in_fpaa lowercase_ :Union[str, Any] = multi_query lowercase_ :List[str] = bos_token_id lowercase_ :Optional[int] = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
252
0
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = 42 UpperCamelCase_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
182
import itertools import string from collections.abc import Generator, Iterable def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = iter(_lowercase ) while True: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(itertools.islice(_lowercase , _lowercase ) ) if not chunk: return yield chunk def A ( _lowercase ): SCREAMING_SNAKE_CASE : int = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) SCREAMING_SNAKE_CASE : List[str] = '''''' if len(_lowercase ) < 2: return dirty for i in range(len(_lowercase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_lowercase ) & 1: clean += "X" return clean def A ( _lowercase ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) SCREAMING_SNAKE_CASE : Optional[Any] = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler SCREAMING_SNAKE_CASE : List[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_lowercase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_lowercase ) return table def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = generate_table(_lowercase ) SCREAMING_SNAKE_CASE : Any = prepare_input(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowercase , 2 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = divmod(table.index(_lowercase ) , 5 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = divmod(table.index(_lowercase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = generate_table(_lowercase ) SCREAMING_SNAKE_CASE : List[Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowercase , 2 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = divmod(table.index(_lowercase ) , 5 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = divmod(table.index(_lowercase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
182
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf A : List[Any] = logging.get_logger(__name__) @dataclass class lowerCamelCase (__a ): """simple docstring""" lowerCamelCase__ = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : int , **__magic_name__ : List[Any] ) -> List[Any]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE_ = deprecated_arg[3:] SCREAMING_SNAKE_CASE_ = not kwargs.pop(a__ ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop("tpu_name" , self.tpu_name ) SCREAMING_SNAKE_CASE_ = kwargs.pop("device_idx" , self.device_idx ) SCREAMING_SNAKE_CASE_ = kwargs.pop("eager_mode" , self.eager_mode ) SCREAMING_SNAKE_CASE_ = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**a__ ) lowerCamelCase__ = field( default=__a , metadata={'''help''': '''Name of TPU'''} , ) lowerCamelCase__ = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) lowerCamelCase__ = field(default=__a , metadata={'''help''': '''Benchmark models in eager model.'''} ) lowerCamelCase__ = field( default=__a , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def __A ( self : int ) -> List[str]: requires_backends(self , ["tf"] ) SCREAMING_SNAKE_CASE_ = None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE_ = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE_ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE_ = None return tpu @cached_property def __A ( self : Optional[Any] ) -> int: requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE_ = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) SCREAMING_SNAKE_CASE_ = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU SCREAMING_SNAKE_CASE_ = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def __A ( self : List[str] ) -> Union[str, Any]: requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def __A ( self : int ) -> Optional[int]: requires_backends(self , ["tf"] ) return self._setup_strategy @property def __A ( self : str ) -> Optional[int]: requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def __A ( self : Dict ) -> List[Any]: requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __A ( self : Optional[Any] ) -> Any: return self.n_gpu > 0
360
from __future__ import annotations import collections import pprint from pathlib import Path def a__ ( __UpperCamelCase ): return "".join(sorted(__UpperCamelCase ) ) def a__ ( __UpperCamelCase ): return word_by_signature[signature(__UpperCamelCase )] A : str = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") A : int = sorted({word.strip().lower() for word in data.splitlines()}) A : Tuple = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": A : Union[str, Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
305
0
'''simple docstring''' lowerCamelCase :Union[str, Any] = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Tuple = [False] * len(lowerCamelCase__ ) A_ : List[str] = [s] A_ : List[str] = True while queue: A_ : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase__ ) A_ : Optional[Any] = True A_ : Optional[Any] = u return visited[t] def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Tuple = [-1] * (len(lowerCamelCase__ )) A_ : Tuple = 0 A_ : int = [] A_ : List[Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): A_ : Union[str, Any] = float("""Inf""" ) A_ : Optional[int] = sink while s != source: # Find the minimum value in select path A_ : Optional[Any] = min(lowerCamelCase__ , graph[parent[s]][s] ) A_ : Any = parent[s] max_flow += path_flow A_ : Optional[int] = sink while v != source: A_ : str = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow A_ : Optional[Any] = parent[v] for i in range(len(lowerCamelCase__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
206
'''simple docstring''' from math import pow def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count A_ : Optional[int] = int(pow(lowerCamelCase__ , lowerCamelCase__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n A_, A_ : int = backtrack( lowerCamelCase__ , lowerCamelCase__ , current_number + 1 , lowerCamelCase__ , lowerCamelCase__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. A_, A_ : int = backtrack( lowerCamelCase__ , lowerCamelCase__ , current_number + 1 , lowerCamelCase__ , lowerCamelCase__ ) return current_sum, solutions_count def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(lowerCamelCase__ , lowerCamelCase__ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
206
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _a ( UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: """simple docstring""" lowerCamelCase__ = tmp_path / "cache" lowerCamelCase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__ = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ = tmp_path / "cache" lowerCamelCase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__ = features.copy() if features else default_expected_features lowerCamelCase__ = ( Features({feature: Value(__SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__ = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ = tmp_path / "cache" lowerCamelCase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__ = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" if issubclass(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCamelCase__ = parquet_path elif issubclass(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCamelCase__ = [parquet_path] lowerCamelCase__ = tmp_path / "cache" lowerCamelCase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__ = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=("train",) ) -> int: """simple docstring""" assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for split in splits: lowerCamelCase__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" lowerCamelCase__ = tmp_path / "cache" lowerCamelCase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__ = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ = tmp_path / "cache" lowerCamelCase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__ = features.copy() if features else default_expected_features lowerCamelCase__ = ( Features({feature: Value(__SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__ = ParquetDatasetReader({'''train''': parquet_path} , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" if split: lowerCamelCase__ = {split: parquet_path} else: lowerCamelCase__ = "train" lowerCamelCase__ = {"train": parquet_path, "test": parquet_path} lowerCamelCase__ = tmp_path / "cache" lowerCamelCase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__ = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ = ParquetDatasetWriter(__SCREAMING_SNAKE_CASE , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 lowerCamelCase__ = pq.ParquetFile(tmp_path / '''foo.parquet''' ) lowerCamelCase__ = pf.read() assert dataset.data.table == output_table def _a ( UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" lowerCamelCase__ = str(shared_datadir / '''test_image_rgb.jpg''' ) lowerCamelCase__ = {"image": [image_path]} lowerCamelCase__ = Features({'''image''': Image()} ) lowerCamelCase__ = Dataset.from_dict(__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE ) lowerCamelCase__ = ParquetDatasetWriter(__SCREAMING_SNAKE_CASE , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 lowerCamelCase__ = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__ = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=__SCREAMING_SNAKE_CASE ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" assert get_writer_batch_size(__SCREAMING_SNAKE_CASE ) == expected
370
def _a ( UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(UpperCAmelCase , UpperCAmelCase ) return actual_power(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
265
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
'''simple docstring''' from collections import defaultdict from math import gcd def SCREAMING_SNAKE_CASE__ ( __A = 1_500_000 ) -> int: _snake_case = defaultdict(__A ) _snake_case = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __A , 2 ): if gcd(__A , __A ) > 1: continue _snake_case = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__A , limit + 1 , __A ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
42
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[Any] ) -> Any: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __lowerCAmelCase : Any = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = max(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = min(SCREAMING_SNAKE_CASE ) # create the counting array __lowerCAmelCase : Optional[int] = coll_max + 1 - coll_min __lowerCAmelCase : Tuple = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = counting_arr[i] + counting_arr[i - 1] # create the output collection __lowerCAmelCase : Tuple = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase : Optional[int] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[str] ) -> List[Any]: return "".join([chr(SCREAMING_SNAKE_CASE ) for i in counting_sort([ord(SCREAMING_SNAKE_CASE ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" _UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() _UpperCAmelCase = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
232
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = PegasusTokenizer A_ = PegasusTokenizerFast A_ = True A_ = True def UpperCAmelCase__ ( self : List[str] )->Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : Optional[int] = PegasusTokenizer(_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : str )->Dict: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def UpperCAmelCase__ ( self : Optional[Any] , **_snake_case : Tuple )->PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self : Dict , _snake_case : List[Any] )->Tuple: '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase__ ( self : Union[str, Any] )->Dict: '''simple docstring''' __lowerCAmelCase : Dict = """</s>""" __lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def UpperCAmelCase__ ( self : int )->Tuple: '''simple docstring''' __lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_snake_case ) , 1103 ) def UpperCAmelCase__ ( self : Optional[int] )->Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def UpperCAmelCase__ ( self : Dict )->str: '''simple docstring''' __lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : str = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) __lowerCAmelCase : str = rust_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] __lowerCAmelCase : Tuple = py_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : Optional[int] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : List[str] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __lowerCAmelCase : Tuple = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" __lowerCAmelCase : List[str] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] __lowerCAmelCase : str = tokenizer([raw_input_str] , return_tensors=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : List[str] )->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 __lowerCAmelCase : Tuple = """To ensure a smooth flow of bank resolutions.""" __lowerCAmelCase : Optional[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] __lowerCAmelCase : int = tokenizer([raw_input_str] , return_tensors=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ ( self : Any )->Any: '''simple docstring''' __lowerCAmelCase : List[Any] = ["""This is going to be way too long.""" * 150, """short example"""] __lowerCAmelCase : Union[str, Any] = ["""not super long but more than 5 tokens""", """tiny"""] __lowerCAmelCase : Dict = self._large_tokenizer(_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) __lowerCAmelCase : Tuple = self._large_tokenizer( text_target=_snake_case , max_length=5 , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_snake_case ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = PegasusTokenizer A_ = PegasusTokenizerFast A_ = True A_ = True def UpperCAmelCase__ ( self : Tuple )->Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : Any = PegasusTokenizer(_snake_case , offset=0 , mask_token_sent=_snake_case , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : Any )->str: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def UpperCAmelCase__ ( self : Union[str, Any] , **_snake_case : Optional[Any] )->PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self : List[str] , _snake_case : Optional[int] )->Union[str, Any]: '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase__ ( self : List[Any] )->str: '''simple docstring''' __lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : int = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) __lowerCAmelCase : str = rust_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] __lowerCAmelCase : Tuple = py_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) @require_torch def UpperCAmelCase__ ( self : str )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : int = ["""This is going to be way too long.""" * 1000, """short example"""] __lowerCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] __lowerCAmelCase : str = self._large_tokenizer(_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) __lowerCAmelCase : List[Any] = self._large_tokenizer( text_target=_snake_case , max_length=5 , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_snake_case ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' __lowerCAmelCase : Tuple = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) __lowerCAmelCase : Optional[Any] = self._large_tokenizer(_snake_case ).input_ids self.assertListEqual( _snake_case , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
232
1
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ : str , lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ :int = get_failure_array(lowercase__ ) # 2) Step through text searching for pattern lowerCAmelCase_ , lowerCAmelCase_ :Any = 0, 0 # index into text, pattern while i < len(lowercase__ ): if pattern[j] == text[i]: if j == (len(lowercase__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: lowerCAmelCase_ :Union[str, Any] = failure[j - 1] continue i += 1 return False def _snake_case ( lowercase__ : str ) -> list[int]: '''simple docstring''' lowerCAmelCase_ :Optional[int] = [0] lowerCAmelCase_ :Optional[int] = 0 lowerCAmelCase_ :Any = 1 while j < len(lowercase__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: lowerCAmelCase_ :Union[str, Any] = failure[i - 1] continue j += 1 failure.append(lowercase__ ) return failure if __name__ == "__main__": # Test 1) __UpperCAmelCase = 'abc1abc12' __UpperCAmelCase = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __UpperCAmelCase = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __UpperCAmelCase = 'ABABX' __UpperCAmelCase = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) __UpperCAmelCase = 'AAAB' __UpperCAmelCase = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) __UpperCAmelCase = 'abcdabcy' __UpperCAmelCase = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) __UpperCAmelCase = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
84
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") UpperCAmelCase, UpperCAmelCase : Optional[Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") UpperCAmelCase : Dict = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: UpperCAmelCase : str = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCAmelCase : str = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
252
0
"""simple docstring""" import math def _snake_case ( lowercase__ : int ) -> list: '''simple docstring''' lowerCAmelCase_ :Any = [True] * n lowerCAmelCase_ :Any = False lowerCAmelCase_ :Dict = False lowerCAmelCase_ :Dict = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): lowerCAmelCase_ :List[Any] = i * 2 while index < n: lowerCAmelCase_ :List[Any] = False lowerCAmelCase_ :Any = index + i lowerCAmelCase_ :Dict = [2] for i in range(3 , _lowerCamelCase , 2 ): if is_prime[i]: primes.append(_lowerCamelCase ) return primes def _snake_case ( lowercase__ : int = 9_9_9_9_6_6_6_6_3_3_3_3 ) -> int: '''simple docstring''' lowerCAmelCase_ :Any = math.floor(math.sqrt(_lowerCamelCase ) ) + 1_0_0 lowerCAmelCase_ :Optional[int] = prime_sieve(_lowerCamelCase ) lowerCAmelCase_ :Optional[Any] = 0 lowerCAmelCase_ :Tuple = 0 lowerCAmelCase_ :str = primes[prime_index] while (last_prime**2) <= limit: lowerCAmelCase_ :Optional[int] = primes[prime_index + 1] lowerCAmelCase_ :List[Any] = last_prime**2 lowerCAmelCase_ :int = next_prime**2 # Get numbers divisible by lps(current) lowerCAmelCase_ :Dict = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCAmelCase_ :Union[str, Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCAmelCase_ :Dict = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCAmelCase_ :Union[str, Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
369
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
1
0
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCAmelCase_ : Union[str, Any] = """<<<<<<< This should probably be modified because it mentions: """ UpperCAmelCase_ : Optional[Any] = """======= >>>>>>> """ UpperCAmelCase_ : Union[str, Any] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] UpperCAmelCase_ : List[str] = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def _A (__a ) -> Optional[int]: """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( lowercase_ : ArgumentParser): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=lowercase_ , required=lowercase_ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=lowercase_ , required=lowercase_ , help='''Path to the HuggingFace Datasets folder.''') train_parser.set_defaults(func=lowercase_) def __init__( self : Union[str, Any] , lowercase_ : str , lowercase_ : str , *lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = get_logger('''datasets-cli/converting''') SCREAMING_SNAKE_CASE_ : Optional[Any] = tfds_path SCREAMING_SNAKE_CASE_ : Tuple = datasets_directory def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' if os.path.isdir(self._tfds_path): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): SCREAMING_SNAKE_CASE_ : List[str] = os.path.dirname(self._tfds_path) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''') SCREAMING_SNAKE_CASE_ : Any = os.path.abspath(self._datasets_directory) self._logger.info(F'Converting datasets from {abs_tfds_path} to {abs_datasets_path}') SCREAMING_SNAKE_CASE_ : Optional[int] = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} if os.path.isdir(self._tfds_path): SCREAMING_SNAKE_CASE_ : List[str] = os.listdir(lowercase_) else: SCREAMING_SNAKE_CASE_ : Any = [os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(F'Looking at file {f_name}') SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Any = os.path.join(lowercase_ , lowercase_) if not os.path.isfile(lowercase_) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''') continue with open(lowercase_ , encoding='''utf-8''') as f: SCREAMING_SNAKE_CASE_ : Any = f.readlines() SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : List[str] = [] for line in lines: SCREAMING_SNAKE_CASE_ : List[Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: SCREAMING_SNAKE_CASE_ : List[str] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''''' continue elif "from absl import logging" in out_line: SCREAMING_SNAKE_CASE_ : str = '''from datasets import logging\n''' elif "getLogger" in out_line: SCREAMING_SNAKE_CASE_ : List[str] = out_line.replace('''getLogger''' , '''get_logger''') elif any(expression in out_line for expression in TO_HIGHLIGHT): SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Dict = list(filter(lambda lowercase_: e in out_line , lowercase_)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowercase_) + '''\n''') out_lines.append(lowercase_) out_lines.append(lowercase_) continue else: for pattern, replacement in TO_CONVERT: SCREAMING_SNAKE_CASE_ : List[Any] = re.sub(lowercase_ , lowercase_ , lowercase_) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: SCREAMING_SNAKE_CASE_ : Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , lowercase_) tfds_imports.extend(imp.strip() for imp in match.group(1).split(''',''')) SCREAMING_SNAKE_CASE_ : str = '''from . import ''' + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'Error converting {out_line.strip()}') if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: SCREAMING_SNAKE_CASE_ : List[str] = True out_lines.append(lowercase_) if is_builder or "wmt" in f_name: # We create a new directory for each dataset SCREAMING_SNAKE_CASE_ : List[Any] = f_name.replace('''.py''' , '''''') SCREAMING_SNAKE_CASE_ : Any = os.path.join(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : str = os.path.join(lowercase_ , lowercase_) os.makedirs(lowercase_ , exist_ok=lowercase_) self._logger.info(F'Adding directory {output_dir}') imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(lowercase_) if needs_manual_update: with_manual_update.append(lowercase_) with open(lowercase_ , '''w''' , encoding='''utf-8''') as f: f.writelines(lowercase_) self._logger.info(F'Converted in {output_file}') for utils_file in utils_files: try: SCREAMING_SNAKE_CASE_ : Tuple = os.path.basename(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''')] self._logger.info(F'Moving {dest_folder} to {utils_file}') shutil.copy(lowercase_ , lowercase_) except KeyError: self._logger.error(F'Cannot find destination folder for {utils_file}. Please copy manually.') if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.')
91
import requests from bsa import BeautifulSoup def UpperCamelCase ( __magic_name__ : str = "AAPL" ) -> str: """simple docstring""" lowercase__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowercase__ = BeautifulSoup(requests.get(__magic_name__ ).text , """html.parser""" ) lowercase__ = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
305
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
350
"""simple docstring""" import sys from collections import defaultdict class a : """simple docstring""" def __init__( self: Union[str, Any] ): """simple docstring""" A__ = [] def UpperCamelCase ( self: List[str] , UpperCamelCase: int ): """simple docstring""" return self.node_position[vertex] def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: str ): """simple docstring""" A__ = pos def UpperCamelCase ( self: Dict , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: str , UpperCamelCase: List[str] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A__ = 2 * start + 1 else: A__ = 2 * start + 2 if heap[smallest_child] < heap[start]: A__ , A__ = heap[smallest_child], positions[smallest_child] A__ , A__ = ( heap[start], positions[start], ) A__ , A__ = temp, tempa A__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , UpperCamelCase ) self.top_to_bottom(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Tuple , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Any ): """simple docstring""" A__ = position[index] while index != 0: A__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A__ = heap[parent] A__ = position[parent] self.set_position(position[parent] , UpperCamelCase ) else: A__ = val A__ = temp self.set_position(UpperCamelCase , UpperCamelCase ) break A__ = parent else: A__ = val A__ = temp self.set_position(UpperCamelCase , 0 ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: List[str] , UpperCamelCase: Optional[int] ): """simple docstring""" A__ = len(UpperCamelCase ) // 2 - 1 for i in range(UpperCamelCase , -1 , -1 ): self.top_to_bottom(UpperCamelCase , UpperCamelCase , len(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: str , UpperCamelCase: List[str] ): """simple docstring""" A__ = positions[0] A__ = sys.maxsize self.top_to_bottom(UpperCamelCase , 0 , len(UpperCamelCase ) , UpperCamelCase ) return temp def _snake_case ( UpperCAmelCase_ : Union[str, Any] ): A__ = Heap() A__ = [0] * len(UpperCAmelCase_ ) A__ = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A__ = [] # Heap of Distance of vertices from their neighboring vertex A__ = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) A__ = [] A__ = 1 A__ = sys.maxsize for neighbor, distance in adjacency_list[0]: A__ = 0 A__ = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): A__ = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): A__ = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) A__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > SCREAMING_SNAKE_CASE_ : int = int(input('Enter number of edges: ').strip()) SCREAMING_SNAKE_CASE_ : str = defaultdict(list) for _ in range(edges_number): SCREAMING_SNAKE_CASE_ : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
69
0
import re def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if len(re.findall('''[ATCG]''' , lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
101
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 a : List[str] = get_tests_dir("""fixtures""") class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: # A mock response for an HTTP head request to emulate server down UpperCAmelCase : Tuple = mock.Mock() UpperCAmelCase : List[str] = 500 UpperCAmelCase : Any = {} UpperCAmelCase : List[str] = HTTPError UpperCAmelCase : str = {} # Download this model to make sure it's in the cache. UpperCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=A ) as mock_head: UpperCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def _lowercase( self ) -> Any: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def _lowercase( self ) -> Union[str, Any]: with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase : Any = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(A ) @is_staging_test class UpperCamelCase_ ( unittest.TestCase ): @classmethod def _lowercase( cls ) -> Dict: UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(A ) @classmethod def _lowercase( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) UpperCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id="""test-image-processor""" , push_to_hub=A , use_auth_token=self._token ) UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=A , use_auth_token=self._token ) UpperCAmelCase : int = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def _lowercase( self ) -> Optional[int]: CustomImageProcessor.register_for_auto_class() UpperCAmelCase : Optional[Any] = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
265
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _A = '''__DUMMY_TRANSFORMERS_USER__''' _A = '''Dummy User''' _A = '''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''' _A = '''https://hub-ci.huggingface.co''' _A = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _A = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _A = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase__ ( a__ : List[str] ) -> Tuple: monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , a__ ) @pytest.fixture def lowerCamelCase__ ( a__ : str ) -> List[Any]: monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , a__ ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , a__ ) @pytest.fixture def lowerCamelCase__ ( a__ : int ) -> List[str]: monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , a__ ) @pytest.fixture def lowerCamelCase__ ( a__ : str , a__ : List[Any] ) -> Tuple: HfFolder.save_token(a__ ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( ) -> List[str]: return HfApi(endpoint=a__ ) @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( a__ : HfApi ) -> Union[str, Any]: UpperCamelCase_ = HfFolder.get_token() HfFolder.save_token(a__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(a__ ) @pytest.fixture def lowerCamelCase__ ( a__ : str ) -> List[str]: def _cleanup_repo(a__ : Union[str, Any] ): hf_api.delete_repo(a__ , token=a__ , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def lowerCamelCase__ ( a__ : Optional[Any] ) -> str: @contextmanager def _temporary_repo(a__ : Dict ): try: yield repo_id finally: cleanup_repo(a__ ) return _temporary_repo @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( a__ : HfApi , a__ : List[Any] , a__ : Any ) -> List[str]: UpperCamelCase_ = f'''repo_txt_data-{int(time.time() * 10e3 )}''' UpperCamelCase_ = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(a__ , token=a__ , repo_type="""dataset""" , private=a__ ) hf_api.upload_file( token=a__ , path_or_fileobj=str(a__ ) , path_in_repo="""data/text_data.txt""" , repo_id=a__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(a__ , token=a__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase__ ( a__ : str , a__ : Optional[Any] , a__ : Optional[Any] ) -> Any: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( a__ : HfApi , a__ : Optional[Any] , a__ : str ) -> Dict: UpperCamelCase_ = f'''repo_zipped_txt_data-{int(time.time() * 10e3 )}''' UpperCamelCase_ = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(a__ , token=a__ , repo_type="""dataset""" , private=a__ ) hf_api.upload_file( token=a__ , path_or_fileobj=str(a__ ) , path_in_repo="""data.zip""" , repo_id=a__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(a__ , token=a__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase__ ( a__ : Union[str, Any] , a__ : List[str] , a__ : Dict ) -> List[str]: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( a__ : HfApi , a__ : Dict , a__ : List[Any] ) -> Any: UpperCamelCase_ = f'''repo_zipped_img_data-{int(time.time() * 10e3 )}''' UpperCamelCase_ = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(a__ , token=a__ , repo_type="""dataset""" , private=a__ ) hf_api.upload_file( token=a__ , path_or_fileobj=str(a__ ) , path_in_repo="""data.zip""" , repo_id=a__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(a__ , token=a__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase__ ( a__ : Dict , a__ : str , a__ : List[str] ) -> List[str]: return hf_private_dataset_repo_zipped_img_data_
261
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
261
1
import argparse import datetime def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> str: '''simple docstring''' __UpperCamelCase : str = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __UpperCamelCase : List[str] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month __UpperCamelCase : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") __UpperCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day __UpperCamelCase : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator __UpperCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year __UpperCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation __UpperCamelCase : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: __UpperCamelCase : Any = y - 1 __UpperCamelCase : Optional[Any] = m + 12 # maths var __UpperCamelCase : int = int(str(_lowerCamelCase)[:2]) __UpperCamelCase : int = int(str(_lowerCamelCase)[2:]) __UpperCamelCase : int = int(2.6 * m - 5.3_9) __UpperCamelCase : int = int(c / 4) __UpperCamelCase : int = int(k / 4) __UpperCamelCase : int = int(d + k) __UpperCamelCase : int = int(t + u + v + x) __UpperCamelCase : int = int(z - (2 * c)) __UpperCamelCase : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response __UpperCamelCase : str = F'Your date {date_input}, is a {days[str(_lowerCamelCase)]}!' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase : Optional[int] = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) lowercase : Tuple = parser.parse_args() zeller(args.date_input)
232
from __future__ import annotations import math lowercase : Any = '2020.9.26' lowercase : Union[str, Any] = 'xcodz-dot, cclaus, dhruvmanila' def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float) -> tuple[float, float]: '''simple docstring''' if not all(isinstance(_lowerCamelCase , (float, int)) for val in locals().values()): __UpperCamelCase : str = F'Input values must either be float or int: {list(locals().values())}' raise TypeError(_lowerCamelCase) __UpperCamelCase : List[str] = ((x * distance) / (z + distance)) * scale __UpperCamelCase : List[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : str , _lowerCamelCase : float) -> tuple[float, float, float]: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase): raise TypeError("Axis must be a str") __UpperCamelCase : str = locals() del input_variables["axis"] if not all(isinstance(_lowerCamelCase , (float, int)) for val in input_variables.values()): __UpperCamelCase : Dict = ( "Input values except axis must either be float or int: " F'{list(input_variables.values())}' ) raise TypeError(_lowerCamelCase) __UpperCamelCase : Optional[Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": __UpperCamelCase : Tuple = x * math.cos(_lowerCamelCase) - y * math.sin(_lowerCamelCase) __UpperCamelCase : Union[str, Any] = y * math.cos(_lowerCamelCase) + x * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z elif axis == "x": __UpperCamelCase : Dict = y * math.cos(_lowerCamelCase) - z * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z * math.cos(_lowerCamelCase) + y * math.sin(_lowerCamelCase) __UpperCamelCase : List[str] = x elif axis == "y": __UpperCamelCase : Any = x * math.cos(_lowerCamelCase) - z * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z * math.cos(_lowerCamelCase) + x * math.sin(_lowerCamelCase) __UpperCamelCase : Dict = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'") return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }") print(f"{rotate(1.0, 2.0, 3.0, 'y', 9_0.0) = }")
232
1
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase : Dict = """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=8 ): snake_case_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 snake_case_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__=512 , UpperCamelCase__=512 ): snake_case_ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) snake_case_ = np.array(pil_image.convert('RGB' ) ) snake_case_ = arr.astype(np.floataa ) / 127.5 - 1 snake_case_ = np.transpose(UpperCamelCase__ , [2, 0, 1] ) snake_case_ = torch.from_numpy(UpperCamelCase__ ).unsqueeze(0 ) return image class lowercase ( lowercase_ ): def __init__( self , snake_case , snake_case , snake_case , ): super().__init__() self.register_modules( unet=snake_case , scheduler=snake_case , movq=snake_case , ) snake_case_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def a ( self , snake_case , snake_case , snake_case ): # get the original timestep using init_timestep snake_case_ = min(int(num_inference_steps * strength ) , snake_case ) snake_case_ = max(num_inference_steps - init_timestep , 0 ) snake_case_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=None ): if not isinstance(snake_case , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case )}''' ) snake_case_ = image.to(device=snake_case , dtype=snake_case ) snake_case_ = batch_size * num_images_per_prompt if image.shape[1] == 4: snake_case_ = image else: if isinstance(snake_case , snake_case ) and len(snake_case ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(snake_case )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(snake_case , snake_case ): snake_case_ = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case ) ] snake_case_ = torch.cat(snake_case , dim=0 ) else: snake_case_ = self.movq.encode(snake_case ).latent_dist.sample(snake_case ) snake_case_ = self.movq.config.scaling_factor * init_latents snake_case_ = torch.cat([init_latents] , dim=0 ) snake_case_ = init_latents.shape snake_case_ = randn_tensor(snake_case , generator=snake_case , device=snake_case , dtype=snake_case ) # get latents snake_case_ = self.scheduler.add_noise(snake_case , snake_case , snake_case ) snake_case_ = init_latents return latents def a ( self , snake_case=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) snake_case_ = torch.device(F'''cuda:{gpu_id}''' ) snake_case_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case , snake_case ) def a ( self , snake_case=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) snake_case_ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case_ = None for cpu_offloaded_model in [self.unet, self.movq]: snake_case_ , snake_case_ = cpu_offload_with_hook(snake_case , snake_case , prev_module_hook=snake_case ) # We'll offload the last model manually. snake_case_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def a ( self ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case ) def __call__( self , snake_case , snake_case , snake_case , snake_case = 512 , snake_case = 512 , snake_case = 100 , snake_case = 4.0 , snake_case = 0.3 , snake_case = 1 , snake_case = None , snake_case = "pil" , snake_case = True , ): snake_case_ = self._execution_device snake_case_ = guidance_scale > 1.0 if isinstance(snake_case , snake_case ): snake_case_ = torch.cat(snake_case , dim=0 ) snake_case_ = image_embeds.shape[0] if isinstance(snake_case , snake_case ): snake_case_ = torch.cat(snake_case , dim=0 ) if do_classifier_free_guidance: snake_case_ = image_embeds.repeat_interleave(snake_case , dim=0 ) snake_case_ = negative_image_embeds.repeat_interleave(snake_case , dim=0 ) snake_case_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case ) if not isinstance(snake_case , snake_case ): snake_case_ = [image] if not all(isinstance(snake_case , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F'''Input is in incorrect format: {[type(snake_case ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) snake_case_ = torch.cat([prepare_image(snake_case , snake_case , snake_case ) for i in image] , dim=0 ) snake_case_ = image.to(dtype=image_embeds.dtype , device=snake_case ) snake_case_ = self.movq.encode(snake_case )['latents'] snake_case_ = latents.repeat_interleave(snake_case , dim=0 ) self.scheduler.set_timesteps(snake_case , device=snake_case ) snake_case_ , snake_case_ = self.get_timesteps(snake_case , snake_case , snake_case ) snake_case_ = timesteps[:1].repeat(batch_size * num_images_per_prompt ) snake_case_ , snake_case_ = downscale_height_and_width(snake_case , snake_case , self.movq_scale_factor ) snake_case_ = self.prepare_latents( snake_case , snake_case , snake_case , snake_case , image_embeds.dtype , snake_case , snake_case ) for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ = {'image_embeds': image_embeds} snake_case_ = self.unet( sample=snake_case , timestep=snake_case , encoder_hidden_states=snake_case , added_cond_kwargs=snake_case , return_dict=snake_case , )[0] if do_classifier_free_guidance: snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) snake_case_ , snake_case_ = noise_pred.chunk(2 ) snake_case_ , snake_case_ = variance_pred.chunk(2 ) snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step( snake_case , snake_case , snake_case , generator=snake_case , )[0] # post-processing snake_case_ = self.movq.decode(snake_case , force_not_quantize=snake_case )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: snake_case_ = image * 0.5 + 0.5 snake_case_ = image.clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case )
368
# Lint as: python3 import itertools import os import re _UpperCAmelCase : str = re.compile(R"""([A-Z]+)([A-Z][a-z])""") _UpperCAmelCase : Dict = re.compile(R"""([a-z\d])([A-Z])""") _UpperCAmelCase : Dict = re.compile(R"""(?<!_)_(?!_)""") _UpperCAmelCase : Tuple = re.compile(R"""(_{2,})""") _UpperCAmelCase : Any = R"""^\w+(\.\w+)*$""" _UpperCAmelCase : List[str] = R"""<>:/\|?*""" def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = _uppercase_uppercase_re.sub(r'\1_\2' , UpperCamelCase__ ) snake_case_ = _lowercase_uppercase_re.sub(r'\1_\2' , UpperCamelCase__ ) return name.lower() def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = _single_underscore_re.split(UpperCamelCase__ ) snake_case_ = [_multiple_underscores_re.split(UpperCamelCase__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCamelCase__ ) if n != '' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if os.path.basename(UpperCamelCase__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if os.path.basename(UpperCamelCase__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , UpperCamelCase__ ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(UpperCamelCase__ )}-{split}''' def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' snake_case_ = filename_prefix_for_split(UpperCamelCase__ , UpperCamelCase__ ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' snake_case_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) return F'''{filepath}*''' def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ): '''simple docstring''' snake_case_ = filename_prefix_for_split(UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if shard_lengths: snake_case_ = len(UpperCamelCase__ ) snake_case_ = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(UpperCamelCase__ )] if filetype_suffix: snake_case_ = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: snake_case_ = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
200
0
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowercase: '''simple docstring''' def __init__( self: Union[str, Any], a_: Optional[Any], a_: int, a_: int ): '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) _snake_case : Dict = img _snake_case : Union[str, Any] = img.shape[1] _snake_case : int = img.shape[0] _snake_case : int = dst_width _snake_case : Tuple = dst_height _snake_case : Any = self.src_w / self.dst_w _snake_case : Union[str, Any] = self.src_h / self.dst_h _snake_case : Optional[int] = ( np.ones((self.dst_h, self.dst_w, 3), np.uinta ) * 255 ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): _snake_case : Dict = self.img[self.get_y(a_ )][self.get_x(a_ )] def UpperCamelCase_ ( self: List[str], a_: int ): '''simple docstring''' return int(self.ratio_x * x ) def UpperCamelCase_ ( self: Optional[Any], a_: int ): '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": A_ , A_ = 8_00, 6_00 A_ = imread('''image_data/lena.jpg''', 1) A_ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
64
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __A ( UpperCamelCase__ ): def __init__(self : int , __a : Distribution , __a : Dict=None , __a : int=None , __a : Any=0 ): UpperCAmelCase_ = 1.0 if scale is None else scale UpperCAmelCase_ = 0.0 if loc is None else loc super().__init__(__a , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__a )] ) @property def _lowercase (self : Union[str, Any] ): return self.base_dist.mean * self.scale + self.loc @property def _lowercase (self : List[Any] ): return self.base_dist.variance * self.scale**2 @property def _lowercase (self : List[Any] ): return self.variance.sqrt() class __A ( nn.Module ): def __init__(self : Optional[int] , __a : int , __a : Dict[str, int] , __a : Callable[..., Tuple[torch.Tensor]] , **__a : List[str] ): super().__init__(**__a ) UpperCAmelCase_ = args_dim UpperCAmelCase_ = nn.ModuleList([nn.Linear(__a , __a ) for dim in args_dim.values()] ) UpperCAmelCase_ = domain_map def _lowercase (self : List[str] , __a : torch.Tensor ): UpperCAmelCase_ = [proj(__a ) for proj in self.proj] return self.domain_map(*__a ) class __A ( nn.Module ): def __init__(self : Union[str, Any] , __a : List[str] ): super().__init__() UpperCAmelCase_ = function def _lowercase (self : Optional[int] , __a : List[str] , *__a : Optional[int] ): return self.function(__a , *__a ) class __A : a__ : type a__ : int a__ : Dict[str, int] def __init__(self : List[Any] , __a : int = 1 ): UpperCAmelCase_ = dim UpperCAmelCase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def _lowercase (self : Any , __a : Any ): if self.dim == 1: return self.distribution_class(*__a ) else: return Independent(self.distribution_class(*__a ) , 1 ) def _lowercase (self : List[str] , __a : Union[str, Any] , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , ): UpperCAmelCase_ = self._base_distribution(__a ) if loc is None and scale is None: return distr else: return AffineTransformed(__a , loc=__a , scale=__a , event_dim=self.event_dim ) @property def _lowercase (self : Any ): return () if self.dim == 1 else (self.dim,) @property def _lowercase (self : Dict ): return len(self.event_shape ) @property def _lowercase (self : Tuple ): return 0.0 def _lowercase (self : List[str] , __a : int ): return ParameterProjection( in_features=__a , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _lowercase (self : Optional[int] , *__a : torch.Tensor ): raise NotImplementedError() @staticmethod def _lowercase (__a : torch.Tensor ): return (x + torch.sqrt(torch.square(__a ) + 4.0 )) / 2.0 class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} a__ : type = StudentT @classmethod def _lowercase (cls : Union[str, Any] , __a : torch.Tensor , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCAmelCase_ = 2.0 + cls.squareplus(__a ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"loc": 1, "scale": 1} a__ : type = Normal @classmethod def _lowercase (cls : Tuple , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"total_count": 1, "logits": 1} a__ : type = NegativeBinomial @classmethod def _lowercase (cls : Optional[Any] , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _lowercase (self : List[str] , __a : str ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=__a , logits=__a ) else: return Independent(self.distribution_class(total_count=__a , logits=__a ) , 1 ) def _lowercase (self : Optional[Any] , __a : int , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
1
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
367
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple =AutoencoderKL lowerCamelCase : Tuple ="sample" lowerCamelCase : Dict =1e-2 @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : str = 4 __lowerCAmelCase : Dict = 3 __lowerCAmelCase : Optional[Any] = (32, 32) __lowerCAmelCase : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: """simple docstring""" return (3, 32, 32) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: """simple docstring""" return (3, 32, 32) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } __lowerCAmelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE ( self : int ) -> str: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : str = self.prepare_init_args_and_inputs_for_common() __lowerCAmelCase : Dict = self.model_class(**lowerCAmelCase ) model.to(lowerCAmelCase ) assert not model.is_gradient_checkpointing and model.training __lowerCAmelCase : str = model(**lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __lowerCAmelCase : Any = torch.randn_like(lowerCAmelCase ) __lowerCAmelCase : str = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __lowerCAmelCase : List[str] = self.model_class(**lowerCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __lowerCAmelCase : Any = model_a(**lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __lowerCAmelCase : Dict = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __lowerCAmelCase : int = dict(model.named_parameters() ) __lowerCAmelCase : Union[str, Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : List[Any] = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowerCAmelCase ) __lowerCAmelCase : int = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: """simple docstring""" __lowerCAmelCase : Dict = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) __lowerCAmelCase : Optional[Any] = model.to(lowerCAmelCase ) model.eval() if torch_device == "mps": __lowerCAmelCase : List[Any] = torch.manual_seed(0 ) else: __lowerCAmelCase : Any = torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) __lowerCAmelCase : Optional[int] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __lowerCAmelCase : Optional[int] = image.to(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase , sample_posterior=lowerCAmelCase , generator=lowerCAmelCase ).sample __lowerCAmelCase : Dict = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __lowerCAmelCase : List[str] = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": __lowerCAmelCase : Union[str, Any] = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __lowerCAmelCase : Tuple = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1e-2 ) ) @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str ) -> int: """simple docstring""" return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase ) for s in shape] )}.npy''' def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Union[str, Any]=0 , lowerCAmelCase : Any=(4, 3, 5_12, 5_12) , lowerCAmelCase : Any=False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = torch.floataa if fpaa else torch.floataa __lowerCAmelCase : Optional[int] = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCAmelCase , lowerCAmelCase ) ) ).to(lowerCAmelCase ).to(lowerCAmelCase ) return image def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any]="CompVis/stable-diffusion-v1-4" , lowerCAmelCase : int=False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = """fp16""" if fpaa else None __lowerCAmelCase : List[str] = torch.floataa if fpaa else torch.floataa __lowerCAmelCase : Dict = AutoencoderKL.from_pretrained( lowerCAmelCase , subfolder="""vae""" , torch_dtype=lowerCAmelCase , revision=lowerCAmelCase , ) model.to(lowerCAmelCase ).eval() return model def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Tuple=0 ) -> Tuple: """simple docstring""" if torch_device == "mps": return torch.manual_seed(lowerCAmelCase ) return torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Dict = self.get_sd_vae_model() __lowerCAmelCase : Optional[int] = self.get_sd_image(lowerCAmelCase ) __lowerCAmelCase : List[str] = self.get_generator(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model(lowerCAmelCase , generator=lowerCAmelCase , sample_posterior=lowerCAmelCase ).sample assert sample.shape == image.shape __lowerCAmelCase : Any = sample[-1, -2:, -2:, :2].flatten().float().cpu() __lowerCAmelCase : List[str] = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = self.get_sd_vae_model(fpaa=lowerCAmelCase ) __lowerCAmelCase : Tuple = self.get_sd_image(lowerCAmelCase , fpaa=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = self.get_generator(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Dict = model(lowerCAmelCase , generator=lowerCAmelCase , sample_posterior=lowerCAmelCase ).sample assert sample.shape == image.shape __lowerCAmelCase : List[str] = sample[-1, -2:, :2, -2:].flatten().float().cpu() __lowerCAmelCase : Optional[int] = torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Any ) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.get_sd_vae_model() __lowerCAmelCase : Optional[int] = self.get_sd_image(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : List[Any] = model(lowerCAmelCase ).sample assert sample.shape == image.shape __lowerCAmelCase : Union[str, Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() __lowerCAmelCase : str = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int ) -> str: """simple docstring""" __lowerCAmelCase : Dict = self.get_sd_vae_model() __lowerCAmelCase : Optional[Any] = self.get_sd_image(lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model.decode(lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] __lowerCAmelCase : Union[str, Any] = sample[-1, -2:, :2, -2:].flatten().cpu() __lowerCAmelCase : Tuple = torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Tuple = self.get_sd_vae_model(fpaa=lowerCAmelCase ) __lowerCAmelCase : str = self.get_sd_image(lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Dict = model.decode(lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] __lowerCAmelCase : Any = sample[-1, -2:, :2, -2:].flatten().float().cpu() __lowerCAmelCase : Union[str, Any] = torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Any ) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = self.get_sd_vae_model(fpaa=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = self.get_sd_image(lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = model.decode(lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __lowerCAmelCase : int = model.decode(lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Optional[int] = self.get_sd_vae_model() __lowerCAmelCase : Optional[Any] = self.get_sd_image(lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model.decode(lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __lowerCAmelCase : Tuple = model.decode(lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : int , lowerCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.get_sd_vae_model() __lowerCAmelCase : List[str] = self.get_sd_image(lowerCAmelCase ) __lowerCAmelCase : Any = self.get_generator(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Optional[int] = model.encode(lowerCAmelCase ).latent_dist __lowerCAmelCase : Union[str, Any] = dist.sample(generator=lowerCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __lowerCAmelCase : Any = sample[0, -1, -3:, -3:].flatten().cpu() __lowerCAmelCase : int = torch.tensor(lowerCAmelCase ) __lowerCAmelCase : str = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=lowerCAmelCase )
139
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart __a = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } __a = { 'facebook/bart-base': 1_024, 'facebook/bart-large': 1_024, 'facebook/bart-large-mnli': 1_024, 'facebook/bart-large-cnn': 1_024, 'facebook/bart-large-xsum': 1_024, 'yjernite/bart_eli5': 1_024, } @lru_cache() def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) _UpperCAmelCase : Optional[int] = bs[:] _UpperCAmelCase : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(a_ ) cs.append(2**8 + n ) n += 1 _UpperCAmelCase : Optional[int] = [chr(a_ ) for n in cs] return dict(zip(a_, a_ ) ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Optional[int] = set() _UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase : Dict = char return pairs class A__ ( lowerCAmelCase__ ): """simple docstring""" UpperCamelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Tuple="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : List[str]="<s>" , lowerCAmelCase__ : List[Any]="<unk>" , lowerCAmelCase__ : int="<pad>" , lowerCAmelCase__ : Tuple="<mask>" , lowerCAmelCase__ : List[Any]=False , **lowerCAmelCase__ : Optional[int] , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token _UpperCAmelCase : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token _UpperCAmelCase : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token _UpperCAmelCase : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token _UpperCAmelCase : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token _UpperCAmelCase : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase : int = json.load(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()} _UpperCAmelCase : Union[str, Any] = errors # how to handle errors in decoding _UpperCAmelCase : Optional[int] = bytes_to_unicode() _UpperCAmelCase : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8" ) as merges_handle: _UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] _UpperCAmelCase : str = [tuple(merge.split() ) for merge in bpe_merges] _UpperCAmelCase : Optional[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _UpperCAmelCase : Dict = {} _UpperCAmelCase : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCAmelCase : Optional[int] = re.compile(R"\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return len(self.encoder ) def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" if token in self.cache: return self.cache[token] _UpperCAmelCase : str = tuple(lowerCAmelCase__ ) _UpperCAmelCase : str = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: _UpperCAmelCase : int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase : Dict = bigram _UpperCAmelCase : Any = [] _UpperCAmelCase : Union[str, Any] = 0 while i < len(lowerCAmelCase__ ): try: _UpperCAmelCase : List[str] = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase : int = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase : Any = tuple(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: _UpperCAmelCase : Optional[Any] = get_pairs(lowerCAmelCase__ ) _UpperCAmelCase : Dict = " ".join(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = word return word def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Union[str, Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = [] for token in re.findall(self.pat , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str ) -> int: """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : str ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[int] = "".join(lowerCAmelCase__ ) _UpperCAmelCase : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : str = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" ) _UpperCAmelCase : Tuple = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) _UpperCAmelCase : Tuple = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Any = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Dict = [self.cls_token_id] _UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] = None , lowerCAmelCase__ : Optional[Any] = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] = None ) -> List[int]: """simple docstring""" _UpperCAmelCase : int = [self.sep_token_id] _UpperCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[int] ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): _UpperCAmelCase : Any = " " + text return (text, kwargs)
145
"""simple docstring""" from math import factorial def UpperCAmelCase ( UpperCAmelCase = 20 ) -> int: snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ = n // 2 return int(factorial(UpperCAmelCase ) / (factorial(UpperCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __UpperCamelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
69
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "markuplm" def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=256 , _UpperCAmelCase=1024 , _UpperCAmelCase=216 , _UpperCAmelCase=1001 , _UpperCAmelCase=32 , _UpperCAmelCase=50 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__: List[str] = vocab_size lowercase__: Any = hidden_size lowercase__: int = num_hidden_layers lowercase__: Union[str, Any] = num_attention_heads lowercase__: Optional[int] = hidden_act lowercase__: Dict = intermediate_size lowercase__: Dict = hidden_dropout_prob lowercase__: str = attention_probs_dropout_prob lowercase__: Any = max_position_embeddings lowercase__: Tuple = type_vocab_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = layer_norm_eps lowercase__: List[str] = position_embedding_type lowercase__: Dict = use_cache lowercase__: int = classifier_dropout # additional properties lowercase__: str = max_depth lowercase__: Optional[Any] = max_xpath_tag_unit_embeddings lowercase__: List[Any] = max_xpath_subs_unit_embeddings lowercase__: List[str] = tag_pad_id lowercase__: Union[str, Any] = subs_pad_id lowercase__: Optional[int] = xpath_unit_hidden_size
366
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
2
0
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _lowerCamelCase( a , a , a , a=None , a=None , a=None , a=None , a=None , ): if attention_mask is None: __a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __a = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=a ) if decoder_head_mask is None: __a = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a ) if cross_attn_head_mask is None: __a = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=99 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase="relu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=20 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=0 , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = encoder_layerdrop __a = decoder_layerdrop __a = max_position_embeddings __a = eos_token_id __a = pad_token_id __a = bos_token_id def a__ ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = self.eos_token_id # Eos Token __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __a = input_ids.clamp(self.pad_token_id + 1 ) __a = decoder_input_ids.clamp(self.pad_token_id + 1 ) __a = self.get_config() __a = prepare_mam_aaa_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return config, inputs_dict def a__ ( self ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def a__ ( self ): __a , __a = self.prepare_config_and_inputs() return config, inputs_dict def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = MaMaaaModel(config=lowerCamelCase ).get_decoder().to(lowerCamelCase ).eval() __a = inputs_dict["input_ids"] __a = inputs_dict["attention_mask"] __a = inputs_dict["head_mask"] # first forward pass __a = model(lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase , use_cache=lowerCamelCase ) __a , __a = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __a = torch.cat([input_ids, next_tokens] , dim=-1 ) __a = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __a = model(lowerCamelCase , attention_mask=lowerCamelCase )["last_hidden_state"] __a = model(lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase )[ "last_hidden_state" ] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a = output_from_no_past[:, -3:, random_slice_idx].detach() __a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-2 ) ) def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = MaMaaaModel(config=lowerCamelCase ).to(lowerCamelCase ).eval() __a = model(**lowerCamelCase ) __a = outputs.encoder_last_hidden_state __a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __a = model.get_encoder() encoder.save_pretrained(lowerCamelCase ) __a = MaMaaaEncoder.from_pretrained(lowerCamelCase ).to(lowerCamelCase ) __a = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: __a = model.get_decoder() decoder.save_pretrained(lowerCamelCase ) __a = MaMaaaDecoder.from_pretrained(lowerCamelCase ).to(lowerCamelCase ) __a = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class snake_case__ ( snake_case_, snake_case_, snake_case_, unittest.TestCase ): _snake_case : Optional[Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _snake_case : Any = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _snake_case : List[Any] = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _snake_case : int = True _snake_case : Any = True _snake_case : str = False _snake_case : Any = False def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def a__ ( self ): __a = MaMaaaModelTester(self ) __a = ConfigTester(self , config_class=lowerCamelCase ) def a__ ( self ): self.config_tester.run_common_tests() def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __a = model_class(lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) __a , __a = model_class.from_pretrained(lowerCamelCase , output_loading_info=lowerCamelCase ) self.assertEqual(info["missing_keys"] , [] ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCamelCase ) def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __a = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = copy.deepcopy(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) if not self.is_encoder_decoder: __a = inputs["input_ids"] del inputs["input_ids"] else: __a = inputs["input_ids"] __a = inputs.get("decoder_input_ids" , lowerCamelCase ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , lowerCamelCase ) __a = model.get_input_embeddings() if not self.is_encoder_decoder: __a = wte(lowerCamelCase ) else: __a = wte(lowerCamelCase ) __a = wte(lowerCamelCase ) with torch.no_grad(): model(**lowerCamelCase )[0] def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs() __a = input_dict["input_ids"] __a = input_ids.ne(1 ).to(lowerCamelCase ) __a = MaMaaaForConditionalGeneration(lowerCamelCase ).eval().to(lowerCamelCase ) if torch_device == "cuda": model.half() model.generate(lowerCamelCase , attention_mask=lowerCamelCase ) model.generate(num_beams=4 , do_sample=lowerCamelCase , early_stopping=lowerCamelCase , num_return_sequences=3 ) def _lowerCamelCase( a ): return torch.tensor(a , dtype=torch.long , device=a ) SCREAMING_SNAKE_CASE__:Optional[int] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class snake_case__ ( unittest.TestCase ): @cached_property def a__ ( self ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def a__ ( self ): __a = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(lowerCamelCase ) __a = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) __a = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) __a = prepare_mam_aaa_inputs_dict(model.config , lowerCamelCase , lowerCamelCase ) with torch.no_grad(): __a = model(**lowerCamelCase )[0] __a = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , lowerCamelCase ) # change to expected output here __a = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=lowerCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) def a__ ( self ): __a = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(lowerCamelCase ) # change to intended input __a = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) __a = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) __a = prepare_mam_aaa_inputs_dict(model.config , lowerCamelCase , lowerCamelCase ) with torch.no_grad(): __a = model(**lowerCamelCase )[0] __a = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , lowerCamelCase ) # change to expected output here __a = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=lowerCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) def a__ ( self ): __a = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(lowerCamelCase ) __a = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) __a = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams __a = tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors="pt" ) __a = model.generate( input_ids=dct["input_ids"].to(lowerCamelCase ) , attention_mask=dct["attention_mask"].to(lowerCamelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) __a = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] __a = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=lowerCamelCase , skip_special_tokens=lowerCamelCase ) assert generated == expected_en
261
"""simple docstring""" import random def _lowerCamelCase( a , a , a ): __a = a[left_index] __a = left_index + 1 for j in range(left_index + 1 , a ): if a[j] < pivot: __a , __a = a[i], a[j] i += 1 __a , __a = a[i - 1], a[left_index] return i - 1 def _lowerCamelCase( a , a , a ): if left < right: __a = random.randint(a , right - 1 ) __a , __a = ( a[left], a[pivot], ) # switches the pivot with the left most bound __a = partition(a , a , a ) quick_sort_random( a , a , a ) # recursive quicksort to the left of the pivot point quick_sort_random( a , pivot_index + 1 , a ) # recursive quicksort to the right of the pivot point def _lowerCamelCase( ): __a = input("Enter numbers separated by a comma:\n" ).strip() __a = [int(a ) for item in user_input.split("," )] quick_sort_random(a , 0 , len(a ) ) print(a ) if __name__ == "__main__": main()
261
1
"""simple docstring""" def __lowerCamelCase ( __a :float , __a :float ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(1_0_0, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
367
def __lowerCamelCase ( __a :int = 3 , __a :int = 7 , __a :int = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" A__ = 0 A__ = 1 for current_denominator in range(1 , limit + 1 ): A__ = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: A__ = current_numerator A__ = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
276
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , a , a=7 , a=3 , a=18 , a=30 , a=4_00 , a=True , a=32 , a=True , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size_divisor UpperCamelCase__ = do_rescale def __a ( self ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowercase_ ( _snake_case , unittest.TestCase ): __UpperCAmelCase = GLPNImageProcessor if is_vision_available() else None def __a ( self ): UpperCamelCase__ = GLPNImageProcessingTester(self ) @property def __a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , "do_resize" ) ) self.assertTrue(hasattr(__snake_case , "size_divisor" ) ) self.assertTrue(hasattr(__snake_case , "resample" ) ) self.assertTrue(hasattr(__snake_case , "do_rescale" ) ) def __a ( self ): pass def __a ( self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
80
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : str = [] for rt in rc.restypes: _SCREAMING_SNAKE_CASE : Optional[int] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _SCREAMING_SNAKE_CASE : Optional[Any] = {name: i for i, name in enumerate(SCREAMING_SNAKE_CASE__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _SCREAMING_SNAKE_CASE : Dict = torch.tensor( SCREAMING_SNAKE_CASE__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( SCREAMING_SNAKE_CASE__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) _SCREAMING_SNAKE_CASE : str = torch.tensor( SCREAMING_SNAKE_CASE__ , dtype=torch.floataa , device=protein["""aatype"""].device , ) _SCREAMING_SNAKE_CASE : int = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _SCREAMING_SNAKE_CASE : List[str] = restype_atomaa_to_atomaa[protein_aatype] _SCREAMING_SNAKE_CASE : str = restype_atomaa_mask[protein_aatype] _SCREAMING_SNAKE_CASE : List[Any] = residx_atomaa_mask _SCREAMING_SNAKE_CASE : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _SCREAMING_SNAKE_CASE : int = restype_atomaa_to_atomaa[protein_aatype] _SCREAMING_SNAKE_CASE : Dict = residx_atomaa_to_atomaa.long() # create the corresponding mask _SCREAMING_SNAKE_CASE : str = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): _SCREAMING_SNAKE_CASE : int = rc.restype_atoa[restype_letter] _SCREAMING_SNAKE_CASE : Dict = rc.residue_atoms[restype_name] for atom_name in atom_names: _SCREAMING_SNAKE_CASE : List[Any] = rc.atom_order[atom_name] _SCREAMING_SNAKE_CASE : Union[str, Any] = 1 _SCREAMING_SNAKE_CASE : int = restype_atomaa_mask[protein_aatype] _SCREAMING_SNAKE_CASE : int = residx_atomaa_mask return protein def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = tree_map(lambda SCREAMING_SNAKE_CASE__ : torch.tensor(SCREAMING_SNAKE_CASE__ , device=batch["""aatype"""].device ) , SCREAMING_SNAKE_CASE__ , np.ndarray ) _SCREAMING_SNAKE_CASE : Optional[Any] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE__ : np.array(SCREAMING_SNAKE_CASE__ ) , make_atomaa_masks(SCREAMING_SNAKE_CASE__ ) ) return out
200
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : List[str] = [randint(-1000, 1000 ) for i in range(10 )] _SCREAMING_SNAKE_CASE : Union[str, Any] = randint(-5000, 5000 ) return (arr, r) UpperCamelCase__ =make_dataset() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): for triplet in permutations(__lowerCamelCase, 3 ): if sum(__lowerCamelCase ) == target: return tuple(sorted(__lowerCamelCase ) ) return (0, 0, 0) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): arr.sort() _SCREAMING_SNAKE_CASE : Optional[Any] = len(__lowerCamelCase ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : List[Any] = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" _SCREAMING_SNAKE_CASE : Dict = "\ntriplet_sum1(*dataset)\n" _SCREAMING_SNAKE_CASE : Any = "\ntriplet_sum2(*dataset)\n" _SCREAMING_SNAKE_CASE : List[str] = repeat(setup=__lowerCamelCase, stmt=__lowerCamelCase, repeat=5, number=10000 ) _SCREAMING_SNAKE_CASE : Tuple = repeat(setup=__lowerCamelCase, stmt=__lowerCamelCase, repeat=5, number=10000 ) return (min(__lowerCamelCase ), min(__lowerCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase__ =solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
359
from timeit import timeit def lowerCamelCase__ (__lowerCamelCase ): if number < 0: raise ValueError("the value of input must not be negative" ) _SCREAMING_SNAKE_CASE : str = 0 while number: number &= number - 1 result += 1 return result def lowerCamelCase__ (__lowerCamelCase ): if number < 0: raise ValueError("the value of input must not be negative" ) _SCREAMING_SNAKE_CASE : str = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowerCamelCase__ (): def do_benchmark(__lowerCamelCase ) -> None: _SCREAMING_SNAKE_CASE : Tuple = "import __main__ as z" print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(__lowerCamelCase ) = }""" ) _SCREAMING_SNAKE_CASE : str = timeit("z.get_set_bits_count_using_modulo_operator(25)", setup=__lowerCamelCase ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(__lowerCamelCase ) = }""" ) _SCREAMING_SNAKE_CASE : int = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)", setup=__lowerCamelCase, ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
325
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self : Optional[int] , **UpperCAmelCase__ : Any) ->Dict: '''simple docstring''' A__ = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase__) return config def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase__) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase__ , prediction_type=UpperCAmelCase__ , sample_max_value=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->int: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5 def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = len(UpperCAmelCase__) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = torch.manual_seed(0) for t in reversed(range(UpperCAmelCase__)): # 1. predict noise residual A__ = model(UpperCAmelCase__ , UpperCAmelCase__) # 2. predict previous mean of sample x_t-1 A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A__ = pred_prev_sample A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(prediction_type='''v_prediction''') A__ = scheduler_class(**UpperCAmelCase__) A__ = len(UpperCAmelCase__) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = torch.manual_seed(0) for t in reversed(range(UpperCAmelCase__)): # 1. predict noise residual A__ = model(UpperCAmelCase__ , UpperCAmelCase__) # 2. predict previous mean of sample x_t-1 A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A__ = pred_prev_sample A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase__) A__ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase__): if i == len(UpperCAmelCase__) - 1: A__ = -1 else: A__ = timesteps[i + 1] A__ = scheduler.previous_timestep(UpperCAmelCase__) A__ = prev_t.item() self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Dict: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase__ , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = [100, 87, 50, 1, 0] A__ = len(UpperCAmelCase__) with self.assertRaises(UpperCAmelCase__ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase__ , timesteps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase__ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase__)
14
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class _snake_case ( _a ): _A : Optional[int] = '''t5''' _A : Union[str, Any] = ['''past_key_values'''] _A : Dict = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any]=32_128 ,SCREAMING_SNAKE_CASE__ : List[str]=512 ,SCREAMING_SNAKE_CASE__ : Any=64 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_048 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=6 ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : Dict=8 ,SCREAMING_SNAKE_CASE__ : Optional[int]=32 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=128 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Tuple=1e-6 ,SCREAMING_SNAKE_CASE__ : str=1.0 ,SCREAMING_SNAKE_CASE__ : int="relu" ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Dict=0 ,SCREAMING_SNAKE_CASE__ : Tuple=1 ,**SCREAMING_SNAKE_CASE__ : Tuple ,): SCREAMING_SNAKE_CASE:int = vocab_size SCREAMING_SNAKE_CASE:Any = d_model SCREAMING_SNAKE_CASE:Union[str, Any] = d_kv SCREAMING_SNAKE_CASE:Optional[int] = d_ff SCREAMING_SNAKE_CASE:Tuple = num_layers SCREAMING_SNAKE_CASE:str = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE:Union[str, Any] = num_heads SCREAMING_SNAKE_CASE:int = relative_attention_num_buckets SCREAMING_SNAKE_CASE:Tuple = relative_attention_max_distance SCREAMING_SNAKE_CASE:Dict = dropout_rate SCREAMING_SNAKE_CASE:List[Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE:List[str] = initializer_factor SCREAMING_SNAKE_CASE:Tuple = feed_forward_proj SCREAMING_SNAKE_CASE:str = use_cache SCREAMING_SNAKE_CASE:Optional[Any] = self.feed_forward_proj.split("-" ) SCREAMING_SNAKE_CASE:Any = act_info[-1] SCREAMING_SNAKE_CASE:Tuple = act_info[0] == "gated" if len(SCREAMING_SNAKE_CASE__ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE__ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE:int = "gelu_new" super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) class _snake_case ( _a ): @property def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:int = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: SCREAMING_SNAKE_CASE:Optional[int] = "past_encoder_sequence + sequence" SCREAMING_SNAKE_CASE:str = {0: "batch"} SCREAMING_SNAKE_CASE:List[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE:Tuple = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE:List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ ,direction="inputs" ) return common_inputs @property def __UpperCamelCase ( self : Optional[int] ): return 13
139
0
'''simple docstring''' def UpperCamelCase_ ( A__ : Optional[Any] ): '''simple docstring''' lowerCAmelCase_ : Dict = [int(__lowerCAmelCase ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(__lowerCAmelCase ) == 4 and all(0 <= int(__lowerCAmelCase ) <= 2_54 for octet in octets ) if __name__ == "__main__": __A : Optional[int] = input().strip() __A : str = "valid" if is_ip_va_address_valid(ip) else "invalid" print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
350
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : Tuple ) -> Dict: lowerCAmelCase_ : str = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : List[Any] ) -> int: lowerCAmelCase_ : Tuple = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : Optional[int] ) -> Optional[Any]: lowerCAmelCase_ : int = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : int ) -> List[Any]: lowerCAmelCase_ : Dict = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : str ) -> List[str]: lowerCAmelCase_ : Union[str, Any] = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : List[Any] ) -> Tuple: lowerCAmelCase_ : Union[str, Any] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowerCAmelCase_ : Union[str, Any] = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase_ : str = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowerCAmelCase_ : Optional[int] = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Tuple ) -> Optional[Any]: # pass variant but use the non-variant filenames lowerCAmelCase_ : Dict = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] lowerCAmelCase_ : str = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Optional[int] ) -> List[str]: lowerCAmelCase_ : str = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCAmelCase_ : List[str] = """fp16""" self.assertFalse(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase_ : str = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] lowerCAmelCase_ : Optional[Any] = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : List[Any] ) -> List[Any]: # pass variant but use the non-variant filenames lowerCAmelCase_ : Dict = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] lowerCAmelCase_ : Any = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Dict ) -> Any: lowerCAmelCase_ : Optional[int] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowerCAmelCase_ : int = """fp16""" self.assertFalse(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) )
89
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor A =logging.get_logger(__name__) class _a ( lowercase_ ): def __init__( self : str , *lowercase : List[str] , **lowercase : Union[str, Any] ): '''simple docstring''' warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , lowercase , ) super().__init__(*lowercase , **lowercase )
34
'''simple docstring''' class __lowerCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = row lowercase__ = col lowercase__ = graph def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): # And finally, count all islands. '''simple docstring''' lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += 1 return count
2
0
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __snake_case = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): def __init__( self : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Tuple ): warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
169
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowercase__ ( _UpperCAmelCase ): A__ : Any =(CMStochasticIterativeScheduler,) A__ : Optional[int] =1_0 def A_ ( self : Dict , **UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } config.update(**UpperCAmelCase_ ) return config def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0](**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps[0] SCREAMING_SNAKE_CASE__ = scheduler.timesteps[1] SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A_ ( self : List[str] ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def A_ ( self : Any ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=UpperCAmelCase_ ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = 1 scheduler.set_timesteps(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(UpperCAmelCase_ ): # 1. scale model input SCREAMING_SNAKE_CASE__ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [106, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input SCREAMING_SNAKE_CASE__ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [39, 30, 12, 15, 0] with self.assertRaises(UpperCAmelCase_ , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [39, 30, 12, 1, 0] SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase_ ) with self.assertRaises(UpperCAmelCase_ , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ )
169
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase : List[str] = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__: List[str] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Optional[int] = ['''ChineseCLIPFeatureExtractor'''] A__: Any = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Dict = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys A__: str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
0
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def A ( ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = 9, 14 # noqa: F841 SCREAMING_SNAKE_CASE : Dict = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE : Optional[Any] = defaultdict(_lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) SCREAMING_SNAKE_CASE : str = mst(_lowercase ) SCREAMING_SNAKE_CASE : Dict = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: SCREAMING_SNAKE_CASE : Optional[int] = tuple(answer[:2] ) SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
258
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : str = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = ["""input_ids""", """attention_mask"""] UpperCamelCase_ = None def __init__( self : int , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[int]="<unk>" , UpperCamelCase__ : str="<s>" , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Any="<pad>" , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : str=False , **UpperCamelCase__ : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE : int = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Dict = add_prefix_space SCREAMING_SNAKE_CASE : List[Any] = pre_tok_class(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = add_prefix_space def __A ( self : Tuple , *UpperCamelCase__ : Any , **UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , UpperCamelCase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Optional[int] , *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = kwargs.get('''is_split_into_words''' , UpperCamelCase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __A ( self : Optional[int] , UpperCamelCase__ : "Conversation" ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: SCREAMING_SNAKE_CASE : Optional[Any] = input_ids[-self.model_max_length :] return input_ids
258
1
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def __UpperCAmelCase ( lowercase="ro" ,lowercase="en" ,lowercase="wmt16" ,lowercase=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) _UpperCAmelCase = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) _UpperCAmelCase = datasets.load_dataset(lowercase ,lowercase ) if save_dir is None: _UpperCAmelCase = f'''{dataset}-{pair}''' _UpperCAmelCase = Path(lowercase ) save_dir.mkdir(exist_ok=lowercase ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets _UpperCAmelCase = """val""" if split == """validation""" else split _UpperCAmelCase = save_dir.joinpath(f'''{fn}.source''' ) _UpperCAmelCase = save_dir.joinpath(f'''{fn}.target''' ) _UpperCAmelCase = src_path.open("""w+""" ) _UpperCAmelCase = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): _UpperCAmelCase = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
289
from math import isqrt, loga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]: __lowercase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int: __lowercase = degree * loga(SCREAMING_SNAKE_CASE ) __lowercase = int(SCREAMING_SNAKE_CASE ) __lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
325
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _lowerCAmelCase : int = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Dict: '''simple docstring''' require_version(deps[pkg] , snake_case__ )
365
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) class A_ ( _a ): lowerCAmelCase__ = 'masked_bert' def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = pruning_method _lowerCamelCase : str = mask_init _lowerCamelCase : List[Any] = mask_scale
340
0
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" _snake_case = [1, 2, 3] with pytest.raises(__A ): with parallel_backend('unsupported backend' ): map_nested(__A , __A , num_proc=2 ) with pytest.raises(__A ): with parallel_backend('unsupported backend' ): map_nested(__A , __A , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def SCREAMING_SNAKE_CASE__ ( __A ) -> List[str]: _snake_case = [1, 2] _snake_case = {'a': 1, 'b': 2} _snake_case = {'a': [1, 2], 'b': [3, 4]} _snake_case = {'a': {'1': 1}, 'b': 2} _snake_case = {'a': 1, 'b': 2, 'c': 3, 'd': 4} _snake_case = [2, 3] _snake_case = {'a': 2, 'b': 3} _snake_case = {'a': [2, 3], 'b': [4, 5]} _snake_case = {'a': {'1': 2}, 'b': 3} _snake_case = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
42
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Any = 'conditional_detr' lowerCAmelCase : List[str] = ['past_key_values'] lowerCAmelCase : Optional[int] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Optional[int] ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : List[Any]=3 ,_UpperCAmelCase : List[Any]=300 ,_UpperCAmelCase : Dict=6 ,_UpperCAmelCase : List[str]=2048 ,_UpperCAmelCase : Optional[int]=8 ,_UpperCAmelCase : List[Any]=6 ,_UpperCAmelCase : Optional[int]=2048 ,_UpperCAmelCase : Dict=8 ,_UpperCAmelCase : int=0.0 ,_UpperCAmelCase : Optional[Any]=0.0 ,_UpperCAmelCase : Optional[Any]=True ,_UpperCAmelCase : str="relu" ,_UpperCAmelCase : Tuple=256 ,_UpperCAmelCase : Optional[int]=0.1 ,_UpperCAmelCase : str=0.0 ,_UpperCAmelCase : Optional[int]=0.0 ,_UpperCAmelCase : Union[str, Any]=0.02 ,_UpperCAmelCase : List[str]=1.0 ,_UpperCAmelCase : Any=False ,_UpperCAmelCase : int="sine" ,_UpperCAmelCase : List[str]="resnet50" ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : str=False ,_UpperCAmelCase : str=2 ,_UpperCAmelCase : int=5 ,_UpperCAmelCase : Optional[int]=2 ,_UpperCAmelCase : str=1 ,_UpperCAmelCase : Union[str, Any]=1 ,_UpperCAmelCase : List[str]=2 ,_UpperCAmelCase : Union[str, Any]=5 ,_UpperCAmelCase : List[Any]=2 ,_UpperCAmelCase : Optional[int]=0.25 ,**_UpperCAmelCase : Tuple ,): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _a : Optional[Any] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : str = backbone_config.get('model_type' ) _a : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] _a : List[Any] = config_class.from_dict(_UpperCAmelCase ) _a : Tuple = use_timm_backbone _a : Union[str, Any] = backbone_config _a : List[Any] = num_channels _a : Union[str, Any] = num_queries _a : Optional[Any] = d_model _a : Tuple = encoder_ffn_dim _a : Dict = encoder_layers _a : List[str] = encoder_attention_heads _a : Union[str, Any] = decoder_ffn_dim _a : Optional[int] = decoder_layers _a : int = decoder_attention_heads _a : Optional[int] = dropout _a : Tuple = attention_dropout _a : List[Any] = activation_dropout _a : str = activation_function _a : Optional[Any] = init_std _a : Union[str, Any] = init_xavier_std _a : List[Any] = encoder_layerdrop _a : List[Any] = decoder_layerdrop _a : Dict = encoder_layers _a : List[Any] = auxiliary_loss _a : Optional[int] = position_embedding_type _a : List[Any] = backbone _a : Optional[int] = use_pretrained_backbone _a : Optional[int] = dilation # Hungarian matcher _a : Tuple = class_cost _a : str = bbox_cost _a : Any = giou_cost # Loss coefficients _a : Tuple = mask_loss_coefficient _a : Dict = dice_loss_coefficient _a : Tuple = cls_loss_coefficient _a : Any = bbox_loss_coefficient _a : Dict = giou_loss_coefficient _a : Union[str, Any] = focal_alpha super().__init__(is_encoder_decoder=_UpperCAmelCase ,**_UpperCAmelCase ) @property def __lowercase ( self : Dict ): return self.encoder_attention_heads @property def __lowercase ( self : str ): return self.d_model def __lowercase ( self : int ): _a : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _a : Dict = self.backbone_config.to_dict() _a : Union[str, Any] = self.__class__.model_type return output class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : str = version.parse('1.11' ) @property def __lowercase ( self : Dict ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def __lowercase ( self : Any ): return 1E-5 @property def __lowercase ( self : List[Any] ): return 12
89
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar SCREAMING_SNAKE_CASE : int = TypeVar("T") class _lowerCamelCase( Generic[T] ): lowercase_ : deque[T] # Cache store of keys lowercase_ : set[T] # References of the keys in cache lowercase_ : int = 10 # Maximum capacity of cache def __init__( self, lowerCamelCase) -> None: """simple docstring""" _lowercase : str = deque() _lowercase : Optional[int] = set() if not n: _lowercase : List[str] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.') else: _lowercase : List[str] = n def UpperCamelCase ( self, lowerCamelCase) -> None: """simple docstring""" if x not in self.key_reference: if len(self.dq_store) == LRUCache._MAX_CAPACITY: _lowercase : int = self.dq_store.pop() self.key_reference.remove(lowerCamelCase) else: self.dq_store.remove(lowerCamelCase) self.dq_store.appendleft(lowerCamelCase) self.key_reference.add(lowerCamelCase) def UpperCamelCase ( self) -> None: """simple docstring""" for k in self.dq_store: print(lowerCamelCase) def __repr__( self) -> str: """simple docstring""" return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store)}''' if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : LRUCache[str | int] = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
84
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE : str = logging.getLogger() def UpperCamelCase_( ) -> Any: _lowercase : int = argparse.ArgumentParser() parser.add_argument('-f' ) _lowercase : Optional[Any] = parser.parse_args() return args.f class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> None: """simple docstring""" _lowercase : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : str = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0, 'run_glue_deebert.py') with patch.object(lowerCamelCase, 'argv', lowerCamelCase): _lowercase : Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCamelCase, 0.6_6_6) @slow @require_torch_non_multi_gpu def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(lowerCamelCase) _lowercase : Union[str, Any] = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase) _lowercase : Union[str, Any] = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase)
84
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """markuplm""" def __init__( self :Dict , lowerCamelCase :List[Any]=3_0522 , lowerCamelCase :List[Any]=768 , lowerCamelCase :Union[str, Any]=12 , lowerCamelCase :Optional[int]=12 , lowerCamelCase :List[str]=3072 , lowerCamelCase :Dict="gelu" , lowerCamelCase :List[str]=0.1 , lowerCamelCase :Union[str, Any]=0.1 , lowerCamelCase :int=512 , lowerCamelCase :Union[str, Any]=2 , lowerCamelCase :int=0.02 , lowerCamelCase :int=1e-12 , lowerCamelCase :Tuple=0 , lowerCamelCase :List[str]=0 , lowerCamelCase :int=2 , lowerCamelCase :Optional[int]=256 , lowerCamelCase :List[str]=1024 , lowerCamelCase :Optional[Any]=216 , lowerCamelCase :str=1001 , lowerCamelCase :List[str]=32 , lowerCamelCase :Dict=50 , lowerCamelCase :int="absolute" , lowerCamelCase :Union[str, Any]=True , lowerCamelCase :Dict=None , **lowerCamelCase :List[Any] , ) -> int: super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase , ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache UpperCAmelCase__ = classifier_dropout # additional properties UpperCAmelCase__ = max_depth UpperCAmelCase__ = max_xpath_tag_unit_embeddings UpperCAmelCase__ = max_xpath_subs_unit_embeddings UpperCAmelCase__ = tag_pad_id UpperCAmelCase__ = subs_pad_id UpperCAmelCase__ = xpath_unit_hidden_size
169
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 def __init__( self :int , lowerCamelCase :UNetaDModel , lowerCamelCase :ScoreSdeVeScheduler ) -> Any: super().__init__() self.register_modules(unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self :Optional[Any] , lowerCamelCase :int = 1 , lowerCamelCase :int = 2000 , lowerCamelCase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase :Optional[str] = "pil" , lowerCamelCase :bool = True , **lowerCamelCase :Any , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase__ = self.unet.config.sample_size UpperCAmelCase__ = (batch_size, 3, img_size, img_size) UpperCAmelCase__ = self.unet UpperCAmelCase__ = randn_tensor(lowerCamelCase , generator=lowerCamelCase ) * self.scheduler.init_noise_sigma UpperCAmelCase__ = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase ) self.scheduler.set_sigmas(lowerCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase__ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase__ = self.unet(lowerCamelCase , lowerCamelCase ).sample UpperCAmelCase__ = self.scheduler.step_correct(lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ).prev_sample # prediction step UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ).sample UpperCAmelCase__ = self.scheduler.step_pred(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = output.prev_sample, output.prev_sample_mean UpperCAmelCase__ = sample_mean.clamp(0 , 1 ) UpperCAmelCase__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase )
169
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[int]=None ) -> Union[str, Any]: __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser(add_help=SCREAMING_SNAKE_CASE , allow_abbrev=SCREAMING_SNAKE_CASE ) # The main config parser __lowerCAmelCase : Tuple = config_command_parser(SCREAMING_SNAKE_CASE ) # The subparser to add commands to __lowerCAmelCase : List[Any] = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(SCREAMING_SNAKE_CASE , parents=[parent_parser] ) update_command_parser(SCREAMING_SNAKE_CASE , parents=[parent_parser] ) return config_parser def _SCREAMING_SNAKE_CASE ( ) -> str: __lowerCAmelCase : Union[str, Any] = get_config_parser() __lowerCAmelCase : Optional[Any] = config_parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
355
_UpperCAmelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _UpperCAmelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :dict[int, list[int]] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[bool] ) -> list[int]: __lowerCAmelCase : str = True __lowerCAmelCase : str = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) order.append(SCREAMING_SNAKE_CASE ) return order def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :dict[int, list[int]] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[bool] ) -> list[int]: __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : Union[str, Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return component def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :dict[int, list[int]] ) -> list[list[int]]: __lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) * [False] __lowerCAmelCase : dict[int, list[int]] = {vert: [] for vert in range(len(SCREAMING_SNAKE_CASE ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = [] for i, was_visited in enumerate(SCREAMING_SNAKE_CASE ): if not was_visited: order += topology_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = [] __lowerCAmelCase : Any = len(SCREAMING_SNAKE_CASE ) * [False] for i in range(len(SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase : Optional[int] = order[len(SCREAMING_SNAKE_CASE ) - i - 1] if not visited[vert]: __lowerCAmelCase : Any = find_components(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) components_list.append(SCREAMING_SNAKE_CASE ) return components_list
232
0
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __UpperCAmelCase ( unittest.TestCase , A__ ): '''simple docstring''' def A (self : Dict ): A = load_tool("""text-to-speech""" ) self.tool.setup() def A (self : Union[str, Any] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) A = self.tool("""hey""" ) A = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def A (self : Optional[int] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) A = self.tool("""hey""" ) A = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
258
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" if len(UpperCAmelCase ) <= 1 or n <= 1: return insert_next(UpperCAmelCase , n - 1 ) rec_insertion_sort(UpperCAmelCase , n - 1 ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if index >= len(UpperCAmelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order A , A = ( collection[index], collection[index - 1], ) insert_next(UpperCAmelCase , index + 1 ) if __name__ == "__main__": _lowerCamelCase : List[Any] = input('Enter integers separated by spaces: ') _lowerCamelCase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
258
1
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None ) -> int: '''simple docstring''' super().__init__() snake_case : Optional[int] = pad_token_id snake_case : Any = max_length snake_case : Tuple = vocab snake_case : Optional[int] = merges snake_case : List[str] = BytePairTokenizer(UpperCamelCase__ , UpperCamelCase__ , sequence_length=UpperCamelCase__ ) @classmethod def lowerCamelCase ( cls , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : List[Any] = [" ".join(UpperCamelCase__ ) for m in tokenizer.bpe_ranks.keys()] snake_case : Any = tokenizer.get_vocab() return cls(UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def lowerCamelCase ( cls , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = GPTaTokenizer.from_pretrained(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) return cls.from_tokenizer(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def lowerCamelCase ( cls , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return cls(**UpperCamelCase__ ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> str: '''simple docstring''' snake_case : Tuple = self.tf_tokenizer(UpperCamelCase__ ) snake_case : Optional[Any] = tf.ones_like(UpperCamelCase__ ) if self.pad_token_id is not None: # pad the tokens up to max length snake_case : Optional[int] = max_length if max_length is not None else self.max_length if max_length is not None: snake_case : Tuple = pad_model_inputs( UpperCamelCase__ , max_seq_length=UpperCamelCase__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
355
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __snake_case = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = True , ) -> Tuple: '''simple docstring''' snake_case : List[Any] = [file for file in os.listdir(UpperCamelCase__ ) if os.path.isfile(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) )] if identifier is not None: snake_case : Optional[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): for n_ in n_identifier: snake_case : str = [file for file in files if n_ not in file] else: snake_case : str = [file for file in files if n_identifier not in file] snake_case : Tuple = ignore_files or [] ignore_files.append("__init__.py" ) snake_case : Optional[Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , UpperCamelCase__ ) if only_modules: snake_case : str = file.split("." )[0] try: snake_case : Optional[int] = getattr(UpperCamelCase__ , UpperCamelCase__ ) snake_case : str = doctest.DocTestSuite(UpperCamelCase__ ) snake_case : Optional[Any] = unittest.TextTestRunner().run(UpperCamelCase__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: snake_case : Tuple = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Tuple = Path("src/transformers" ) snake_case : List[Any] = "modeling" snake_case : Dict = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(UpperCamelCase__ , identifier=UpperCamelCase__ , ignore_files=UpperCamelCase__ ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Optional[Any] = Path("src/transformers" ) snake_case : Optional[Any] = "tokenization" self.analyze_directory(UpperCamelCase__ , identifier=UpperCamelCase__ ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = Path("src/transformers" ) snake_case : Optional[Any] = "configuration" self.analyze_directory(UpperCamelCase__ , identifier=UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = Path("src/transformers" ) snake_case : List[str] = ["configuration", "modeling", "tokenization"] self.analyze_directory(UpperCamelCase__ , n_identifier=UpperCamelCase__ ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Any = Path("docs/source" ) snake_case : Tuple = ["favicon.ico"] self.analyze_directory(UpperCamelCase__ , ignore_files=UpperCamelCase__ , only_modules=UpperCamelCase__ )
112
0
from manim import * class __lowerCAmelCase ( UpperCamelCase__): def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : List[Any] =Rectangle(height=0.5 , width=0.5 ) a__ : List[Any] =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) a__ : int =[mem.copy() for i in range(6 )] a__ : Optional[int] =[mem.copy() for i in range(6 )] a__ : Any =VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) a__ : str =VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) a__ : str =VGroup(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) a__ : str =Text("CPU" , font_size=2_4 ) a__ : Union[str, Any] =Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCAmelCase__ ) a__ : Optional[Any] =[mem.copy() for i in range(4 )] a__ : Any =VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) a__ : Union[str, Any] =Text("GPU" , font_size=2_4 ) a__ : Optional[int] =Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCAmelCase__ ) a__ : Union[str, Any] =[mem.copy() for i in range(6 )] a__ : Tuple =VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) a__ : List[str] =Text("Model" , font_size=2_4 ) a__ : Any =Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCAmelCase__ ) a__ : Optional[Any] =[] for i, rect in enumerate(lowerCAmelCase__ ): rect.set_stroke(lowerCAmelCase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ : Optional[Any] =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCAmelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowerCAmelCase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowerCAmelCase__ , buff=0.0 ) self.add(lowerCAmelCase__ ) cpu_targs.append(lowerCAmelCase__ ) a__ : List[Any] =[mem.copy() for i in range(6 )] a__ : int =VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) a__ : Tuple =Text("Loaded Checkpoint" , font_size=2_4 ) a__ : int =Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , aligned_edge=lowerCAmelCase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) a__ : Any =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ : Union[str, Any] =MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Optional[int] =MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=1_8 , ) blue_text.next_to(lowerCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) a__ : Any =MarkupText( F'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase__ ) , Write(lowerCAmelCase__ ) ) self.play(Write(lowerCAmelCase__ , run_time=1 ) , Create(lowerCAmelCase__ , run_time=1 ) ) a__ : Optional[Any] =[] a__ : Dict =[] for i, rect in enumerate(lowerCAmelCase__ ): a__ : Union[str, Any] =fill.copy().set_fill(lowerCAmelCase__ , opacity=0.7 ) target.move_to(lowerCAmelCase__ ) first_animations.append(GrowFromCenter(lowerCAmelCase__ , run_time=1 ) ) a__ : Union[str, Any] =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowerCAmelCase__ , run_time=1.5 ) ) self.play(*lowerCAmelCase__ ) self.play(*lowerCAmelCase__ ) self.wait()
95
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """tokenizer"""] a_ ="""LayoutLMv2ImageProcessor""" a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase__ = features["words"] lowerCAmelCase__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) # add pixel values lowerCAmelCase__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) lowerCAmelCase__ = images return encoded_inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" ) return images_with_overflow def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict: '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self )-> str: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
340
0
import numpy as np def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): return np.where(vector > 0 , __lowerCamelCase , (alpha * (np.exp(__lowerCamelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
197
from math import sqrt def lowerCAmelCase( __lowerCamelCase ): __a = 0 for i in range(1 , int(sqrt(__lowerCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__lowerCamelCase ): total += i + n // i elif i == sqrt(__lowerCamelCase ): total += i return total - n def lowerCAmelCase( __lowerCamelCase = 1_0000 ): __a = sum( i for i in range(1 , __lowerCamelCase ) if sum_of_divisors(sum_of_divisors(__lowerCamelCase ) ) == i and sum_of_divisors(__lowerCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
197
1
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def _snake_case ( lowercase__ : Optional[int] , lowercase__ : str , lowercase__ : Tuple , lowercase__ : List[str] ) -> Optional[int]: '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: lowerCAmelCase_ :Dict = TOKENIZER_CLASSES else: lowerCAmelCase_ :List[Any] = {tokenizer_name: getattr(lowercase__ , tokenizer_name + """Fast""" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: lowerCAmelCase_ :List[Any] = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase_ :Union[str, Any] = True if checkpoint_name is None: lowerCAmelCase_ :str = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase_ :int = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer lowerCAmelCase_ :Dict = tokenizer_class.from_pretrained(lowercase__ , force_download=lowercase__ ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = checkpoint.split("""/""" ) lowerCAmelCase_ :Optional[int] = os.path.join(lowercase__ , lowercase__ ) elif add_prefix: lowerCAmelCase_ :Tuple = checkpoint lowerCAmelCase_ :Any = dump_path else: lowerCAmelCase_ :Union[str, Any] = None lowerCAmelCase_ :Any = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase_ :Optional[int] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase_ :Tuple = file_path.split(lowercase__ )[-1][0] if next_char == "/": lowerCAmelCase_ :Tuple = os.path.join(lowercase__ , lowercase__ ) lowerCAmelCase_ :Union[str, Any] = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) lowerCAmelCase_ :Any = tokenizer.save_pretrained( lowercase__ , legacy_format=lowercase__ , filename_prefix=lowercase__ ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(lowercase__ ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) __UpperCAmelCase = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
84
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Any = BioGptTokenizer UpperCAmelCase_ :str = False def __lowerCAmelCase ( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ :Optional[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowerCAmelCase_ :str = dict(zip(__A , range(len(__A ) ) ) ) lowerCAmelCase_ :int = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowerCAmelCase_ :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase_ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__A ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__A ) ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: lowerCAmelCase_ :List[Any] = """lower newer""" lowerCAmelCase_ :Tuple = """lower newer""" return input_text, output_text def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[str] = BioGptTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase_ :Union[str, Any] = """lower""" lowerCAmelCase_ :Any = ["""low""", """er</w>"""] lowerCAmelCase_ :Union[str, Any] = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) lowerCAmelCase_ :Dict = tokens + ["""<unk>"""] lowerCAmelCase_ :List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) @slow def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) lowerCAmelCase_ :List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__A ) lowerCAmelCase_ :List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__A ) lowerCAmelCase_ :Optional[int] = tokenizer.build_inputs_with_special_tokens(__A ) lowerCAmelCase_ :List[str] = tokenizer.build_inputs_with_special_tokens(__A , __A ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
84
1
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py a_ = '.' if __name__ == "__main__": a_ = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') a_ = [] a_ = [] with open(doctest_file_path) as fp: for line in fp: a_ = line.strip() a_ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: a_ = '\n'.join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
222
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
222
1
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCAmelCase ( __lowercase ): '''simple docstring''' def __init__(self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple=13 , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Union[str, Any]=99 , _lowerCAmelCase : str=32 , _lowerCAmelCase : int=5 , _lowerCAmelCase : str=4 , _lowerCAmelCase : str=37 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Dict=512 , _lowerCAmelCase : Optional[Any]=16 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Any=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict="None" , _lowerCAmelCase : Dict=3 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : Optional[int]=None , ): A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = relative_attention A = position_biased_input A = pos_att_type A = scope def A (self : Union[str, Any] ): A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_input_mask: A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A = ids_tensor([self.batch_size] , self.num_choices ) A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A (self : str ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def A (self : str , _lowerCAmelCase : Any ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def A (self : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ): A = DebertaVaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )[0] A = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase )[0] A = model(_lowerCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def A (self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : str ): A = DebertaVaForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A (self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): A = self.num_labels A = DebertaVaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_lowerCAmelCase ) def A (self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): A = self.num_labels A = DebertaVaForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A (self : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] ): A = DebertaVaForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A (self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ): A = DebertaVaForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A (self : List[str] ): A = self.prepare_config_and_inputs() ( A ) = config_and_inputs A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __lowerCAmelCase = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def A (self : int ): A = DebertaVaModelTester(self ) A = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def A (self : Tuple ): self.config_tester.run_common_tests() def A (self : Any ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_lowerCAmelCase ) def A (self : Any ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_lowerCAmelCase ) def A (self : List[str] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_lowerCAmelCase ) def A (self : List[str] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_lowerCAmelCase ) def A (self : List[str] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_lowerCAmelCase ) def A (self : int ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*_lowerCAmelCase ) @slow def A (self : Optional[Any] ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = DebertaVaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def A (self : List[Any] ): pass @slow def A (self : Optional[int] ): A = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) A = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) A = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] # compare the actual values for a slice. A = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1e-4 ) , F"""{output[:, 1:4, 1:4]}""" )
258
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : Any = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'pegasus' _A = ['past_key_values'] _A = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self :Dict , a :Dict=5_0_2_6_5 , a :Dict=1_0_2_4 , a :Union[str, Any]=1_2 , a :Any=4_0_9_6 , a :str=1_6 , a :str=1_2 , a :Optional[Any]=4_0_9_6 , a :int=1_6 , a :Optional[int]=0.0 , a :Optional[int]=0.0 , a :List[Any]=True , a :Union[str, Any]=True , a :int="gelu" , a :Dict=1_0_2_4 , a :List[Any]=0.1 , a :List[str]=0.0 , a :List[Any]=0.0 , a :str=0.02 , a :int=0 , a :Any=False , a :Dict=0 , a :int=1 , a :Optional[Any]=1 , **a :Optional[int] , ) -> str: __UpperCamelCase : List[Any] = vocab_size __UpperCamelCase : Union[str, Any] = max_position_embeddings __UpperCamelCase : str = d_model __UpperCamelCase : Dict = encoder_ffn_dim __UpperCamelCase : int = encoder_layers __UpperCamelCase : int = encoder_attention_heads __UpperCamelCase : List[Any] = decoder_ffn_dim __UpperCamelCase : List[Any] = decoder_layers __UpperCamelCase : List[str] = decoder_attention_heads __UpperCamelCase : str = dropout __UpperCamelCase : Union[str, Any] = attention_dropout __UpperCamelCase : List[str] = activation_dropout __UpperCamelCase : Optional[Any] = activation_function __UpperCamelCase : Tuple = init_std __UpperCamelCase : Optional[int] = encoder_layerdrop __UpperCamelCase : Union[str, Any] = decoder_layerdrop __UpperCamelCase : Optional[Any] = use_cache __UpperCamelCase : Union[str, Any] = encoder_layers __UpperCamelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a , eos_token_id=a , is_encoder_decoder=a , decoder_start_token_id=a , forced_eos_token_id=a , **a , ) @property def _lowerCamelCase ( self :Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self :Optional[Any] ) -> int: return self.d_model
232
0
from collections.abc import Iterable from typing import Generic, TypeVar UpperCAmelCase_ : int = TypeVar('''_T''') class _SCREAMING_SNAKE_CASE ( Generic[_T] ): def __init__( self : Dict , __lowerCamelCase : Iterable[_T] | None = None ): UpperCamelCase :list[_T] = list(iterable or [] ) UpperCamelCase :list[_T] = [] def __len__( self : Dict ): return len(self._stacka ) + len(self._stacka ) def __repr__( self : str ): return F"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def _A ( self : Dict , __lowerCamelCase : _T ): self._stacka.append(__lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :int = self._stacka.pop UpperCamelCase :Optional[Any] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
62
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : Union[str, Any] = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
62
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : List[Any] = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Any = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ : Union[str, Any] = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ : Optional[int] = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ : Optional[Any] = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ : Any = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_12, '''facebook/dpr-ctx_encoder-multiset-base''': 5_12, } UpperCamelCase__ : Optional[Any] = { '''facebook/dpr-question_encoder-single-nq-base''': 5_12, '''facebook/dpr-question_encoder-multiset-base''': 5_12, } UpperCamelCase__ : Dict = { '''facebook/dpr-reader-single-nq-base''': 5_12, '''facebook/dpr-reader-multiset-base''': 5_12, } UpperCamelCase__ : Optional[int] = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase__ : Optional[Any] = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase__ : Any = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : str = VOCAB_FILES_NAMES _A : str = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _A : Any = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION _A : Any = DPRContextEncoderTokenizer class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Dict = VOCAB_FILES_NAMES _A : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _A : Tuple = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _A : Dict = DPRQuestionEncoderTokenizer UpperCamelCase__ : str = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) UpperCamelCase__ : List[Any] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) UpperCamelCase__ : Any = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(lowerCamelCase__ ) class _UpperCamelCase : '''simple docstring''' def __call__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Union[bool, str] = False , lowerCAmelCase__ : Union[bool, str] = False , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Optional[bool] = None , **lowerCAmelCase__ : str , ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) elif titles is None or texts is None: __SCREAMING_SNAKE_CASE : List[Any] = titles if texts is None else texts return super().__call__( lowerCAmelCase__ , lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [titles] __SCREAMING_SNAKE_CASE : Tuple = texts if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [texts] __SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = questions if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [questions] * n_passages assert len(lowerCAmelCase__ ) == len( lowerCAmelCase__ ), F"There should be as many titles than texts but got {len(lowerCAmelCase__ )} titles and {len(lowerCAmelCase__ )} texts." __SCREAMING_SNAKE_CASE : int = super().__call__(lowerCAmelCase__ , lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )["""input_ids"""] __SCREAMING_SNAKE_CASE : str = super().__call__(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )["""input_ids"""] __SCREAMING_SNAKE_CASE : Optional[Any] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] } if return_attention_mask is not False: __SCREAMING_SNAKE_CASE : int = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __SCREAMING_SNAKE_CASE : int = attention_mask return self.pad(lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : BatchEncoding , lowerCAmelCase__ : DPRReaderOutput , lowerCAmelCase__ : int = 1_6 , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : int = 4 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = reader_input["""input_ids"""] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = reader_output[:3] __SCREAMING_SNAKE_CASE : Tuple = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = sorted(range(lowerCAmelCase__ ) , reverse=lowerCAmelCase__ , key=relevance_logits.__getitem__ ) __SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: __SCREAMING_SNAKE_CASE : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __SCREAMING_SNAKE_CASE : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __SCREAMING_SNAKE_CASE : List[Any] = sequence_ids.index(self.pad_token_id ) else: __SCREAMING_SNAKE_CASE : Any = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase__ , top_spans=lowerCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase__ , start_index=lowerCAmelCase__ , end_index=lowerCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCAmelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase__ ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [] for start_index, start_score in enumerate(lowerCAmelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __SCREAMING_SNAKE_CASE : Optional[Any] = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] , reverse=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"Wrong span indices: [{start_index}:{end_index}]" __SCREAMING_SNAKE_CASE : Optional[Any] = end_index - start_index + 1 assert length <= max_answer_length, F"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__ ) class _UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' _A : Optional[int] = VOCAB_FILES_NAMES _A : int = READER_PRETRAINED_VOCAB_FILES_MAP _A : str = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : str = READER_PRETRAINED_INIT_CONFIGURATION _A : Dict = ['''input_ids''', '''attention_mask'''] _A : Tuple = DPRReaderTokenizer
112
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _A = logging.get_logger(__name__) def lowercase_ ( A__ ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(A__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(A__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(A__ ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class lowerCamelCase ( A_ ): UpperCAmelCase__ : int = ["pixel_values"] def __init__(self : Union[str, Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 2_5_5 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Tuple , ) -> None: super().__init__(**_A ) snake_case = size if size is not None else {"shortest_edge": 2_2_4} snake_case = get_size_dict(_A , default_to_square=_A ) snake_case = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} snake_case = get_size_dict(_A , param_name="crop_size" ) snake_case = do_resize snake_case = size snake_case = do_center_crop snake_case = crop_size snake_case = resample snake_case = do_rescale snake_case = rescale_factor snake_case = do_normalize snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase(self : Any , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> np.ndarray: snake_case = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: snake_case = get_resize_output_image_size(_A , size["shortest_edge"] , default_to_square=_A ) elif "height" in size and "width" in size: snake_case = (size["height"], size["width"]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCAmelCase(self : Tuple , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: snake_case = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(_A , size=(size["height"], size["width"]) , data_format=_A , **_A ) def UpperCAmelCase(self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Dict , ) -> List[Any]: return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase(self : Optional[int] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase(self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case = to_numpy_array(_A ) if do_resize: snake_case = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: snake_case = self.center_crop(_A , size=_A ) if do_rescale: snake_case = self.rescale(image=_A , scale=_A ) if do_normalize: snake_case = self.normalize(image=_A , mean=_A , std=_A ) snake_case = to_channel_dimension_format(_A , _A ) return image def UpperCAmelCase(self : Union[str, Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: snake_case = do_resize if do_resize is not None else self.do_resize snake_case = resample if resample is not None else self.resample snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case = do_rescale if do_rescale is not None else self.do_rescale snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case = do_normalize if do_normalize is not None else self.do_normalize snake_case = image_mean if image_mean is not None else self.image_mean snake_case = image_std if image_std is not None else self.image_std snake_case = size if size is not None else self.size snake_case = get_size_dict(_A , default_to_square=_A ) snake_case = crop_size if crop_size is not None else self.crop_size snake_case = get_size_dict(_A , param_name="crop_size" ) if not valid_images(_A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) snake_case = make_batched(_A ) snake_case = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] snake_case = {"pixel_values": videos} return BatchFeature(data=_A , tensor_type=_A )
137
from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=A_ ): UpperCAmelCase__ : Union[str, Any] = ["onnx"] def __init__(self : Tuple , *_A : Optional[int] , **_A : Any ) -> Dict: requires_backends(self , ["onnx"] ) @classmethod def UpperCAmelCase(cls : int , *_A : Dict , **_A : List[Any] ) -> Optional[Any]: requires_backends(cls , ["onnx"] ) @classmethod def UpperCAmelCase(cls : Dict , *_A : Tuple , **_A : Optional[Any] ) -> int: requires_backends(cls , ["onnx"] )
137
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class _A ( lowerCAmelCase ): snake_case__ : Optional[Any] = 'philschmid/bart-large-cnn-samsum' snake_case__ : int = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) snake_case__ : int = 'summarizer' snake_case__ : Any = AutoTokenizer snake_case__ : Optional[int] = AutoModelForSeqaSeqLM snake_case__ : int = ['text'] snake_case__ : List[str] = ['text'] def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.pre_processor(__lowerCAmelCase , return_tensors="""pt""" , truncation=__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.model.generate(**__lowerCAmelCase )[0] def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.pre_processor.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
197
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class _A : def A__ ( self , __lowerCAmelCase ): """simple docstring""" raise NotImplementedError() def A__ ( self ): """simple docstring""" raise NotImplementedError() class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = False , **__lowerCAmelCase ): """simple docstring""" lowercase = tokenizer lowercase = skip_prompt lowercase = decode_kwargs # variables used in the streaming process lowercase = [] lowercase = 0 lowercase = True def A__ ( self , __lowerCAmelCase ): """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: lowercase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowercase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowercase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): lowercase = text[self.print_len :] lowercase = [] lowercase = 0 # If the last token is a CJK character, we print the characters. elif len(__lowerCAmelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowercase = text[self.print_len :] self.print_len += len(__lowerCAmelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowercase = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(__lowerCAmelCase ) self.on_finalized_text(__lowerCAmelCase ) def A__ ( self ): """simple docstring""" if len(self.token_cache ) > 0: lowercase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowercase = text[self.print_len :] lowercase = [] lowercase = 0 else: lowercase = """""" lowercase = True self.on_finalized_text(__lowerCAmelCase , stream_end=__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False ): """simple docstring""" print(__lowerCAmelCase , flush=__lowerCAmelCase , end="""""" if not stream_end else None ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None , **__lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) lowercase = Queue() lowercase = None lowercase = timeout def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False ): """simple docstring""" self.text_queue.put(__lowerCAmelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): """simple docstring""" return self def A__ ( self ): """simple docstring""" lowercase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
197
1
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ = 1_00_00_00 ) -> int: __lowerCamelCase = 1 __lowerCamelCase = 1 __lowerCamelCase = {1: 1} for inputa in range(2 , UpperCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __lowerCamelCase = (3 * number) + 1 counter += 1 if inputa not in counters: __lowerCamelCase = counter if counter > pre_counter: __lowerCamelCase = inputa __lowerCamelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
237
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> float: if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __lowerCamelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowerCamelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
237
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : UNetaDModel __lowercase : ScoreSdeVeScheduler def __init__( self , A_ , A_ ) -> Any: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self , A_ = 1 , A_ = 2_000 , A_ = None , A_ = "pil" , A_ = True , **A_ , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" UpperCamelCase = self.unet.config.sample_size UpperCamelCase = (batch_size, 3, img_size, img_size) UpperCamelCase = self.unet UpperCamelCase = randn_tensor(A_ , generator=A_ ) * self.scheduler.init_noise_sigma UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(A_ ) self.scheduler.set_sigmas(A_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCamelCase = self.unet(A_ , A_ ).sample UpperCamelCase = self.scheduler.step_correct(A_ , A_ , generator=A_ ).prev_sample # prediction step UpperCamelCase = model(A_ , A_ ).sample UpperCamelCase = self.scheduler.step_pred(A_ , A_ , A_ , generator=A_ ) UpperCamelCase , UpperCamelCase = output.prev_sample, output.prev_sample_mean UpperCamelCase = sample_mean.clamp(0 , 1 ) UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=A_ )
222
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : int = IFInpaintingPipeline __lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __lowercase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowercase : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self._get_dummy_components() def __UpperCamelCase ( self , A_ , A_=0 ) -> List[Any]: """simple docstring""" if str(A_ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(A_ ) else: UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCamelCase ( self ) -> str: """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" self._test_save_load_local() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
222
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase , A__ ): def __lowerCamelCase ( self ): lowercase : Optional[int] = load_tool('''text-to-speech''' ) self.tool.setup() def __lowerCamelCase ( self ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) lowercase : Dict = self.tool('''hey''' ) lowercase : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) ) def __lowerCamelCase ( self ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) lowercase : int = self.tool('''hey''' ) lowercase : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) )
361
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __a = 50_00_00 __a , __a = os.path.split(__file__) __a = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def __lowercase ( _UpperCamelCase, **_UpperCamelCase ) ->Any: """simple docstring""" lowercase : Optional[Any] = dataset.map(**_UpperCamelCase ) @get_duration def __lowercase ( _UpperCamelCase, **_UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : int = dataset.filter(**_UpperCamelCase ) def __lowercase ( ) ->Union[str, Any]: """simple docstring""" lowercase : Dict = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase : List[str] = generate_example_dataset( os.path.join(_UpperCamelCase, '''dataset.arrow''' ), _UpperCamelCase, num_examples=_UpperCamelCase ) lowercase : List[Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=_UpperCamelCase ) def tokenize(_UpperCamelCase ): return tokenizer(examples['''text'''] ) lowercase : Union[str, Any] = map(_UpperCamelCase ) lowercase : Dict = map(_UpperCamelCase, batched=_UpperCamelCase ) lowercase : Tuple = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''numpy''' ): lowercase : Dict = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''pandas''' ): lowercase : Any = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): lowercase : str = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): lowercase : Tuple = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) lowercase : List[str] = map(_UpperCamelCase, function=_UpperCamelCase, batched=_UpperCamelCase ) lowercase : Any = filter(_UpperCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_UpperCamelCase, '''wb''' ) as f: f.write(json.dumps(_UpperCamelCase ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
173
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _A = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _A = { 'yjernite/retribert-base-uncased': 512, } _A = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Tuple = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Optional[int] = RetriBertTokenizer UpperCAmelCase__ : int = ["input_ids", "attention_mask"] def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ) -> Any: super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) __UpperCamelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , A_ ) != do_lower_case or normalizer_state.get('strip_accents' , A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , A_ ) != tokenize_chinese_chars ): __UpperCamelCase =getattr(A_ , normalizer_state.pop('type' ) ) __UpperCamelCase =do_lower_case __UpperCamelCase =strip_accents __UpperCamelCase =tokenize_chinese_chars __UpperCamelCase =normalizer_class(**A_ ) __UpperCamelCase =do_lower_case def _a ( self , A_ , A_=None ) -> Optional[Any]: __UpperCamelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
62
from __future__ import annotations import math class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ ) -> None: __UpperCamelCase =size # approximate the overall size of segment tree with given value __UpperCamelCase =[0 for i in range(0 , 4 * size )] # create array to store lazy update __UpperCamelCase =[0 for i in range(0 , 4 * size )] __UpperCamelCase =[0 for i in range(0 , 4 * size )] # flag for lazy update def _a ( self , A_ ) -> int: return idx * 2 def _a ( self , A_ ) -> int: return idx * 2 + 1 def _a ( self , A_ , A_ , A_ , A_ ) -> None: if left_element == right_element: __UpperCamelCase =a[left_element - 1] else: __UpperCamelCase =(left_element + right_element) // 2 self.build(self.left(A_ ) , A_ , A_ , A_ ) self.build(self.right(A_ ) , mid + 1 , A_ , A_ ) __UpperCamelCase =max( self.segment_tree[self.left(A_ )] , self.segment_tree[self.right(A_ )] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> bool: if self.flag[idx] is True: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =False if left_element != right_element: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =self.lazy[idx] __UpperCamelCase =True __UpperCamelCase =True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __UpperCamelCase =val if left_element != right_element: __UpperCamelCase =val __UpperCamelCase =val __UpperCamelCase =True __UpperCamelCase =True return True __UpperCamelCase =(left_element + right_element) // 2 self.update(self.left(A_ ) , A_ , A_ , A_ , A_ , A_ ) self.update(self.right(A_ ) , mid + 1 , A_ , A_ , A_ , A_ ) __UpperCamelCase =max( self.segment_tree[self.left(A_ )] , self.segment_tree[self.right(A_ )] ) return True def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> int | float: if self.flag[idx] is True: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =False if left_element != right_element: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =self.lazy[idx] __UpperCamelCase =True __UpperCamelCase =True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __UpperCamelCase =(left_element + right_element) // 2 __UpperCamelCase =self.query(self.left(A_ ) , A_ , A_ , A_ , A_ ) __UpperCamelCase =self.query(self.right(A_ ) , mid + 1 , A_ , A_ , A_ ) return max(A_ , A_ ) def __str__( self ) -> str: return str([self.query(1 , 1 , self.size , A_ , A_ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _A = 15 _A = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
62
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : List[str] = logging.get_logger(__name__) lowerCamelCase_ : str = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Tuple = """speech_to_text_2""" __UpperCamelCase : Union[str, Any] = ["""past_key_values"""] __UpperCamelCase : Optional[int] = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , snake_case_ : Tuple=1_0000 , snake_case_ : Optional[Any]=6 , snake_case_ : Dict=2048 , snake_case_ : Any=4 , snake_case_ : str=0.0 , snake_case_ : Any=True , snake_case_ : Dict="relu" , snake_case_ : Optional[Any]=256 , snake_case_ : Dict=0.1 , snake_case_ : str=0.0 , snake_case_ : Optional[Any]=0.0 , snake_case_ : Optional[int]=0.02 , snake_case_ : Optional[int]=2 , snake_case_ : Any=True , snake_case_ : Optional[int]=1 , snake_case_ : Any=0 , snake_case_ : Tuple=2 , snake_case_ : List[Any]=1024 , **snake_case_ : Any , ): UpperCamelCase_: List[str] = vocab_size UpperCamelCase_: List[str] = d_model UpperCamelCase_: Union[str, Any] = decoder_ffn_dim UpperCamelCase_: str = decoder_layers UpperCamelCase_: int = decoder_attention_heads UpperCamelCase_: Any = dropout UpperCamelCase_: List[Any] = attention_dropout UpperCamelCase_: Tuple = activation_dropout UpperCamelCase_: Optional[int] = activation_function UpperCamelCase_: List[Any] = init_std UpperCamelCase_: List[str] = decoder_layerdrop UpperCamelCase_: List[Any] = use_cache UpperCamelCase_: List[str] = decoder_layers UpperCamelCase_: Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase_: int = max_target_positions super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , **snake_case_ , )
223
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCamelCase_ : Any = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCamelCase_ : str = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } lowerCamelCase_ : Union[str, Any] = { """RUCAIBox/mvp""": 10_24, } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Any = ["""input_ids""", """attention_mask"""] __UpperCamelCase : int = MvpTokenizer def __init__( self : Union[str, Any] , snake_case_ : Any=None , snake_case_ : Any=None , snake_case_ : Union[str, Any]=None , snake_case_ : Tuple="replace" , snake_case_ : Dict="<s>" , snake_case_ : Dict="</s>" , snake_case_ : Tuple="</s>" , snake_case_ : int="<s>" , snake_case_ : Tuple="<unk>" , snake_case_ : Optional[int]="<pad>" , snake_case_ : Any="<mask>" , snake_case_ : Union[str, Any]=False , snake_case_ : Optional[int]=True , **snake_case_ : Union[str, Any] , ): super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) UpperCamelCase_: Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , snake_case_ ) != add_prefix_space: UpperCamelCase_: str = getattr(snake_case_ , pre_tok_state.pop("""type""" ) ) UpperCamelCase_: int = add_prefix_space UpperCamelCase_: int = pre_tok_class(**snake_case_ ) UpperCamelCase_: int = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase_: Tuple = """post_processor""" UpperCamelCase_: Optional[int] = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: UpperCamelCase_: Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase_: Union[str, Any] = tuple(state["""sep"""] ) if "cls" in state: UpperCamelCase_: List[Any] = tuple(state["""cls"""] ) UpperCamelCase_: List[str] = False if state.get("""add_prefix_space""" , snake_case_ ) != add_prefix_space: UpperCamelCase_: str = add_prefix_space UpperCamelCase_: Union[str, Any] = True if state.get("""trim_offsets""" , snake_case_ ) != trim_offsets: UpperCamelCase_: Optional[int] = trim_offsets UpperCamelCase_: Any = True if changes_to_apply: UpperCamelCase_: Optional[int] = getattr(snake_case_ , state.pop("""type""" ) ) UpperCamelCase_: Union[str, Any] = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def lowerCAmelCase__ ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Dict ): UpperCamelCase_: List[str] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value UpperCamelCase_: Optional[int] = value def lowerCAmelCase__ ( self : Optional[int] , *snake_case_ : Dict , **snake_case_ : Optional[int] ): UpperCamelCase_: Optional[int] = kwargs.get("""is_split_into_words""" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] , *snake_case_ : Dict , **snake_case_ : Tuple ): UpperCamelCase_: Any = kwargs.get("""is_split_into_words""" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple , snake_case_ : str , snake_case_ : Optional[str] = None ): UpperCamelCase_: Optional[int] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCAmelCase__ ( self : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Any=None ): UpperCamelCase_: str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self : Any , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): UpperCamelCase_: Tuple = [self.sep_token_id] UpperCamelCase_: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
223
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _snake_case ( A__ , A__ , unittest.TestCase ): _lowercase : Dict = StableDiffusionPanoramaPipeline _lowercase : str = TEXT_TO_IMAGE_PARAMS _lowercase : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowercase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS _lowercase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: torch.manual_seed(0) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE = DDIMScheduler() torch.manual_seed(0) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(a) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE__ ( self , a , a=0) -> int: SCREAMING_SNAKE_CASE = torch.manual_seed(a) SCREAMING_SNAKE_CASE = { 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline(**a) SCREAMING_SNAKE_CASE = sd_pipe.to(a) sd_pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a) SCREAMING_SNAKE_CASE = sd_pipe(**a).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: super().test_inference_batch_consistent(batch_sizes=[1, 2]) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline(**a) SCREAMING_SNAKE_CASE = sd_pipe.to(a) sd_pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a) SCREAMING_SNAKE_CASE = 'french fries' SCREAMING_SNAKE_CASE = sd_pipe(**a , negative_prompt=a) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline(**a) SCREAMING_SNAKE_CASE = sd_pipe.to(a) sd_pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a) SCREAMING_SNAKE_CASE = sd_pipe(**a , view_batch_size=2) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear') SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline(**a) SCREAMING_SNAKE_CASE = sd_pipe.to(a) sd_pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a) SCREAMING_SNAKE_CASE = sd_pipe(**a).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , skip_prk_steps=a) SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline(**a) SCREAMING_SNAKE_CASE = sd_pipe.to(a) sd_pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a) SCREAMING_SNAKE_CASE = sd_pipe(**a).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self , a=0) -> Union[str, Any]: SCREAMING_SNAKE_CASE = torch.manual_seed(a) SCREAMING_SNAKE_CASE = { 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = 'stabilityai/stable-diffusion-2-base' SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(a , subfolder='scheduler') SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline.from_pretrained(a , scheduler=a , safety_checker=a) pipe.to(a) pipe.set_progress_bar_config(disable=a) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE = self.get_inputs() SCREAMING_SNAKE_CASE = pipe(**a).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) SCREAMING_SNAKE_CASE = np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ]) assert np.abs(expected_slice - image_slice).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=a) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(a) pipe.set_progress_bar_config(disable=a) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE = self.get_inputs() SCREAMING_SNAKE_CASE = pipe(**a).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) SCREAMING_SNAKE_CASE = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ]) assert np.abs(expected_slice - image_slice).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = 0 def callback_fn(a , a , a) -> None: SCREAMING_SNAKE_CASE = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) SCREAMING_SNAKE_CASE = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5E-2 elif step == 2: SCREAMING_SNAKE_CASE = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) SCREAMING_SNAKE_CASE = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5E-2 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 'stabilityai/stable-diffusion-2-base' SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(a , subfolder='scheduler') SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline.from_pretrained(a , scheduler=a , safety_checker=a) SCREAMING_SNAKE_CASE = pipe.to(a) pipe.set_progress_bar_config(disable=a) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE = self.get_inputs() pipe(**a , callback=a , callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE = 'stabilityai/stable-diffusion-2-base' SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(a , subfolder='scheduler') SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline.from_pretrained(a , scheduler=a , safety_checker=a) SCREAMING_SNAKE_CASE = pipe.to(a) pipe.set_progress_bar_config(disable=a) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE = self.get_inputs() SCREAMING_SNAKE_CASE = pipe(**a) SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
137
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _snake_case ( A__ ): _lowercase : int = '''Speech2TextFeatureExtractor''' _lowercase : List[Any] = '''Speech2TextTokenizer''' def __init__( self , a , a) -> str: super().__init__(a , a) SCREAMING_SNAKE_CASE = self.feature_extractor SCREAMING_SNAKE_CASE = False def __call__( self , *a , **a) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a , **a) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.') SCREAMING_SNAKE_CASE = kwargs.pop('raw_speech') else: SCREAMING_SNAKE_CASE = kwargs.pop('audio' , a) SCREAMING_SNAKE_CASE = kwargs.pop('sampling_rate' , a) SCREAMING_SNAKE_CASE = kwargs.pop('text' , a) if len(a) > 0: SCREAMING_SNAKE_CASE = args[0] SCREAMING_SNAKE_CASE = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if audio is not None: SCREAMING_SNAKE_CASE = self.feature_extractor(a , *a , sampling_rate=a , **a) if text is not None: SCREAMING_SNAKE_CASE = self.tokenizer(a , **a) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE = encodings['input_ids'] return inputs def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> Union[str, Any]: return self.tokenizer.batch_decode(*a , **a) def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> List[str]: return self.tokenizer.decode(*a , **a) @contextmanager def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.') SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.tokenizer yield SCREAMING_SNAKE_CASE = self.feature_extractor SCREAMING_SNAKE_CASE = False
137
1
"""simple docstring""" class UpperCamelCase : # Public class to implement a graph """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Any = row _lowercase : Union[str, Any] = col _lowercase : List[str] = graph def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : str = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _lowercase : int = [-1, 0, 1, -1, 1, -1, 0, 1] _lowercase : str = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] ,j + col_nbr[k] ,UpperCamelCase__ ): self.diffs(i + row_nbr[k] ,j + col_nbr[k] ,UpperCamelCase__ ) def lowerCamelCase__ ( self ): # And finally, count all islands. _lowercase : Dict = [[False for j in range(self.COL )] for i in range(self.ROW )] _lowercase : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) count += 1 return count
369
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
336
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :List[str] )-> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self :List[str] )-> List[Any]: A__ = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) A__ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) sd_pipe.set_scheduler("sample_euler" ) A__ = "A painting of a squirrel eating a burger" A__ = torch.manual_seed(0 ) A__ = sd_pipe([prompt] , generator=lowercase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self :Tuple )-> Optional[Any]: A__ = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) A__ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) sd_pipe.set_scheduler("sample_euler" ) A__ = "A painting of a squirrel eating a burger" A__ = torch.manual_seed(0 ) A__ = sd_pipe([prompt] , generator=lowercase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def UpperCAmelCase_ ( self :Tuple )-> List[Any]: A__ = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) A__ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) A__ = "A painting of a squirrel eating a burger" A__ = torch.manual_seed(0 ) A__ = sd_pipe( [prompt] , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=lowercase_ , ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
237
'''simple docstring''' import functools def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str ): A__ = len(_lowerCamelCase ) A__ = len(_lowerCamelCase ) @functools.cache def min_distance(_lowerCamelCase : int , _lowerCamelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa A__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _lowerCamelCase ) , 1 + min_distance(_lowerCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
237
1
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : List[Any] ): '''simple docstring''' super().setUp() UpperCAmelCase__ : str = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] UpperCAmelCase__ : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Tuple = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] UpperCAmelCase__ : Any = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} UpperCAmelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Any , **snake_case__ : Optional[int] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def __a ( self : str , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = "adapt act apte" UpperCAmelCase__ : Dict = "adapt act apte" return input_text, output_text def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase__ : Optional[int] = "adapt act apte" UpperCAmelCase__ : Optional[int] = ["adapt", "act", "ap@@", "te"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCAmelCase__ : Optional[int] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_3_8_4] UpperCAmelCase__ : Any = "I am a small frog." UpperCAmelCase__ : str = tok([src_text] , padding=snake_case__ , truncation=snake_case__ )["input_ids"] UpperCAmelCase__ : Optional[int] = tok.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) UpperCAmelCase__ : List[str] = "I am a small frog ." UpperCAmelCase__ : Optional[Any] = "." UpperCAmelCase__ : Optional[Any] = tok(snake_case__ )["input_ids"] UpperCAmelCase__ : List[Any] = tok(snake_case__ )["input_ids"] assert encoded[-1] == encoded_dot[0]
364
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCAmelCase : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=7 , snake_case__ : int=3 , snake_case__ : Any=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : int=4_0_0 , snake_case__ : Dict=None , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=None , ): '''simple docstring''' UpperCAmelCase__ : Dict = size if size is not None else {"height": 2_0, "width": 2_0} UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : int = min_resolution UpperCAmelCase__ : Tuple = max_resolution UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : str = do_convert_rgb UpperCAmelCase__ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCAmelCase__ : Union[str, Any] = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def __a ( self : str ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = PixaStructImageProcessingTester(self ) @property def __a ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : Dict = 2_0_4_8 UpperCAmelCase__ : int = image_processor(snake_case__ , return_tensors="pt" , max_patches=snake_case__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase__ : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(snake_case__ ): UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches UpperCAmelCase__ : Optional[Any] = "Hello" UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Dict ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : List[str] = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Optional[int] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase__ : Optional[int] = 3 @property def __a ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : int ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
298
0
import numpy class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : numpy.ndarray , lowerCAmelCase_ : numpy.ndarray ): """simple docstring""" _A: Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _A: Any = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _A: Optional[int] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _A: Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. _A: List[str] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _A: int = numpy.zeros(output_array.shape ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Union[str, Any] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _A: int = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _A: int = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Tuple = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _A: str = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _A: int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : numpy.ndarray , lowerCAmelCase_ : int , lowerCAmelCase_ : bool ): """simple docstring""" for iteration in range(1 , iterations + 1 ): _A: int = self.feedforward() self.back_propagation() if give_loss: _A: Any = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : numpy.ndarray ): """simple docstring""" _A: int = input_arr _A: int = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _A: Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _A: Any = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCamelCase__ ( a ) -> Dict: return 1 / (1 + numpy.exp(-value )) def lowerCamelCase__ ( a ) -> Optional[Any]: return (value) * (1 - (value)) def lowerCamelCase__ ( ) -> Union[str, Any]: _A: str = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _A: str = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _A: Dict = TwoHiddenLayerNeuralNetwork( input_array=a , output_array=a ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a , iterations=10 , give_loss=a ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
121
"""simple docstring""" import datasets from .evaluate import evaluate _UpperCAmelCase = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ _UpperCAmelCase = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ _UpperCAmelCase = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def lowerCamelCase__ ( self : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict ={prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} SCREAMING_SNAKE_CASE_: Tuple =[ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE_: str =evaluate(dataset=lowerCAmelCase , predictions=lowerCAmelCase ) return score
173
0
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class _snake_case ( _snake_case ): def SCREAMING_SNAKE_CASE__ ( self ): a :int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , '''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , '''num_encoder_blocks''' ) ) class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=64 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[2, 2, 2, 2] , _lowerCamelCase=[8, 4, 2, 1] , _lowerCamelCase=[16, 32, 64, 128] , _lowerCamelCase=[1, 4, 8, 16] , _lowerCamelCase=[1, 2, 4, 8] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , ): a :List[str] = parent a :Dict = batch_size a :int = image_size a :List[str] = num_channels a :int = num_encoder_blocks a :Union[str, Any] = sr_ratios a :Any = depths a :str = hidden_sizes a :Any = downsampling_rates a :List[str] = num_attention_heads a :Dict = is_training a :Optional[int] = use_labels a :Any = hidden_act a :Tuple = hidden_dropout_prob a :Any = attention_probs_dropout_prob a :Any = initializer_range a :List[str] = num_labels a :str = scope def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a :Optional[int] = None if self.use_labels: a :Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a :Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :List[Any] = SegformerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :Optional[Any] = model(_lowerCamelCase ) a :Tuple = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[Any] = self.num_labels a :Any = SegformerForSemanticSegmentation(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :Optional[int] = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) a :Tuple = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Any = 1 a :List[str] = SegformerForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :Optional[int] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_lowerCamelCase ) a :str = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertGreater(result.loss , 0.0 ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = self.prepare_config_and_inputs() a :Optional[Any] = config_and_inputs a :Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _snake_case ( _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( { 'feature-extraction': SegformerModel, 'image-classification': SegformerForImageClassification, 'image-segmentation': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self ): a :int = SegformerModelTester(self ) a :Union[str, Any] = SegformerConfigTester(self , config_class=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_lowerCamelCase ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a :List[str] = model_class(_lowerCamelCase ) a :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a :Dict = [*signature.parameters.keys()] a :int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = self.model_tester.prepare_config_and_inputs_for_common() a :Dict = True for model_class in self.all_model_classes: a :List[str] = True a :List[str] = False a :Tuple = True a :Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): a :Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) a :List[str] = outputs.attentions a :Any = sum(self.model_tester.depths ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a :int = True a :List[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): a :int = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) a :int = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # verify the first attentions (first block, first layer) a :Any = (self.model_tester.image_size // 4) ** 2 a :List[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a :str = (self.model_tester.image_size // 32) ** 2 a :Optional[Any] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a :Tuple = len(_lowerCamelCase ) # Check attention is always last and order is fine a :str = True a :List[str] = True a :Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): a :Union[str, Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(_lowerCamelCase ) ) a :Any = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # verify the first attentions (first block, first layer) a :Union[str, Any] = (self.model_tester.image_size // 4) ** 2 a :List[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def SCREAMING_SNAKE_CASE__ ( self ): def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[int] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): a :Any = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) a :List[Any] = outputs.hidden_states a :Optional[int] = self.model_tester.num_encoder_blocks self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a :List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a :Tuple = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): if not self.model_tester.is_training: return a :Dict = self.model_tester.prepare_config_and_inputs_for_common() a :List[str] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ): continue a :str = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() a :Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) a :int = model(**_lowerCamelCase ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a :Optional[int] = SegformerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def __lowerCamelCase ( ): """simple docstring""" a :Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ): # only resize + normalize a :Optional[int] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) a :Tuple = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( _lowerCamelCase ) a :int = prepare_img() a :Dict = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ) a :Any = encoded_inputs.pixel_values.to(_lowerCamelCase ) with torch.no_grad(): a :List[Any] = model(_lowerCamelCase ) a :Dict = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) a :Union[str, Any] = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # only resize + normalize a :int = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) a :Tuple = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(_lowerCamelCase ) a :Union[str, Any] = prepare_img() a :Any = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ) a :int = encoded_inputs.pixel_values.to(_lowerCamelCase ) with torch.no_grad(): a :Optional[int] = model(_lowerCamelCase ) a :Union[str, Any] = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) a :int = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-1 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # only resize + normalize a :int = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) a :Optional[Any] = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( _lowerCamelCase ) a :str = prepare_img() a :List[str] = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ) a :Optional[Any] = encoded_inputs.pixel_values.to(_lowerCamelCase ) with torch.no_grad(): a :Any = model(_lowerCamelCase ) a :Union[str, Any] = outputs.logits.detach().cpu() a :Dict = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase , target_sizes=[(500, 300)] ) a :Optional[Any] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _lowerCamelCase ) a :int = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase ) a :Union[str, Any] = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , _lowerCamelCase )
350
def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" if n_term == "": return [] a :list = [] for temp in range(int(UpperCAmelCase_ ) ): series.append(F'''1/{temp + 1}''' if series else '''1''' ) return series if __name__ == "__main__": snake_case : Tuple = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
281
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCAmelCase : Tuple =logging.get_logger(__name__) lowerCAmelCase : List[str] ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCAmelCase : Optional[int] ={ '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } lowerCAmelCase : List[Any] ={ '''RUCAIBox/mvp''': 1_024, } class a_ ( _lowerCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ["input_ids", "attention_mask"] __A = MvpTokenizer def __init__( self : Optional[Any] , lowercase : Any=None , lowercase : List[Any]=None , lowercase : Dict=None , lowercase : int="replace" , lowercase : int="<s>" , lowercase : List[str]="</s>" , lowercase : Optional[Any]="</s>" , lowercase : List[str]="<s>" , lowercase : List[str]="<unk>" , lowercase : List[str]="<pad>" , lowercase : Tuple="<mask>" , lowercase : Tuple=False , lowercase : Dict=True , **lowercase : List[str] , ): """simple docstring""" super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) lowercase_ :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowercase ) != add_prefix_space: lowercase_ :List[str] = getattr(lowercase , pre_tok_state.pop("type" ) ) lowercase_ :int = add_prefix_space lowercase_ :Optional[int] = pre_tok_class(**lowercase ) lowercase_ :Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ :List[Any] = "post_processor" lowercase_ :str = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: lowercase_ :Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ :int = tuple(state["sep"] ) if "cls" in state: lowercase_ :Any = tuple(state["cls"] ) lowercase_ :int = False if state.get("add_prefix_space" , lowercase ) != add_prefix_space: lowercase_ :Union[str, Any] = add_prefix_space lowercase_ :int = True if state.get("trim_offsets" , lowercase ) != trim_offsets: lowercase_ :Any = trim_offsets lowercase_ :int = True if changes_to_apply: lowercase_ :Tuple = getattr(lowercase , state.pop("type" ) ) lowercase_ :Any = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property def lowercase__ ( self : Optional[int] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : int , lowercase : Dict ): """simple docstring""" lowercase_ :List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value lowercase_ :Union[str, Any] = value def lowercase__ ( self : Optional[Any] , *lowercase : List[Any] , **lowercase : Any ): """simple docstring""" lowercase_ :Any = kwargs.get("is_split_into_words" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase , **lowercase ) def lowercase__ ( self : Optional[Any] , *lowercase : Optional[int] , **lowercase : int ): """simple docstring""" lowercase_ :Any = kwargs.get("is_split_into_words" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase , **lowercase ) def lowercase__ ( self : Dict , lowercase : str , lowercase : Optional[str] = None ): """simple docstring""" lowercase_ :str = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def lowercase__ ( self : Tuple , lowercase : Dict , lowercase : int=None ): """simple docstring""" lowercase_ :List[str] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : int , lowercase : List[int] , lowercase : Optional[List[int]] = None ): """simple docstring""" lowercase_ :Union[str, Any] = [self.sep_token_id] lowercase_ :Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
223
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : int = 10_00 ): lowercase_ , lowercase_ :str = 1, 1 lowercase_ :Any = 2 while True: lowercase_ :str = 0 lowercase_ :Tuple = fa + fa lowercase_ , lowercase_ :Tuple = fa, f index += 1 for _ in str(__lowerCamelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
223
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Optional[Any] ): a__: Tuple =AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=_a ).to(_a ) a__: Tuple =AutoTokenizer.from_pretrained("google/mt5-small" ) a__: str =tokenizer("Hello there" , return_tensors="pt" ).input_ids a__: int =tokenizer("Hi I am" , return_tensors="pt" ).input_ids a__: Optional[Any] =model(input_ids.to(_a ) , labels=labels.to(_a ) ).loss a__: str =-(labels.shape[-1] * loss.item()) a__: Optional[Any] =-8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
42
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
42
1
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _UpperCamelCase : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(_a) class UpperCAmelCase_ ( _a): def __init__( self , *a , **a ) -> Union[str, Any]: super().__init__(*a , **a ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _UpperCAmelCase ( self , a=None , a=None , a=None ) -> Dict: lowercase__ : int = {} lowercase__ : List[str] = {} if prompt is not None: lowercase__ : Any = prompt if generate_kwargs is not None: lowercase__ : Dict = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase__ : str = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) lowercase__ : List[str] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , a , **a ) -> List[str]: return super().__call__(a , **a ) def _UpperCAmelCase ( self , a , a=None ) -> Optional[Any]: lowercase__ : List[Any] = load_image(a ) if prompt is not None: if not isinstance(a , a ): raise ValueError( f"""Received an invalid text input, got - {type(a )} - but expected a single string. """ 'Note also that one single text can be provided for conditional image to text generation.' ) lowercase__ : Optional[Any] = self.model.config.model_type if model_type == "git": lowercase__ : List[str] = self.image_processor(images=a , return_tensors=self.framework ) lowercase__ : List[Any] = self.tokenizer(text=a , add_special_tokens=a ).input_ids lowercase__ : int = [self.tokenizer.cls_token_id] + input_ids lowercase__ : Tuple = torch.tensor(a ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": lowercase__ : Dict = self.image_processor(images=a , header_text=a , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase__ : int = self.image_processor(images=a , return_tensors=self.framework ) lowercase__ : Optional[int] = self.tokenizer(a , return_tensors=self.framework ) model_inputs.update(a ) else: raise ValueError(f"""Model type {model_type} does not support conditional text generation""" ) else: lowercase__ : Any = self.image_processor(images=a , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase__ : Optional[int] = None return model_inputs def _UpperCAmelCase ( self , a , a=None ) -> Dict: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , a ) and all(x is None for x in model_inputs['input_ids'] ) ): lowercase__ : Tuple = None if generate_kwargs is None: lowercase__ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase__ : Optional[int] = model_inputs.pop(self.model.main_input_name ) lowercase__ : List[Any] = self.model.generate(a , **a , **a ) return model_outputs def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : List[str] = [] for output_ids in model_outputs: lowercase__ : str = { 'generated_text': self.tokenizer.decode( a , skip_special_tokens=a , ) } records.append(a ) return records
77
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )] UpperCAmelCase : Any = randint(-5_000 , 5_000 ) return (arr, r) _lowerCamelCase : Any = make_dataset() def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]: for triplet in permutations(UpperCAmelCase , 3 ): if sum(UpperCAmelCase ) == target: return tuple(sorted(UpperCAmelCase ) ) return (0, 0, 0) def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]: arr.sort() UpperCAmelCase : Tuple = len(UpperCAmelCase ) for i in range(n - 1 ): UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' UpperCAmelCase : Tuple = ''' triplet_sum1(*dataset) ''' UpperCAmelCase : List[str] = ''' triplet_sum2(*dataset) ''' UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) return (min(UpperCAmelCase ), min(UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase : int = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
336
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Optional[int] = ['image_processor', 'tokenizer'] _SCREAMING_SNAKE_CASE : Tuple = 'ChineseCLIPImageProcessor' _SCREAMING_SNAKE_CASE : Optional[Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" _lowercase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCamelCase , ) _lowercase : Optional[int] = kwargs.pop("feature_extractor" ) _lowercase : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCamelCase , _UpperCamelCase ) _lowercase : str = self.image_processor def __call__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _lowercase : Union[str, Any] = self.tokenizer(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) if images is not None: _lowercase : Dict = self.image_processor(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) if text is not None and images is not None: _lowercase : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCamelCase ) , tensor_type=_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = self.tokenizer.model_input_names _lowercase : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _UpperCamelCase , ) return self.image_processor_class
199
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Any = 'roc_bert' def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.0_2 , _UpperCamelCase=1E-1_2 , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=768 , _UpperCamelCase=910 , _UpperCamelCase=512 , _UpperCamelCase=24858 , _UpperCamelCase=True , **_UpperCamelCase , ): """simple docstring""" _lowercase : str = vocab_size _lowercase : List[str] = max_position_embeddings _lowercase : List[Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : int = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Dict = initializer_range _lowercase : List[Any] = type_vocab_size _lowercase : Tuple = layer_norm_eps _lowercase : Optional[int] = use_cache _lowercase : Tuple = enable_pronunciation _lowercase : Optional[int] = enable_shape _lowercase : int = pronunciation_embed_dim _lowercase : List[str] = pronunciation_vocab_size _lowercase : int = shape_embed_dim _lowercase : str = shape_vocab_size _lowercase : str = concat_input _lowercase : Dict = position_embedding_type _lowercase : Optional[Any] = classifier_dropout super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase )
199
1
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) __snake_case : Dict = logging.getLogger(__name__) if __name__ == "__main__": __snake_case : List[Any] = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=3_05_22, type=int) __snake_case : Tuple = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, """rb""") as fp: __snake_case : Union[str, Any] = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") __snake_case : Optional[Any] = Counter() for tk_ids in data: counter.update(tk_ids) __snake_case : Optional[int] = [0] * args.vocab_size for k, v in counter.items(): __snake_case : Tuple = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
248
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def __lowerCAmelCase ( ): __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("-f" ) __UpperCamelCase : Any = parser.parse_args() return args.f def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Dict = {} __UpperCamelCase : Dict = os.path.join(snake_case__ , "all_results.json" ) if os.path.exists(snake_case__ ): with open(snake_case__ , "r" ) as f: __UpperCamelCase : Any = json.load(snake_case__ ) else: raise ValueError(F"can't find {path}" ) return results def __lowerCAmelCase ( ): __UpperCamelCase : Any = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @classmethod def a_ (cls ) -> Union[str, Any]: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __UpperCamelCase : Optional[Any] = tempfile.mkdtemp() __UpperCamelCase : List[str] = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) __UpperCamelCase : Optional[Any] = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def a_ (cls ) -> Union[str, Any]: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Optional[int]: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Dict: __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertLess(result["perplexity"] , 1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Any: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[Any] = get_results(_UpperCAmelCase ) self.assertLess(result["perplexity"] , 4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> int: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase : int = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase : int = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Any: __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 2_8 ) self.assertGreaterEqual(result["eval_exact"] , 2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Dict: __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[str] = f"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Union[str, Any]: __UpperCamelCase : str = self.get_auto_remove_tmp_dir() __UpperCamelCase : Dict = f"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Dict = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_rouge1"] , 1_0 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Tuple: __UpperCamelCase : Optional[int] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_bleu"] , 3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "translation_no_trainer" ) ) ) @slow def a_ (self ) -> List[Any]: __UpperCamelCase : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCAmelCase ) __UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Tuple: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __UpperCamelCase : str = get_results(_UpperCAmelCase ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "image_classification_no_trainer" ) ) )
298
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Dict = "timesformer" def __init__( self : int , lowerCamelCase__ : List[Any]=2_24 , lowerCamelCase__ : List[str]=16 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Dict=8 , lowerCamelCase__ : Optional[int]=7_68 , lowerCamelCase__ : Optional[Any]=12 , lowerCamelCase__ : List[Any]=12 , lowerCamelCase__ : Tuple=30_72 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : str=0.0 , lowerCamelCase__ : Optional[Any]=0.0 , lowerCamelCase__ : Tuple=0.0_2 , lowerCamelCase__ : int=1E-6 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : List[Any]="divided_space_time" , lowerCamelCase__ : Optional[int]=0 , **lowerCamelCase__ : int , ) ->Any: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Dict = image_size _UpperCAmelCase : Any = patch_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Union[str, Any] = num_frames _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Any = layer_norm_eps _UpperCAmelCase : List[str] = qkv_bias _UpperCAmelCase : str = attention_type _UpperCAmelCase : List[Any] = drop_path_rate
351
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = {} class A ( __UpperCAmelCase ): __snake_case = 'llama' __snake_case = ['past_key_values'] def __init__( self, UpperCamelCase__=3_2000, UpperCamelCase__=4096, UpperCamelCase__=1_1008, UpperCamelCase__=32, UpperCamelCase__=32, UpperCamelCase__=None, UpperCamelCase__="silu", UpperCamelCase__=2048, UpperCamelCase__=0.02, UpperCamelCase__=1E-6, UpperCamelCase__=True, UpperCamelCase__=0, UpperCamelCase__=1, UpperCamelCase__=2, UpperCamelCase__=1, UpperCamelCase__=False, UpperCamelCase__=None, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_size lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = num_key_value_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = initializer_range lowerCAmelCase_ = rms_norm_eps lowerCAmelCase_ = pretraining_tp lowerCAmelCase_ = use_cache lowerCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_a, bos_token_id=_a, eos_token_id=_a, tie_word_embeddings=_a, **_a, ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling, _a ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) lowerCAmelCase_ = self.rope_scaling.get('''type''', _a ) lowerCAmelCase_ = self.rope_scaling.get('''factor''', _a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(_a, _a ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}" )
278
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets snake_case : List[Any] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" snake_case : Any = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" snake_case : str = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a=None , _a=True , _a=False ): if rouge_types is None: __magic_name__ : str = ["rouge1", "rouge2", "rougeL", "rougeLsum"] __magic_name__ : List[str] = rouge_scorer.RougeScorer(rouge_types=_a , use_stemmer=_a ) if use_aggregator: __magic_name__ : Dict = scoring.BootstrapAggregator() else: __magic_name__ : str = [] for ref, pred in zip(_a , _a ): __magic_name__ : Union[str, Any] = scorer.score(_a , _a ) if use_aggregator: aggregator.add_scores(_a ) else: scores.append(_a ) if use_aggregator: __magic_name__ : Any = aggregator.aggregate() else: __magic_name__ : List[Any] = {} for key in scores[0]: __magic_name__ : str = [score[key] for score in scores] return result
281
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( A : list[int | str] ): '''simple docstring''' create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def lowerCamelCase__ ( A : list[int | str] , A : list[int | str] , A : int , A : list[int] , ): '''simple docstring''' if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCAmelCase = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() UpperCAmelCase = False _lowercase : Tuple = [3, 1, 2, 4] generate_all_permutations(sequence) _lowercase : List[str] = ["""A""", """B""", """C"""] generate_all_permutations(sequence_a)
354
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCamelCase__: __magic_name__ : int __magic_name__ : TreeNode | None = None __magic_name__ : TreeNode | None = None _lowercase : Tuple = namedtuple("""CoinsDistribResult""", """moves excess""") def lowerCamelCase__ ( A : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(A : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(A ) != count_coins(A ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(A : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase , UpperCAmelCase = get_distrib(node.left ) UpperCAmelCase , UpperCAmelCase = get_distrib(node.right ) UpperCAmelCase = 1 - left_distrib_excess UpperCAmelCase = 1 - right_distrib_excess UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(A ) + abs(A ) ) UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(A , A ) return get_distrib(A )[0] if __name__ == "__main__": import doctest doctest.testmod()
91
0
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Union[str, Any] = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """xlnet""" __lowercase = ["""mems"""] __lowercase = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase_=3_20_00 , lowerCAmelCase_=10_24 , lowerCAmelCase_=24 , lowerCAmelCase_=16 , lowerCAmelCase_=40_96 , lowerCAmelCase_="gelu" , lowerCAmelCase_=True , lowerCAmelCase_="bi" , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=-1 , lowerCAmelCase_=False , lowerCAmelCase_="last" , lowerCAmelCase_=True , lowerCAmelCase_="tanh" , lowerCAmelCase_=0.1 , lowerCAmelCase_=5 , lowerCAmelCase_=5 , lowerCAmelCase_=5 , lowerCAmelCase_=1 , lowerCAmelCase_=2 , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = vocab_size _snake_case = d_model _snake_case = n_layer _snake_case = n_head if d_model % n_head != 0: raise ValueError(F'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) _snake_case = d_model // n_head _snake_case = ff_activation _snake_case = d_inner _snake_case = untie_r _snake_case = attn_type _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = dropout _snake_case = mem_len _snake_case = reuse_len _snake_case = bi_data _snake_case = clamp_len _snake_case = same_length _snake_case = summary_type _snake_case = summary_use_proj _snake_case = summary_activation _snake_case = summary_last_dropout _snake_case = start_n_top _snake_case = end_n_top _snake_case = bos_token_id _snake_case = pad_token_id _snake_case = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , lowerCAmelCase_ , ) _snake_case = kwargs['use_cache'] _snake_case = use_mems_eval _snake_case = use_mems_train super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowerCamelCase ( self ): """simple docstring""" logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
42
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A ) -> str: _snake_case = 1 _snake_case = 2 while i * i <= n: _snake_case = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: _snake_case = 1 _snake_case = 1 while True: i += 1 t_num += i if count_divisors(__A ) > 500: break return t_num if __name__ == "__main__": print(solution())
42
1
import torch from torch import nn class A__ ( nn.Module ): def __init__( self : Optional[int] , a : Union[str, Any] , a : str , a : str , a : List[Any] , a : List[Any]=1 , a : Tuple=False ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Dict = n_token lowerCAmelCase__ : Any = d_embed lowerCAmelCase__ : str = d_proj lowerCAmelCase__ : int = cutoffs + [n_token] lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs lowerCAmelCase__ : str = div_val lowerCAmelCase__ : Tuple = self.cutoffs[0] lowerCAmelCase__ : Dict = len(self.cutoffs ) - 1 lowerCAmelCase__ : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase__ : Optional[int] = nn.ModuleList() lowerCAmelCase__ : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) else: self.out_projs.append(a ) self.out_layers.append(nn.Linear(a , a ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase__ , lowerCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) self.out_layers.append(nn.Linear(a , r_idx - l_idx ) ) lowerCAmelCase__ : Tuple = keep_order def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : int , a : List[str] , a : str ): '''simple docstring''' if proj is None: lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase__ : int = nn.functional.linear(a , proj.t().contiguous() ) lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowerCamelCase ( self : List[str] , a : List[Any] , a : Optional[int]=None , a : Tuple=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase__ : str = hidden[..., :-1, :].contiguous() lowerCAmelCase__ : Optional[Any] = labels[..., 1:].contiguous() lowerCAmelCase__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase__ : Tuple = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: lowerCAmelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase__ : Optional[Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase__ : str = labels != -100 lowerCAmelCase__ : int = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : List[str] = ( -nn.functional.log_softmax(a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Any = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : Optional[Any] = self.out_layers[i].weight lowerCAmelCase__ : Optional[int] = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : List[Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(a , dim=1 ) if labels is None: lowerCAmelCase__ : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase__ : Dict = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase__ : Tuple = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase__ : int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase__ : Tuple = labels.index_select(0 , a ) - l_idx lowerCAmelCase__ : Any = head_logprob.index_select(0 , a ) lowerCAmelCase__ : Optional[int] = hidden.index_select(0 , a ) else: lowerCAmelCase__ : Any = hidden if i == 0: if labels is not None: lowerCAmelCase__ : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : List[str] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Optional[int] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase__ : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase__ : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' if self.n_clusters == 0: lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : str = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : int = self.out_layers[i].weight lowerCAmelCase__ : int = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : str = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[str] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : Dict = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase__ : List[str] = logprob_i return out
307
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : def _lowerCamelCase ( self : List[Any] , a : List[str] , a : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict , a : int , a : str , a : List[Any] , a : Dict , a : List[str]=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(a , a ) lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel(a ) lowerCAmelCase__ : Tuple = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : Tuple , a : Dict , a : Union[str, Any] , a : List[Any]=None , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_vision_text_model(a , a ) lowerCAmelCase__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Optional[int] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : List[str] , a : Optional[int] , a : Optional[int] , a : Union[str, Any] , a : List[Any] , a : Any=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[Any] = {'vision_model': vision_model, 'text_model': text_model} lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a ) lowerCAmelCase__ : Union[str, Any] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : Any , a : Optional[int] , a : Optional[int] , a : Dict , a : Optional[int] , a : Optional[int]=None , **a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : List[str] = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : int = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = after_output[0].numpy() lowerCAmelCase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) def _lowerCamelCase ( self : List[str] , a : Dict , a : Optional[int] , a : List[Any] , a : str , a : int=None , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : str = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : str = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : List[Any] , a : np.ndarray , a : np.ndarray , a : float ): '''simple docstring''' lowerCAmelCase__ : int = np.abs((a - b) ).max() self.assertLessEqual(a , a , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.get_pretrained_model_and_inputs() lowerCAmelCase__ : List[Any] = model_a(**a ) lowerCAmelCase__ : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a ) lowerCAmelCase__ : str = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : List[str] = model_a(**a ) lowerCAmelCase__ : int = after_outputs[0].numpy() lowerCAmelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : int = 13 lowerCAmelCase__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , a : Dict , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFViTModel(a , name='vision_model' ) lowerCAmelCase__ : str = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFViTModelTester(self ) lowerCAmelCase__ : Tuple = TFBertModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase__ : Tuple = 13 lowerCAmelCase__ : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : Optional[Any] , a : Dict , a : Dict , a : Any , a : Any=None , **a : int ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Any = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : str = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , a : Optional[int] , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModel(a , name='vision_model' ) lowerCAmelCase__ : List[Any] = TFRobertaModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModelTester(self ) lowerCAmelCase__ : List[str] = TFRobertaModelTester(self ) lowerCAmelCase__ : str = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : Dict = 13 lowerCAmelCase__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFCLIPVisionModel(a , name='vision_model' ) lowerCAmelCase__ : List[str] = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = TFCLIPVisionModelTester(self ) lowerCAmelCase__ : Union[str, Any] = TFBertModelTester(self ) lowerCAmelCase__ : Any = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=a ) lowerCAmelCase__ : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ : Any = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=a , padding=a , return_tensors='np' ) lowerCAmelCase__ : Union[str, Any] = model(**a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a , atol=1E-3 ) )
307
1
def a_ ( SCREAMING_SNAKE_CASE__ : list ): '''simple docstring''' if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
199
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = '▁' lowerCamelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A ( UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : Tuple =BigBirdTokenizer UpperCamelCase__ : Union[str, Any] =BigBirdTokenizerFast UpperCamelCase__ : Any =True UpperCamelCase__ : Optional[Any] =True def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" super().setUp() _lowerCamelCase : List[Any] =self.tokenizer_class(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _lowerCamelCase : List[Any] ='<s>' _lowerCamelCase : Optional[Any] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def lowerCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[int] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(lowercase_ ) , 1004 ) def lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase : Union[str, Any] =self.get_tokenizer() _lowerCamelCase : int =self.get_rust_tokenizer() _lowerCamelCase : int ='I was born in 92000, and this is falsé.' _lowerCamelCase : int =tokenizer.tokenize(lowercase_ ) _lowerCamelCase : List[Any] =rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Any =tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) _lowerCamelCase : str =rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : str =self.get_rust_tokenizer() _lowerCamelCase : Union[str, Any] =tokenizer.encode(lowercase_ ) _lowerCamelCase : List[Any] =rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : str =BigBirdTokenizer(lowercase_ , keep_accents=lowercase_ ) _lowerCamelCase : int =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [285, 46, 10, 170, 382] , ) _lowerCamelCase : Optional[Any] =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Any =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowerCamelCase : Optional[int] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def lowerCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" _lowerCamelCase : List[str] ='Hello World!' _lowerCamelCase : Tuple =[65, 1_8536, 2260, 101, 66] self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def lowerCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : int =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off _lowerCamelCase : Tuple =[65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @require_torch @slow def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _lowerCamelCase : Union[str, Any] =list(self.big_tokenizer.get_vocab().keys() )[:10] _lowerCamelCase : List[Any] =' '.join(lowercase_ ) _lowerCamelCase : List[str] =self.big_tokenizer.encode_plus(lowercase_ , return_tensors='pt' , return_token_type_ids=lowercase_ ) _lowerCamelCase : Optional[int] =self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=lowercase_ ) _lowerCamelCase : List[str] =BigBirdConfig(attention_type='original_full' ) _lowerCamelCase : Optional[Any] =BigBirdModel(lowercase_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase_ ) model(**lowercase_ ) @slow def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Dict =BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) _lowerCamelCase : int =tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] ={'input_ids': [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
199
1
"""simple docstring""" from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowercase( __a ): '''simple docstring''' lowercase__ = "philschmid/bart-large-cnn-samsum" lowercase__ = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) lowercase__ = "summarizer" lowercase__ = AutoTokenizer lowercase__ = AutoModelForSeqaSeqLM lowercase__ = ["text"] lowercase__ = ["text"] def UpperCamelCase_ ( self: Dict, a_: Optional[Any] ): '''simple docstring''' return self.pre_processor(a_, return_tensors="""pt""", truncation=a_ ) def UpperCamelCase_ ( self: Dict, a_: Optional[Any] ): '''simple docstring''' return self.model.generate(**a_ )[0] def UpperCamelCase_ ( self: Optional[int], a_: List[Any] ): '''simple docstring''' return self.pre_processor.decode(a_, skip_special_tokens=a_, clean_up_tokenization_spaces=a_ )
358
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : int ): """simple docstring""" if isinstance(snake_case__ , snake_case__ ): _snake_case : List[Any] = np.full((len(snake_case__ ), sequence_length, 2) , snake_case__ ) else: _snake_case : Any = np.full((len(snake_case__ ), sequence_length) , snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ , snake_case__ ): _snake_case : Dict = tensor[:sequence_length] else: _snake_case : List[Any] = tensor[:sequence_length] else: if isinstance(snake_case__ , snake_case__ ): _snake_case : str = tensor[:sequence_length] else: _snake_case : Tuple = tensor[:sequence_length] return out_tensor.tolist() def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" _snake_case : str = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _snake_case : Union[str, Any] = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None lowercase__ = -1_00 lowercase__ = "pt" def UpperCamelCase_ ( self: Any, a_: Union[str, Any] ): '''simple docstring''' import torch _snake_case : Optional[Any] = """label""" if """label""" in features[0].keys() else """labels""" _snake_case : str = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _snake_case : Any = self.tokenizer.pad( a_, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="""pt""" if labels is None else None, ) if labels is None: return batch _snake_case : Optional[int] = torch.tensor(batch["""entity_ids"""] ).shape[1] _snake_case : Any = self.tokenizer.padding_side if padding_side == "right": _snake_case : Optional[int] = [ list(a_ ) + [self.label_pad_token_id] * (sequence_length - len(a_ )) for label in labels ] else: _snake_case : Union[str, Any] = [ [self.label_pad_token_id] * (sequence_length - len(a_ )) + list(a_ ) for label in labels ] _snake_case : List[Any] = [feature["""ner_tags"""] for feature in features] _snake_case : str = padding_tensor(a_, -1, a_, a_ ) _snake_case : Any = [feature["""original_entity_spans"""] for feature in features] _snake_case : int = padding_tensor(a_, (-1, -1), a_, a_ ) _snake_case : str = {k: torch.tensor(a_, dtype=torch.intaa ) for k, v in batch.items()} return batch
132
0
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class UpperCamelCase__ ( snake_case__ ): """simple docstring""" UpperCAmelCase_ ='autoformer' UpperCAmelCase_ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , _A = None , _A = None , _A = "student_t" , _A = "nll" , _A = 1 , _A = [1, 2, 3, 4, 5, 6, 7] , _A = True , _A = 0 , _A = 0 , _A = 0 , _A = 0 , _A = None , _A = None , _A = 64 , _A = 2 , _A = 2 , _A = 2 , _A = 2 , _A = 32 , _A = 32 , _A = "gelu" , _A = 0.1 , _A = 0.1 , _A = 0.1 , _A = 0.1 , _A = 0.1 , _A = 100 , _A = 0.02 , _A = True , _A=True , _A = 10 , _A = 25 , _A = 3 , **_A , ) -> str: # time series specific configuration SCREAMING_SNAKE_CASE_ = prediction_length SCREAMING_SNAKE_CASE_ = context_length if context_length is not None else prediction_length SCREAMING_SNAKE_CASE_ = distribution_output SCREAMING_SNAKE_CASE_ = loss SCREAMING_SNAKE_CASE_ = input_size SCREAMING_SNAKE_CASE_ = num_time_features SCREAMING_SNAKE_CASE_ = lags_sequence SCREAMING_SNAKE_CASE_ = scaling SCREAMING_SNAKE_CASE_ = num_dynamic_real_features SCREAMING_SNAKE_CASE_ = num_static_real_features SCREAMING_SNAKE_CASE_ = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) SCREAMING_SNAKE_CASE_ = cardinality else: SCREAMING_SNAKE_CASE_ = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) SCREAMING_SNAKE_CASE_ = embedding_dimension else: SCREAMING_SNAKE_CASE_ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] SCREAMING_SNAKE_CASE_ = num_parallel_samples # Transformer architecture configuration SCREAMING_SNAKE_CASE_ = input_size * len(self.lags_sequence ) + self._number_of_features SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = use_cache # Autoformer SCREAMING_SNAKE_CASE_ = label_length SCREAMING_SNAKE_CASE_ = moving_average SCREAMING_SNAKE_CASE_ = autocorrelation_factor super().__init__(is_encoder_decoder=_A , **_A ) @property def _UpperCamelCase ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
299
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int: __lowerCAmelCase: List[str] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = patch_size __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Union[str, Any] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: str = attention_probs_dropout_prob __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Optional[Any] = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: List[str] = coordinate_size __lowerCAmelCase: Tuple = shape_size __lowerCAmelCase: List[Any] = num_labels __lowerCAmelCase: Any = num_choices __lowerCAmelCase: List[str] = scope __lowerCAmelCase: Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase: Optional[Any] = text_seq_length __lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase: int = self.text_seq_length + self.image_seq_length def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase: str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase: Optional[Any] = bbox[i, j, 3] __lowerCAmelCase: Tuple = bbox[i, j, 1] __lowerCAmelCase: Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase: Any = bbox[i, j, 2] __lowerCAmelCase: int = bbox[i, j, 0] __lowerCAmelCase: int = tmp_coordinate __lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase ) __lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase: int = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase: str = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: __lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image __lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) __lowerCAmelCase: List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int: __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) __lowerCAmelCase: Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: str = 2 __lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs __lowerCAmelCase: List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Tuple = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : Tuple = False def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: return True def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict: __lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self ) __lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] __lowerCAmelCase: Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' ) __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCAmelCase: str = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase: Tuple = -1_0_0 __lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase ) __lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase: Dict = inspect.signature(model.call ).parameters __lowerCAmelCase: Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase: str = {0: 'input_ids'} for label_key in label_keys: __lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase ) __lowerCAmelCase: Tuple = label_key __lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase: List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase: Optional[Any] = prepared_for_class[value] __lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase ) # Send to model __lowerCAmelCase: Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase ( self : Dict ) -> Tuple: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self : int ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCAmelCase: Tuple = self.default_image_processor __lowerCAmelCase: str = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values __lowerCAmelCase: Dict = tf.constant([[1, 2]] ) __lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) __lowerCAmelCase: str = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
322
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = """▁""" UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCamelCase = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } UpperCamelCase = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off UpperCamelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class _lowerCamelCase ( __lowerCamelCase ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = ['input_ids', 'attention_mask'] snake_case = [] snake_case = [] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->str: '''simple docstring''' A_ : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token A_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs A_ : Any = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) A_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) A_ : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token A_ : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A_ : Optional[int] = 1 A_ : List[str] = len(self.sp_model ) A_ : Any = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase_ ) } A_ : Tuple = {v: k for k, v in self.lang_code_to_id.items()} A_ : Any = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A_ : int = src_lang if src_lang is not None else '''en_XX''' A_ : str = self.lang_code_to_id[self._src_lang] A_ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _snake_case ( self )->Tuple: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _snake_case ( self )->List[str]: '''simple docstring''' return self._src_lang @src_lang.setter def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self )->Tuple: '''simple docstring''' A_ : Optional[int] = self.__dict__.copy() A_ : Any = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' A_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : str = {} A_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self )->int: '''simple docstring''' A_ : Tuple = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A_ : Any = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : Union[str, Any] = [] A_ : Tuple = '''''' A_ : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_ ) + token A_ : Dict = True A_ : List[Any] = [] else: current_sub_tokens.append(UpperCamelCase_ ) A_ : Optional[int] = False out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->int: '''simple docstring''' if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ : str = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: A_ : Dict = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False )->Union[str, Any]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) A_ : List[Any] = [1] * len(self.prefix_tokens ) A_ : List[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase_ )) + ([0] * len(UpperCamelCase_ )) + suffix_ones def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->Dict: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->int: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) A_ : Tuple = src_lang A_ : Dict = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) A_ : List[Any] = self.convert_tokens_to_ids(UpperCamelCase_ ) A_ : List[str] = tgt_lang_id return inputs def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "en_XX" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "ro_RO" , **_SCREAMING_SNAKE_CASE , )->int: '''simple docstring''' A_ : str = src_lang A_ : List[Any] = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self )->List[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : Dict = self.lang_code_to_id[src_lang] A_ : Optional[int] = [self.cur_lang_code_id] A_ : Tuple = [self.eos_token_id] def _snake_case ( self , _SCREAMING_SNAKE_CASE )->str: '''simple docstring''' A_ : Any = self.lang_code_to_id[tgt_lang] A_ : int = [self.cur_lang_code_id] A_ : str = [self.eos_token_id]
357
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , ): if config_name_or_path is None: A_ : Optional[Any] = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: A_ : Union[str, Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: A_ : List[str] = question_encoder_name_or_path A_ : int = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. A_ : Optional[Any] = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE ) A_ : int = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) A_ : Any = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) A_ : str = gen_config A_ : Tuple = question_encoder_config A_ : List[Any] = model_class.from_pretrained_question_encoder_generator( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) rag_model.save_pretrained(SCREAMING_SNAKE_CASE ) # Sanity check. model_class.from_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizers. A_ : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) A_ : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) UpperCamelCase = parser.parse_args() UpperCamelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
65
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase__ ( ) -> tuple[list[int], int]: __snake_case = [randint(-1000 , 1000 ) for i in range(10 )] __snake_case = randint(-5000 , 5000 ) return (arr, r) snake_case_ = make_dataset() def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int ) -> tuple[int, ...]: for triplet in permutations(snake_case_ , 3 ): if sum(snake_case_ ) == target: return tuple(sorted(snake_case_ ) ) return (0, 0, 0) def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int ) -> tuple[int, int, int]: arr.sort() __snake_case = len(snake_case_ ) for i in range(n - 1 ): __snake_case , __snake_case = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase__ ( ) -> tuple[float, float]: __snake_case = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __snake_case = ''' triplet_sum1(*dataset) ''' __snake_case = ''' triplet_sum2(*dataset) ''' __snake_case = repeat(setup=snake_case_ , stmt=snake_case_ , repeat=5 , number=1_0000 ) __snake_case = repeat(setup=snake_case_ , stmt=snake_case_ , repeat=5 , number=1_0000 ) return (min(snake_case_ ), min(snake_case_ )) if __name__ == "__main__": from doctest import testmod testmod() snake_case_ = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
24
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = (PNDMScheduler,) __UpperCamelCase = (("num_inference_steps", 5_0),) def _SCREAMING_SNAKE_CASE ( self : Any , **lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = { '''num_train_timesteps''': 1000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowercase_) return config def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[str]=0 , **lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''num_inference_steps''' , lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_sample SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 * sample SCREAMING_SNAKE_CASE_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config(**lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_class.from_pretrained(lowercase_) new_scheduler.set_timesteps(lowercase_) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : Optional[Any] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str]=0 , **lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('''num_inference_steps''' , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.1 * sample SCREAMING_SNAKE_CASE_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_) SCREAMING_SNAKE_CASE_ : str = scheduler_class.from_pretrained(lowercase_) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : Any = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Tuple = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self : str , **lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_scheduler_config(**lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**lowercase_) SCREAMING_SNAKE_CASE_ : Dict = 10 SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_) for i, t in enumerate(scheduler.prk_timesteps): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : str = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_).prev_sample for i, t in enumerate(scheduler.plms_timesteps): SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_).prev_sample return sample def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''num_inference_steps''' , lowercase_) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler_class(**lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.dummy_sample SCREAMING_SNAKE_CASE_ : Any = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , '''set_timesteps'''): scheduler.set_timesteps(lowercase_) elif num_inference_steps is not None and not hasattr(lowercase_ , '''set_timesteps'''): SCREAMING_SNAKE_CASE_ : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE_ : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE_ : Optional[int] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Dict = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Any = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] = self.get_scheduler_config(steps_offset=1) SCREAMING_SNAKE_CASE_ : Tuple = scheduler_class(**lowercase_) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02]): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 27 for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_sample SCREAMING_SNAKE_CASE_ : str = 0.1 * sample SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): SCREAMING_SNAKE_CASE_ : int = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_).prev_sample def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' with self.assertRaises(lowercase_): SCREAMING_SNAKE_CASE_ : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Dict = scheduler_class(**lowercase_) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.full_loop() SCREAMING_SNAKE_CASE_ : List[Any] = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 1_98.13_18) < 1e-2 assert abs(result_mean.item() - 0.25_80) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.full_loop(prediction_type='''v_prediction''') SCREAMING_SNAKE_CASE_ : str = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 67.39_86) < 1e-2 assert abs(result_mean.item() - 0.08_78) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 2_30.03_99) < 1e-2 assert abs(result_mean.item() - 0.29_95) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01) SCREAMING_SNAKE_CASE_ : int = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 1_86.94_82) < 1e-2 assert abs(result_mean.item() - 0.24_34) < 1e-3
91
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case ) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "rag" A_ = True def __init__( self: Optional[int] , __A: Optional[int]=None , __A: Dict=True , __A: Any=None , __A: Dict=None , __A: Optional[int]=None , __A: Optional[Any]=None , __A: Optional[Any]=None , __A: Optional[Any]=" / " , __A: int=" // " , __A: List[Any]=5 , __A: Dict=3_00 , __A: int=7_68 , __A: Tuple=8 , __A: List[Any]="wiki_dpr" , __A: List[str]="train" , __A: Optional[Any]="compressed" , __A: Optional[int]=None , __A: Union[str, Any]=None , __A: Dict=False , __A: Tuple=False , __A: Optional[int]=0.0 , __A: Optional[int]=True , __A: int=False , __A: int=False , __A: Optional[Any]=False , __A: Optional[int]=True , __A: Optional[int]=None , **__A: Optional[Any] , ) -> Union[str, Any]: super().__init__( bos_token_id=__A , pad_token_id=__A , eos_token_id=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , is_encoder_decoder=__A , prefix=__A , vocab_size=__A , **__A , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _A = kwargs.pop('''question_encoder''' ) _A = question_encoder_config.pop('''model_type''' ) _A = kwargs.pop('''generator''' ) _A = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig _A = AutoConfig.for_model(__A , **__A ) _A = AutoConfig.for_model(__A , **__A ) _A = reduce_loss _A = label_smoothing _A = exclude_bos_score _A = do_marginalize _A = title_sep _A = doc_sep _A = n_docs _A = max_combined_length _A = dataset _A = dataset_split _A = index_name _A = retrieval_vector_size _A = retrieval_batch_size _A = passages_path _A = index_path _A = use_dummy_dataset _A = output_retrieved _A = do_deduplication _A = use_cache if self.forced_eos_token_id is None: _A = getattr(self.generator , '''forced_eos_token_id''' , __A ) @classmethod def __A ( cls: List[Any] , __A: PretrainedConfig , __A: PretrainedConfig , **__A: Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__A ) def __A ( self: Optional[Any] ) -> Dict: _A = copy.deepcopy(self.__dict__ ) _A = self.question_encoder.to_dict() _A = self.generator.to_dict() _A = self.__class__.model_type return output
356
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case ) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "rag" A_ = True def __init__( self: Optional[int] , __A: Optional[int]=None , __A: Dict=True , __A: Any=None , __A: Dict=None , __A: Optional[int]=None , __A: Optional[Any]=None , __A: Optional[Any]=None , __A: Optional[Any]=" / " , __A: int=" // " , __A: List[Any]=5 , __A: Dict=3_00 , __A: int=7_68 , __A: Tuple=8 , __A: List[Any]="wiki_dpr" , __A: List[str]="train" , __A: Optional[Any]="compressed" , __A: Optional[int]=None , __A: Union[str, Any]=None , __A: Dict=False , __A: Tuple=False , __A: Optional[int]=0.0 , __A: Optional[int]=True , __A: int=False , __A: int=False , __A: Optional[Any]=False , __A: Optional[int]=True , __A: Optional[int]=None , **__A: Optional[Any] , ) -> Union[str, Any]: super().__init__( bos_token_id=__A , pad_token_id=__A , eos_token_id=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , is_encoder_decoder=__A , prefix=__A , vocab_size=__A , **__A , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _A = kwargs.pop('''question_encoder''' ) _A = question_encoder_config.pop('''model_type''' ) _A = kwargs.pop('''generator''' ) _A = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig _A = AutoConfig.for_model(__A , **__A ) _A = AutoConfig.for_model(__A , **__A ) _A = reduce_loss _A = label_smoothing _A = exclude_bos_score _A = do_marginalize _A = title_sep _A = doc_sep _A = n_docs _A = max_combined_length _A = dataset _A = dataset_split _A = index_name _A = retrieval_vector_size _A = retrieval_batch_size _A = passages_path _A = index_path _A = use_dummy_dataset _A = output_retrieved _A = do_deduplication _A = use_cache if self.forced_eos_token_id is None: _A = getattr(self.generator , '''forced_eos_token_id''' , __A ) @classmethod def __A ( cls: List[Any] , __A: PretrainedConfig , __A: PretrainedConfig , **__A: Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__A ) def __A ( self: Optional[Any] ) -> Dict: _A = copy.deepcopy(self.__dict__ ) _A = self.question_encoder.to_dict() _A = self.generator.to_dict() _A = self.__class__.model_type return output
75
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCamelCase : Optional[int] = random.Random() if is_torch_available(): import torch def a_ ( _A , _A=1.0 , _A=None , _A=None ) -> Dict: """simple docstring""" if rng is None: snake_case__ = global_rng snake_case__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def __init__( self: Tuple , UpperCamelCase: Optional[Any] , UpperCamelCase: Dict=7 , UpperCamelCase: Optional[int]=4_00 , UpperCamelCase: Dict=20_00 , UpperCamelCase: Optional[int]=1 , UpperCamelCase: Optional[int]=0.0 , UpperCamelCase: str=1_60_00 , UpperCamelCase: Any=True , UpperCamelCase: Dict=True , ) -> str: snake_case__ = parent snake_case__ = batch_size snake_case__ = min_seq_length snake_case__ = max_seq_length snake_case__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case__ = feature_size snake_case__ = padding_value snake_case__ = sampling_rate snake_case__ = return_attention_mask snake_case__ = do_normalize def lowerCAmelCase_ ( self: Optional[int] ) -> str: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Optional[int]=False , UpperCamelCase: str=False ) -> Any: def _flatten(UpperCamelCase: Union[str, Any] ): return list(itertools.chain(*UpperCamelCase ) ) if equal_length: snake_case__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case__ = [np.asarray(UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): _UpperCAmelCase = ASTFeatureExtractor def lowerCAmelCase_ ( self: Optional[int] ) -> str: snake_case__ = ASTFeatureExtractionTester(self ) def lowerCAmelCase_ ( self: int ) -> Any: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case__ = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] # Test not batched input snake_case__ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values snake_case__ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) # Test batched snake_case__ = feat_extract(UpperCamelCase , padding=UpperCamelCase , return_tensors='np' ).input_values snake_case__ = feat_extract(UpperCamelCase , padding=UpperCamelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case__ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case__ = np.asarray(UpperCamelCase ) snake_case__ = feat_extract(UpperCamelCase , return_tensors='np' ).input_values snake_case__ = feat_extract(UpperCamelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) @require_torch def lowerCAmelCase_ ( self: int ) -> List[Any]: import torch snake_case__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ = np.random.rand(1_00 ).astype(np.floataa ) snake_case__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case__ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case__ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any ) -> Optional[int]: from datasets import load_dataset snake_case__ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech snake_case__ = ds.sort('id' ).select(range(UpperCamelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: # fmt: off snake_case__ = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on snake_case__ = self._load_datasamples(1 ) snake_case__ = ASTFeatureExtractor() snake_case__ = feature_extractor(UpperCamelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 10_24, 1_28) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , UpperCamelCase , atol=1e-4 ) )
307
def a_ ( _A , _A ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def a_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
307
1
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCAmelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_a , speech_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , feature_extractor=_a , ) def _lowerCAmelCase ( self , _a = "auto" ): """simple docstring""" if slice_size == "auto": lowerCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def _lowerCAmelCase ( self ): """simple docstring""" self.enable_attention_slicing(_a ) @torch.no_grad() def __call__( self , _a , _a=16_000 , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): """simple docstring""" lowerCamelCase = self.speech_processor.feature_extractor( _a , return_tensors="""pt""" , sampling_rate=_a ).input_features.to(self.device ) lowerCamelCase = self.speech_model.generate(_a , max_length=480_000 ) lowerCamelCase = self.speech_processor.tokenizer.batch_decode(_a , skip_special_tokens=_a , normalize=_a )[ 0 ] if isinstance(_a , _a ): lowerCamelCase = 1 elif isinstance(_a , _a ): lowerCamelCase = len(_a ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(_a )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_a , _a ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(_a )}.' ) # get prompt text embeddings lowerCamelCase = self.tokenizer( _a , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase , lowerCamelCase , lowerCamelCase = text_embeddings.shape lowerCamelCase = text_embeddings.repeat(1 , _a , 1 ) lowerCamelCase = text_embeddings.view(bs_embed * num_images_per_prompt , _a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase = 42 if negative_prompt is None: lowerCamelCase = [""""""] * batch_size elif type(_a ) is not type(_a ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(_a )} !=' f' {type(_a )}.' ) elif isinstance(_a , _a ): lowerCamelCase = [negative_prompt] elif batch_size != len(_a ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(_a )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: lowerCamelCase = negative_prompt lowerCamelCase = text_input_ids.shape[-1] lowerCamelCase = self.tokenizer( _a , padding="""max_length""" , max_length=_a , truncation=_a , return_tensors="""pt""" , ) lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase = uncond_embeddings.shape[1] lowerCamelCase = uncond_embeddings.repeat(1 , _a , 1 ) lowerCamelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , _a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase = torch.randn(_a , generator=_a , device="""cpu""" , dtype=_a ).to( self.device ) else: lowerCamelCase = torch.randn(_a , generator=_a , device=self.device , dtype=_a ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase = {} if accepts_eta: lowerCamelCase = eta for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual lowerCamelCase = self.unet(_a , _a , encoder_hidden_states=_a ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase , lowerCamelCase = noise_pred.chunk(2 ) lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_a , _a , _a ) lowerCamelCase = 1 / 0.18_215 * latents lowerCamelCase = self.vae.decode(_a ).sample lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase = self.numpy_to_pil(_a ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_a , nsfw_content_detected=_a )
168
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowerCamelCase = ksize + 1 lowerCamelCase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(snake_case__ ): for x in range(snake_case__ ): # distance from center lowerCamelCase = x - ksize // 2 lowerCamelCase = y - ksize // 2 # degree to radiant lowerCamelCase = theta / 1_80 * np.pi lowerCamelCase = np.cos(_theta ) lowerCamelCase = np.sin(_theta ) # get kernel x lowerCamelCase = cos_theta * px + sin_theta * py # get kernel y lowerCamelCase = -sin_theta * px + cos_theta * py # fill kernel lowerCamelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowerCAmelCase : Optional[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value lowerCAmelCase : Any = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowerCAmelCase : Optional[Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowerCAmelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowerCAmelCase : Optional[int] = out / out.max() * 255 lowerCAmelCase : Tuple = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
168
1
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def UpperCamelCase ( _lowerCAmelCase : Any, _lowerCAmelCase : Optional[Any] ) -> Generator[tuple[str, ...], None, None]: _UpperCAmelCase : List[Any] = iter(__lowerCAmelCase ) while True: _UpperCAmelCase : Optional[int] = tuple(itertools.islice(__lowerCAmelCase, __lowerCAmelCase ) ) if not chunk: return yield chunk def UpperCamelCase ( _lowerCAmelCase : Dict ) -> str: _UpperCAmelCase : List[Any] = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) _UpperCAmelCase : Tuple = """""" if len(__lowerCAmelCase ) < 2: return dirty for i in range(len(__lowerCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__lowerCAmelCase ) & 1: clean += "X" return clean def UpperCamelCase ( _lowerCAmelCase : Optional[int] ) -> list[str]: # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) _UpperCAmelCase : str = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _UpperCAmelCase : Optional[int] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__lowerCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__lowerCAmelCase ) return table def UpperCamelCase ( _lowerCAmelCase : str, _lowerCAmelCase : Any ) -> str: _UpperCAmelCase : Tuple = generate_table(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = prepare_input(__lowerCAmelCase ) _UpperCAmelCase : Tuple = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase, 2 ): _UpperCAmelCase : List[Any] = divmod(table.index(__lowerCAmelCase ), 5 ) _UpperCAmelCase : List[str] = divmod(table.index(__lowerCAmelCase ), 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def UpperCamelCase ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict ) -> str: _UpperCAmelCase : str = generate_table(__lowerCAmelCase ) _UpperCAmelCase : Dict = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase, 2 ): _UpperCAmelCase : Dict = divmod(table.index(__lowerCAmelCase ), 5 ) _UpperCAmelCase : Union[str, Any] = divmod(table.index(__lowerCAmelCase ), 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
246
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Generator[tuple[str, ...], None, None]: SCREAMING_SNAKE_CASE__ : List[Any] = iter(__lowerCAmelCase ) while True: SCREAMING_SNAKE_CASE__ : Optional[int] = tuple(itertools.islice(__lowerCAmelCase , __lowerCAmelCase ) ) if not chunk: return yield chunk def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : List[Any] = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) SCREAMING_SNAKE_CASE__ : Tuple = """""" if len(__lowerCAmelCase ) < 2: return dirty for i in range(len(__lowerCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__lowerCAmelCase ) & 1: clean += "X" return clean def _lowercase ( __lowerCAmelCase ) -> list[str]: # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) SCREAMING_SNAKE_CASE__ : str = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler SCREAMING_SNAKE_CASE__ : Optional[int] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__lowerCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__lowerCAmelCase ) return table def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Tuple = generate_table(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = prepare_input(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = divmod(table.index(__lowerCAmelCase ) , 5 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : str = generate_table(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = divmod(table.index(__lowerCAmelCase ) , 5 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
132
0
from math import factorial def __UpperCAmelCase ( __a : int ,__a : int ) -> int: """simple docstring""" if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(__a ) // (factorial(__a ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( '''If a class of 40 students must be arranged into groups of''', f'''4 for group projects, there are {combinations(40, 4)} ways''', '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f'''are {combinations(10, 3)} ways that first, second and''', '''third place can be awarded.''', )
15
from __future__ import annotations def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(__a ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Optional[Any] = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_50, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_00, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ] ) class A ( unittest.TestCase ): def lowercase_ (self : int ) -> Optional[Any]: """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=__UpperCAmelCase , ) assert hasattr(self , "env" ) def lowercase_ (self : List[Any] , __UpperCAmelCase : Optional[int]=1 ) -> Dict: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=__UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCAmelCase , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" TrainingJobAnalytics(__UpperCAmelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def lowercase_ (self : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __UpperCAmelCase )
65
0
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> int: A: Any = len(__lowercase ), len(grid[0] ) if ( min(__lowercase , __lowercase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) A: List[Any] = 0 count += depth_first_search(__lowercase , row + 1 , __lowercase , __lowercase ) count += depth_first_search(__lowercase , row - 1 , __lowercase , __lowercase ) count += depth_first_search(__lowercase , __lowercase , col + 1 , __lowercase ) count += depth_first_search(__lowercase , __lowercase , col - 1 , __lowercase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = DebertaTokenizer UpperCamelCase_ : List[str] = True UpperCamelCase_ : int = DebertaTokenizerFast def _snake_case ( self : Optional[int] ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A: Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] A: int = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A: Union[str, Any] = {'''unk_token''': '''[UNK]'''} A: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: '''simple docstring''' A: Optional[int] = '''lower newer''' A: str = '''lower newer''' return input_text, output_text def _snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A: str = self.get_tokenizer() A: Any = '''lower newer''' A: Dict = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokens + [tokenizer.unk_token] A: int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' A: str = self.get_tokenizer() A: List[str] = tokenizer('''Hello''' , '''World''' ) A: Union[str, Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Tuple ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Any = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) A: int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: int = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A: List[Any] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] A: Dict = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) A: Any = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) for seq in encoding['''input_ids''']] # fmt: off A: Any = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A: Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , SCREAMING_SNAKE_CASE_ ) for expected, decoded in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
334
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def A_ ( _lowercase, _lowercase, _lowercase = 10**-10 ): '''simple docstring''' snake_case_ :List[str] = a while True: snake_case_ :Tuple = Decimal(__snake_case ) - ( Decimal(eval(__snake_case ) ) / Decimal(eval(str(diff(__snake_case ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__snake_case ) ) < precision: # noqa: S307 return float(__snake_case ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial print(F"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}""") # Find Square Root of 5 print(F"""The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}""") # Exponential Roots print(F"""The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}""")
66
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =FunnelTokenizer lowercase : List[str] =FunnelTokenizerFast lowercase : Union[str, Any] =True lowercase : int =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCamelCase_ =[ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ='''UNwant\u00E9d,running''' lowerCamelCase_ ='''unwanted, running''' return input_text, output_text def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tokenizer_class(self.vocab_file ) lowerCamelCase_ =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCAmelCase, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ), [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: lowerCamelCase_ =tokenizer('''UNwant\u00E9d,running''' ) lowerCamelCase_ =len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''], [2] + [0] * sentence_len ) lowerCamelCase_ =tokenizer('''UNwant\u00E9d,running''', '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''], [2] + [0] * sentence_len + [1] * sentence_len )
75
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _A ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def _A ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple=True ): """simple docstring""" model.train() lowerCAmelCase__ = model(lowerCAmelCase_ ) lowerCAmelCase__ = F.mse_loss(lowerCAmelCase_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any]=False ): """simple docstring""" set_seed(42 ) lowerCAmelCase__ = RegressionModel() lowerCAmelCase__ = deepcopy(lowerCAmelCase_ ) lowerCAmelCase__ = RegressionDataset(length=80 ) lowerCAmelCase__ = DataLoader(lowerCAmelCase_ , batch_size=16 ) model.to(accelerator.device ) if sched: lowerCAmelCase__ = AdamW(params=model.parameters() , lr=1E-3 ) lowerCAmelCase__ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) lowerCAmelCase__ = LambdaLR(lowerCAmelCase_ , lr_lambda=lambda lowerCAmelCase_ : epoch**0.65 ) lowerCAmelCase__ = LambdaLR(lowerCAmelCase_ , lr_lambda=lambda lowerCAmelCase_ : epoch**0.65 ) # Make a copy of `model` if sched: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _A ( lowerCAmelCase_ : Tuple ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_training_setup(lowerCAmelCase_ ) # Use a single batch lowerCAmelCase__ , lowerCAmelCase__ = next(iter(lowerCAmelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase__ , lowerCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: # Sync grads step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCAmelCase__ = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] def _A ( lowerCAmelCase_ : Tuple ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_training_setup(lowerCAmelCase_ ) # Use a single batch lowerCAmelCase__ , lowerCAmelCase__ = next(iter(lowerCAmelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase__ , lowerCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: # Sync grads step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCAmelCase__ = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] def _A ( lowerCAmelCase_ : int=False , lowerCAmelCase_ : str=False ): """simple docstring""" lowerCAmelCase__ = Accelerator( split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_training_setup(lowerCAmelCase_ ) for iteration, batch in enumerate(lowerCAmelCase_ ): lowerCAmelCase__ , lowerCAmelCase__ = batch.values() # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase__ , lowerCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCAmelCase_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCAmelCase__ = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] GradientState._reset_state() def _A ( lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[Any]=False ): """simple docstring""" lowerCAmelCase__ = Accelerator( split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_training_setup(lowerCAmelCase_ , lowerCAmelCase_ ) for iteration, batch in enumerate(lowerCAmelCase_ ): lowerCAmelCase__ , lowerCAmelCase__ = batch.values() # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase__ , lowerCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCAmelCase_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' lowerCAmelCase__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCAmelCase_ )) if accelerator.num_processes > 1: check_model_parameters(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def _A ( ): """simple docstring""" lowerCAmelCase__ = Accelerator() lowerCAmelCase__ = RegressionDataset(length=80 ) lowerCAmelCase__ = DataLoader(lowerCAmelCase_ , batch_size=16 ) lowerCAmelCase__ = RegressionDataset(length=96 ) lowerCAmelCase__ = DataLoader(lowerCAmelCase_ , batch_size=16 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCAmelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase_ ) if iteration < len(lowerCAmelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCAmelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase_ ) if batch_num < len(lowerCAmelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _A ( ): """simple docstring""" lowerCAmelCase__ = Accelerator() lowerCAmelCase__ = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(lowerCAmelCase_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(lowerCAmelCase_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation(lowerCAmelCase_ , lowerCAmelCase_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCAmelCase_ , lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
221
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder UpperCamelCase = '__DUMMY_TRANSFORMERS_USER__' UpperCamelCase = 'Dummy User' UpperCamelCase = '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' UpperCamelCase = 'https://hub-ci.huggingface.co' UpperCamelCase = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' UpperCamelCase = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' UpperCamelCase = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( lowerCAmelCase_ : Dict ): """simple docstring""" monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , lowerCAmelCase_ ) @pytest.fixture def _A ( lowerCAmelCase_ : int ): """simple docstring""" monkeypatch.setattr("datasets.config.HF_ENDPOINT" , lowerCAmelCase_ ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , lowerCAmelCase_ ) @pytest.fixture def _A ( lowerCAmelCase_ : str ): """simple docstring""" monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , lowerCAmelCase_ ) @pytest.fixture def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] ): """simple docstring""" HfFolder.save_token(lowerCAmelCase_ ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def _A ( ): """simple docstring""" return HfApi(endpoint=lowerCAmelCase_ ) @pytest.fixture(scope="session" ) def _A ( lowerCAmelCase_ : HfApi ): """simple docstring""" lowerCAmelCase__ = HfFolder.get_token() HfFolder.save_token(lowerCAmelCase_ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCAmelCase_ ) @pytest.fixture def _A ( lowerCAmelCase_ : Tuple ): """simple docstring""" def _cleanup_repo(lowerCAmelCase_ : Optional[Any] ): hf_api.delete_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def _A ( lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" @contextmanager def _temporary_repo(lowerCAmelCase_ : str ): try: yield repo_id finally: cleanup_repo(lowerCAmelCase_ ) return _temporary_repo @pytest.fixture(scope="session" ) def _A ( lowerCAmelCase_ : HfApi , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ): """simple docstring""" lowerCAmelCase__ = F'repo_txt_data-{int(time.time() * 1_0E3 )}' lowerCAmelCase__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" , private=lowerCAmelCase_ ) hf_api.upload_file( token=lowerCAmelCase_ , path_or_fileobj=str(lowerCAmelCase_ ) , path_in_repo="data/text_data.txt" , repo_id=lowerCAmelCase_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int ): """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def _A ( lowerCAmelCase_ : HfApi , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): """simple docstring""" lowerCAmelCase__ = F'repo_zipped_txt_data-{int(time.time() * 1_0E3 )}' lowerCAmelCase__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" , private=lowerCAmelCase_ ) hf_api.upload_file( token=lowerCAmelCase_ , path_or_fileobj=str(lowerCAmelCase_ ) , path_in_repo="data.zip" , repo_id=lowerCAmelCase_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def _A ( lowerCAmelCase_ : HfApi , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int ): """simple docstring""" lowerCAmelCase__ = F'repo_zipped_img_data-{int(time.time() * 1_0E3 )}' lowerCAmelCase__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" , private=lowerCAmelCase_ ) hf_api.upload_file( token=lowerCAmelCase_ , path_or_fileobj=str(lowerCAmelCase_ ) , path_in_repo="data.zip" , repo_id=lowerCAmelCase_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase_ , token=lowerCAmelCase_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ): """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
221
1
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging a_ : int = logging.get_logger(__name__) def _A () -> Dict: '''simple docstring''' _a = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. _a = json.loads(lowerCAmelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. _a = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". _a = json.loads(lowerCAmelCase__ ) if not mpi_options.get('sagemaker_mpi_enabled' , lowerCAmelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def __UpperCAmelCase ( self ) -> List[Any]: super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , __magic_name__ , ) @cached_property def __UpperCAmelCase ( self ) -> "torch.device": logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: _a = torch.device('cpu' ) _a = 0 elif is_sagemaker_model_parallel_available(): _a = smp.local_rank() _a = torch.device('cuda' , __magic_name__ ) _a = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) _a = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) _a = torch.device('cuda' , self.local_rank ) _a = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 _a = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. _a = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) _a = torch.device('cuda' , self.local_rank ) _a = 1 if device.type == "cuda": torch.cuda.set_device(__magic_name__ ) return device @property def __UpperCAmelCase ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __UpperCAmelCase ( self ) -> str: return not is_sagemaker_model_parallel_available() @property def __UpperCAmelCase ( self ) -> str: return False
168
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ : Optional[Any] = logging.get_logger(__name__) a_ : List[Any] = {"vocab_file": "spiece.model"} a_ : List[str] = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } a_ : List[Any] = { "google/bigbird-roberta-base": 4_0_9_6, "google/bigbird-roberta-large": 4_0_9_6, "google/bigbird-base-trivia-itc": 4_0_9_6, } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["""input_ids""", """attention_mask"""] _lowerCAmelCase = [] def __init__( self , __magic_name__ , __magic_name__="<unk>" , __magic_name__="<s>" , __magic_name__="</s>" , __magic_name__="<pad>" , __magic_name__="[SEP]" , __magic_name__="[MASK]" , __magic_name__="[CLS]" , __magic_name__ = None , **__magic_name__ , ) -> None: _a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else bos_token _a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token _a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token _a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token _a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else cls_token _a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token _a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , sep_token=__magic_name__ , mask_token=__magic_name__ , cls_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) @property def __UpperCAmelCase ( self ) -> str: return self.sp_model.get_piece_size() def __UpperCAmelCase ( self ) -> int: _a = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: _a = self.__dict__.copy() _a = None return state def __setstate__( self , __magic_name__ ) -> Union[str, Any]: _a = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[str]: return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> Union[str, Any]: return self.sp_model.piece_to_id(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> str: _a = self.sp_model.IdToPiece(__magic_name__ ) return token def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[Any]: _a = [] _a = '' _a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__magic_name__ ) + token _a = True _a = [] else: current_sub_tokens.append(__magic_name__ ) _a = False out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = False , __magic_name__ = None , __magic_name__ = True , **__magic_name__ , ) -> str: _a = kwargs.pop('use_source_tokenizer' , __magic_name__ ) _a = self.convert_ids_to_tokens(__magic_name__ , skip_special_tokens=__magic_name__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _a = [] _a = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__magic_name__ ) ) _a = [] sub_texts.append(__magic_name__ ) else: current_sub_text.append(__magic_name__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__magic_name__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _a = re.sub(r' (\[(MASK|SEP)\])' , r'\1' , ' '.join(__magic_name__ ) ) else: _a = ''.join(__magic_name__ ) _a = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _a = self.clean_up_tokenization(__magic_name__ ) return clean_text else: return text def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: if not os.path.isdir(__magic_name__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __magic_name__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , 'wb' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) if token_ids_a is None: return [1] + ([0] * len(__magic_name__ )) + [1] return [1] + ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1] def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
168
1
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def A(__a: Optional[Any] , __a: int , __a: List[str] , __a: int=5 ): # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count("<mask>" ) == 1 lowerCAmelCase_ = torch.tensor(tokenizer.encode(__a , add_special_tokens=__a ) ).unsqueeze(0 ) # Batch size 1 lowerCAmelCase_ = model(__a )[0] # The last hidden-state is the first element of the output tuple lowerCAmelCase_ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowerCAmelCase_ = logits[0, masked_index, :] lowerCAmelCase_ = logits.softmax(dim=0 ) lowerCAmelCase_ , lowerCAmelCase_ = prob.topk(k=__a , dim=0 ) lowerCAmelCase_ = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__a ) )] ) lowerCAmelCase_ = tokenizer.mask_token lowerCAmelCase_ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): lowerCAmelCase_ = predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(__a ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(__a ) , __a ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__a , __a ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowerCamelCase__ = CamembertTokenizer.from_pretrained('''camembert-base''') lowerCamelCase__ = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() lowerCamelCase__ = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
22
def A(__a: Tuple ): lowerCAmelCase_ = len(__a ) while cur > 1: # Find the maximum number in arr lowerCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
22
1